Merge tag 'ntb-4.8' of git://github.com/jonmason/ntb
[deliverable/linux.git] / arch / mips / kvm / emulate.c
CommitLineData
e685c689 1/*
d116e812
DCZ
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * KVM/MIPS: Instruction/Exception emulation
7 *
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10 */
e685c689
SL
11
12#include <linux/errno.h>
13#include <linux/err.h>
e30492bb 14#include <linux/ktime.h>
e685c689
SL
15#include <linux/kvm_host.h>
16#include <linux/module.h>
17#include <linux/vmalloc.h>
18#include <linux/fs.h>
19#include <linux/bootmem.h>
20#include <linux/random.h>
21#include <asm/page.h>
22#include <asm/cacheflush.h>
f4956f62 23#include <asm/cacheops.h>
e685c689
SL
24#include <asm/cpu-info.h>
25#include <asm/mmu_context.h>
26#include <asm/tlbflush.h>
27#include <asm/inst.h>
28
29#undef CONFIG_MIPS_MT
30#include <asm/r4kcache.h>
31#define CONFIG_MIPS_MT
32
d7d5b05f
DCZ
33#include "interrupt.h"
34#include "commpage.h"
e685c689
SL
35
36#include "trace.h"
37
38/*
39 * Compute the return address and do emulate branch simulation, if required.
40 * This function should be called only in branch delay slot active.
41 */
42unsigned long kvm_compute_return_epc(struct kvm_vcpu *vcpu,
43 unsigned long instpc)
44{
45 unsigned int dspcontrol;
46 union mips_instruction insn;
47 struct kvm_vcpu_arch *arch = &vcpu->arch;
48 long epc = instpc;
49 long nextpc = KVM_INVALID_INST;
50
51 if (epc & 3)
52 goto unaligned;
53
d116e812 54 /* Read the instruction */
8cffd197 55 insn.word = kvm_get_inst((u32 *) epc, vcpu);
e685c689
SL
56
57 if (insn.word == KVM_INVALID_INST)
58 return KVM_INVALID_INST;
59
60 switch (insn.i_format.opcode) {
d116e812 61 /* jr and jalr are in r_format format. */
e685c689
SL
62 case spec_op:
63 switch (insn.r_format.func) {
64 case jalr_op:
65 arch->gprs[insn.r_format.rd] = epc + 8;
66 /* Fall through */
67 case jr_op:
68 nextpc = arch->gprs[insn.r_format.rs];
69 break;
70 }
71 break;
72
73 /*
74 * This group contains:
75 * bltz_op, bgez_op, bltzl_op, bgezl_op,
76 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
77 */
78 case bcond_op:
79 switch (insn.i_format.rt) {
80 case bltz_op:
81 case bltzl_op:
82 if ((long)arch->gprs[insn.i_format.rs] < 0)
83 epc = epc + 4 + (insn.i_format.simmediate << 2);
84 else
85 epc += 8;
86 nextpc = epc;
87 break;
88
89 case bgez_op:
90 case bgezl_op:
91 if ((long)arch->gprs[insn.i_format.rs] >= 0)
92 epc = epc + 4 + (insn.i_format.simmediate << 2);
93 else
94 epc += 8;
95 nextpc = epc;
96 break;
97
98 case bltzal_op:
99 case bltzall_op:
100 arch->gprs[31] = epc + 8;
101 if ((long)arch->gprs[insn.i_format.rs] < 0)
102 epc = epc + 4 + (insn.i_format.simmediate << 2);
103 else
104 epc += 8;
105 nextpc = epc;
106 break;
107
108 case bgezal_op:
109 case bgezall_op:
110 arch->gprs[31] = epc + 8;
111 if ((long)arch->gprs[insn.i_format.rs] >= 0)
112 epc = epc + 4 + (insn.i_format.simmediate << 2);
113 else
114 epc += 8;
115 nextpc = epc;
116 break;
117 case bposge32_op:
118 if (!cpu_has_dsp)
119 goto sigill;
120
121 dspcontrol = rddsp(0x01);
122
d116e812 123 if (dspcontrol >= 32)
e685c689 124 epc = epc + 4 + (insn.i_format.simmediate << 2);
d116e812 125 else
e685c689
SL
126 epc += 8;
127 nextpc = epc;
128 break;
129 }
130 break;
131
d116e812 132 /* These are unconditional and in j_format. */
e685c689
SL
133 case jal_op:
134 arch->gprs[31] = instpc + 8;
135 case j_op:
136 epc += 4;
137 epc >>= 28;
138 epc <<= 28;
139 epc |= (insn.j_format.target << 2);
140 nextpc = epc;
141 break;
142
d116e812 143 /* These are conditional and in i_format. */
e685c689
SL
144 case beq_op:
145 case beql_op:
146 if (arch->gprs[insn.i_format.rs] ==
147 arch->gprs[insn.i_format.rt])
148 epc = epc + 4 + (insn.i_format.simmediate << 2);
149 else
150 epc += 8;
151 nextpc = epc;
152 break;
153
154 case bne_op:
155 case bnel_op:
156 if (arch->gprs[insn.i_format.rs] !=
157 arch->gprs[insn.i_format.rt])
158 epc = epc + 4 + (insn.i_format.simmediate << 2);
159 else
160 epc += 8;
161 nextpc = epc;
162 break;
163
2e0badfa
JH
164 case blez_op: /* POP06 */
165#ifndef CONFIG_CPU_MIPSR6
166 case blezl_op: /* removed in R6 */
167#endif
168 if (insn.i_format.rt != 0)
169 goto compact_branch;
e685c689
SL
170 if ((long)arch->gprs[insn.i_format.rs] <= 0)
171 epc = epc + 4 + (insn.i_format.simmediate << 2);
172 else
173 epc += 8;
174 nextpc = epc;
175 break;
176
2e0badfa
JH
177 case bgtz_op: /* POP07 */
178#ifndef CONFIG_CPU_MIPSR6
179 case bgtzl_op: /* removed in R6 */
180#endif
181 if (insn.i_format.rt != 0)
182 goto compact_branch;
e685c689
SL
183 if ((long)arch->gprs[insn.i_format.rs] > 0)
184 epc = epc + 4 + (insn.i_format.simmediate << 2);
185 else
186 epc += 8;
187 nextpc = epc;
188 break;
189
d116e812 190 /* And now the FPA/cp1 branch instructions. */
e685c689 191 case cop1_op:
6ad78a5c 192 kvm_err("%s: unsupported cop1_op\n", __func__);
e685c689 193 break;
2e0badfa
JH
194
195#ifdef CONFIG_CPU_MIPSR6
196 /* R6 added the following compact branches with forbidden slots */
197 case blezl_op: /* POP26 */
198 case bgtzl_op: /* POP27 */
199 /* only rt == 0 isn't compact branch */
200 if (insn.i_format.rt != 0)
201 goto compact_branch;
202 break;
203 case pop10_op:
204 case pop30_op:
205 /* only rs == rt == 0 is reserved, rest are compact branches */
206 if (insn.i_format.rs != 0 || insn.i_format.rt != 0)
207 goto compact_branch;
208 break;
209 case pop66_op:
210 case pop76_op:
211 /* only rs == 0 isn't compact branch */
212 if (insn.i_format.rs != 0)
213 goto compact_branch;
214 break;
215compact_branch:
216 /*
217 * If we've hit an exception on the forbidden slot, then
218 * the branch must not have been taken.
219 */
220 epc += 8;
221 nextpc = epc;
222 break;
223#else
224compact_branch:
225 /* Compact branches not supported before R6 */
226 break;
227#endif
e685c689
SL
228 }
229
230 return nextpc;
231
232unaligned:
6ad78a5c 233 kvm_err("%s: unaligned epc\n", __func__);
e685c689
SL
234 return nextpc;
235
236sigill:
6ad78a5c 237 kvm_err("%s: DSP branch but not DSP ASE\n", __func__);
e685c689
SL
238 return nextpc;
239}
240
bdb7ed86 241enum emulation_result update_pc(struct kvm_vcpu *vcpu, u32 cause)
e685c689
SL
242{
243 unsigned long branch_pc;
244 enum emulation_result er = EMULATE_DONE;
245
246 if (cause & CAUSEF_BD) {
247 branch_pc = kvm_compute_return_epc(vcpu, vcpu->arch.pc);
248 if (branch_pc == KVM_INVALID_INST) {
249 er = EMULATE_FAIL;
250 } else {
251 vcpu->arch.pc = branch_pc;
d116e812
DCZ
252 kvm_debug("BD update_pc(): New PC: %#lx\n",
253 vcpu->arch.pc);
e685c689
SL
254 }
255 } else
256 vcpu->arch.pc += 4;
257
258 kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);
259
260 return er;
261}
262
e30492bb
JH
263/**
264 * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
265 * @vcpu: Virtual CPU.
e685c689 266 *
f8239342
JH
267 * Returns: 1 if the CP0_Count timer is disabled by either the guest
268 * CP0_Cause.DC bit or the count_ctl.DC bit.
e30492bb 269 * 0 otherwise (in which case CP0_Count timer is running).
e685c689 270 */
e30492bb 271static inline int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
e685c689
SL
272{
273 struct mips_coproc *cop0 = vcpu->arch.cop0;
d116e812 274
f8239342
JH
275 return (vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
276 (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
e30492bb 277}
e685c689 278
e30492bb
JH
279/**
280 * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
281 *
282 * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
283 *
284 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
285 */
bdb7ed86 286static u32 kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
e30492bb
JH
287{
288 s64 now_ns, periods;
289 u64 delta;
290
291 now_ns = ktime_to_ns(now);
292 delta = now_ns + vcpu->arch.count_dyn_bias;
293
294 if (delta >= vcpu->arch.count_period) {
295 /* If delta is out of safe range the bias needs adjusting */
296 periods = div64_s64(now_ns, vcpu->arch.count_period);
297 vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
298 /* Recalculate delta with new bias */
299 delta = now_ns + vcpu->arch.count_dyn_bias;
e685c689
SL
300 }
301
e30492bb
JH
302 /*
303 * We've ensured that:
304 * delta < count_period
305 *
306 * Therefore the intermediate delta*count_hz will never overflow since
307 * at the boundary condition:
308 * delta = count_period
309 * delta = NSEC_PER_SEC * 2^32 / count_hz
310 * delta * count_hz = NSEC_PER_SEC * 2^32
311 */
312 return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
313}
314
f8239342
JH
315/**
316 * kvm_mips_count_time() - Get effective current time.
317 * @vcpu: Virtual CPU.
318 *
319 * Get effective monotonic ktime. This is usually a straightforward ktime_get(),
320 * except when the master disable bit is set in count_ctl, in which case it is
321 * count_resume, i.e. the time that the count was disabled.
322 *
323 * Returns: Effective monotonic ktime for CP0_Count.
324 */
325static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
326{
327 if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
328 return vcpu->arch.count_resume;
329
330 return ktime_get();
331}
332
e30492bb
JH
333/**
334 * kvm_mips_read_count_running() - Read the current count value as if running.
335 * @vcpu: Virtual CPU.
336 * @now: Kernel time to read CP0_Count at.
337 *
338 * Returns the current guest CP0_Count register at time @now and handles if the
339 * timer interrupt is pending and hasn't been handled yet.
340 *
341 * Returns: The current value of the guest CP0_Count register.
342 */
bdb7ed86 343static u32 kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
e30492bb 344{
4355c44f
JH
345 struct mips_coproc *cop0 = vcpu->arch.cop0;
346 ktime_t expires, threshold;
8cffd197 347 u32 count, compare;
e30492bb
JH
348 int running;
349
4355c44f
JH
350 /* Calculate the biased and scaled guest CP0_Count */
351 count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
352 compare = kvm_read_c0_guest_compare(cop0);
353
354 /*
355 * Find whether CP0_Count has reached the closest timer interrupt. If
356 * not, we shouldn't inject it.
357 */
8cffd197 358 if ((s32)(count - compare) < 0)
4355c44f
JH
359 return count;
360
361 /*
362 * The CP0_Count we're going to return has already reached the closest
363 * timer interrupt. Quickly check if it really is a new interrupt by
364 * looking at whether the interval until the hrtimer expiry time is
365 * less than 1/4 of the timer period.
366 */
e30492bb 367 expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
4355c44f
JH
368 threshold = ktime_add_ns(now, vcpu->arch.count_period / 4);
369 if (ktime_before(expires, threshold)) {
e30492bb
JH
370 /*
371 * Cancel it while we handle it so there's no chance of
372 * interference with the timeout handler.
373 */
374 running = hrtimer_cancel(&vcpu->arch.comparecount_timer);
375
376 /* Nothing should be waiting on the timeout */
377 kvm_mips_callbacks->queue_timer_int(vcpu);
378
379 /*
380 * Restart the timer if it was running based on the expiry time
381 * we read, so that we don't push it back 2 periods.
382 */
383 if (running) {
384 expires = ktime_add_ns(expires,
385 vcpu->arch.count_period);
386 hrtimer_start(&vcpu->arch.comparecount_timer, expires,
387 HRTIMER_MODE_ABS);
388 }
389 }
390
4355c44f 391 return count;
e30492bb
JH
392}
393
394/**
395 * kvm_mips_read_count() - Read the current count value.
396 * @vcpu: Virtual CPU.
397 *
398 * Read the current guest CP0_Count value, taking into account whether the timer
399 * is stopped.
400 *
401 * Returns: The current guest CP0_Count value.
402 */
bdb7ed86 403u32 kvm_mips_read_count(struct kvm_vcpu *vcpu)
e30492bb
JH
404{
405 struct mips_coproc *cop0 = vcpu->arch.cop0;
406
407 /* If count disabled just read static copy of count */
408 if (kvm_mips_count_disabled(vcpu))
409 return kvm_read_c0_guest_count(cop0);
410
411 return kvm_mips_read_count_running(vcpu, ktime_get());
412}
413
414/**
415 * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
416 * @vcpu: Virtual CPU.
417 * @count: Output pointer for CP0_Count value at point of freeze.
418 *
419 * Freeze the hrtimer safely and return both the ktime and the CP0_Count value
420 * at the point it was frozen. It is guaranteed that any pending interrupts at
421 * the point it was frozen are handled, and none after that point.
422 *
423 * This is useful where the time/CP0_Count is needed in the calculation of the
424 * new parameters.
425 *
426 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
427 *
428 * Returns: The ktime at the point of freeze.
429 */
bdb7ed86 430static ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu, u32 *count)
e30492bb
JH
431{
432 ktime_t now;
433
434 /* stop hrtimer before finding time */
435 hrtimer_cancel(&vcpu->arch.comparecount_timer);
436 now = ktime_get();
437
438 /* find count at this point and handle pending hrtimer */
439 *count = kvm_mips_read_count_running(vcpu, now);
440
441 return now;
442}
443
e30492bb
JH
444/**
445 * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
446 * @vcpu: Virtual CPU.
447 * @now: ktime at point of resume.
448 * @count: CP0_Count at point of resume.
449 *
450 * Resumes the timer and updates the timer expiry based on @now and @count.
451 * This can be used in conjunction with kvm_mips_freeze_timer() when timer
452 * parameters need to be changed.
453 *
454 * It is guaranteed that a timer interrupt immediately after resume will be
455 * handled, but not if CP_Compare is exactly at @count. That case is already
456 * handled by kvm_mips_freeze_timer().
457 *
458 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
459 */
460static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
bdb7ed86 461 ktime_t now, u32 count)
e30492bb
JH
462{
463 struct mips_coproc *cop0 = vcpu->arch.cop0;
8cffd197 464 u32 compare;
e30492bb
JH
465 u64 delta;
466 ktime_t expire;
467
468 /* Calculate timeout (wrap 0 to 2^32) */
469 compare = kvm_read_c0_guest_compare(cop0);
8cffd197 470 delta = (u64)(u32)(compare - count - 1) + 1;
e30492bb
JH
471 delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
472 expire = ktime_add_ns(now, delta);
473
474 /* Update hrtimer to use new timeout */
475 hrtimer_cancel(&vcpu->arch.comparecount_timer);
476 hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
477}
478
e30492bb
JH
479/**
480 * kvm_mips_write_count() - Modify the count and update timer.
481 * @vcpu: Virtual CPU.
482 * @count: Guest CP0_Count value to set.
483 *
484 * Sets the CP0_Count value and updates the timer accordingly.
485 */
bdb7ed86 486void kvm_mips_write_count(struct kvm_vcpu *vcpu, u32 count)
e30492bb
JH
487{
488 struct mips_coproc *cop0 = vcpu->arch.cop0;
489 ktime_t now;
490
491 /* Calculate bias */
f8239342 492 now = kvm_mips_count_time(vcpu);
e30492bb
JH
493 vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
494
495 if (kvm_mips_count_disabled(vcpu))
496 /* The timer's disabled, adjust the static count */
497 kvm_write_c0_guest_count(cop0, count);
498 else
499 /* Update timeout */
500 kvm_mips_resume_hrtimer(vcpu, now, count);
501}
502
503/**
504 * kvm_mips_init_count() - Initialise timer.
505 * @vcpu: Virtual CPU.
506 *
507 * Initialise the timer to a sensible frequency, namely 100MHz, zero it, and set
508 * it going if it's enabled.
509 */
510void kvm_mips_init_count(struct kvm_vcpu *vcpu)
511{
512 /* 100 MHz */
513 vcpu->arch.count_hz = 100*1000*1000;
514 vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32,
515 vcpu->arch.count_hz);
516 vcpu->arch.count_dyn_bias = 0;
517
518 /* Starting at 0 */
519 kvm_mips_write_count(vcpu, 0);
520}
521
f74a8e22
JH
522/**
523 * kvm_mips_set_count_hz() - Update the frequency of the timer.
524 * @vcpu: Virtual CPU.
525 * @count_hz: Frequency of CP0_Count timer in Hz.
526 *
527 * Change the frequency of the CP0_Count timer. This is done atomically so that
528 * CP0_Count is continuous and no timer interrupt is lost.
529 *
530 * Returns: -EINVAL if @count_hz is out of range.
531 * 0 on success.
532 */
533int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
534{
535 struct mips_coproc *cop0 = vcpu->arch.cop0;
536 int dc;
537 ktime_t now;
538 u32 count;
539
540 /* ensure the frequency is in a sensible range... */
541 if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
542 return -EINVAL;
543 /* ... and has actually changed */
544 if (vcpu->arch.count_hz == count_hz)
545 return 0;
546
547 /* Safely freeze timer so we can keep it continuous */
548 dc = kvm_mips_count_disabled(vcpu);
549 if (dc) {
550 now = kvm_mips_count_time(vcpu);
551 count = kvm_read_c0_guest_count(cop0);
552 } else {
553 now = kvm_mips_freeze_hrtimer(vcpu, &count);
554 }
555
556 /* Update the frequency */
557 vcpu->arch.count_hz = count_hz;
558 vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
559 vcpu->arch.count_dyn_bias = 0;
560
561 /* Calculate adjusted bias so dynamic count is unchanged */
562 vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
563
564 /* Update and resume hrtimer */
565 if (!dc)
566 kvm_mips_resume_hrtimer(vcpu, now, count);
567 return 0;
568}
569
e30492bb
JH
570/**
571 * kvm_mips_write_compare() - Modify compare and update timer.
572 * @vcpu: Virtual CPU.
573 * @compare: New CP0_Compare value.
b45bacd2 574 * @ack: Whether to acknowledge timer interrupt.
e30492bb
JH
575 *
576 * Update CP0_Compare to a new value and update the timeout.
b45bacd2
JH
577 * If @ack, atomically acknowledge any pending timer interrupt, otherwise ensure
578 * any pending timer interrupt is preserved.
e30492bb 579 */
bdb7ed86 580void kvm_mips_write_compare(struct kvm_vcpu *vcpu, u32 compare, bool ack)
e30492bb
JH
581{
582 struct mips_coproc *cop0 = vcpu->arch.cop0;
b45bacd2
JH
583 int dc;
584 u32 old_compare = kvm_read_c0_guest_compare(cop0);
585 ktime_t now;
8cffd197 586 u32 count;
e30492bb
JH
587
588 /* if unchanged, must just be an ack */
b45bacd2
JH
589 if (old_compare == compare) {
590 if (!ack)
591 return;
592 kvm_mips_callbacks->dequeue_timer_int(vcpu);
593 kvm_write_c0_guest_compare(cop0, compare);
e30492bb 594 return;
b45bacd2
JH
595 }
596
597 /* freeze_hrtimer() takes care of timer interrupts <= count */
598 dc = kvm_mips_count_disabled(vcpu);
599 if (!dc)
600 now = kvm_mips_freeze_hrtimer(vcpu, &count);
601
602 if (ack)
603 kvm_mips_callbacks->dequeue_timer_int(vcpu);
e30492bb 604
e30492bb
JH
605 kvm_write_c0_guest_compare(cop0, compare);
606
b45bacd2
JH
607 /* resume_hrtimer() takes care of timer interrupts > count */
608 if (!dc)
609 kvm_mips_resume_hrtimer(vcpu, now, count);
e30492bb
JH
610}
611
612/**
613 * kvm_mips_count_disable() - Disable count.
614 * @vcpu: Virtual CPU.
615 *
616 * Disable the CP0_Count timer. A timer interrupt on or before the final stop
617 * time will be handled but not after.
618 *
f8239342
JH
619 * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
620 * count_ctl.DC has been set (count disabled).
e30492bb
JH
621 *
622 * Returns: The time that the timer was stopped.
623 */
624static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
625{
626 struct mips_coproc *cop0 = vcpu->arch.cop0;
8cffd197 627 u32 count;
e30492bb
JH
628 ktime_t now;
629
630 /* Stop hrtimer */
631 hrtimer_cancel(&vcpu->arch.comparecount_timer);
632
633 /* Set the static count from the dynamic count, handling pending TI */
634 now = ktime_get();
635 count = kvm_mips_read_count_running(vcpu, now);
636 kvm_write_c0_guest_count(cop0, count);
637
638 return now;
639}
640
641/**
642 * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
643 * @vcpu: Virtual CPU.
644 *
645 * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
f8239342
JH
646 * before the final stop time will be handled if the timer isn't disabled by
647 * count_ctl.DC, but not after.
e30492bb
JH
648 *
649 * Assumes CP0_Cause.DC is clear (count enabled).
650 */
651void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
652{
653 struct mips_coproc *cop0 = vcpu->arch.cop0;
654
655 kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
f8239342
JH
656 if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
657 kvm_mips_count_disable(vcpu);
e30492bb
JH
658}
659
660/**
661 * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
662 * @vcpu: Virtual CPU.
663 *
664 * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
f8239342
JH
665 * the start time will be handled if the timer isn't disabled by count_ctl.DC,
666 * potentially before even returning, so the caller should be careful with
667 * ordering of CP0_Cause modifications so as not to lose it.
e30492bb
JH
668 *
669 * Assumes CP0_Cause.DC is set (count disabled).
670 */
671void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
672{
673 struct mips_coproc *cop0 = vcpu->arch.cop0;
8cffd197 674 u32 count;
e30492bb
JH
675
676 kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);
677
678 /*
679 * Set the dynamic count to match the static count.
f8239342
JH
680 * This starts the hrtimer if count_ctl.DC allows it.
681 * Otherwise it conveniently updates the biases.
e30492bb
JH
682 */
683 count = kvm_read_c0_guest_count(cop0);
684 kvm_mips_write_count(vcpu, count);
685}
686
f8239342
JH
687/**
688 * kvm_mips_set_count_ctl() - Update the count control KVM register.
689 * @vcpu: Virtual CPU.
690 * @count_ctl: Count control register new value.
691 *
692 * Set the count control KVM register. The timer is updated accordingly.
693 *
694 * Returns: -EINVAL if reserved bits are set.
695 * 0 on success.
696 */
697int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
698{
699 struct mips_coproc *cop0 = vcpu->arch.cop0;
700 s64 changed = count_ctl ^ vcpu->arch.count_ctl;
701 s64 delta;
702 ktime_t expire, now;
8cffd197 703 u32 count, compare;
f8239342
JH
704
705 /* Only allow defined bits to be changed */
706 if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
707 return -EINVAL;
708
709 /* Apply new value */
710 vcpu->arch.count_ctl = count_ctl;
711
712 /* Master CP0_Count disable */
713 if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
714 /* Is CP0_Cause.DC already disabling CP0_Count? */
715 if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
716 if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
717 /* Just record the current time */
718 vcpu->arch.count_resume = ktime_get();
719 } else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
720 /* disable timer and record current time */
721 vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
722 } else {
723 /*
724 * Calculate timeout relative to static count at resume
725 * time (wrap 0 to 2^32).
726 */
727 count = kvm_read_c0_guest_count(cop0);
728 compare = kvm_read_c0_guest_compare(cop0);
8cffd197 729 delta = (u64)(u32)(compare - count - 1) + 1;
f8239342
JH
730 delta = div_u64(delta * NSEC_PER_SEC,
731 vcpu->arch.count_hz);
732 expire = ktime_add_ns(vcpu->arch.count_resume, delta);
733
734 /* Handle pending interrupt */
735 now = ktime_get();
736 if (ktime_compare(now, expire) >= 0)
737 /* Nothing should be waiting on the timeout */
738 kvm_mips_callbacks->queue_timer_int(vcpu);
739
740 /* Resume hrtimer without changing bias */
741 count = kvm_mips_read_count_running(vcpu, now);
742 kvm_mips_resume_hrtimer(vcpu, now, count);
743 }
744 }
745
746 return 0;
747}
748
749/**
750 * kvm_mips_set_count_resume() - Update the count resume KVM register.
751 * @vcpu: Virtual CPU.
752 * @count_resume: Count resume register new value.
753 *
754 * Set the count resume KVM register.
755 *
756 * Returns: -EINVAL if out of valid range (0..now).
757 * 0 on success.
758 */
759int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
760{
761 /*
762 * It doesn't make sense for the resume time to be in the future, as it
763 * would be possible for the next interrupt to be more than a full
764 * period in the future.
765 */
766 if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
767 return -EINVAL;
768
769 vcpu->arch.count_resume = ns_to_ktime(count_resume);
770 return 0;
771}
772
e30492bb
JH
773/**
774 * kvm_mips_count_timeout() - Push timer forward on timeout.
775 * @vcpu: Virtual CPU.
776 *
777 * Handle an hrtimer event by push the hrtimer forward a period.
778 *
779 * Returns: The hrtimer_restart value to return to the hrtimer subsystem.
780 */
781enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
782{
783 /* Add the Count period to the current expiry time */
784 hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
785 vcpu->arch.count_period);
786 return HRTIMER_RESTART;
e685c689
SL
787}
788
789enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu)
790{
791 struct mips_coproc *cop0 = vcpu->arch.cop0;
792 enum emulation_result er = EMULATE_DONE;
793
794 if (kvm_read_c0_guest_status(cop0) & ST0_EXL) {
795 kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc,
796 kvm_read_c0_guest_epc(cop0));
797 kvm_clear_c0_guest_status(cop0, ST0_EXL);
798 vcpu->arch.pc = kvm_read_c0_guest_epc(cop0);
799
800 } else if (kvm_read_c0_guest_status(cop0) & ST0_ERL) {
801 kvm_clear_c0_guest_status(cop0, ST0_ERL);
802 vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0);
803 } else {
6ad78a5c
DCZ
804 kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n",
805 vcpu->arch.pc);
e685c689
SL
806 er = EMULATE_FAIL;
807 }
808
809 return er;
810}
811
812enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
813{
e685c689
SL
814 kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
815 vcpu->arch.pending_exceptions);
816
817 ++vcpu->stat.wait_exits;
1e09e86a 818 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_WAIT);
e685c689
SL
819 if (!vcpu->arch.pending_exceptions) {
820 vcpu->arch.wait = 1;
821 kvm_vcpu_block(vcpu);
822
d116e812
DCZ
823 /*
824 * We we are runnable, then definitely go off to user space to
825 * check if any I/O interrupts are pending.
e685c689
SL
826 */
827 if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
828 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
829 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
830 }
831 }
832
d98403a5 833 return EMULATE_DONE;
e685c689
SL
834}
835
d116e812
DCZ
836/*
837 * XXXKYMA: Linux doesn't seem to use TLBR, return EMULATE_FAIL for now so that
838 * we can catch this, if things ever change
e685c689
SL
839 */
840enum emulation_result kvm_mips_emul_tlbr(struct kvm_vcpu *vcpu)
841{
842 struct mips_coproc *cop0 = vcpu->arch.cop0;
8cffd197 843 unsigned long pc = vcpu->arch.pc;
e685c689 844
8cffd197 845 kvm_err("[%#lx] COP0_TLBR [%ld]\n", pc, kvm_read_c0_guest_index(cop0));
d98403a5 846 return EMULATE_FAIL;
e685c689
SL
847}
848
849/* Write Guest TLB Entry @ Index */
850enum emulation_result kvm_mips_emul_tlbwi(struct kvm_vcpu *vcpu)
851{
852 struct mips_coproc *cop0 = vcpu->arch.cop0;
853 int index = kvm_read_c0_guest_index(cop0);
e685c689 854 struct kvm_mips_tlb *tlb = NULL;
8cffd197 855 unsigned long pc = vcpu->arch.pc;
e685c689
SL
856
857 if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
6ad78a5c 858 kvm_debug("%s: illegal index: %d\n", __func__, index);
8cffd197 859 kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
6ad78a5c
DCZ
860 pc, index, kvm_read_c0_guest_entryhi(cop0),
861 kvm_read_c0_guest_entrylo0(cop0),
862 kvm_read_c0_guest_entrylo1(cop0),
863 kvm_read_c0_guest_pagemask(cop0));
e685c689
SL
864 index = (index & ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE;
865 }
866
867 tlb = &vcpu->arch.guest_tlb[index];
d116e812
DCZ
868 /*
869 * Probe the shadow host TLB for the entry being overwritten, if one
870 * matches, invalidate it
871 */
e685c689 872 kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);
e685c689
SL
873
874 tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
875 tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
9fbfb06a
JH
876 tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0);
877 tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0);
e685c689 878
8cffd197 879 kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
d116e812
DCZ
880 pc, index, kvm_read_c0_guest_entryhi(cop0),
881 kvm_read_c0_guest_entrylo0(cop0),
882 kvm_read_c0_guest_entrylo1(cop0),
883 kvm_read_c0_guest_pagemask(cop0));
e685c689 884
d98403a5 885 return EMULATE_DONE;
e685c689
SL
886}
887
888/* Write Guest TLB Entry @ Random Index */
889enum emulation_result kvm_mips_emul_tlbwr(struct kvm_vcpu *vcpu)
890{
891 struct mips_coproc *cop0 = vcpu->arch.cop0;
e685c689 892 struct kvm_mips_tlb *tlb = NULL;
8cffd197 893 unsigned long pc = vcpu->arch.pc;
e685c689
SL
894 int index;
895
e685c689
SL
896 get_random_bytes(&index, sizeof(index));
897 index &= (KVM_MIPS_GUEST_TLB_SIZE - 1);
e685c689 898
e685c689
SL
899 tlb = &vcpu->arch.guest_tlb[index];
900
d116e812
DCZ
901 /*
902 * Probe the shadow host TLB for the entry being overwritten, if one
903 * matches, invalidate it
904 */
e685c689 905 kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);
e685c689
SL
906
907 tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
908 tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
9fbfb06a
JH
909 tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0);
910 tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0);
e685c689 911
8cffd197 912 kvm_debug("[%#lx] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n",
d116e812
DCZ
913 pc, index, kvm_read_c0_guest_entryhi(cop0),
914 kvm_read_c0_guest_entrylo0(cop0),
915 kvm_read_c0_guest_entrylo1(cop0));
e685c689 916
d98403a5 917 return EMULATE_DONE;
e685c689
SL
918}
919
920enum emulation_result kvm_mips_emul_tlbp(struct kvm_vcpu *vcpu)
921{
922 struct mips_coproc *cop0 = vcpu->arch.cop0;
923 long entryhi = kvm_read_c0_guest_entryhi(cop0);
8cffd197 924 unsigned long pc = vcpu->arch.pc;
e685c689
SL
925 int index = -1;
926
927 index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
928
929 kvm_write_c0_guest_index(cop0, index);
930
8cffd197 931 kvm_debug("[%#lx] COP0_TLBP (entryhi: %#lx), index: %d\n", pc, entryhi,
e685c689
SL
932 index);
933
d98403a5 934 return EMULATE_DONE;
e685c689
SL
935}
936
c771607a
JH
937/**
938 * kvm_mips_config1_wrmask() - Find mask of writable bits in guest Config1
939 * @vcpu: Virtual CPU.
940 *
941 * Finds the mask of bits which are writable in the guest's Config1 CP0
942 * register, by userland (currently read-only to the guest).
943 */
944unsigned int kvm_mips_config1_wrmask(struct kvm_vcpu *vcpu)
945{
6cdc65e3
JH
946 unsigned int mask = 0;
947
948 /* Permit FPU to be present if FPU is supported */
949 if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
950 mask |= MIPS_CONF1_FP;
951
952 return mask;
c771607a
JH
953}
954
955/**
956 * kvm_mips_config3_wrmask() - Find mask of writable bits in guest Config3
957 * @vcpu: Virtual CPU.
958 *
959 * Finds the mask of bits which are writable in the guest's Config3 CP0
960 * register, by userland (currently read-only to the guest).
961 */
962unsigned int kvm_mips_config3_wrmask(struct kvm_vcpu *vcpu)
963{
cef061d0
JH
964 /* Config4 and ULRI are optional */
965 unsigned int mask = MIPS_CONF_M | MIPS_CONF3_ULRI;
2b6009d6
JH
966
967 /* Permit MSA to be present if MSA is supported */
968 if (kvm_mips_guest_can_have_msa(&vcpu->arch))
969 mask |= MIPS_CONF3_MSA;
970
971 return mask;
c771607a
JH
972}
973
974/**
975 * kvm_mips_config4_wrmask() - Find mask of writable bits in guest Config4
976 * @vcpu: Virtual CPU.
977 *
978 * Finds the mask of bits which are writable in the guest's Config4 CP0
979 * register, by userland (currently read-only to the guest).
980 */
981unsigned int kvm_mips_config4_wrmask(struct kvm_vcpu *vcpu)
982{
983 /* Config5 is optional */
05108709
JH
984 unsigned int mask = MIPS_CONF_M;
985
986 /* KScrExist */
987 mask |= (unsigned int)vcpu->arch.kscratch_enabled << 16;
988
989 return mask;
c771607a
JH
990}
991
992/**
993 * kvm_mips_config5_wrmask() - Find mask of writable bits in guest Config5
994 * @vcpu: Virtual CPU.
995 *
996 * Finds the mask of bits which are writable in the guest's Config5 CP0
997 * register, by the guest itself.
998 */
999unsigned int kvm_mips_config5_wrmask(struct kvm_vcpu *vcpu)
1000{
6cdc65e3
JH
1001 unsigned int mask = 0;
1002
2b6009d6
JH
1003 /* Permit MSAEn changes if MSA supported and enabled */
1004 if (kvm_mips_guest_has_msa(&vcpu->arch))
1005 mask |= MIPS_CONF5_MSAEN;
1006
6cdc65e3
JH
1007 /*
1008 * Permit guest FPU mode changes if FPU is enabled and the relevant
1009 * feature exists according to FIR register.
1010 */
1011 if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1012 if (cpu_has_fre)
1013 mask |= MIPS_CONF5_FRE;
1014 /* We don't support UFR or UFE */
1015 }
1016
1017 return mask;
c771607a
JH
1018}
1019
258f3a2e
JH
1020enum emulation_result kvm_mips_emulate_CP0(union mips_instruction inst,
1021 u32 *opc, u32 cause,
bdb7ed86 1022 struct kvm_run *run,
d116e812 1023 struct kvm_vcpu *vcpu)
e685c689
SL
1024{
1025 struct mips_coproc *cop0 = vcpu->arch.cop0;
1026 enum emulation_result er = EMULATE_DONE;
258f3a2e 1027 u32 rt, rd, sel;
e685c689
SL
1028 unsigned long curr_pc;
1029
1030 /*
1031 * Update PC and hold onto current PC in case there is
1032 * an error and we want to rollback the PC
1033 */
1034 curr_pc = vcpu->arch.pc;
1035 er = update_pc(vcpu, cause);
d116e812 1036 if (er == EMULATE_FAIL)
e685c689 1037 return er;
e685c689 1038
258f3a2e
JH
1039 if (inst.co_format.co) {
1040 switch (inst.co_format.func) {
e685c689
SL
1041 case tlbr_op: /* Read indexed TLB entry */
1042 er = kvm_mips_emul_tlbr(vcpu);
1043 break;
1044 case tlbwi_op: /* Write indexed */
1045 er = kvm_mips_emul_tlbwi(vcpu);
1046 break;
1047 case tlbwr_op: /* Write random */
1048 er = kvm_mips_emul_tlbwr(vcpu);
1049 break;
1050 case tlbp_op: /* TLB Probe */
1051 er = kvm_mips_emul_tlbp(vcpu);
1052 break;
1053 case rfe_op:
6ad78a5c 1054 kvm_err("!!!COP0_RFE!!!\n");
e685c689
SL
1055 break;
1056 case eret_op:
1057 er = kvm_mips_emul_eret(vcpu);
1058 goto dont_update_pc;
e685c689
SL
1059 case wait_op:
1060 er = kvm_mips_emul_wait(vcpu);
1061 break;
1062 }
1063 } else {
258f3a2e
JH
1064 rt = inst.c0r_format.rt;
1065 rd = inst.c0r_format.rd;
1066 sel = inst.c0r_format.sel;
1067
1068 switch (inst.c0r_format.rs) {
e685c689
SL
1069 case mfc_op:
1070#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1071 cop0->stat[rd][sel]++;
1072#endif
1073 /* Get reg */
1074 if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
172e02d1
JH
1075 vcpu->arch.gprs[rt] =
1076 (s32)kvm_mips_read_count(vcpu);
e685c689
SL
1077 } else if ((rd == MIPS_CP0_ERRCTL) && (sel == 0)) {
1078 vcpu->arch.gprs[rt] = 0x0;
1079#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1080 kvm_mips_trans_mfc0(inst, opc, vcpu);
1081#endif
d116e812 1082 } else {
172e02d1 1083 vcpu->arch.gprs[rt] = (s32)cop0->reg[rd][sel];
e685c689
SL
1084
1085#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1086 kvm_mips_trans_mfc0(inst, opc, vcpu);
1087#endif
1088 }
1089
6398da13
JH
1090 trace_kvm_hwr(vcpu, KVM_TRACE_MFC0,
1091 KVM_TRACE_COP0(rd, sel),
1092 vcpu->arch.gprs[rt]);
e685c689
SL
1093 break;
1094
1095 case dmfc_op:
1096 vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
6398da13
JH
1097
1098 trace_kvm_hwr(vcpu, KVM_TRACE_DMFC0,
1099 KVM_TRACE_COP0(rd, sel),
1100 vcpu->arch.gprs[rt]);
e685c689
SL
1101 break;
1102
1103 case mtc_op:
1104#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1105 cop0->stat[rd][sel]++;
1106#endif
6398da13
JH
1107 trace_kvm_hwr(vcpu, KVM_TRACE_MTC0,
1108 KVM_TRACE_COP0(rd, sel),
1109 vcpu->arch.gprs[rt]);
1110
e685c689
SL
1111 if ((rd == MIPS_CP0_TLB_INDEX)
1112 && (vcpu->arch.gprs[rt] >=
1113 KVM_MIPS_GUEST_TLB_SIZE)) {
6ad78a5c
DCZ
1114 kvm_err("Invalid TLB Index: %ld",
1115 vcpu->arch.gprs[rt]);
e685c689
SL
1116 er = EMULATE_FAIL;
1117 break;
1118 }
1119#define C0_EBASE_CORE_MASK 0xff
1120 if ((rd == MIPS_CP0_PRID) && (sel == 1)) {
1121 /* Preserve CORE number */
1122 kvm_change_c0_guest_ebase(cop0,
1123 ~(C0_EBASE_CORE_MASK),
1124 vcpu->arch.gprs[rt]);
6ad78a5c
DCZ
1125 kvm_err("MTCz, cop0->reg[EBASE]: %#lx\n",
1126 kvm_read_c0_guest_ebase(cop0));
e685c689 1127 } else if (rd == MIPS_CP0_TLB_HI && sel == 0) {
8cffd197 1128 u32 nasid =
ca64c2be 1129 vcpu->arch.gprs[rt] & KVM_ENTRYHI_ASID;
d116e812 1130 if ((KSEGX(vcpu->arch.gprs[rt]) != CKSEG0) &&
48c4ac97 1131 ((kvm_read_c0_guest_entryhi(cop0) &
ca64c2be 1132 KVM_ENTRYHI_ASID) != nasid)) {
9887d1c7 1133 trace_kvm_asid_change(vcpu,
d116e812 1134 kvm_read_c0_guest_entryhi(cop0)
9887d1c7
JH
1135 & KVM_ENTRYHI_ASID,
1136 nasid);
e685c689
SL
1137
1138 /* Blow away the shadow host TLBs */
1139 kvm_mips_flush_host_tlb(1);
1140 }
1141 kvm_write_c0_guest_entryhi(cop0,
1142 vcpu->arch.gprs[rt]);
1143 }
1144 /* Are we writing to COUNT */
1145 else if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
e30492bb 1146 kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
e685c689
SL
1147 goto done;
1148 } else if ((rd == MIPS_CP0_COMPARE) && (sel == 0)) {
e685c689
SL
1149 /* If we are writing to COMPARE */
1150 /* Clear pending timer interrupt, if any */
e30492bb 1151 kvm_mips_write_compare(vcpu,
b45bacd2
JH
1152 vcpu->arch.gprs[rt],
1153 true);
e685c689 1154 } else if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
6cdc65e3
JH
1155 unsigned int old_val, val, change;
1156
1157 old_val = kvm_read_c0_guest_status(cop0);
1158 val = vcpu->arch.gprs[rt];
1159 change = val ^ old_val;
1160
1161 /* Make sure that the NMI bit is never set */
1162 val &= ~ST0_NMI;
1163
1164 /*
1165 * Don't allow CU1 or FR to be set unless FPU
1166 * capability enabled and exists in guest
1167 * configuration.
1168 */
1169 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1170 val &= ~(ST0_CU1 | ST0_FR);
1171
1172 /*
1173 * Also don't allow FR to be set if host doesn't
1174 * support it.
1175 */
1176 if (!(current_cpu_data.fpu_id & MIPS_FPIR_F64))
1177 val &= ~ST0_FR;
1178
1179
1180 /* Handle changes in FPU mode */
1181 preempt_disable();
1182
1183 /*
1184 * FPU and Vector register state is made
1185 * UNPREDICTABLE by a change of FR, so don't
1186 * even bother saving it.
1187 */
1188 if (change & ST0_FR)
1189 kvm_drop_fpu(vcpu);
1190
2b6009d6
JH
1191 /*
1192 * If MSA state is already live, it is undefined
1193 * how it interacts with FR=0 FPU state, and we
1194 * don't want to hit reserved instruction
1195 * exceptions trying to save the MSA state later
1196 * when CU=1 && FR=1, so play it safe and save
1197 * it first.
1198 */
1199 if (change & ST0_CU1 && !(val & ST0_FR) &&
f943176a 1200 vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
2b6009d6
JH
1201 kvm_lose_fpu(vcpu);
1202
d116e812 1203 /*
6cdc65e3
JH
1204 * Propagate CU1 (FPU enable) changes
1205 * immediately if the FPU context is already
1206 * loaded. When disabling we leave the context
1207 * loaded so it can be quickly enabled again in
1208 * the near future.
d116e812 1209 */
6cdc65e3 1210 if (change & ST0_CU1 &&
f943176a 1211 vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
6cdc65e3
JH
1212 change_c0_status(ST0_CU1, val);
1213
1214 preempt_enable();
1215
1216 kvm_write_c0_guest_status(cop0, val);
e685c689
SL
1217
1218#ifdef CONFIG_KVM_MIPS_DYN_TRANS
6cdc65e3
JH
1219 /*
1220 * If FPU present, we need CU1/FR bits to take
1221 * effect fairly soon.
1222 */
1223 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1224 kvm_mips_trans_mtc0(inst, opc, vcpu);
e685c689 1225#endif
6cdc65e3
JH
1226 } else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
1227 unsigned int old_val, val, change, wrmask;
1228
1229 old_val = kvm_read_c0_guest_config5(cop0);
1230 val = vcpu->arch.gprs[rt];
1231
1232 /* Only a few bits are writable in Config5 */
1233 wrmask = kvm_mips_config5_wrmask(vcpu);
1234 change = (val ^ old_val) & wrmask;
1235 val = old_val ^ change;
1236
1237
2b6009d6 1238 /* Handle changes in FPU/MSA modes */
6cdc65e3
JH
1239 preempt_disable();
1240
1241 /*
1242 * Propagate FRE changes immediately if the FPU
1243 * context is already loaded.
1244 */
1245 if (change & MIPS_CONF5_FRE &&
f943176a 1246 vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
6cdc65e3
JH
1247 change_c0_config5(MIPS_CONF5_FRE, val);
1248
2b6009d6
JH
1249 /*
1250 * Propagate MSAEn changes immediately if the
1251 * MSA context is already loaded. When disabling
1252 * we leave the context loaded so it can be
1253 * quickly enabled again in the near future.
1254 */
1255 if (change & MIPS_CONF5_MSAEN &&
f943176a 1256 vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
2b6009d6
JH
1257 change_c0_config5(MIPS_CONF5_MSAEN,
1258 val);
1259
6cdc65e3
JH
1260 preempt_enable();
1261
1262 kvm_write_c0_guest_config5(cop0, val);
e30492bb 1263 } else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
8cffd197 1264 u32 old_cause, new_cause;
d116e812 1265
e30492bb
JH
1266 old_cause = kvm_read_c0_guest_cause(cop0);
1267 new_cause = vcpu->arch.gprs[rt];
1268 /* Update R/W bits */
1269 kvm_change_c0_guest_cause(cop0, 0x08800300,
1270 new_cause);
1271 /* DC bit enabling/disabling timer? */
1272 if ((old_cause ^ new_cause) & CAUSEF_DC) {
1273 if (new_cause & CAUSEF_DC)
1274 kvm_mips_count_disable_cause(vcpu);
1275 else
1276 kvm_mips_count_enable_cause(vcpu);
1277 }
cef061d0
JH
1278 } else if ((rd == MIPS_CP0_HWRENA) && (sel == 0)) {
1279 u32 mask = MIPS_HWRENA_CPUNUM |
1280 MIPS_HWRENA_SYNCISTEP |
1281 MIPS_HWRENA_CC |
1282 MIPS_HWRENA_CCRES;
1283
1284 if (kvm_read_c0_guest_config3(cop0) &
1285 MIPS_CONF3_ULRI)
1286 mask |= MIPS_HWRENA_ULR;
1287 cop0->reg[rd][sel] = vcpu->arch.gprs[rt] & mask;
e685c689
SL
1288 } else {
1289 cop0->reg[rd][sel] = vcpu->arch.gprs[rt];
1290#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1291 kvm_mips_trans_mtc0(inst, opc, vcpu);
1292#endif
1293 }
e685c689
SL
1294 break;
1295
1296 case dmtc_op:
6ad78a5c
DCZ
1297 kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n",
1298 vcpu->arch.pc, rt, rd, sel);
6398da13
JH
1299 trace_kvm_hwr(vcpu, KVM_TRACE_DMTC0,
1300 KVM_TRACE_COP0(rd, sel),
1301 vcpu->arch.gprs[rt]);
e685c689
SL
1302 er = EMULATE_FAIL;
1303 break;
1304
b2c59635 1305 case mfmc0_op:
e685c689
SL
1306#ifdef KVM_MIPS_DEBUG_COP0_COUNTERS
1307 cop0->stat[MIPS_CP0_STATUS][0]++;
1308#endif
caa1faa7 1309 if (rt != 0)
e685c689
SL
1310 vcpu->arch.gprs[rt] =
1311 kvm_read_c0_guest_status(cop0);
e685c689 1312 /* EI */
258f3a2e 1313 if (inst.mfmc0_format.sc) {
b2c59635 1314 kvm_debug("[%#lx] mfmc0_op: EI\n",
e685c689
SL
1315 vcpu->arch.pc);
1316 kvm_set_c0_guest_status(cop0, ST0_IE);
1317 } else {
b2c59635 1318 kvm_debug("[%#lx] mfmc0_op: DI\n",
e685c689
SL
1319 vcpu->arch.pc);
1320 kvm_clear_c0_guest_status(cop0, ST0_IE);
1321 }
1322
1323 break;
1324
1325 case wrpgpr_op:
1326 {
8cffd197
JH
1327 u32 css = cop0->reg[MIPS_CP0_STATUS][2] & 0xf;
1328 u32 pss =
e685c689 1329 (cop0->reg[MIPS_CP0_STATUS][2] >> 6) & 0xf;
d116e812
DCZ
1330 /*
1331 * We don't support any shadow register sets, so
1332 * SRSCtl[PSS] == SRSCtl[CSS] = 0
1333 */
e685c689
SL
1334 if (css || pss) {
1335 er = EMULATE_FAIL;
1336 break;
1337 }
1338 kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss, rd,
1339 vcpu->arch.gprs[rt]);
1340 vcpu->arch.gprs[rd] = vcpu->arch.gprs[rt];
1341 }
1342 break;
1343 default:
6ad78a5c 1344 kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n",
258f3a2e 1345 vcpu->arch.pc, inst.c0r_format.rs);
e685c689
SL
1346 er = EMULATE_FAIL;
1347 break;
1348 }
1349 }
1350
1351done:
d116e812
DCZ
1352 /* Rollback PC only if emulation was unsuccessful */
1353 if (er == EMULATE_FAIL)
e685c689 1354 vcpu->arch.pc = curr_pc;
e685c689
SL
1355
1356dont_update_pc:
1357 /*
1358 * This is for special instructions whose emulation
1359 * updates the PC, so do not overwrite the PC under
1360 * any circumstances
1361 */
1362
1363 return er;
1364}
1365
258f3a2e
JH
1366enum emulation_result kvm_mips_emulate_store(union mips_instruction inst,
1367 u32 cause,
d116e812
DCZ
1368 struct kvm_run *run,
1369 struct kvm_vcpu *vcpu)
e685c689
SL
1370{
1371 enum emulation_result er = EMULATE_DO_MMIO;
258f3a2e 1372 u32 rt;
8cffd197 1373 u32 bytes;
e685c689
SL
1374 void *data = run->mmio.data;
1375 unsigned long curr_pc;
1376
1377 /*
1378 * Update PC and hold onto current PC in case there is
1379 * an error and we want to rollback the PC
1380 */
1381 curr_pc = vcpu->arch.pc;
1382 er = update_pc(vcpu, cause);
1383 if (er == EMULATE_FAIL)
1384 return er;
1385
258f3a2e 1386 rt = inst.i_format.rt;
e685c689 1387
258f3a2e 1388 switch (inst.i_format.opcode) {
e685c689
SL
1389 case sb_op:
1390 bytes = 1;
1391 if (bytes > sizeof(run->mmio.data)) {
1392 kvm_err("%s: bad MMIO length: %d\n", __func__,
1393 run->mmio.len);
1394 }
1395 run->mmio.phys_addr =
1396 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1397 host_cp0_badvaddr);
1398 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1399 er = EMULATE_FAIL;
1400 break;
1401 }
1402 run->mmio.len = bytes;
1403 run->mmio.is_write = 1;
1404 vcpu->mmio_needed = 1;
1405 vcpu->mmio_is_write = 1;
1406 *(u8 *) data = vcpu->arch.gprs[rt];
1407 kvm_debug("OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1408 vcpu->arch.host_cp0_badvaddr, vcpu->arch.gprs[rt],
8cffd197 1409 *(u8 *) data);
e685c689
SL
1410
1411 break;
1412
1413 case sw_op:
1414 bytes = 4;
1415 if (bytes > sizeof(run->mmio.data)) {
1416 kvm_err("%s: bad MMIO length: %d\n", __func__,
1417 run->mmio.len);
1418 }
1419 run->mmio.phys_addr =
1420 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1421 host_cp0_badvaddr);
1422 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1423 er = EMULATE_FAIL;
1424 break;
1425 }
1426
1427 run->mmio.len = bytes;
1428 run->mmio.is_write = 1;
1429 vcpu->mmio_needed = 1;
1430 vcpu->mmio_is_write = 1;
8cffd197 1431 *(u32 *) data = vcpu->arch.gprs[rt];
e685c689
SL
1432
1433 kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1434 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
8cffd197 1435 vcpu->arch.gprs[rt], *(u32 *) data);
e685c689
SL
1436 break;
1437
1438 case sh_op:
1439 bytes = 2;
1440 if (bytes > sizeof(run->mmio.data)) {
1441 kvm_err("%s: bad MMIO length: %d\n", __func__,
1442 run->mmio.len);
1443 }
1444 run->mmio.phys_addr =
1445 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1446 host_cp0_badvaddr);
1447 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1448 er = EMULATE_FAIL;
1449 break;
1450 }
1451
1452 run->mmio.len = bytes;
1453 run->mmio.is_write = 1;
1454 vcpu->mmio_needed = 1;
1455 vcpu->mmio_is_write = 1;
8cffd197 1456 *(u16 *) data = vcpu->arch.gprs[rt];
e685c689
SL
1457
1458 kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1459 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
8cffd197 1460 vcpu->arch.gprs[rt], *(u32 *) data);
e685c689
SL
1461 break;
1462
1463 default:
d86c1ebe 1464 kvm_err("Store not yet supported (inst=0x%08x)\n",
258f3a2e 1465 inst.word);
e685c689
SL
1466 er = EMULATE_FAIL;
1467 break;
1468 }
1469
d116e812
DCZ
1470 /* Rollback PC if emulation was unsuccessful */
1471 if (er == EMULATE_FAIL)
e685c689 1472 vcpu->arch.pc = curr_pc;
e685c689
SL
1473
1474 return er;
1475}
1476
258f3a2e
JH
1477enum emulation_result kvm_mips_emulate_load(union mips_instruction inst,
1478 u32 cause, struct kvm_run *run,
d116e812 1479 struct kvm_vcpu *vcpu)
e685c689
SL
1480{
1481 enum emulation_result er = EMULATE_DO_MMIO;
258f3a2e 1482 u32 op, rt;
8cffd197 1483 u32 bytes;
e685c689 1484
258f3a2e
JH
1485 rt = inst.i_format.rt;
1486 op = inst.i_format.opcode;
e685c689
SL
1487
1488 vcpu->arch.pending_load_cause = cause;
1489 vcpu->arch.io_gpr = rt;
1490
1491 switch (op) {
1492 case lw_op:
1493 bytes = 4;
1494 if (bytes > sizeof(run->mmio.data)) {
1495 kvm_err("%s: bad MMIO length: %d\n", __func__,
1496 run->mmio.len);
1497 er = EMULATE_FAIL;
1498 break;
1499 }
1500 run->mmio.phys_addr =
1501 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1502 host_cp0_badvaddr);
1503 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1504 er = EMULATE_FAIL;
1505 break;
1506 }
1507
1508 run->mmio.len = bytes;
1509 run->mmio.is_write = 0;
1510 vcpu->mmio_needed = 1;
1511 vcpu->mmio_is_write = 0;
1512 break;
1513
1514 case lh_op:
1515 case lhu_op:
1516 bytes = 2;
1517 if (bytes > sizeof(run->mmio.data)) {
1518 kvm_err("%s: bad MMIO length: %d\n", __func__,
1519 run->mmio.len);
1520 er = EMULATE_FAIL;
1521 break;
1522 }
1523 run->mmio.phys_addr =
1524 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1525 host_cp0_badvaddr);
1526 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1527 er = EMULATE_FAIL;
1528 break;
1529 }
1530
1531 run->mmio.len = bytes;
1532 run->mmio.is_write = 0;
1533 vcpu->mmio_needed = 1;
1534 vcpu->mmio_is_write = 0;
1535
1536 if (op == lh_op)
1537 vcpu->mmio_needed = 2;
1538 else
1539 vcpu->mmio_needed = 1;
1540
1541 break;
1542
1543 case lbu_op:
1544 case lb_op:
1545 bytes = 1;
1546 if (bytes > sizeof(run->mmio.data)) {
1547 kvm_err("%s: bad MMIO length: %d\n", __func__,
1548 run->mmio.len);
1549 er = EMULATE_FAIL;
1550 break;
1551 }
1552 run->mmio.phys_addr =
1553 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1554 host_cp0_badvaddr);
1555 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1556 er = EMULATE_FAIL;
1557 break;
1558 }
1559
1560 run->mmio.len = bytes;
1561 run->mmio.is_write = 0;
1562 vcpu->mmio_is_write = 0;
1563
1564 if (op == lb_op)
1565 vcpu->mmio_needed = 2;
1566 else
1567 vcpu->mmio_needed = 1;
1568
1569 break;
1570
1571 default:
d86c1ebe 1572 kvm_err("Load not yet supported (inst=0x%08x)\n",
258f3a2e 1573 inst.word);
e685c689
SL
1574 er = EMULATE_FAIL;
1575 break;
1576 }
1577
1578 return er;
1579}
1580
258f3a2e
JH
1581enum emulation_result kvm_mips_emulate_cache(union mips_instruction inst,
1582 u32 *opc, u32 cause,
d116e812
DCZ
1583 struct kvm_run *run,
1584 struct kvm_vcpu *vcpu)
e685c689
SL
1585{
1586 struct mips_coproc *cop0 = vcpu->arch.cop0;
e685c689 1587 enum emulation_result er = EMULATE_DONE;
8cffd197
JH
1588 u32 cache, op_inst, op, base;
1589 s16 offset;
e685c689
SL
1590 struct kvm_vcpu_arch *arch = &vcpu->arch;
1591 unsigned long va;
1592 unsigned long curr_pc;
1593
1594 /*
1595 * Update PC and hold onto current PC in case there is
1596 * an error and we want to rollback the PC
1597 */
1598 curr_pc = vcpu->arch.pc;
1599 er = update_pc(vcpu, cause);
1600 if (er == EMULATE_FAIL)
1601 return er;
1602
258f3a2e
JH
1603 base = inst.i_format.rs;
1604 op_inst = inst.i_format.rt;
5cc4aafc
JH
1605 if (cpu_has_mips_r6)
1606 offset = inst.spec3_format.simmediate;
1607 else
1608 offset = inst.i_format.simmediate;
f4956f62
JH
1609 cache = op_inst & CacheOp_Cache;
1610 op = op_inst & CacheOp_Op;
e685c689
SL
1611
1612 va = arch->gprs[base] + offset;
1613
1614 kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1615 cache, op, base, arch->gprs[base], offset);
1616
d116e812
DCZ
1617 /*
1618 * Treat INDEX_INV as a nop, basically issued by Linux on startup to
1619 * invalidate the caches entirely by stepping through all the
1620 * ways/indexes
e685c689 1621 */
f4956f62 1622 if (op == Index_Writeback_Inv) {
d116e812
DCZ
1623 kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1624 vcpu->arch.pc, vcpu->arch.gprs[31], cache, op, base,
1625 arch->gprs[base], offset);
e685c689 1626
f4956f62 1627 if (cache == Cache_D)
e685c689 1628 r4k_blast_dcache();
f4956f62 1629 else if (cache == Cache_I)
e685c689
SL
1630 r4k_blast_icache();
1631 else {
6ad78a5c
DCZ
1632 kvm_err("%s: unsupported CACHE INDEX operation\n",
1633 __func__);
e685c689
SL
1634 return EMULATE_FAIL;
1635 }
1636
1637#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1638 kvm_mips_trans_cache_index(inst, opc, vcpu);
1639#endif
1640 goto done;
1641 }
1642
1643 preempt_disable();
1644 if (KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG0) {
d116e812 1645 if (kvm_mips_host_tlb_lookup(vcpu, va) < 0)
e685c689 1646 kvm_mips_handle_kseg0_tlb_fault(va, vcpu);
e685c689
SL
1647 } else if ((KVM_GUEST_KSEGX(va) < KVM_GUEST_KSEG0) ||
1648 KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG23) {
1649 int index;
1650
1651 /* If an entry already exists then skip */
d116e812 1652 if (kvm_mips_host_tlb_lookup(vcpu, va) >= 0)
e685c689 1653 goto skip_fault;
e685c689 1654
d116e812
DCZ
1655 /*
1656 * If address not in the guest TLB, then give the guest a fault,
1657 * the resulting handler will do the right thing
e685c689
SL
1658 */
1659 index = kvm_mips_guest_tlb_lookup(vcpu, (va & VPN2_MASK) |
48c4ac97 1660 (kvm_read_c0_guest_entryhi
ca64c2be 1661 (cop0) & KVM_ENTRYHI_ASID));
e685c689
SL
1662
1663 if (index < 0) {
e685c689 1664 vcpu->arch.host_cp0_badvaddr = va;
6df82a7b 1665 vcpu->arch.pc = curr_pc;
e685c689
SL
1666 er = kvm_mips_emulate_tlbmiss_ld(cause, NULL, run,
1667 vcpu);
1668 preempt_enable();
1669 goto dont_update_pc;
1670 } else {
1671 struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
d116e812
DCZ
1672 /*
1673 * Check if the entry is valid, if not then setup a TLB
1674 * invalid exception to the guest
1675 */
e685c689 1676 if (!TLB_IS_VALID(*tlb, va)) {
6df82a7b
JH
1677 vcpu->arch.host_cp0_badvaddr = va;
1678 vcpu->arch.pc = curr_pc;
e685c689
SL
1679 er = kvm_mips_emulate_tlbinv_ld(cause, NULL,
1680 run, vcpu);
1681 preempt_enable();
1682 goto dont_update_pc;
1683 } else {
d116e812
DCZ
1684 /*
1685 * We fault an entry from the guest tlb to the
1686 * shadow host TLB
1687 */
26ee17ff 1688 kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb);
e685c689
SL
1689 }
1690 }
1691 } else {
6ad78a5c
DCZ
1692 kvm_err("INVALID CACHE INDEX/ADDRESS (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1693 cache, op, base, arch->gprs[base], offset);
e685c689
SL
1694 er = EMULATE_FAIL;
1695 preempt_enable();
cc81e948 1696 goto done;
e685c689
SL
1697
1698 }
1699
1700skip_fault:
1701 /* XXXKYMA: Only a subset of cache ops are supported, used by Linux */
f4956f62 1702 if (op_inst == Hit_Writeback_Inv_D || op_inst == Hit_Invalidate_D) {
e685c689
SL
1703 flush_dcache_line(va);
1704
1705#ifdef CONFIG_KVM_MIPS_DYN_TRANS
d116e812
DCZ
1706 /*
1707 * Replace the CACHE instruction, with a SYNCI, not the same,
1708 * but avoids a trap
1709 */
e685c689
SL
1710 kvm_mips_trans_cache_va(inst, opc, vcpu);
1711#endif
f4956f62 1712 } else if (op_inst == Hit_Invalidate_I) {
e685c689
SL
1713 flush_dcache_line(va);
1714 flush_icache_line(va);
1715
1716#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1717 /* Replace the CACHE instruction, with a SYNCI */
1718 kvm_mips_trans_cache_va(inst, opc, vcpu);
1719#endif
1720 } else {
6ad78a5c
DCZ
1721 kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1722 cache, op, base, arch->gprs[base], offset);
e685c689 1723 er = EMULATE_FAIL;
e685c689
SL
1724 }
1725
1726 preempt_enable();
cc81e948
JH
1727done:
1728 /* Rollback PC only if emulation was unsuccessful */
1729 if (er == EMULATE_FAIL)
1730 vcpu->arch.pc = curr_pc;
e685c689 1731
d116e812 1732dont_update_pc:
cc81e948
JH
1733 /*
1734 * This is for exceptions whose emulation updates the PC, so do not
1735 * overwrite the PC under any circumstances
1736 */
1737
e685c689
SL
1738 return er;
1739}
1740
31cf7498 1741enum emulation_result kvm_mips_emulate_inst(u32 cause, u32 *opc,
d116e812
DCZ
1742 struct kvm_run *run,
1743 struct kvm_vcpu *vcpu)
e685c689 1744{
258f3a2e 1745 union mips_instruction inst;
e685c689 1746 enum emulation_result er = EMULATE_DONE;
e685c689 1747
d116e812
DCZ
1748 /* Fetch the instruction. */
1749 if (cause & CAUSEF_BD)
e685c689 1750 opc += 1;
e685c689 1751
258f3a2e 1752 inst.word = kvm_get_inst(opc, vcpu);
e685c689 1753
258f3a2e 1754 switch (inst.r_format.opcode) {
e685c689
SL
1755 case cop0_op:
1756 er = kvm_mips_emulate_CP0(inst, opc, cause, run, vcpu);
1757 break;
1758 case sb_op:
1759 case sh_op:
1760 case sw_op:
1761 er = kvm_mips_emulate_store(inst, cause, run, vcpu);
1762 break;
1763 case lb_op:
1764 case lbu_op:
1765 case lhu_op:
1766 case lh_op:
1767 case lw_op:
1768 er = kvm_mips_emulate_load(inst, cause, run, vcpu);
1769 break;
1770
5cc4aafc 1771#ifndef CONFIG_CPU_MIPSR6
e685c689
SL
1772 case cache_op:
1773 ++vcpu->stat.cache_exits;
1e09e86a 1774 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
e685c689
SL
1775 er = kvm_mips_emulate_cache(inst, opc, cause, run, vcpu);
1776 break;
5cc4aafc
JH
1777#else
1778 case spec3_op:
1779 switch (inst.spec3_format.func) {
1780 case cache6_op:
1781 ++vcpu->stat.cache_exits;
1782 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
1783 er = kvm_mips_emulate_cache(inst, opc, cause, run,
1784 vcpu);
1785 break;
1786 default:
1787 goto unknown;
1788 };
1789 break;
1790unknown:
1791#endif
e685c689
SL
1792
1793 default:
6ad78a5c 1794 kvm_err("Instruction emulation not supported (%p/%#x)\n", opc,
258f3a2e 1795 inst.word);
e685c689
SL
1796 kvm_arch_vcpu_dump_regs(vcpu);
1797 er = EMULATE_FAIL;
1798 break;
1799 }
1800
1801 return er;
1802}
1803
31cf7498 1804enum emulation_result kvm_mips_emulate_syscall(u32 cause,
bdb7ed86 1805 u32 *opc,
d116e812
DCZ
1806 struct kvm_run *run,
1807 struct kvm_vcpu *vcpu)
e685c689
SL
1808{
1809 struct mips_coproc *cop0 = vcpu->arch.cop0;
1810 struct kvm_vcpu_arch *arch = &vcpu->arch;
1811 enum emulation_result er = EMULATE_DONE;
1812
1813 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1814 /* save old pc */
1815 kvm_write_c0_guest_epc(cop0, arch->pc);
1816 kvm_set_c0_guest_status(cop0, ST0_EXL);
1817
1818 if (cause & CAUSEF_BD)
1819 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1820 else
1821 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1822
1823 kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch->pc);
1824
1825 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 1826 (EXCCODE_SYS << CAUSEB_EXCCODE));
e685c689
SL
1827
1828 /* Set PC to the exception entry point */
1829 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1830
1831 } else {
6ad78a5c 1832 kvm_err("Trying to deliver SYSCALL when EXL is already set\n");
e685c689
SL
1833 er = EMULATE_FAIL;
1834 }
1835
1836 return er;
1837}
1838
31cf7498 1839enum emulation_result kvm_mips_emulate_tlbmiss_ld(u32 cause,
bdb7ed86 1840 u32 *opc,
d116e812
DCZ
1841 struct kvm_run *run,
1842 struct kvm_vcpu *vcpu)
e685c689
SL
1843{
1844 struct mips_coproc *cop0 = vcpu->arch.cop0;
1845 struct kvm_vcpu_arch *arch = &vcpu->arch;
e685c689 1846 unsigned long entryhi = (vcpu->arch. host_cp0_badvaddr & VPN2_MASK) |
ca64c2be 1847 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
e685c689
SL
1848
1849 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1850 /* save old pc */
1851 kvm_write_c0_guest_epc(cop0, arch->pc);
1852 kvm_set_c0_guest_status(cop0, ST0_EXL);
1853
1854 if (cause & CAUSEF_BD)
1855 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1856 else
1857 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1858
1859 kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n",
1860 arch->pc);
1861
1862 /* set pc to the exception entry point */
1863 arch->pc = KVM_GUEST_KSEG0 + 0x0;
1864
1865 } else {
1866 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1867 arch->pc);
1868
1869 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1870 }
1871
1872 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 1873 (EXCCODE_TLBL << CAUSEB_EXCCODE));
e685c689
SL
1874
1875 /* setup badvaddr, context and entryhi registers for the guest */
1876 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1877 /* XXXKYMA: is the context register used by linux??? */
1878 kvm_write_c0_guest_entryhi(cop0, entryhi);
1879 /* Blow away the shadow host TLBs */
1880 kvm_mips_flush_host_tlb(1);
1881
d98403a5 1882 return EMULATE_DONE;
e685c689
SL
1883}
1884
31cf7498 1885enum emulation_result kvm_mips_emulate_tlbinv_ld(u32 cause,
bdb7ed86 1886 u32 *opc,
d116e812
DCZ
1887 struct kvm_run *run,
1888 struct kvm_vcpu *vcpu)
e685c689
SL
1889{
1890 struct mips_coproc *cop0 = vcpu->arch.cop0;
1891 struct kvm_vcpu_arch *arch = &vcpu->arch;
e685c689
SL
1892 unsigned long entryhi =
1893 (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
ca64c2be 1894 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
e685c689
SL
1895
1896 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1897 /* save old pc */
1898 kvm_write_c0_guest_epc(cop0, arch->pc);
1899 kvm_set_c0_guest_status(cop0, ST0_EXL);
1900
1901 if (cause & CAUSEF_BD)
1902 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1903 else
1904 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1905
1906 kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n",
1907 arch->pc);
1908
1909 /* set pc to the exception entry point */
1910 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1911
1912 } else {
1913 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1914 arch->pc);
1915 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1916 }
1917
1918 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 1919 (EXCCODE_TLBL << CAUSEB_EXCCODE));
e685c689
SL
1920
1921 /* setup badvaddr, context and entryhi registers for the guest */
1922 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1923 /* XXXKYMA: is the context register used by linux??? */
1924 kvm_write_c0_guest_entryhi(cop0, entryhi);
1925 /* Blow away the shadow host TLBs */
1926 kvm_mips_flush_host_tlb(1);
1927
d98403a5 1928 return EMULATE_DONE;
e685c689
SL
1929}
1930
31cf7498 1931enum emulation_result kvm_mips_emulate_tlbmiss_st(u32 cause,
bdb7ed86 1932 u32 *opc,
d116e812
DCZ
1933 struct kvm_run *run,
1934 struct kvm_vcpu *vcpu)
e685c689
SL
1935{
1936 struct mips_coproc *cop0 = vcpu->arch.cop0;
1937 struct kvm_vcpu_arch *arch = &vcpu->arch;
e685c689 1938 unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
ca64c2be 1939 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
e685c689
SL
1940
1941 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1942 /* save old pc */
1943 kvm_write_c0_guest_epc(cop0, arch->pc);
1944 kvm_set_c0_guest_status(cop0, ST0_EXL);
1945
1946 if (cause & CAUSEF_BD)
1947 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1948 else
1949 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1950
1951 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
1952 arch->pc);
1953
1954 /* Set PC to the exception entry point */
1955 arch->pc = KVM_GUEST_KSEG0 + 0x0;
1956 } else {
1957 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
1958 arch->pc);
1959 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1960 }
1961
1962 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 1963 (EXCCODE_TLBS << CAUSEB_EXCCODE));
e685c689
SL
1964
1965 /* setup badvaddr, context and entryhi registers for the guest */
1966 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1967 /* XXXKYMA: is the context register used by linux??? */
1968 kvm_write_c0_guest_entryhi(cop0, entryhi);
1969 /* Blow away the shadow host TLBs */
1970 kvm_mips_flush_host_tlb(1);
1971
d98403a5 1972 return EMULATE_DONE;
e685c689
SL
1973}
1974
31cf7498 1975enum emulation_result kvm_mips_emulate_tlbinv_st(u32 cause,
bdb7ed86 1976 u32 *opc,
d116e812
DCZ
1977 struct kvm_run *run,
1978 struct kvm_vcpu *vcpu)
e685c689
SL
1979{
1980 struct mips_coproc *cop0 = vcpu->arch.cop0;
1981 struct kvm_vcpu_arch *arch = &vcpu->arch;
e685c689 1982 unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
ca64c2be 1983 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
e685c689
SL
1984
1985 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1986 /* save old pc */
1987 kvm_write_c0_guest_epc(cop0, arch->pc);
1988 kvm_set_c0_guest_status(cop0, ST0_EXL);
1989
1990 if (cause & CAUSEF_BD)
1991 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1992 else
1993 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1994
1995 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
1996 arch->pc);
1997
1998 /* Set PC to the exception entry point */
1999 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2000 } else {
2001 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
2002 arch->pc);
2003 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2004 }
2005
2006 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 2007 (EXCCODE_TLBS << CAUSEB_EXCCODE));
e685c689
SL
2008
2009 /* setup badvaddr, context and entryhi registers for the guest */
2010 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2011 /* XXXKYMA: is the context register used by linux??? */
2012 kvm_write_c0_guest_entryhi(cop0, entryhi);
2013 /* Blow away the shadow host TLBs */
2014 kvm_mips_flush_host_tlb(1);
2015
d98403a5 2016 return EMULATE_DONE;
e685c689
SL
2017}
2018
2019/* TLBMOD: store into address matching TLB with Dirty bit off */
31cf7498 2020enum emulation_result kvm_mips_handle_tlbmod(u32 cause, u32 *opc,
d116e812
DCZ
2021 struct kvm_run *run,
2022 struct kvm_vcpu *vcpu)
e685c689
SL
2023{
2024 enum emulation_result er = EMULATE_DONE;
e685c689 2025#ifdef DEBUG
3d654833
JH
2026 struct mips_coproc *cop0 = vcpu->arch.cop0;
2027 unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
ca64c2be 2028 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
3d654833
JH
2029 int index;
2030
d116e812 2031 /* If address not in the guest TLB, then we are in trouble */
e685c689
SL
2032 index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
2033 if (index < 0) {
2034 /* XXXKYMA Invalidate and retry */
2035 kvm_mips_host_tlb_inv(vcpu, vcpu->arch.host_cp0_badvaddr);
2036 kvm_err("%s: host got TLBMOD for %#lx but entry not present in Guest TLB\n",
2037 __func__, entryhi);
2038 kvm_mips_dump_guest_tlbs(vcpu);
2039 kvm_mips_dump_host_tlbs();
2040 return EMULATE_FAIL;
2041 }
2042#endif
2043
2044 er = kvm_mips_emulate_tlbmod(cause, opc, run, vcpu);
2045 return er;
2046}
2047
31cf7498 2048enum emulation_result kvm_mips_emulate_tlbmod(u32 cause,
bdb7ed86 2049 u32 *opc,
d116e812
DCZ
2050 struct kvm_run *run,
2051 struct kvm_vcpu *vcpu)
e685c689
SL
2052{
2053 struct mips_coproc *cop0 = vcpu->arch.cop0;
2054 unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
ca64c2be 2055 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
e685c689 2056 struct kvm_vcpu_arch *arch = &vcpu->arch;
e685c689
SL
2057
2058 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2059 /* save old pc */
2060 kvm_write_c0_guest_epc(cop0, arch->pc);
2061 kvm_set_c0_guest_status(cop0, ST0_EXL);
2062
2063 if (cause & CAUSEF_BD)
2064 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2065 else
2066 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2067
2068 kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n",
2069 arch->pc);
2070
2071 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2072 } else {
2073 kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n",
2074 arch->pc);
2075 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2076 }
2077
16d100db
JH
2078 kvm_change_c0_guest_cause(cop0, (0xff),
2079 (EXCCODE_MOD << CAUSEB_EXCCODE));
e685c689
SL
2080
2081 /* setup badvaddr, context and entryhi registers for the guest */
2082 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2083 /* XXXKYMA: is the context register used by linux??? */
2084 kvm_write_c0_guest_entryhi(cop0, entryhi);
2085 /* Blow away the shadow host TLBs */
2086 kvm_mips_flush_host_tlb(1);
2087
d98403a5 2088 return EMULATE_DONE;
e685c689
SL
2089}
2090
31cf7498 2091enum emulation_result kvm_mips_emulate_fpu_exc(u32 cause,
bdb7ed86 2092 u32 *opc,
d116e812
DCZ
2093 struct kvm_run *run,
2094 struct kvm_vcpu *vcpu)
e685c689
SL
2095{
2096 struct mips_coproc *cop0 = vcpu->arch.cop0;
2097 struct kvm_vcpu_arch *arch = &vcpu->arch;
e685c689
SL
2098
2099 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2100 /* save old pc */
2101 kvm_write_c0_guest_epc(cop0, arch->pc);
2102 kvm_set_c0_guest_status(cop0, ST0_EXL);
2103
2104 if (cause & CAUSEF_BD)
2105 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2106 else
2107 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2108
2109 }
2110
2111 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2112
2113 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 2114 (EXCCODE_CPU << CAUSEB_EXCCODE));
e685c689
SL
2115 kvm_change_c0_guest_cause(cop0, (CAUSEF_CE), (0x1 << CAUSEB_CE));
2116
d98403a5 2117 return EMULATE_DONE;
e685c689
SL
2118}
2119
31cf7498 2120enum emulation_result kvm_mips_emulate_ri_exc(u32 cause,
bdb7ed86 2121 u32 *opc,
d116e812
DCZ
2122 struct kvm_run *run,
2123 struct kvm_vcpu *vcpu)
e685c689
SL
2124{
2125 struct mips_coproc *cop0 = vcpu->arch.cop0;
2126 struct kvm_vcpu_arch *arch = &vcpu->arch;
2127 enum emulation_result er = EMULATE_DONE;
2128
2129 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2130 /* save old pc */
2131 kvm_write_c0_guest_epc(cop0, arch->pc);
2132 kvm_set_c0_guest_status(cop0, ST0_EXL);
2133
2134 if (cause & CAUSEF_BD)
2135 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2136 else
2137 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2138
2139 kvm_debug("Delivering RI @ pc %#lx\n", arch->pc);
2140
2141 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 2142 (EXCCODE_RI << CAUSEB_EXCCODE));
e685c689
SL
2143
2144 /* Set PC to the exception entry point */
2145 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2146
2147 } else {
2148 kvm_err("Trying to deliver RI when EXL is already set\n");
2149 er = EMULATE_FAIL;
2150 }
2151
2152 return er;
2153}
2154
31cf7498 2155enum emulation_result kvm_mips_emulate_bp_exc(u32 cause,
bdb7ed86 2156 u32 *opc,
d116e812
DCZ
2157 struct kvm_run *run,
2158 struct kvm_vcpu *vcpu)
e685c689
SL
2159{
2160 struct mips_coproc *cop0 = vcpu->arch.cop0;
2161 struct kvm_vcpu_arch *arch = &vcpu->arch;
2162 enum emulation_result er = EMULATE_DONE;
2163
2164 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2165 /* save old pc */
2166 kvm_write_c0_guest_epc(cop0, arch->pc);
2167 kvm_set_c0_guest_status(cop0, ST0_EXL);
2168
2169 if (cause & CAUSEF_BD)
2170 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2171 else
2172 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2173
2174 kvm_debug("Delivering BP @ pc %#lx\n", arch->pc);
2175
2176 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 2177 (EXCCODE_BP << CAUSEB_EXCCODE));
e685c689
SL
2178
2179 /* Set PC to the exception entry point */
2180 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2181
2182 } else {
6ad78a5c 2183 kvm_err("Trying to deliver BP when EXL is already set\n");
e685c689
SL
2184 er = EMULATE_FAIL;
2185 }
2186
2187 return er;
2188}
2189
31cf7498 2190enum emulation_result kvm_mips_emulate_trap_exc(u32 cause,
bdb7ed86 2191 u32 *opc,
0a560427
JH
2192 struct kvm_run *run,
2193 struct kvm_vcpu *vcpu)
2194{
2195 struct mips_coproc *cop0 = vcpu->arch.cop0;
2196 struct kvm_vcpu_arch *arch = &vcpu->arch;
2197 enum emulation_result er = EMULATE_DONE;
2198
2199 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2200 /* save old pc */
2201 kvm_write_c0_guest_epc(cop0, arch->pc);
2202 kvm_set_c0_guest_status(cop0, ST0_EXL);
2203
2204 if (cause & CAUSEF_BD)
2205 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2206 else
2207 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2208
2209 kvm_debug("Delivering TRAP @ pc %#lx\n", arch->pc);
2210
2211 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 2212 (EXCCODE_TR << CAUSEB_EXCCODE));
0a560427
JH
2213
2214 /* Set PC to the exception entry point */
2215 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2216
2217 } else {
2218 kvm_err("Trying to deliver TRAP when EXL is already set\n");
2219 er = EMULATE_FAIL;
2220 }
2221
2222 return er;
2223}
2224
31cf7498 2225enum emulation_result kvm_mips_emulate_msafpe_exc(u32 cause,
bdb7ed86 2226 u32 *opc,
c2537ed9
JH
2227 struct kvm_run *run,
2228 struct kvm_vcpu *vcpu)
2229{
2230 struct mips_coproc *cop0 = vcpu->arch.cop0;
2231 struct kvm_vcpu_arch *arch = &vcpu->arch;
2232 enum emulation_result er = EMULATE_DONE;
2233
2234 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2235 /* save old pc */
2236 kvm_write_c0_guest_epc(cop0, arch->pc);
2237 kvm_set_c0_guest_status(cop0, ST0_EXL);
2238
2239 if (cause & CAUSEF_BD)
2240 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2241 else
2242 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2243
2244 kvm_debug("Delivering MSAFPE @ pc %#lx\n", arch->pc);
2245
2246 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 2247 (EXCCODE_MSAFPE << CAUSEB_EXCCODE));
c2537ed9
JH
2248
2249 /* Set PC to the exception entry point */
2250 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2251
2252 } else {
2253 kvm_err("Trying to deliver MSAFPE when EXL is already set\n");
2254 er = EMULATE_FAIL;
2255 }
2256
2257 return er;
2258}
2259
31cf7498 2260enum emulation_result kvm_mips_emulate_fpe_exc(u32 cause,
bdb7ed86 2261 u32 *opc,
1c0cd66a
JH
2262 struct kvm_run *run,
2263 struct kvm_vcpu *vcpu)
2264{
2265 struct mips_coproc *cop0 = vcpu->arch.cop0;
2266 struct kvm_vcpu_arch *arch = &vcpu->arch;
2267 enum emulation_result er = EMULATE_DONE;
2268
2269 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2270 /* save old pc */
2271 kvm_write_c0_guest_epc(cop0, arch->pc);
2272 kvm_set_c0_guest_status(cop0, ST0_EXL);
2273
2274 if (cause & CAUSEF_BD)
2275 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2276 else
2277 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2278
2279 kvm_debug("Delivering FPE @ pc %#lx\n", arch->pc);
2280
2281 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 2282 (EXCCODE_FPE << CAUSEB_EXCCODE));
1c0cd66a
JH
2283
2284 /* Set PC to the exception entry point */
2285 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2286
2287 } else {
2288 kvm_err("Trying to deliver FPE when EXL is already set\n");
2289 er = EMULATE_FAIL;
2290 }
2291
2292 return er;
2293}
2294
31cf7498 2295enum emulation_result kvm_mips_emulate_msadis_exc(u32 cause,
bdb7ed86 2296 u32 *opc,
c2537ed9
JH
2297 struct kvm_run *run,
2298 struct kvm_vcpu *vcpu)
2299{
2300 struct mips_coproc *cop0 = vcpu->arch.cop0;
2301 struct kvm_vcpu_arch *arch = &vcpu->arch;
2302 enum emulation_result er = EMULATE_DONE;
2303
2304 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2305 /* save old pc */
2306 kvm_write_c0_guest_epc(cop0, arch->pc);
2307 kvm_set_c0_guest_status(cop0, ST0_EXL);
2308
2309 if (cause & CAUSEF_BD)
2310 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2311 else
2312 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2313
2314 kvm_debug("Delivering MSADIS @ pc %#lx\n", arch->pc);
2315
2316 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 2317 (EXCCODE_MSADIS << CAUSEB_EXCCODE));
c2537ed9
JH
2318
2319 /* Set PC to the exception entry point */
2320 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2321
2322 } else {
2323 kvm_err("Trying to deliver MSADIS when EXL is already set\n");
2324 er = EMULATE_FAIL;
2325 }
2326
2327 return er;
2328}
2329
31cf7498 2330enum emulation_result kvm_mips_handle_ri(u32 cause, u32 *opc,
d116e812
DCZ
2331 struct kvm_run *run,
2332 struct kvm_vcpu *vcpu)
e685c689
SL
2333{
2334 struct mips_coproc *cop0 = vcpu->arch.cop0;
2335 struct kvm_vcpu_arch *arch = &vcpu->arch;
2336 enum emulation_result er = EMULATE_DONE;
2337 unsigned long curr_pc;
258f3a2e 2338 union mips_instruction inst;
e685c689
SL
2339
2340 /*
2341 * Update PC and hold onto current PC in case there is
2342 * an error and we want to rollback the PC
2343 */
2344 curr_pc = vcpu->arch.pc;
2345 er = update_pc(vcpu, cause);
2346 if (er == EMULATE_FAIL)
2347 return er;
2348
d116e812 2349 /* Fetch the instruction. */
e685c689
SL
2350 if (cause & CAUSEF_BD)
2351 opc += 1;
2352
258f3a2e 2353 inst.word = kvm_get_inst(opc, vcpu);
e685c689 2354
258f3a2e 2355 if (inst.word == KVM_INVALID_INST) {
6ad78a5c 2356 kvm_err("%s: Cannot get inst @ %p\n", __func__, opc);
e685c689
SL
2357 return EMULATE_FAIL;
2358 }
2359
258f3a2e 2360 if (inst.r_format.opcode == spec3_op &&
8eeab81c
JH
2361 inst.r_format.func == rdhwr_op &&
2362 inst.r_format.rs == 0 &&
2363 (inst.r_format.re >> 3) == 0) {
26f4f3b5 2364 int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
258f3a2e
JH
2365 int rd = inst.r_format.rd;
2366 int rt = inst.r_format.rt;
2367 int sel = inst.r_format.re & 0x7;
6398da13 2368
26f4f3b5
JH
2369 /* If usermode, check RDHWR rd is allowed by guest HWREna */
2370 if (usermode && !(kvm_read_c0_guest_hwrena(cop0) & BIT(rd))) {
2371 kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n",
2372 rd, opc);
2373 goto emulate_ri;
2374 }
e685c689 2375 switch (rd) {
aff565aa 2376 case MIPS_HWR_CPUNUM: /* CPU number */
cf1fb0f2 2377 arch->gprs[rt] = vcpu->vcpu_id;
e685c689 2378 break;
aff565aa 2379 case MIPS_HWR_SYNCISTEP: /* SYNCI length */
e685c689
SL
2380 arch->gprs[rt] = min(current_cpu_data.dcache.linesz,
2381 current_cpu_data.icache.linesz);
2382 break;
aff565aa 2383 case MIPS_HWR_CC: /* Read count register */
172e02d1 2384 arch->gprs[rt] = (s32)kvm_mips_read_count(vcpu);
e685c689 2385 break;
aff565aa 2386 case MIPS_HWR_CCRES: /* Count register resolution */
e685c689
SL
2387 switch (current_cpu_data.cputype) {
2388 case CPU_20KC:
2389 case CPU_25KF:
2390 arch->gprs[rt] = 1;
2391 break;
2392 default:
2393 arch->gprs[rt] = 2;
2394 }
2395 break;
aff565aa 2396 case MIPS_HWR_ULR: /* Read UserLocal register */
e685c689 2397 arch->gprs[rt] = kvm_read_c0_guest_userlocal(cop0);
e685c689
SL
2398 break;
2399
2400 default:
15505679 2401 kvm_debug("RDHWR %#x not supported @ %p\n", rd, opc);
26f4f3b5 2402 goto emulate_ri;
e685c689 2403 }
6398da13
JH
2404
2405 trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR, KVM_TRACE_HWR(rd, sel),
2406 vcpu->arch.gprs[rt]);
e685c689 2407 } else {
258f3a2e
JH
2408 kvm_debug("Emulate RI not supported @ %p: %#x\n",
2409 opc, inst.word);
26f4f3b5 2410 goto emulate_ri;
e685c689
SL
2411 }
2412
26f4f3b5
JH
2413 return EMULATE_DONE;
2414
2415emulate_ri:
e685c689 2416 /*
26f4f3b5
JH
2417 * Rollback PC (if in branch delay slot then the PC already points to
2418 * branch target), and pass the RI exception to the guest OS.
e685c689 2419 */
26f4f3b5
JH
2420 vcpu->arch.pc = curr_pc;
2421 return kvm_mips_emulate_ri_exc(cause, opc, run, vcpu);
e685c689
SL
2422}
2423
d116e812
DCZ
2424enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu,
2425 struct kvm_run *run)
e685c689
SL
2426{
2427 unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
2428 enum emulation_result er = EMULATE_DONE;
e685c689
SL
2429
2430 if (run->mmio.len > sizeof(*gpr)) {
6ad78a5c 2431 kvm_err("Bad MMIO length: %d", run->mmio.len);
e685c689
SL
2432 er = EMULATE_FAIL;
2433 goto done;
2434 }
2435
e685c689
SL
2436 er = update_pc(vcpu, vcpu->arch.pending_load_cause);
2437 if (er == EMULATE_FAIL)
2438 return er;
2439
2440 switch (run->mmio.len) {
2441 case 4:
8cffd197 2442 *gpr = *(s32 *) run->mmio.data;
e685c689
SL
2443 break;
2444
2445 case 2:
2446 if (vcpu->mmio_needed == 2)
8cffd197 2447 *gpr = *(s16 *) run->mmio.data;
e685c689 2448 else
8cffd197 2449 *gpr = *(u16 *)run->mmio.data;
e685c689
SL
2450
2451 break;
2452 case 1:
2453 if (vcpu->mmio_needed == 2)
8cffd197 2454 *gpr = *(s8 *) run->mmio.data;
e685c689
SL
2455 else
2456 *gpr = *(u8 *) run->mmio.data;
2457 break;
2458 }
2459
2460 if (vcpu->arch.pending_load_cause & CAUSEF_BD)
d116e812
DCZ
2461 kvm_debug("[%#lx] Completing %d byte BD Load to gpr %d (0x%08lx) type %d\n",
2462 vcpu->arch.pc, run->mmio.len, vcpu->arch.io_gpr, *gpr,
2463 vcpu->mmio_needed);
e685c689
SL
2464
2465done:
2466 return er;
2467}
2468
31cf7498 2469static enum emulation_result kvm_mips_emulate_exc(u32 cause,
bdb7ed86 2470 u32 *opc,
d116e812
DCZ
2471 struct kvm_run *run,
2472 struct kvm_vcpu *vcpu)
e685c689 2473{
8cffd197 2474 u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
e685c689
SL
2475 struct mips_coproc *cop0 = vcpu->arch.cop0;
2476 struct kvm_vcpu_arch *arch = &vcpu->arch;
2477 enum emulation_result er = EMULATE_DONE;
2478
2479 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2480 /* save old pc */
2481 kvm_write_c0_guest_epc(cop0, arch->pc);
2482 kvm_set_c0_guest_status(cop0, ST0_EXL);
2483
2484 if (cause & CAUSEF_BD)
2485 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2486 else
2487 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2488
2489 kvm_change_c0_guest_cause(cop0, (0xff),
2490 (exccode << CAUSEB_EXCCODE));
2491
2492 /* Set PC to the exception entry point */
2493 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2494 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2495
2496 kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n",
2497 exccode, kvm_read_c0_guest_epc(cop0),
2498 kvm_read_c0_guest_badvaddr(cop0));
2499 } else {
6ad78a5c 2500 kvm_err("Trying to deliver EXC when EXL is already set\n");
e685c689
SL
2501 er = EMULATE_FAIL;
2502 }
2503
2504 return er;
2505}
2506
31cf7498 2507enum emulation_result kvm_mips_check_privilege(u32 cause,
bdb7ed86 2508 u32 *opc,
d116e812
DCZ
2509 struct kvm_run *run,
2510 struct kvm_vcpu *vcpu)
e685c689
SL
2511{
2512 enum emulation_result er = EMULATE_DONE;
8cffd197 2513 u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
e685c689
SL
2514 unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
2515
2516 int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2517
2518 if (usermode) {
2519 switch (exccode) {
16d100db
JH
2520 case EXCCODE_INT:
2521 case EXCCODE_SYS:
2522 case EXCCODE_BP:
2523 case EXCCODE_RI:
2524 case EXCCODE_TR:
2525 case EXCCODE_MSAFPE:
2526 case EXCCODE_FPE:
2527 case EXCCODE_MSADIS:
e685c689
SL
2528 break;
2529
16d100db 2530 case EXCCODE_CPU:
e685c689
SL
2531 if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 0)
2532 er = EMULATE_PRIV_FAIL;
2533 break;
2534
16d100db 2535 case EXCCODE_MOD:
e685c689
SL
2536 break;
2537
16d100db 2538 case EXCCODE_TLBL:
d116e812
DCZ
2539 /*
2540 * We we are accessing Guest kernel space, then send an
2541 * address error exception to the guest
2542 */
e685c689 2543 if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
6ad78a5c
DCZ
2544 kvm_debug("%s: LD MISS @ %#lx\n", __func__,
2545 badvaddr);
e685c689 2546 cause &= ~0xff;
16d100db 2547 cause |= (EXCCODE_ADEL << CAUSEB_EXCCODE);
e685c689
SL
2548 er = EMULATE_PRIV_FAIL;
2549 }
2550 break;
2551
16d100db 2552 case EXCCODE_TLBS:
d116e812
DCZ
2553 /*
2554 * We we are accessing Guest kernel space, then send an
2555 * address error exception to the guest
2556 */
e685c689 2557 if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
6ad78a5c
DCZ
2558 kvm_debug("%s: ST MISS @ %#lx\n", __func__,
2559 badvaddr);
e685c689 2560 cause &= ~0xff;
16d100db 2561 cause |= (EXCCODE_ADES << CAUSEB_EXCCODE);
e685c689
SL
2562 er = EMULATE_PRIV_FAIL;
2563 }
2564 break;
2565
16d100db 2566 case EXCCODE_ADES:
6ad78a5c
DCZ
2567 kvm_debug("%s: address error ST @ %#lx\n", __func__,
2568 badvaddr);
e685c689
SL
2569 if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2570 cause &= ~0xff;
16d100db 2571 cause |= (EXCCODE_TLBS << CAUSEB_EXCCODE);
e685c689
SL
2572 }
2573 er = EMULATE_PRIV_FAIL;
2574 break;
16d100db 2575 case EXCCODE_ADEL:
6ad78a5c
DCZ
2576 kvm_debug("%s: address error LD @ %#lx\n", __func__,
2577 badvaddr);
e685c689
SL
2578 if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2579 cause &= ~0xff;
16d100db 2580 cause |= (EXCCODE_TLBL << CAUSEB_EXCCODE);
e685c689
SL
2581 }
2582 er = EMULATE_PRIV_FAIL;
2583 break;
2584 default:
2585 er = EMULATE_PRIV_FAIL;
2586 break;
2587 }
2588 }
2589
d116e812 2590 if (er == EMULATE_PRIV_FAIL)
e685c689 2591 kvm_mips_emulate_exc(cause, opc, run, vcpu);
d116e812 2592
e685c689
SL
2593 return er;
2594}
2595
d116e812
DCZ
2596/*
2597 * User Address (UA) fault, this could happen if
e685c689
SL
2598 * (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this
2599 * case we pass on the fault to the guest kernel and let it handle it.
2600 * (2) TLB entry is present in the Guest TLB but not in the shadow, in this
2601 * case we inject the TLB from the Guest TLB into the shadow host TLB
2602 */
31cf7498 2603enum emulation_result kvm_mips_handle_tlbmiss(u32 cause,
bdb7ed86 2604 u32 *opc,
d116e812
DCZ
2605 struct kvm_run *run,
2606 struct kvm_vcpu *vcpu)
e685c689
SL
2607{
2608 enum emulation_result er = EMULATE_DONE;
8cffd197 2609 u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
e685c689
SL
2610 unsigned long va = vcpu->arch.host_cp0_badvaddr;
2611 int index;
2612
e4e94c0f
JH
2613 kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx\n",
2614 vcpu->arch.host_cp0_badvaddr);
e685c689 2615
d116e812
DCZ
2616 /*
2617 * KVM would not have got the exception if this entry was valid in the
2618 * shadow host TLB. Check the Guest TLB, if the entry is not there then
2619 * send the guest an exception. The guest exc handler should then inject
2620 * an entry into the guest TLB.
e685c689
SL
2621 */
2622 index = kvm_mips_guest_tlb_lookup(vcpu,
caa1faa7 2623 (va & VPN2_MASK) |
ca64c2be
PB
2624 (kvm_read_c0_guest_entryhi(vcpu->arch.cop0) &
2625 KVM_ENTRYHI_ASID));
e685c689 2626 if (index < 0) {
16d100db 2627 if (exccode == EXCCODE_TLBL) {
e685c689 2628 er = kvm_mips_emulate_tlbmiss_ld(cause, opc, run, vcpu);
16d100db 2629 } else if (exccode == EXCCODE_TLBS) {
e685c689
SL
2630 er = kvm_mips_emulate_tlbmiss_st(cause, opc, run, vcpu);
2631 } else {
6ad78a5c
DCZ
2632 kvm_err("%s: invalid exc code: %d\n", __func__,
2633 exccode);
e685c689
SL
2634 er = EMULATE_FAIL;
2635 }
2636 } else {
2637 struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
2638
d116e812
DCZ
2639 /*
2640 * Check if the entry is valid, if not then setup a TLB invalid
2641 * exception to the guest
2642 */
e685c689 2643 if (!TLB_IS_VALID(*tlb, va)) {
16d100db 2644 if (exccode == EXCCODE_TLBL) {
e685c689
SL
2645 er = kvm_mips_emulate_tlbinv_ld(cause, opc, run,
2646 vcpu);
16d100db 2647 } else if (exccode == EXCCODE_TLBS) {
e685c689
SL
2648 er = kvm_mips_emulate_tlbinv_st(cause, opc, run,
2649 vcpu);
2650 } else {
6ad78a5c
DCZ
2651 kvm_err("%s: invalid exc code: %d\n", __func__,
2652 exccode);
e685c689
SL
2653 er = EMULATE_FAIL;
2654 }
2655 } else {
d116e812 2656 kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n",
9fbfb06a 2657 tlb->tlb_hi, tlb->tlb_lo[0], tlb->tlb_lo[1]);
d116e812
DCZ
2658 /*
2659 * OK we have a Guest TLB entry, now inject it into the
2660 * shadow host TLB
2661 */
26ee17ff 2662 kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb);
e685c689
SL
2663 }
2664 }
2665
2666 return er;
2667}
This page took 0.28486 seconds and 5 git commands to generate.