MIPS: KVM: Recognise r6 CACHE encoding
[deliverable/linux.git] / arch / mips / kvm / emulate.c
CommitLineData
e685c689 1/*
d116e812
DCZ
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * KVM/MIPS: Instruction/Exception emulation
7 *
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10 */
e685c689
SL
11
12#include <linux/errno.h>
13#include <linux/err.h>
e30492bb 14#include <linux/ktime.h>
e685c689
SL
15#include <linux/kvm_host.h>
16#include <linux/module.h>
17#include <linux/vmalloc.h>
18#include <linux/fs.h>
19#include <linux/bootmem.h>
20#include <linux/random.h>
21#include <asm/page.h>
22#include <asm/cacheflush.h>
f4956f62 23#include <asm/cacheops.h>
e685c689
SL
24#include <asm/cpu-info.h>
25#include <asm/mmu_context.h>
26#include <asm/tlbflush.h>
27#include <asm/inst.h>
28
29#undef CONFIG_MIPS_MT
30#include <asm/r4kcache.h>
31#define CONFIG_MIPS_MT
32
d7d5b05f
DCZ
33#include "interrupt.h"
34#include "commpage.h"
e685c689
SL
35
36#include "trace.h"
37
38/*
39 * Compute the return address and do emulate branch simulation, if required.
40 * This function should be called only in branch delay slot active.
41 */
42unsigned long kvm_compute_return_epc(struct kvm_vcpu *vcpu,
43 unsigned long instpc)
44{
45 unsigned int dspcontrol;
46 union mips_instruction insn;
47 struct kvm_vcpu_arch *arch = &vcpu->arch;
48 long epc = instpc;
49 long nextpc = KVM_INVALID_INST;
50
51 if (epc & 3)
52 goto unaligned;
53
d116e812 54 /* Read the instruction */
8cffd197 55 insn.word = kvm_get_inst((u32 *) epc, vcpu);
e685c689
SL
56
57 if (insn.word == KVM_INVALID_INST)
58 return KVM_INVALID_INST;
59
60 switch (insn.i_format.opcode) {
d116e812 61 /* jr and jalr are in r_format format. */
e685c689
SL
62 case spec_op:
63 switch (insn.r_format.func) {
64 case jalr_op:
65 arch->gprs[insn.r_format.rd] = epc + 8;
66 /* Fall through */
67 case jr_op:
68 nextpc = arch->gprs[insn.r_format.rs];
69 break;
70 }
71 break;
72
73 /*
74 * This group contains:
75 * bltz_op, bgez_op, bltzl_op, bgezl_op,
76 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
77 */
78 case bcond_op:
79 switch (insn.i_format.rt) {
80 case bltz_op:
81 case bltzl_op:
82 if ((long)arch->gprs[insn.i_format.rs] < 0)
83 epc = epc + 4 + (insn.i_format.simmediate << 2);
84 else
85 epc += 8;
86 nextpc = epc;
87 break;
88
89 case bgez_op:
90 case bgezl_op:
91 if ((long)arch->gprs[insn.i_format.rs] >= 0)
92 epc = epc + 4 + (insn.i_format.simmediate << 2);
93 else
94 epc += 8;
95 nextpc = epc;
96 break;
97
98 case bltzal_op:
99 case bltzall_op:
100 arch->gprs[31] = epc + 8;
101 if ((long)arch->gprs[insn.i_format.rs] < 0)
102 epc = epc + 4 + (insn.i_format.simmediate << 2);
103 else
104 epc += 8;
105 nextpc = epc;
106 break;
107
108 case bgezal_op:
109 case bgezall_op:
110 arch->gprs[31] = epc + 8;
111 if ((long)arch->gprs[insn.i_format.rs] >= 0)
112 epc = epc + 4 + (insn.i_format.simmediate << 2);
113 else
114 epc += 8;
115 nextpc = epc;
116 break;
117 case bposge32_op:
118 if (!cpu_has_dsp)
119 goto sigill;
120
121 dspcontrol = rddsp(0x01);
122
d116e812 123 if (dspcontrol >= 32)
e685c689 124 epc = epc + 4 + (insn.i_format.simmediate << 2);
d116e812 125 else
e685c689
SL
126 epc += 8;
127 nextpc = epc;
128 break;
129 }
130 break;
131
d116e812 132 /* These are unconditional and in j_format. */
e685c689
SL
133 case jal_op:
134 arch->gprs[31] = instpc + 8;
135 case j_op:
136 epc += 4;
137 epc >>= 28;
138 epc <<= 28;
139 epc |= (insn.j_format.target << 2);
140 nextpc = epc;
141 break;
142
d116e812 143 /* These are conditional and in i_format. */
e685c689
SL
144 case beq_op:
145 case beql_op:
146 if (arch->gprs[insn.i_format.rs] ==
147 arch->gprs[insn.i_format.rt])
148 epc = epc + 4 + (insn.i_format.simmediate << 2);
149 else
150 epc += 8;
151 nextpc = epc;
152 break;
153
154 case bne_op:
155 case bnel_op:
156 if (arch->gprs[insn.i_format.rs] !=
157 arch->gprs[insn.i_format.rt])
158 epc = epc + 4 + (insn.i_format.simmediate << 2);
159 else
160 epc += 8;
161 nextpc = epc;
162 break;
163
2e0badfa
JH
164 case blez_op: /* POP06 */
165#ifndef CONFIG_CPU_MIPSR6
166 case blezl_op: /* removed in R6 */
167#endif
168 if (insn.i_format.rt != 0)
169 goto compact_branch;
e685c689
SL
170 if ((long)arch->gprs[insn.i_format.rs] <= 0)
171 epc = epc + 4 + (insn.i_format.simmediate << 2);
172 else
173 epc += 8;
174 nextpc = epc;
175 break;
176
2e0badfa
JH
177 case bgtz_op: /* POP07 */
178#ifndef CONFIG_CPU_MIPSR6
179 case bgtzl_op: /* removed in R6 */
180#endif
181 if (insn.i_format.rt != 0)
182 goto compact_branch;
e685c689
SL
183 if ((long)arch->gprs[insn.i_format.rs] > 0)
184 epc = epc + 4 + (insn.i_format.simmediate << 2);
185 else
186 epc += 8;
187 nextpc = epc;
188 break;
189
d116e812 190 /* And now the FPA/cp1 branch instructions. */
e685c689 191 case cop1_op:
6ad78a5c 192 kvm_err("%s: unsupported cop1_op\n", __func__);
e685c689 193 break;
2e0badfa
JH
194
195#ifdef CONFIG_CPU_MIPSR6
196 /* R6 added the following compact branches with forbidden slots */
197 case blezl_op: /* POP26 */
198 case bgtzl_op: /* POP27 */
199 /* only rt == 0 isn't compact branch */
200 if (insn.i_format.rt != 0)
201 goto compact_branch;
202 break;
203 case pop10_op:
204 case pop30_op:
205 /* only rs == rt == 0 is reserved, rest are compact branches */
206 if (insn.i_format.rs != 0 || insn.i_format.rt != 0)
207 goto compact_branch;
208 break;
209 case pop66_op:
210 case pop76_op:
211 /* only rs == 0 isn't compact branch */
212 if (insn.i_format.rs != 0)
213 goto compact_branch;
214 break;
215compact_branch:
216 /*
217 * If we've hit an exception on the forbidden slot, then
218 * the branch must not have been taken.
219 */
220 epc += 8;
221 nextpc = epc;
222 break;
223#else
224compact_branch:
225 /* Compact branches not supported before R6 */
226 break;
227#endif
e685c689
SL
228 }
229
230 return nextpc;
231
232unaligned:
6ad78a5c 233 kvm_err("%s: unaligned epc\n", __func__);
e685c689
SL
234 return nextpc;
235
236sigill:
6ad78a5c 237 kvm_err("%s: DSP branch but not DSP ASE\n", __func__);
e685c689
SL
238 return nextpc;
239}
240
bdb7ed86 241enum emulation_result update_pc(struct kvm_vcpu *vcpu, u32 cause)
e685c689
SL
242{
243 unsigned long branch_pc;
244 enum emulation_result er = EMULATE_DONE;
245
246 if (cause & CAUSEF_BD) {
247 branch_pc = kvm_compute_return_epc(vcpu, vcpu->arch.pc);
248 if (branch_pc == KVM_INVALID_INST) {
249 er = EMULATE_FAIL;
250 } else {
251 vcpu->arch.pc = branch_pc;
d116e812
DCZ
252 kvm_debug("BD update_pc(): New PC: %#lx\n",
253 vcpu->arch.pc);
e685c689
SL
254 }
255 } else
256 vcpu->arch.pc += 4;
257
258 kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);
259
260 return er;
261}
262
e30492bb
JH
263/**
264 * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
265 * @vcpu: Virtual CPU.
e685c689 266 *
f8239342
JH
267 * Returns: 1 if the CP0_Count timer is disabled by either the guest
268 * CP0_Cause.DC bit or the count_ctl.DC bit.
e30492bb 269 * 0 otherwise (in which case CP0_Count timer is running).
e685c689 270 */
e30492bb 271static inline int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
e685c689
SL
272{
273 struct mips_coproc *cop0 = vcpu->arch.cop0;
d116e812 274
f8239342
JH
275 return (vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
276 (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
e30492bb 277}
e685c689 278
e30492bb
JH
279/**
280 * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
281 *
282 * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
283 *
284 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
285 */
bdb7ed86 286static u32 kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
e30492bb
JH
287{
288 s64 now_ns, periods;
289 u64 delta;
290
291 now_ns = ktime_to_ns(now);
292 delta = now_ns + vcpu->arch.count_dyn_bias;
293
294 if (delta >= vcpu->arch.count_period) {
295 /* If delta is out of safe range the bias needs adjusting */
296 periods = div64_s64(now_ns, vcpu->arch.count_period);
297 vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
298 /* Recalculate delta with new bias */
299 delta = now_ns + vcpu->arch.count_dyn_bias;
e685c689
SL
300 }
301
e30492bb
JH
302 /*
303 * We've ensured that:
304 * delta < count_period
305 *
306 * Therefore the intermediate delta*count_hz will never overflow since
307 * at the boundary condition:
308 * delta = count_period
309 * delta = NSEC_PER_SEC * 2^32 / count_hz
310 * delta * count_hz = NSEC_PER_SEC * 2^32
311 */
312 return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
313}
314
f8239342
JH
315/**
316 * kvm_mips_count_time() - Get effective current time.
317 * @vcpu: Virtual CPU.
318 *
319 * Get effective monotonic ktime. This is usually a straightforward ktime_get(),
320 * except when the master disable bit is set in count_ctl, in which case it is
321 * count_resume, i.e. the time that the count was disabled.
322 *
323 * Returns: Effective monotonic ktime for CP0_Count.
324 */
325static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
326{
327 if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
328 return vcpu->arch.count_resume;
329
330 return ktime_get();
331}
332
e30492bb
JH
333/**
334 * kvm_mips_read_count_running() - Read the current count value as if running.
335 * @vcpu: Virtual CPU.
336 * @now: Kernel time to read CP0_Count at.
337 *
338 * Returns the current guest CP0_Count register at time @now and handles if the
339 * timer interrupt is pending and hasn't been handled yet.
340 *
341 * Returns: The current value of the guest CP0_Count register.
342 */
bdb7ed86 343static u32 kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
e30492bb 344{
4355c44f
JH
345 struct mips_coproc *cop0 = vcpu->arch.cop0;
346 ktime_t expires, threshold;
8cffd197 347 u32 count, compare;
e30492bb
JH
348 int running;
349
4355c44f
JH
350 /* Calculate the biased and scaled guest CP0_Count */
351 count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
352 compare = kvm_read_c0_guest_compare(cop0);
353
354 /*
355 * Find whether CP0_Count has reached the closest timer interrupt. If
356 * not, we shouldn't inject it.
357 */
8cffd197 358 if ((s32)(count - compare) < 0)
4355c44f
JH
359 return count;
360
361 /*
362 * The CP0_Count we're going to return has already reached the closest
363 * timer interrupt. Quickly check if it really is a new interrupt by
364 * looking at whether the interval until the hrtimer expiry time is
365 * less than 1/4 of the timer period.
366 */
e30492bb 367 expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
4355c44f
JH
368 threshold = ktime_add_ns(now, vcpu->arch.count_period / 4);
369 if (ktime_before(expires, threshold)) {
e30492bb
JH
370 /*
371 * Cancel it while we handle it so there's no chance of
372 * interference with the timeout handler.
373 */
374 running = hrtimer_cancel(&vcpu->arch.comparecount_timer);
375
376 /* Nothing should be waiting on the timeout */
377 kvm_mips_callbacks->queue_timer_int(vcpu);
378
379 /*
380 * Restart the timer if it was running based on the expiry time
381 * we read, so that we don't push it back 2 periods.
382 */
383 if (running) {
384 expires = ktime_add_ns(expires,
385 vcpu->arch.count_period);
386 hrtimer_start(&vcpu->arch.comparecount_timer, expires,
387 HRTIMER_MODE_ABS);
388 }
389 }
390
4355c44f 391 return count;
e30492bb
JH
392}
393
394/**
395 * kvm_mips_read_count() - Read the current count value.
396 * @vcpu: Virtual CPU.
397 *
398 * Read the current guest CP0_Count value, taking into account whether the timer
399 * is stopped.
400 *
401 * Returns: The current guest CP0_Count value.
402 */
bdb7ed86 403u32 kvm_mips_read_count(struct kvm_vcpu *vcpu)
e30492bb
JH
404{
405 struct mips_coproc *cop0 = vcpu->arch.cop0;
406
407 /* If count disabled just read static copy of count */
408 if (kvm_mips_count_disabled(vcpu))
409 return kvm_read_c0_guest_count(cop0);
410
411 return kvm_mips_read_count_running(vcpu, ktime_get());
412}
413
414/**
415 * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
416 * @vcpu: Virtual CPU.
417 * @count: Output pointer for CP0_Count value at point of freeze.
418 *
419 * Freeze the hrtimer safely and return both the ktime and the CP0_Count value
420 * at the point it was frozen. It is guaranteed that any pending interrupts at
421 * the point it was frozen are handled, and none after that point.
422 *
423 * This is useful where the time/CP0_Count is needed in the calculation of the
424 * new parameters.
425 *
426 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
427 *
428 * Returns: The ktime at the point of freeze.
429 */
bdb7ed86 430static ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu, u32 *count)
e30492bb
JH
431{
432 ktime_t now;
433
434 /* stop hrtimer before finding time */
435 hrtimer_cancel(&vcpu->arch.comparecount_timer);
436 now = ktime_get();
437
438 /* find count at this point and handle pending hrtimer */
439 *count = kvm_mips_read_count_running(vcpu, now);
440
441 return now;
442}
443
e30492bb
JH
444/**
445 * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
446 * @vcpu: Virtual CPU.
447 * @now: ktime at point of resume.
448 * @count: CP0_Count at point of resume.
449 *
450 * Resumes the timer and updates the timer expiry based on @now and @count.
451 * This can be used in conjunction with kvm_mips_freeze_timer() when timer
452 * parameters need to be changed.
453 *
454 * It is guaranteed that a timer interrupt immediately after resume will be
455 * handled, but not if CP_Compare is exactly at @count. That case is already
456 * handled by kvm_mips_freeze_timer().
457 *
458 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
459 */
460static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
bdb7ed86 461 ktime_t now, u32 count)
e30492bb
JH
462{
463 struct mips_coproc *cop0 = vcpu->arch.cop0;
8cffd197 464 u32 compare;
e30492bb
JH
465 u64 delta;
466 ktime_t expire;
467
468 /* Calculate timeout (wrap 0 to 2^32) */
469 compare = kvm_read_c0_guest_compare(cop0);
8cffd197 470 delta = (u64)(u32)(compare - count - 1) + 1;
e30492bb
JH
471 delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
472 expire = ktime_add_ns(now, delta);
473
474 /* Update hrtimer to use new timeout */
475 hrtimer_cancel(&vcpu->arch.comparecount_timer);
476 hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
477}
478
e30492bb
JH
479/**
480 * kvm_mips_write_count() - Modify the count and update timer.
481 * @vcpu: Virtual CPU.
482 * @count: Guest CP0_Count value to set.
483 *
484 * Sets the CP0_Count value and updates the timer accordingly.
485 */
bdb7ed86 486void kvm_mips_write_count(struct kvm_vcpu *vcpu, u32 count)
e30492bb
JH
487{
488 struct mips_coproc *cop0 = vcpu->arch.cop0;
489 ktime_t now;
490
491 /* Calculate bias */
f8239342 492 now = kvm_mips_count_time(vcpu);
e30492bb
JH
493 vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
494
495 if (kvm_mips_count_disabled(vcpu))
496 /* The timer's disabled, adjust the static count */
497 kvm_write_c0_guest_count(cop0, count);
498 else
499 /* Update timeout */
500 kvm_mips_resume_hrtimer(vcpu, now, count);
501}
502
503/**
504 * kvm_mips_init_count() - Initialise timer.
505 * @vcpu: Virtual CPU.
506 *
507 * Initialise the timer to a sensible frequency, namely 100MHz, zero it, and set
508 * it going if it's enabled.
509 */
510void kvm_mips_init_count(struct kvm_vcpu *vcpu)
511{
512 /* 100 MHz */
513 vcpu->arch.count_hz = 100*1000*1000;
514 vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32,
515 vcpu->arch.count_hz);
516 vcpu->arch.count_dyn_bias = 0;
517
518 /* Starting at 0 */
519 kvm_mips_write_count(vcpu, 0);
520}
521
f74a8e22
JH
522/**
523 * kvm_mips_set_count_hz() - Update the frequency of the timer.
524 * @vcpu: Virtual CPU.
525 * @count_hz: Frequency of CP0_Count timer in Hz.
526 *
527 * Change the frequency of the CP0_Count timer. This is done atomically so that
528 * CP0_Count is continuous and no timer interrupt is lost.
529 *
530 * Returns: -EINVAL if @count_hz is out of range.
531 * 0 on success.
532 */
533int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
534{
535 struct mips_coproc *cop0 = vcpu->arch.cop0;
536 int dc;
537 ktime_t now;
538 u32 count;
539
540 /* ensure the frequency is in a sensible range... */
541 if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
542 return -EINVAL;
543 /* ... and has actually changed */
544 if (vcpu->arch.count_hz == count_hz)
545 return 0;
546
547 /* Safely freeze timer so we can keep it continuous */
548 dc = kvm_mips_count_disabled(vcpu);
549 if (dc) {
550 now = kvm_mips_count_time(vcpu);
551 count = kvm_read_c0_guest_count(cop0);
552 } else {
553 now = kvm_mips_freeze_hrtimer(vcpu, &count);
554 }
555
556 /* Update the frequency */
557 vcpu->arch.count_hz = count_hz;
558 vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
559 vcpu->arch.count_dyn_bias = 0;
560
561 /* Calculate adjusted bias so dynamic count is unchanged */
562 vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
563
564 /* Update and resume hrtimer */
565 if (!dc)
566 kvm_mips_resume_hrtimer(vcpu, now, count);
567 return 0;
568}
569
e30492bb
JH
570/**
571 * kvm_mips_write_compare() - Modify compare and update timer.
572 * @vcpu: Virtual CPU.
573 * @compare: New CP0_Compare value.
b45bacd2 574 * @ack: Whether to acknowledge timer interrupt.
e30492bb
JH
575 *
576 * Update CP0_Compare to a new value and update the timeout.
b45bacd2
JH
577 * If @ack, atomically acknowledge any pending timer interrupt, otherwise ensure
578 * any pending timer interrupt is preserved.
e30492bb 579 */
bdb7ed86 580void kvm_mips_write_compare(struct kvm_vcpu *vcpu, u32 compare, bool ack)
e30492bb
JH
581{
582 struct mips_coproc *cop0 = vcpu->arch.cop0;
b45bacd2
JH
583 int dc;
584 u32 old_compare = kvm_read_c0_guest_compare(cop0);
585 ktime_t now;
8cffd197 586 u32 count;
e30492bb
JH
587
588 /* if unchanged, must just be an ack */
b45bacd2
JH
589 if (old_compare == compare) {
590 if (!ack)
591 return;
592 kvm_mips_callbacks->dequeue_timer_int(vcpu);
593 kvm_write_c0_guest_compare(cop0, compare);
e30492bb 594 return;
b45bacd2
JH
595 }
596
597 /* freeze_hrtimer() takes care of timer interrupts <= count */
598 dc = kvm_mips_count_disabled(vcpu);
599 if (!dc)
600 now = kvm_mips_freeze_hrtimer(vcpu, &count);
601
602 if (ack)
603 kvm_mips_callbacks->dequeue_timer_int(vcpu);
e30492bb 604
e30492bb
JH
605 kvm_write_c0_guest_compare(cop0, compare);
606
b45bacd2
JH
607 /* resume_hrtimer() takes care of timer interrupts > count */
608 if (!dc)
609 kvm_mips_resume_hrtimer(vcpu, now, count);
e30492bb
JH
610}
611
612/**
613 * kvm_mips_count_disable() - Disable count.
614 * @vcpu: Virtual CPU.
615 *
616 * Disable the CP0_Count timer. A timer interrupt on or before the final stop
617 * time will be handled but not after.
618 *
f8239342
JH
619 * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
620 * count_ctl.DC has been set (count disabled).
e30492bb
JH
621 *
622 * Returns: The time that the timer was stopped.
623 */
624static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
625{
626 struct mips_coproc *cop0 = vcpu->arch.cop0;
8cffd197 627 u32 count;
e30492bb
JH
628 ktime_t now;
629
630 /* Stop hrtimer */
631 hrtimer_cancel(&vcpu->arch.comparecount_timer);
632
633 /* Set the static count from the dynamic count, handling pending TI */
634 now = ktime_get();
635 count = kvm_mips_read_count_running(vcpu, now);
636 kvm_write_c0_guest_count(cop0, count);
637
638 return now;
639}
640
641/**
642 * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
643 * @vcpu: Virtual CPU.
644 *
645 * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
f8239342
JH
646 * before the final stop time will be handled if the timer isn't disabled by
647 * count_ctl.DC, but not after.
e30492bb
JH
648 *
649 * Assumes CP0_Cause.DC is clear (count enabled).
650 */
651void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
652{
653 struct mips_coproc *cop0 = vcpu->arch.cop0;
654
655 kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
f8239342
JH
656 if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
657 kvm_mips_count_disable(vcpu);
e30492bb
JH
658}
659
660/**
661 * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
662 * @vcpu: Virtual CPU.
663 *
664 * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
f8239342
JH
665 * the start time will be handled if the timer isn't disabled by count_ctl.DC,
666 * potentially before even returning, so the caller should be careful with
667 * ordering of CP0_Cause modifications so as not to lose it.
e30492bb
JH
668 *
669 * Assumes CP0_Cause.DC is set (count disabled).
670 */
671void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
672{
673 struct mips_coproc *cop0 = vcpu->arch.cop0;
8cffd197 674 u32 count;
e30492bb
JH
675
676 kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);
677
678 /*
679 * Set the dynamic count to match the static count.
f8239342
JH
680 * This starts the hrtimer if count_ctl.DC allows it.
681 * Otherwise it conveniently updates the biases.
e30492bb
JH
682 */
683 count = kvm_read_c0_guest_count(cop0);
684 kvm_mips_write_count(vcpu, count);
685}
686
f8239342
JH
687/**
688 * kvm_mips_set_count_ctl() - Update the count control KVM register.
689 * @vcpu: Virtual CPU.
690 * @count_ctl: Count control register new value.
691 *
692 * Set the count control KVM register. The timer is updated accordingly.
693 *
694 * Returns: -EINVAL if reserved bits are set.
695 * 0 on success.
696 */
697int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
698{
699 struct mips_coproc *cop0 = vcpu->arch.cop0;
700 s64 changed = count_ctl ^ vcpu->arch.count_ctl;
701 s64 delta;
702 ktime_t expire, now;
8cffd197 703 u32 count, compare;
f8239342
JH
704
705 /* Only allow defined bits to be changed */
706 if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
707 return -EINVAL;
708
709 /* Apply new value */
710 vcpu->arch.count_ctl = count_ctl;
711
712 /* Master CP0_Count disable */
713 if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
714 /* Is CP0_Cause.DC already disabling CP0_Count? */
715 if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
716 if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
717 /* Just record the current time */
718 vcpu->arch.count_resume = ktime_get();
719 } else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
720 /* disable timer and record current time */
721 vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
722 } else {
723 /*
724 * Calculate timeout relative to static count at resume
725 * time (wrap 0 to 2^32).
726 */
727 count = kvm_read_c0_guest_count(cop0);
728 compare = kvm_read_c0_guest_compare(cop0);
8cffd197 729 delta = (u64)(u32)(compare - count - 1) + 1;
f8239342
JH
730 delta = div_u64(delta * NSEC_PER_SEC,
731 vcpu->arch.count_hz);
732 expire = ktime_add_ns(vcpu->arch.count_resume, delta);
733
734 /* Handle pending interrupt */
735 now = ktime_get();
736 if (ktime_compare(now, expire) >= 0)
737 /* Nothing should be waiting on the timeout */
738 kvm_mips_callbacks->queue_timer_int(vcpu);
739
740 /* Resume hrtimer without changing bias */
741 count = kvm_mips_read_count_running(vcpu, now);
742 kvm_mips_resume_hrtimer(vcpu, now, count);
743 }
744 }
745
746 return 0;
747}
748
749/**
750 * kvm_mips_set_count_resume() - Update the count resume KVM register.
751 * @vcpu: Virtual CPU.
752 * @count_resume: Count resume register new value.
753 *
754 * Set the count resume KVM register.
755 *
756 * Returns: -EINVAL if out of valid range (0..now).
757 * 0 on success.
758 */
759int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
760{
761 /*
762 * It doesn't make sense for the resume time to be in the future, as it
763 * would be possible for the next interrupt to be more than a full
764 * period in the future.
765 */
766 if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
767 return -EINVAL;
768
769 vcpu->arch.count_resume = ns_to_ktime(count_resume);
770 return 0;
771}
772
e30492bb
JH
773/**
774 * kvm_mips_count_timeout() - Push timer forward on timeout.
775 * @vcpu: Virtual CPU.
776 *
777 * Handle an hrtimer event by push the hrtimer forward a period.
778 *
779 * Returns: The hrtimer_restart value to return to the hrtimer subsystem.
780 */
781enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
782{
783 /* Add the Count period to the current expiry time */
784 hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
785 vcpu->arch.count_period);
786 return HRTIMER_RESTART;
e685c689
SL
787}
788
789enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu)
790{
791 struct mips_coproc *cop0 = vcpu->arch.cop0;
792 enum emulation_result er = EMULATE_DONE;
793
794 if (kvm_read_c0_guest_status(cop0) & ST0_EXL) {
795 kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc,
796 kvm_read_c0_guest_epc(cop0));
797 kvm_clear_c0_guest_status(cop0, ST0_EXL);
798 vcpu->arch.pc = kvm_read_c0_guest_epc(cop0);
799
800 } else if (kvm_read_c0_guest_status(cop0) & ST0_ERL) {
801 kvm_clear_c0_guest_status(cop0, ST0_ERL);
802 vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0);
803 } else {
6ad78a5c
DCZ
804 kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n",
805 vcpu->arch.pc);
e685c689
SL
806 er = EMULATE_FAIL;
807 }
808
809 return er;
810}
811
812enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
813{
e685c689
SL
814 kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
815 vcpu->arch.pending_exceptions);
816
817 ++vcpu->stat.wait_exits;
1e09e86a 818 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_WAIT);
e685c689
SL
819 if (!vcpu->arch.pending_exceptions) {
820 vcpu->arch.wait = 1;
821 kvm_vcpu_block(vcpu);
822
d116e812
DCZ
823 /*
824 * We we are runnable, then definitely go off to user space to
825 * check if any I/O interrupts are pending.
e685c689
SL
826 */
827 if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
828 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
829 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
830 }
831 }
832
d98403a5 833 return EMULATE_DONE;
e685c689
SL
834}
835
d116e812
DCZ
836/*
837 * XXXKYMA: Linux doesn't seem to use TLBR, return EMULATE_FAIL for now so that
838 * we can catch this, if things ever change
e685c689
SL
839 */
840enum emulation_result kvm_mips_emul_tlbr(struct kvm_vcpu *vcpu)
841{
842 struct mips_coproc *cop0 = vcpu->arch.cop0;
8cffd197 843 unsigned long pc = vcpu->arch.pc;
e685c689 844
8cffd197 845 kvm_err("[%#lx] COP0_TLBR [%ld]\n", pc, kvm_read_c0_guest_index(cop0));
d98403a5 846 return EMULATE_FAIL;
e685c689
SL
847}
848
849/* Write Guest TLB Entry @ Index */
850enum emulation_result kvm_mips_emul_tlbwi(struct kvm_vcpu *vcpu)
851{
852 struct mips_coproc *cop0 = vcpu->arch.cop0;
853 int index = kvm_read_c0_guest_index(cop0);
e685c689 854 struct kvm_mips_tlb *tlb = NULL;
8cffd197 855 unsigned long pc = vcpu->arch.pc;
e685c689
SL
856
857 if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
6ad78a5c 858 kvm_debug("%s: illegal index: %d\n", __func__, index);
8cffd197 859 kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
6ad78a5c
DCZ
860 pc, index, kvm_read_c0_guest_entryhi(cop0),
861 kvm_read_c0_guest_entrylo0(cop0),
862 kvm_read_c0_guest_entrylo1(cop0),
863 kvm_read_c0_guest_pagemask(cop0));
e685c689
SL
864 index = (index & ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE;
865 }
866
867 tlb = &vcpu->arch.guest_tlb[index];
d116e812
DCZ
868 /*
869 * Probe the shadow host TLB for the entry being overwritten, if one
870 * matches, invalidate it
871 */
e685c689 872 kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);
e685c689
SL
873
874 tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
875 tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
9fbfb06a
JH
876 tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0);
877 tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0);
e685c689 878
8cffd197 879 kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
d116e812
DCZ
880 pc, index, kvm_read_c0_guest_entryhi(cop0),
881 kvm_read_c0_guest_entrylo0(cop0),
882 kvm_read_c0_guest_entrylo1(cop0),
883 kvm_read_c0_guest_pagemask(cop0));
e685c689 884
d98403a5 885 return EMULATE_DONE;
e685c689
SL
886}
887
888/* Write Guest TLB Entry @ Random Index */
889enum emulation_result kvm_mips_emul_tlbwr(struct kvm_vcpu *vcpu)
890{
891 struct mips_coproc *cop0 = vcpu->arch.cop0;
e685c689 892 struct kvm_mips_tlb *tlb = NULL;
8cffd197 893 unsigned long pc = vcpu->arch.pc;
e685c689
SL
894 int index;
895
e685c689
SL
896 get_random_bytes(&index, sizeof(index));
897 index &= (KVM_MIPS_GUEST_TLB_SIZE - 1);
e685c689 898
e685c689
SL
899 tlb = &vcpu->arch.guest_tlb[index];
900
d116e812
DCZ
901 /*
902 * Probe the shadow host TLB for the entry being overwritten, if one
903 * matches, invalidate it
904 */
e685c689 905 kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);
e685c689
SL
906
907 tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
908 tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
9fbfb06a
JH
909 tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0);
910 tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0);
e685c689 911
8cffd197 912 kvm_debug("[%#lx] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n",
d116e812
DCZ
913 pc, index, kvm_read_c0_guest_entryhi(cop0),
914 kvm_read_c0_guest_entrylo0(cop0),
915 kvm_read_c0_guest_entrylo1(cop0));
e685c689 916
d98403a5 917 return EMULATE_DONE;
e685c689
SL
918}
919
920enum emulation_result kvm_mips_emul_tlbp(struct kvm_vcpu *vcpu)
921{
922 struct mips_coproc *cop0 = vcpu->arch.cop0;
923 long entryhi = kvm_read_c0_guest_entryhi(cop0);
8cffd197 924 unsigned long pc = vcpu->arch.pc;
e685c689
SL
925 int index = -1;
926
927 index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
928
929 kvm_write_c0_guest_index(cop0, index);
930
8cffd197 931 kvm_debug("[%#lx] COP0_TLBP (entryhi: %#lx), index: %d\n", pc, entryhi,
e685c689
SL
932 index);
933
d98403a5 934 return EMULATE_DONE;
e685c689
SL
935}
936
c771607a
JH
937/**
938 * kvm_mips_config1_wrmask() - Find mask of writable bits in guest Config1
939 * @vcpu: Virtual CPU.
940 *
941 * Finds the mask of bits which are writable in the guest's Config1 CP0
942 * register, by userland (currently read-only to the guest).
943 */
944unsigned int kvm_mips_config1_wrmask(struct kvm_vcpu *vcpu)
945{
6cdc65e3
JH
946 unsigned int mask = 0;
947
948 /* Permit FPU to be present if FPU is supported */
949 if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
950 mask |= MIPS_CONF1_FP;
951
952 return mask;
c771607a
JH
953}
954
955/**
956 * kvm_mips_config3_wrmask() - Find mask of writable bits in guest Config3
957 * @vcpu: Virtual CPU.
958 *
959 * Finds the mask of bits which are writable in the guest's Config3 CP0
960 * register, by userland (currently read-only to the guest).
961 */
962unsigned int kvm_mips_config3_wrmask(struct kvm_vcpu *vcpu)
963{
cef061d0
JH
964 /* Config4 and ULRI are optional */
965 unsigned int mask = MIPS_CONF_M | MIPS_CONF3_ULRI;
2b6009d6
JH
966
967 /* Permit MSA to be present if MSA is supported */
968 if (kvm_mips_guest_can_have_msa(&vcpu->arch))
969 mask |= MIPS_CONF3_MSA;
970
971 return mask;
c771607a
JH
972}
973
974/**
975 * kvm_mips_config4_wrmask() - Find mask of writable bits in guest Config4
976 * @vcpu: Virtual CPU.
977 *
978 * Finds the mask of bits which are writable in the guest's Config4 CP0
979 * register, by userland (currently read-only to the guest).
980 */
981unsigned int kvm_mips_config4_wrmask(struct kvm_vcpu *vcpu)
982{
983 /* Config5 is optional */
05108709
JH
984 unsigned int mask = MIPS_CONF_M;
985
986 /* KScrExist */
987 mask |= (unsigned int)vcpu->arch.kscratch_enabled << 16;
988
989 return mask;
c771607a
JH
990}
991
992/**
993 * kvm_mips_config5_wrmask() - Find mask of writable bits in guest Config5
994 * @vcpu: Virtual CPU.
995 *
996 * Finds the mask of bits which are writable in the guest's Config5 CP0
997 * register, by the guest itself.
998 */
999unsigned int kvm_mips_config5_wrmask(struct kvm_vcpu *vcpu)
1000{
6cdc65e3
JH
1001 unsigned int mask = 0;
1002
2b6009d6
JH
1003 /* Permit MSAEn changes if MSA supported and enabled */
1004 if (kvm_mips_guest_has_msa(&vcpu->arch))
1005 mask |= MIPS_CONF5_MSAEN;
1006
6cdc65e3
JH
1007 /*
1008 * Permit guest FPU mode changes if FPU is enabled and the relevant
1009 * feature exists according to FIR register.
1010 */
1011 if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1012 if (cpu_has_fre)
1013 mask |= MIPS_CONF5_FRE;
1014 /* We don't support UFR or UFE */
1015 }
1016
1017 return mask;
c771607a
JH
1018}
1019
258f3a2e
JH
1020enum emulation_result kvm_mips_emulate_CP0(union mips_instruction inst,
1021 u32 *opc, u32 cause,
bdb7ed86 1022 struct kvm_run *run,
d116e812 1023 struct kvm_vcpu *vcpu)
e685c689
SL
1024{
1025 struct mips_coproc *cop0 = vcpu->arch.cop0;
1026 enum emulation_result er = EMULATE_DONE;
258f3a2e 1027 u32 rt, rd, sel;
e685c689
SL
1028 unsigned long curr_pc;
1029
1030 /*
1031 * Update PC and hold onto current PC in case there is
1032 * an error and we want to rollback the PC
1033 */
1034 curr_pc = vcpu->arch.pc;
1035 er = update_pc(vcpu, cause);
d116e812 1036 if (er == EMULATE_FAIL)
e685c689 1037 return er;
e685c689 1038
258f3a2e
JH
1039 if (inst.co_format.co) {
1040 switch (inst.co_format.func) {
e685c689
SL
1041 case tlbr_op: /* Read indexed TLB entry */
1042 er = kvm_mips_emul_tlbr(vcpu);
1043 break;
1044 case tlbwi_op: /* Write indexed */
1045 er = kvm_mips_emul_tlbwi(vcpu);
1046 break;
1047 case tlbwr_op: /* Write random */
1048 er = kvm_mips_emul_tlbwr(vcpu);
1049 break;
1050 case tlbp_op: /* TLB Probe */
1051 er = kvm_mips_emul_tlbp(vcpu);
1052 break;
1053 case rfe_op:
6ad78a5c 1054 kvm_err("!!!COP0_RFE!!!\n");
e685c689
SL
1055 break;
1056 case eret_op:
1057 er = kvm_mips_emul_eret(vcpu);
1058 goto dont_update_pc;
e685c689
SL
1059 case wait_op:
1060 er = kvm_mips_emul_wait(vcpu);
1061 break;
1062 }
1063 } else {
258f3a2e
JH
1064 rt = inst.c0r_format.rt;
1065 rd = inst.c0r_format.rd;
1066 sel = inst.c0r_format.sel;
1067
1068 switch (inst.c0r_format.rs) {
e685c689
SL
1069 case mfc_op:
1070#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1071 cop0->stat[rd][sel]++;
1072#endif
1073 /* Get reg */
1074 if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
e30492bb 1075 vcpu->arch.gprs[rt] = kvm_mips_read_count(vcpu);
e685c689
SL
1076 } else if ((rd == MIPS_CP0_ERRCTL) && (sel == 0)) {
1077 vcpu->arch.gprs[rt] = 0x0;
1078#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1079 kvm_mips_trans_mfc0(inst, opc, vcpu);
1080#endif
d116e812 1081 } else {
e685c689
SL
1082 vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
1083
1084#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1085 kvm_mips_trans_mfc0(inst, opc, vcpu);
1086#endif
1087 }
1088
6398da13
JH
1089 trace_kvm_hwr(vcpu, KVM_TRACE_MFC0,
1090 KVM_TRACE_COP0(rd, sel),
1091 vcpu->arch.gprs[rt]);
e685c689
SL
1092 break;
1093
1094 case dmfc_op:
1095 vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
6398da13
JH
1096
1097 trace_kvm_hwr(vcpu, KVM_TRACE_DMFC0,
1098 KVM_TRACE_COP0(rd, sel),
1099 vcpu->arch.gprs[rt]);
e685c689
SL
1100 break;
1101
1102 case mtc_op:
1103#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1104 cop0->stat[rd][sel]++;
1105#endif
6398da13
JH
1106 trace_kvm_hwr(vcpu, KVM_TRACE_MTC0,
1107 KVM_TRACE_COP0(rd, sel),
1108 vcpu->arch.gprs[rt]);
1109
e685c689
SL
1110 if ((rd == MIPS_CP0_TLB_INDEX)
1111 && (vcpu->arch.gprs[rt] >=
1112 KVM_MIPS_GUEST_TLB_SIZE)) {
6ad78a5c
DCZ
1113 kvm_err("Invalid TLB Index: %ld",
1114 vcpu->arch.gprs[rt]);
e685c689
SL
1115 er = EMULATE_FAIL;
1116 break;
1117 }
1118#define C0_EBASE_CORE_MASK 0xff
1119 if ((rd == MIPS_CP0_PRID) && (sel == 1)) {
1120 /* Preserve CORE number */
1121 kvm_change_c0_guest_ebase(cop0,
1122 ~(C0_EBASE_CORE_MASK),
1123 vcpu->arch.gprs[rt]);
6ad78a5c
DCZ
1124 kvm_err("MTCz, cop0->reg[EBASE]: %#lx\n",
1125 kvm_read_c0_guest_ebase(cop0));
e685c689 1126 } else if (rd == MIPS_CP0_TLB_HI && sel == 0) {
8cffd197 1127 u32 nasid =
ca64c2be 1128 vcpu->arch.gprs[rt] & KVM_ENTRYHI_ASID;
d116e812 1129 if ((KSEGX(vcpu->arch.gprs[rt]) != CKSEG0) &&
48c4ac97 1130 ((kvm_read_c0_guest_entryhi(cop0) &
ca64c2be 1131 KVM_ENTRYHI_ASID) != nasid)) {
9887d1c7 1132 trace_kvm_asid_change(vcpu,
d116e812 1133 kvm_read_c0_guest_entryhi(cop0)
9887d1c7
JH
1134 & KVM_ENTRYHI_ASID,
1135 nasid);
e685c689
SL
1136
1137 /* Blow away the shadow host TLBs */
1138 kvm_mips_flush_host_tlb(1);
1139 }
1140 kvm_write_c0_guest_entryhi(cop0,
1141 vcpu->arch.gprs[rt]);
1142 }
1143 /* Are we writing to COUNT */
1144 else if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
e30492bb 1145 kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
e685c689
SL
1146 goto done;
1147 } else if ((rd == MIPS_CP0_COMPARE) && (sel == 0)) {
e685c689
SL
1148 /* If we are writing to COMPARE */
1149 /* Clear pending timer interrupt, if any */
e30492bb 1150 kvm_mips_write_compare(vcpu,
b45bacd2
JH
1151 vcpu->arch.gprs[rt],
1152 true);
e685c689 1153 } else if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
6cdc65e3
JH
1154 unsigned int old_val, val, change;
1155
1156 old_val = kvm_read_c0_guest_status(cop0);
1157 val = vcpu->arch.gprs[rt];
1158 change = val ^ old_val;
1159
1160 /* Make sure that the NMI bit is never set */
1161 val &= ~ST0_NMI;
1162
1163 /*
1164 * Don't allow CU1 or FR to be set unless FPU
1165 * capability enabled and exists in guest
1166 * configuration.
1167 */
1168 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1169 val &= ~(ST0_CU1 | ST0_FR);
1170
1171 /*
1172 * Also don't allow FR to be set if host doesn't
1173 * support it.
1174 */
1175 if (!(current_cpu_data.fpu_id & MIPS_FPIR_F64))
1176 val &= ~ST0_FR;
1177
1178
1179 /* Handle changes in FPU mode */
1180 preempt_disable();
1181
1182 /*
1183 * FPU and Vector register state is made
1184 * UNPREDICTABLE by a change of FR, so don't
1185 * even bother saving it.
1186 */
1187 if (change & ST0_FR)
1188 kvm_drop_fpu(vcpu);
1189
2b6009d6
JH
1190 /*
1191 * If MSA state is already live, it is undefined
1192 * how it interacts with FR=0 FPU state, and we
1193 * don't want to hit reserved instruction
1194 * exceptions trying to save the MSA state later
1195 * when CU=1 && FR=1, so play it safe and save
1196 * it first.
1197 */
1198 if (change & ST0_CU1 && !(val & ST0_FR) &&
f943176a 1199 vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
2b6009d6
JH
1200 kvm_lose_fpu(vcpu);
1201
d116e812 1202 /*
6cdc65e3
JH
1203 * Propagate CU1 (FPU enable) changes
1204 * immediately if the FPU context is already
1205 * loaded. When disabling we leave the context
1206 * loaded so it can be quickly enabled again in
1207 * the near future.
d116e812 1208 */
6cdc65e3 1209 if (change & ST0_CU1 &&
f943176a 1210 vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
6cdc65e3
JH
1211 change_c0_status(ST0_CU1, val);
1212
1213 preempt_enable();
1214
1215 kvm_write_c0_guest_status(cop0, val);
e685c689
SL
1216
1217#ifdef CONFIG_KVM_MIPS_DYN_TRANS
6cdc65e3
JH
1218 /*
1219 * If FPU present, we need CU1/FR bits to take
1220 * effect fairly soon.
1221 */
1222 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1223 kvm_mips_trans_mtc0(inst, opc, vcpu);
e685c689 1224#endif
6cdc65e3
JH
1225 } else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
1226 unsigned int old_val, val, change, wrmask;
1227
1228 old_val = kvm_read_c0_guest_config5(cop0);
1229 val = vcpu->arch.gprs[rt];
1230
1231 /* Only a few bits are writable in Config5 */
1232 wrmask = kvm_mips_config5_wrmask(vcpu);
1233 change = (val ^ old_val) & wrmask;
1234 val = old_val ^ change;
1235
1236
2b6009d6 1237 /* Handle changes in FPU/MSA modes */
6cdc65e3
JH
1238 preempt_disable();
1239
1240 /*
1241 * Propagate FRE changes immediately if the FPU
1242 * context is already loaded.
1243 */
1244 if (change & MIPS_CONF5_FRE &&
f943176a 1245 vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
6cdc65e3
JH
1246 change_c0_config5(MIPS_CONF5_FRE, val);
1247
2b6009d6
JH
1248 /*
1249 * Propagate MSAEn changes immediately if the
1250 * MSA context is already loaded. When disabling
1251 * we leave the context loaded so it can be
1252 * quickly enabled again in the near future.
1253 */
1254 if (change & MIPS_CONF5_MSAEN &&
f943176a 1255 vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
2b6009d6
JH
1256 change_c0_config5(MIPS_CONF5_MSAEN,
1257 val);
1258
6cdc65e3
JH
1259 preempt_enable();
1260
1261 kvm_write_c0_guest_config5(cop0, val);
e30492bb 1262 } else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
8cffd197 1263 u32 old_cause, new_cause;
d116e812 1264
e30492bb
JH
1265 old_cause = kvm_read_c0_guest_cause(cop0);
1266 new_cause = vcpu->arch.gprs[rt];
1267 /* Update R/W bits */
1268 kvm_change_c0_guest_cause(cop0, 0x08800300,
1269 new_cause);
1270 /* DC bit enabling/disabling timer? */
1271 if ((old_cause ^ new_cause) & CAUSEF_DC) {
1272 if (new_cause & CAUSEF_DC)
1273 kvm_mips_count_disable_cause(vcpu);
1274 else
1275 kvm_mips_count_enable_cause(vcpu);
1276 }
cef061d0
JH
1277 } else if ((rd == MIPS_CP0_HWRENA) && (sel == 0)) {
1278 u32 mask = MIPS_HWRENA_CPUNUM |
1279 MIPS_HWRENA_SYNCISTEP |
1280 MIPS_HWRENA_CC |
1281 MIPS_HWRENA_CCRES;
1282
1283 if (kvm_read_c0_guest_config3(cop0) &
1284 MIPS_CONF3_ULRI)
1285 mask |= MIPS_HWRENA_ULR;
1286 cop0->reg[rd][sel] = vcpu->arch.gprs[rt] & mask;
e685c689
SL
1287 } else {
1288 cop0->reg[rd][sel] = vcpu->arch.gprs[rt];
1289#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1290 kvm_mips_trans_mtc0(inst, opc, vcpu);
1291#endif
1292 }
e685c689
SL
1293 break;
1294
1295 case dmtc_op:
6ad78a5c
DCZ
1296 kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n",
1297 vcpu->arch.pc, rt, rd, sel);
6398da13
JH
1298 trace_kvm_hwr(vcpu, KVM_TRACE_DMTC0,
1299 KVM_TRACE_COP0(rd, sel),
1300 vcpu->arch.gprs[rt]);
e685c689
SL
1301 er = EMULATE_FAIL;
1302 break;
1303
b2c59635 1304 case mfmc0_op:
e685c689
SL
1305#ifdef KVM_MIPS_DEBUG_COP0_COUNTERS
1306 cop0->stat[MIPS_CP0_STATUS][0]++;
1307#endif
caa1faa7 1308 if (rt != 0)
e685c689
SL
1309 vcpu->arch.gprs[rt] =
1310 kvm_read_c0_guest_status(cop0);
e685c689 1311 /* EI */
258f3a2e 1312 if (inst.mfmc0_format.sc) {
b2c59635 1313 kvm_debug("[%#lx] mfmc0_op: EI\n",
e685c689
SL
1314 vcpu->arch.pc);
1315 kvm_set_c0_guest_status(cop0, ST0_IE);
1316 } else {
b2c59635 1317 kvm_debug("[%#lx] mfmc0_op: DI\n",
e685c689
SL
1318 vcpu->arch.pc);
1319 kvm_clear_c0_guest_status(cop0, ST0_IE);
1320 }
1321
1322 break;
1323
1324 case wrpgpr_op:
1325 {
8cffd197
JH
1326 u32 css = cop0->reg[MIPS_CP0_STATUS][2] & 0xf;
1327 u32 pss =
e685c689 1328 (cop0->reg[MIPS_CP0_STATUS][2] >> 6) & 0xf;
d116e812
DCZ
1329 /*
1330 * We don't support any shadow register sets, so
1331 * SRSCtl[PSS] == SRSCtl[CSS] = 0
1332 */
e685c689
SL
1333 if (css || pss) {
1334 er = EMULATE_FAIL;
1335 break;
1336 }
1337 kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss, rd,
1338 vcpu->arch.gprs[rt]);
1339 vcpu->arch.gprs[rd] = vcpu->arch.gprs[rt];
1340 }
1341 break;
1342 default:
6ad78a5c 1343 kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n",
258f3a2e 1344 vcpu->arch.pc, inst.c0r_format.rs);
e685c689
SL
1345 er = EMULATE_FAIL;
1346 break;
1347 }
1348 }
1349
1350done:
d116e812
DCZ
1351 /* Rollback PC only if emulation was unsuccessful */
1352 if (er == EMULATE_FAIL)
e685c689 1353 vcpu->arch.pc = curr_pc;
e685c689
SL
1354
1355dont_update_pc:
1356 /*
1357 * This is for special instructions whose emulation
1358 * updates the PC, so do not overwrite the PC under
1359 * any circumstances
1360 */
1361
1362 return er;
1363}
1364
258f3a2e
JH
1365enum emulation_result kvm_mips_emulate_store(union mips_instruction inst,
1366 u32 cause,
d116e812
DCZ
1367 struct kvm_run *run,
1368 struct kvm_vcpu *vcpu)
e685c689
SL
1369{
1370 enum emulation_result er = EMULATE_DO_MMIO;
258f3a2e 1371 u32 rt;
8cffd197 1372 u32 bytes;
e685c689
SL
1373 void *data = run->mmio.data;
1374 unsigned long curr_pc;
1375
1376 /*
1377 * Update PC and hold onto current PC in case there is
1378 * an error and we want to rollback the PC
1379 */
1380 curr_pc = vcpu->arch.pc;
1381 er = update_pc(vcpu, cause);
1382 if (er == EMULATE_FAIL)
1383 return er;
1384
258f3a2e 1385 rt = inst.i_format.rt;
e685c689 1386
258f3a2e 1387 switch (inst.i_format.opcode) {
e685c689
SL
1388 case sb_op:
1389 bytes = 1;
1390 if (bytes > sizeof(run->mmio.data)) {
1391 kvm_err("%s: bad MMIO length: %d\n", __func__,
1392 run->mmio.len);
1393 }
1394 run->mmio.phys_addr =
1395 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1396 host_cp0_badvaddr);
1397 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1398 er = EMULATE_FAIL;
1399 break;
1400 }
1401 run->mmio.len = bytes;
1402 run->mmio.is_write = 1;
1403 vcpu->mmio_needed = 1;
1404 vcpu->mmio_is_write = 1;
1405 *(u8 *) data = vcpu->arch.gprs[rt];
1406 kvm_debug("OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1407 vcpu->arch.host_cp0_badvaddr, vcpu->arch.gprs[rt],
8cffd197 1408 *(u8 *) data);
e685c689
SL
1409
1410 break;
1411
1412 case sw_op:
1413 bytes = 4;
1414 if (bytes > sizeof(run->mmio.data)) {
1415 kvm_err("%s: bad MMIO length: %d\n", __func__,
1416 run->mmio.len);
1417 }
1418 run->mmio.phys_addr =
1419 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1420 host_cp0_badvaddr);
1421 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1422 er = EMULATE_FAIL;
1423 break;
1424 }
1425
1426 run->mmio.len = bytes;
1427 run->mmio.is_write = 1;
1428 vcpu->mmio_needed = 1;
1429 vcpu->mmio_is_write = 1;
8cffd197 1430 *(u32 *) data = vcpu->arch.gprs[rt];
e685c689
SL
1431
1432 kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1433 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
8cffd197 1434 vcpu->arch.gprs[rt], *(u32 *) data);
e685c689
SL
1435 break;
1436
1437 case sh_op:
1438 bytes = 2;
1439 if (bytes > sizeof(run->mmio.data)) {
1440 kvm_err("%s: bad MMIO length: %d\n", __func__,
1441 run->mmio.len);
1442 }
1443 run->mmio.phys_addr =
1444 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1445 host_cp0_badvaddr);
1446 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1447 er = EMULATE_FAIL;
1448 break;
1449 }
1450
1451 run->mmio.len = bytes;
1452 run->mmio.is_write = 1;
1453 vcpu->mmio_needed = 1;
1454 vcpu->mmio_is_write = 1;
8cffd197 1455 *(u16 *) data = vcpu->arch.gprs[rt];
e685c689
SL
1456
1457 kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1458 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
8cffd197 1459 vcpu->arch.gprs[rt], *(u32 *) data);
e685c689
SL
1460 break;
1461
1462 default:
d86c1ebe 1463 kvm_err("Store not yet supported (inst=0x%08x)\n",
258f3a2e 1464 inst.word);
e685c689
SL
1465 er = EMULATE_FAIL;
1466 break;
1467 }
1468
d116e812
DCZ
1469 /* Rollback PC if emulation was unsuccessful */
1470 if (er == EMULATE_FAIL)
e685c689 1471 vcpu->arch.pc = curr_pc;
e685c689
SL
1472
1473 return er;
1474}
1475
258f3a2e
JH
1476enum emulation_result kvm_mips_emulate_load(union mips_instruction inst,
1477 u32 cause, struct kvm_run *run,
d116e812 1478 struct kvm_vcpu *vcpu)
e685c689
SL
1479{
1480 enum emulation_result er = EMULATE_DO_MMIO;
258f3a2e 1481 u32 op, rt;
8cffd197 1482 u32 bytes;
e685c689 1483
258f3a2e
JH
1484 rt = inst.i_format.rt;
1485 op = inst.i_format.opcode;
e685c689
SL
1486
1487 vcpu->arch.pending_load_cause = cause;
1488 vcpu->arch.io_gpr = rt;
1489
1490 switch (op) {
1491 case lw_op:
1492 bytes = 4;
1493 if (bytes > sizeof(run->mmio.data)) {
1494 kvm_err("%s: bad MMIO length: %d\n", __func__,
1495 run->mmio.len);
1496 er = EMULATE_FAIL;
1497 break;
1498 }
1499 run->mmio.phys_addr =
1500 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1501 host_cp0_badvaddr);
1502 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1503 er = EMULATE_FAIL;
1504 break;
1505 }
1506
1507 run->mmio.len = bytes;
1508 run->mmio.is_write = 0;
1509 vcpu->mmio_needed = 1;
1510 vcpu->mmio_is_write = 0;
1511 break;
1512
1513 case lh_op:
1514 case lhu_op:
1515 bytes = 2;
1516 if (bytes > sizeof(run->mmio.data)) {
1517 kvm_err("%s: bad MMIO length: %d\n", __func__,
1518 run->mmio.len);
1519 er = EMULATE_FAIL;
1520 break;
1521 }
1522 run->mmio.phys_addr =
1523 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1524 host_cp0_badvaddr);
1525 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1526 er = EMULATE_FAIL;
1527 break;
1528 }
1529
1530 run->mmio.len = bytes;
1531 run->mmio.is_write = 0;
1532 vcpu->mmio_needed = 1;
1533 vcpu->mmio_is_write = 0;
1534
1535 if (op == lh_op)
1536 vcpu->mmio_needed = 2;
1537 else
1538 vcpu->mmio_needed = 1;
1539
1540 break;
1541
1542 case lbu_op:
1543 case lb_op:
1544 bytes = 1;
1545 if (bytes > sizeof(run->mmio.data)) {
1546 kvm_err("%s: bad MMIO length: %d\n", __func__,
1547 run->mmio.len);
1548 er = EMULATE_FAIL;
1549 break;
1550 }
1551 run->mmio.phys_addr =
1552 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1553 host_cp0_badvaddr);
1554 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1555 er = EMULATE_FAIL;
1556 break;
1557 }
1558
1559 run->mmio.len = bytes;
1560 run->mmio.is_write = 0;
1561 vcpu->mmio_is_write = 0;
1562
1563 if (op == lb_op)
1564 vcpu->mmio_needed = 2;
1565 else
1566 vcpu->mmio_needed = 1;
1567
1568 break;
1569
1570 default:
d86c1ebe 1571 kvm_err("Load not yet supported (inst=0x%08x)\n",
258f3a2e 1572 inst.word);
e685c689
SL
1573 er = EMULATE_FAIL;
1574 break;
1575 }
1576
1577 return er;
1578}
1579
258f3a2e
JH
1580enum emulation_result kvm_mips_emulate_cache(union mips_instruction inst,
1581 u32 *opc, u32 cause,
d116e812
DCZ
1582 struct kvm_run *run,
1583 struct kvm_vcpu *vcpu)
e685c689
SL
1584{
1585 struct mips_coproc *cop0 = vcpu->arch.cop0;
e685c689 1586 enum emulation_result er = EMULATE_DONE;
8cffd197
JH
1587 u32 cache, op_inst, op, base;
1588 s16 offset;
e685c689
SL
1589 struct kvm_vcpu_arch *arch = &vcpu->arch;
1590 unsigned long va;
1591 unsigned long curr_pc;
1592
1593 /*
1594 * Update PC and hold onto current PC in case there is
1595 * an error and we want to rollback the PC
1596 */
1597 curr_pc = vcpu->arch.pc;
1598 er = update_pc(vcpu, cause);
1599 if (er == EMULATE_FAIL)
1600 return er;
1601
258f3a2e
JH
1602 base = inst.i_format.rs;
1603 op_inst = inst.i_format.rt;
5cc4aafc
JH
1604 if (cpu_has_mips_r6)
1605 offset = inst.spec3_format.simmediate;
1606 else
1607 offset = inst.i_format.simmediate;
f4956f62
JH
1608 cache = op_inst & CacheOp_Cache;
1609 op = op_inst & CacheOp_Op;
e685c689
SL
1610
1611 va = arch->gprs[base] + offset;
1612
1613 kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1614 cache, op, base, arch->gprs[base], offset);
1615
d116e812
DCZ
1616 /*
1617 * Treat INDEX_INV as a nop, basically issued by Linux on startup to
1618 * invalidate the caches entirely by stepping through all the
1619 * ways/indexes
e685c689 1620 */
f4956f62 1621 if (op == Index_Writeback_Inv) {
d116e812
DCZ
1622 kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1623 vcpu->arch.pc, vcpu->arch.gprs[31], cache, op, base,
1624 arch->gprs[base], offset);
e685c689 1625
f4956f62 1626 if (cache == Cache_D)
e685c689 1627 r4k_blast_dcache();
f4956f62 1628 else if (cache == Cache_I)
e685c689
SL
1629 r4k_blast_icache();
1630 else {
6ad78a5c
DCZ
1631 kvm_err("%s: unsupported CACHE INDEX operation\n",
1632 __func__);
e685c689
SL
1633 return EMULATE_FAIL;
1634 }
1635
1636#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1637 kvm_mips_trans_cache_index(inst, opc, vcpu);
1638#endif
1639 goto done;
1640 }
1641
1642 preempt_disable();
1643 if (KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG0) {
d116e812 1644 if (kvm_mips_host_tlb_lookup(vcpu, va) < 0)
e685c689 1645 kvm_mips_handle_kseg0_tlb_fault(va, vcpu);
e685c689
SL
1646 } else if ((KVM_GUEST_KSEGX(va) < KVM_GUEST_KSEG0) ||
1647 KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG23) {
1648 int index;
1649
1650 /* If an entry already exists then skip */
d116e812 1651 if (kvm_mips_host_tlb_lookup(vcpu, va) >= 0)
e685c689 1652 goto skip_fault;
e685c689 1653
d116e812
DCZ
1654 /*
1655 * If address not in the guest TLB, then give the guest a fault,
1656 * the resulting handler will do the right thing
e685c689
SL
1657 */
1658 index = kvm_mips_guest_tlb_lookup(vcpu, (va & VPN2_MASK) |
48c4ac97 1659 (kvm_read_c0_guest_entryhi
ca64c2be 1660 (cop0) & KVM_ENTRYHI_ASID));
e685c689
SL
1661
1662 if (index < 0) {
e685c689 1663 vcpu->arch.host_cp0_badvaddr = va;
6df82a7b 1664 vcpu->arch.pc = curr_pc;
e685c689
SL
1665 er = kvm_mips_emulate_tlbmiss_ld(cause, NULL, run,
1666 vcpu);
1667 preempt_enable();
1668 goto dont_update_pc;
1669 } else {
1670 struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
d116e812
DCZ
1671 /*
1672 * Check if the entry is valid, if not then setup a TLB
1673 * invalid exception to the guest
1674 */
e685c689 1675 if (!TLB_IS_VALID(*tlb, va)) {
6df82a7b
JH
1676 vcpu->arch.host_cp0_badvaddr = va;
1677 vcpu->arch.pc = curr_pc;
e685c689
SL
1678 er = kvm_mips_emulate_tlbinv_ld(cause, NULL,
1679 run, vcpu);
1680 preempt_enable();
1681 goto dont_update_pc;
1682 } else {
d116e812
DCZ
1683 /*
1684 * We fault an entry from the guest tlb to the
1685 * shadow host TLB
1686 */
26ee17ff 1687 kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb);
e685c689
SL
1688 }
1689 }
1690 } else {
6ad78a5c
DCZ
1691 kvm_err("INVALID CACHE INDEX/ADDRESS (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1692 cache, op, base, arch->gprs[base], offset);
e685c689
SL
1693 er = EMULATE_FAIL;
1694 preempt_enable();
cc81e948 1695 goto done;
e685c689
SL
1696
1697 }
1698
1699skip_fault:
1700 /* XXXKYMA: Only a subset of cache ops are supported, used by Linux */
f4956f62 1701 if (op_inst == Hit_Writeback_Inv_D || op_inst == Hit_Invalidate_D) {
e685c689
SL
1702 flush_dcache_line(va);
1703
1704#ifdef CONFIG_KVM_MIPS_DYN_TRANS
d116e812
DCZ
1705 /*
1706 * Replace the CACHE instruction, with a SYNCI, not the same,
1707 * but avoids a trap
1708 */
e685c689
SL
1709 kvm_mips_trans_cache_va(inst, opc, vcpu);
1710#endif
f4956f62 1711 } else if (op_inst == Hit_Invalidate_I) {
e685c689
SL
1712 flush_dcache_line(va);
1713 flush_icache_line(va);
1714
1715#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1716 /* Replace the CACHE instruction, with a SYNCI */
1717 kvm_mips_trans_cache_va(inst, opc, vcpu);
1718#endif
1719 } else {
6ad78a5c
DCZ
1720 kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1721 cache, op, base, arch->gprs[base], offset);
e685c689 1722 er = EMULATE_FAIL;
e685c689
SL
1723 }
1724
1725 preempt_enable();
cc81e948
JH
1726done:
1727 /* Rollback PC only if emulation was unsuccessful */
1728 if (er == EMULATE_FAIL)
1729 vcpu->arch.pc = curr_pc;
e685c689 1730
d116e812 1731dont_update_pc:
cc81e948
JH
1732 /*
1733 * This is for exceptions whose emulation updates the PC, so do not
1734 * overwrite the PC under any circumstances
1735 */
1736
e685c689
SL
1737 return er;
1738}
1739
31cf7498 1740enum emulation_result kvm_mips_emulate_inst(u32 cause, u32 *opc,
d116e812
DCZ
1741 struct kvm_run *run,
1742 struct kvm_vcpu *vcpu)
e685c689 1743{
258f3a2e 1744 union mips_instruction inst;
e685c689 1745 enum emulation_result er = EMULATE_DONE;
e685c689 1746
d116e812
DCZ
1747 /* Fetch the instruction. */
1748 if (cause & CAUSEF_BD)
e685c689 1749 opc += 1;
e685c689 1750
258f3a2e 1751 inst.word = kvm_get_inst(opc, vcpu);
e685c689 1752
258f3a2e 1753 switch (inst.r_format.opcode) {
e685c689
SL
1754 case cop0_op:
1755 er = kvm_mips_emulate_CP0(inst, opc, cause, run, vcpu);
1756 break;
1757 case sb_op:
1758 case sh_op:
1759 case sw_op:
1760 er = kvm_mips_emulate_store(inst, cause, run, vcpu);
1761 break;
1762 case lb_op:
1763 case lbu_op:
1764 case lhu_op:
1765 case lh_op:
1766 case lw_op:
1767 er = kvm_mips_emulate_load(inst, cause, run, vcpu);
1768 break;
1769
5cc4aafc 1770#ifndef CONFIG_CPU_MIPSR6
e685c689
SL
1771 case cache_op:
1772 ++vcpu->stat.cache_exits;
1e09e86a 1773 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
e685c689
SL
1774 er = kvm_mips_emulate_cache(inst, opc, cause, run, vcpu);
1775 break;
5cc4aafc
JH
1776#else
1777 case spec3_op:
1778 switch (inst.spec3_format.func) {
1779 case cache6_op:
1780 ++vcpu->stat.cache_exits;
1781 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
1782 er = kvm_mips_emulate_cache(inst, opc, cause, run,
1783 vcpu);
1784 break;
1785 default:
1786 goto unknown;
1787 };
1788 break;
1789unknown:
1790#endif
e685c689
SL
1791
1792 default:
6ad78a5c 1793 kvm_err("Instruction emulation not supported (%p/%#x)\n", opc,
258f3a2e 1794 inst.word);
e685c689
SL
1795 kvm_arch_vcpu_dump_regs(vcpu);
1796 er = EMULATE_FAIL;
1797 break;
1798 }
1799
1800 return er;
1801}
1802
31cf7498 1803enum emulation_result kvm_mips_emulate_syscall(u32 cause,
bdb7ed86 1804 u32 *opc,
d116e812
DCZ
1805 struct kvm_run *run,
1806 struct kvm_vcpu *vcpu)
e685c689
SL
1807{
1808 struct mips_coproc *cop0 = vcpu->arch.cop0;
1809 struct kvm_vcpu_arch *arch = &vcpu->arch;
1810 enum emulation_result er = EMULATE_DONE;
1811
1812 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1813 /* save old pc */
1814 kvm_write_c0_guest_epc(cop0, arch->pc);
1815 kvm_set_c0_guest_status(cop0, ST0_EXL);
1816
1817 if (cause & CAUSEF_BD)
1818 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1819 else
1820 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1821
1822 kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch->pc);
1823
1824 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 1825 (EXCCODE_SYS << CAUSEB_EXCCODE));
e685c689
SL
1826
1827 /* Set PC to the exception entry point */
1828 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1829
1830 } else {
6ad78a5c 1831 kvm_err("Trying to deliver SYSCALL when EXL is already set\n");
e685c689
SL
1832 er = EMULATE_FAIL;
1833 }
1834
1835 return er;
1836}
1837
31cf7498 1838enum emulation_result kvm_mips_emulate_tlbmiss_ld(u32 cause,
bdb7ed86 1839 u32 *opc,
d116e812
DCZ
1840 struct kvm_run *run,
1841 struct kvm_vcpu *vcpu)
e685c689
SL
1842{
1843 struct mips_coproc *cop0 = vcpu->arch.cop0;
1844 struct kvm_vcpu_arch *arch = &vcpu->arch;
e685c689 1845 unsigned long entryhi = (vcpu->arch. host_cp0_badvaddr & VPN2_MASK) |
ca64c2be 1846 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
e685c689
SL
1847
1848 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1849 /* save old pc */
1850 kvm_write_c0_guest_epc(cop0, arch->pc);
1851 kvm_set_c0_guest_status(cop0, ST0_EXL);
1852
1853 if (cause & CAUSEF_BD)
1854 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1855 else
1856 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1857
1858 kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n",
1859 arch->pc);
1860
1861 /* set pc to the exception entry point */
1862 arch->pc = KVM_GUEST_KSEG0 + 0x0;
1863
1864 } else {
1865 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1866 arch->pc);
1867
1868 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1869 }
1870
1871 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 1872 (EXCCODE_TLBL << CAUSEB_EXCCODE));
e685c689
SL
1873
1874 /* setup badvaddr, context and entryhi registers for the guest */
1875 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1876 /* XXXKYMA: is the context register used by linux??? */
1877 kvm_write_c0_guest_entryhi(cop0, entryhi);
1878 /* Blow away the shadow host TLBs */
1879 kvm_mips_flush_host_tlb(1);
1880
d98403a5 1881 return EMULATE_DONE;
e685c689
SL
1882}
1883
31cf7498 1884enum emulation_result kvm_mips_emulate_tlbinv_ld(u32 cause,
bdb7ed86 1885 u32 *opc,
d116e812
DCZ
1886 struct kvm_run *run,
1887 struct kvm_vcpu *vcpu)
e685c689
SL
1888{
1889 struct mips_coproc *cop0 = vcpu->arch.cop0;
1890 struct kvm_vcpu_arch *arch = &vcpu->arch;
e685c689
SL
1891 unsigned long entryhi =
1892 (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
ca64c2be 1893 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
e685c689
SL
1894
1895 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1896 /* save old pc */
1897 kvm_write_c0_guest_epc(cop0, arch->pc);
1898 kvm_set_c0_guest_status(cop0, ST0_EXL);
1899
1900 if (cause & CAUSEF_BD)
1901 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1902 else
1903 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1904
1905 kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n",
1906 arch->pc);
1907
1908 /* set pc to the exception entry point */
1909 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1910
1911 } else {
1912 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1913 arch->pc);
1914 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1915 }
1916
1917 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 1918 (EXCCODE_TLBL << CAUSEB_EXCCODE));
e685c689
SL
1919
1920 /* setup badvaddr, context and entryhi registers for the guest */
1921 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1922 /* XXXKYMA: is the context register used by linux??? */
1923 kvm_write_c0_guest_entryhi(cop0, entryhi);
1924 /* Blow away the shadow host TLBs */
1925 kvm_mips_flush_host_tlb(1);
1926
d98403a5 1927 return EMULATE_DONE;
e685c689
SL
1928}
1929
31cf7498 1930enum emulation_result kvm_mips_emulate_tlbmiss_st(u32 cause,
bdb7ed86 1931 u32 *opc,
d116e812
DCZ
1932 struct kvm_run *run,
1933 struct kvm_vcpu *vcpu)
e685c689
SL
1934{
1935 struct mips_coproc *cop0 = vcpu->arch.cop0;
1936 struct kvm_vcpu_arch *arch = &vcpu->arch;
e685c689 1937 unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
ca64c2be 1938 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
e685c689
SL
1939
1940 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1941 /* save old pc */
1942 kvm_write_c0_guest_epc(cop0, arch->pc);
1943 kvm_set_c0_guest_status(cop0, ST0_EXL);
1944
1945 if (cause & CAUSEF_BD)
1946 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1947 else
1948 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1949
1950 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
1951 arch->pc);
1952
1953 /* Set PC to the exception entry point */
1954 arch->pc = KVM_GUEST_KSEG0 + 0x0;
1955 } else {
1956 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
1957 arch->pc);
1958 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1959 }
1960
1961 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 1962 (EXCCODE_TLBS << CAUSEB_EXCCODE));
e685c689
SL
1963
1964 /* setup badvaddr, context and entryhi registers for the guest */
1965 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1966 /* XXXKYMA: is the context register used by linux??? */
1967 kvm_write_c0_guest_entryhi(cop0, entryhi);
1968 /* Blow away the shadow host TLBs */
1969 kvm_mips_flush_host_tlb(1);
1970
d98403a5 1971 return EMULATE_DONE;
e685c689
SL
1972}
1973
31cf7498 1974enum emulation_result kvm_mips_emulate_tlbinv_st(u32 cause,
bdb7ed86 1975 u32 *opc,
d116e812
DCZ
1976 struct kvm_run *run,
1977 struct kvm_vcpu *vcpu)
e685c689
SL
1978{
1979 struct mips_coproc *cop0 = vcpu->arch.cop0;
1980 struct kvm_vcpu_arch *arch = &vcpu->arch;
e685c689 1981 unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
ca64c2be 1982 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
e685c689
SL
1983
1984 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1985 /* save old pc */
1986 kvm_write_c0_guest_epc(cop0, arch->pc);
1987 kvm_set_c0_guest_status(cop0, ST0_EXL);
1988
1989 if (cause & CAUSEF_BD)
1990 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1991 else
1992 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1993
1994 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
1995 arch->pc);
1996
1997 /* Set PC to the exception entry point */
1998 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1999 } else {
2000 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
2001 arch->pc);
2002 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2003 }
2004
2005 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 2006 (EXCCODE_TLBS << CAUSEB_EXCCODE));
e685c689
SL
2007
2008 /* setup badvaddr, context and entryhi registers for the guest */
2009 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2010 /* XXXKYMA: is the context register used by linux??? */
2011 kvm_write_c0_guest_entryhi(cop0, entryhi);
2012 /* Blow away the shadow host TLBs */
2013 kvm_mips_flush_host_tlb(1);
2014
d98403a5 2015 return EMULATE_DONE;
e685c689
SL
2016}
2017
2018/* TLBMOD: store into address matching TLB with Dirty bit off */
31cf7498 2019enum emulation_result kvm_mips_handle_tlbmod(u32 cause, u32 *opc,
d116e812
DCZ
2020 struct kvm_run *run,
2021 struct kvm_vcpu *vcpu)
e685c689
SL
2022{
2023 enum emulation_result er = EMULATE_DONE;
e685c689 2024#ifdef DEBUG
3d654833
JH
2025 struct mips_coproc *cop0 = vcpu->arch.cop0;
2026 unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
ca64c2be 2027 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
3d654833
JH
2028 int index;
2029
d116e812 2030 /* If address not in the guest TLB, then we are in trouble */
e685c689
SL
2031 index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
2032 if (index < 0) {
2033 /* XXXKYMA Invalidate and retry */
2034 kvm_mips_host_tlb_inv(vcpu, vcpu->arch.host_cp0_badvaddr);
2035 kvm_err("%s: host got TLBMOD for %#lx but entry not present in Guest TLB\n",
2036 __func__, entryhi);
2037 kvm_mips_dump_guest_tlbs(vcpu);
2038 kvm_mips_dump_host_tlbs();
2039 return EMULATE_FAIL;
2040 }
2041#endif
2042
2043 er = kvm_mips_emulate_tlbmod(cause, opc, run, vcpu);
2044 return er;
2045}
2046
31cf7498 2047enum emulation_result kvm_mips_emulate_tlbmod(u32 cause,
bdb7ed86 2048 u32 *opc,
d116e812
DCZ
2049 struct kvm_run *run,
2050 struct kvm_vcpu *vcpu)
e685c689
SL
2051{
2052 struct mips_coproc *cop0 = vcpu->arch.cop0;
2053 unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
ca64c2be 2054 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
e685c689 2055 struct kvm_vcpu_arch *arch = &vcpu->arch;
e685c689
SL
2056
2057 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2058 /* save old pc */
2059 kvm_write_c0_guest_epc(cop0, arch->pc);
2060 kvm_set_c0_guest_status(cop0, ST0_EXL);
2061
2062 if (cause & CAUSEF_BD)
2063 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2064 else
2065 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2066
2067 kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n",
2068 arch->pc);
2069
2070 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2071 } else {
2072 kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n",
2073 arch->pc);
2074 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2075 }
2076
16d100db
JH
2077 kvm_change_c0_guest_cause(cop0, (0xff),
2078 (EXCCODE_MOD << CAUSEB_EXCCODE));
e685c689
SL
2079
2080 /* setup badvaddr, context and entryhi registers for the guest */
2081 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2082 /* XXXKYMA: is the context register used by linux??? */
2083 kvm_write_c0_guest_entryhi(cop0, entryhi);
2084 /* Blow away the shadow host TLBs */
2085 kvm_mips_flush_host_tlb(1);
2086
d98403a5 2087 return EMULATE_DONE;
e685c689
SL
2088}
2089
31cf7498 2090enum emulation_result kvm_mips_emulate_fpu_exc(u32 cause,
bdb7ed86 2091 u32 *opc,
d116e812
DCZ
2092 struct kvm_run *run,
2093 struct kvm_vcpu *vcpu)
e685c689
SL
2094{
2095 struct mips_coproc *cop0 = vcpu->arch.cop0;
2096 struct kvm_vcpu_arch *arch = &vcpu->arch;
e685c689
SL
2097
2098 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2099 /* save old pc */
2100 kvm_write_c0_guest_epc(cop0, arch->pc);
2101 kvm_set_c0_guest_status(cop0, ST0_EXL);
2102
2103 if (cause & CAUSEF_BD)
2104 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2105 else
2106 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2107
2108 }
2109
2110 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2111
2112 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 2113 (EXCCODE_CPU << CAUSEB_EXCCODE));
e685c689
SL
2114 kvm_change_c0_guest_cause(cop0, (CAUSEF_CE), (0x1 << CAUSEB_CE));
2115
d98403a5 2116 return EMULATE_DONE;
e685c689
SL
2117}
2118
31cf7498 2119enum emulation_result kvm_mips_emulate_ri_exc(u32 cause,
bdb7ed86 2120 u32 *opc,
d116e812
DCZ
2121 struct kvm_run *run,
2122 struct kvm_vcpu *vcpu)
e685c689
SL
2123{
2124 struct mips_coproc *cop0 = vcpu->arch.cop0;
2125 struct kvm_vcpu_arch *arch = &vcpu->arch;
2126 enum emulation_result er = EMULATE_DONE;
2127
2128 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2129 /* save old pc */
2130 kvm_write_c0_guest_epc(cop0, arch->pc);
2131 kvm_set_c0_guest_status(cop0, ST0_EXL);
2132
2133 if (cause & CAUSEF_BD)
2134 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2135 else
2136 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2137
2138 kvm_debug("Delivering RI @ pc %#lx\n", arch->pc);
2139
2140 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 2141 (EXCCODE_RI << CAUSEB_EXCCODE));
e685c689
SL
2142
2143 /* Set PC to the exception entry point */
2144 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2145
2146 } else {
2147 kvm_err("Trying to deliver RI when EXL is already set\n");
2148 er = EMULATE_FAIL;
2149 }
2150
2151 return er;
2152}
2153
31cf7498 2154enum emulation_result kvm_mips_emulate_bp_exc(u32 cause,
bdb7ed86 2155 u32 *opc,
d116e812
DCZ
2156 struct kvm_run *run,
2157 struct kvm_vcpu *vcpu)
e685c689
SL
2158{
2159 struct mips_coproc *cop0 = vcpu->arch.cop0;
2160 struct kvm_vcpu_arch *arch = &vcpu->arch;
2161 enum emulation_result er = EMULATE_DONE;
2162
2163 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2164 /* save old pc */
2165 kvm_write_c0_guest_epc(cop0, arch->pc);
2166 kvm_set_c0_guest_status(cop0, ST0_EXL);
2167
2168 if (cause & CAUSEF_BD)
2169 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2170 else
2171 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2172
2173 kvm_debug("Delivering BP @ pc %#lx\n", arch->pc);
2174
2175 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 2176 (EXCCODE_BP << CAUSEB_EXCCODE));
e685c689
SL
2177
2178 /* Set PC to the exception entry point */
2179 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2180
2181 } else {
6ad78a5c 2182 kvm_err("Trying to deliver BP when EXL is already set\n");
e685c689
SL
2183 er = EMULATE_FAIL;
2184 }
2185
2186 return er;
2187}
2188
31cf7498 2189enum emulation_result kvm_mips_emulate_trap_exc(u32 cause,
bdb7ed86 2190 u32 *opc,
0a560427
JH
2191 struct kvm_run *run,
2192 struct kvm_vcpu *vcpu)
2193{
2194 struct mips_coproc *cop0 = vcpu->arch.cop0;
2195 struct kvm_vcpu_arch *arch = &vcpu->arch;
2196 enum emulation_result er = EMULATE_DONE;
2197
2198 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2199 /* save old pc */
2200 kvm_write_c0_guest_epc(cop0, arch->pc);
2201 kvm_set_c0_guest_status(cop0, ST0_EXL);
2202
2203 if (cause & CAUSEF_BD)
2204 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2205 else
2206 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2207
2208 kvm_debug("Delivering TRAP @ pc %#lx\n", arch->pc);
2209
2210 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 2211 (EXCCODE_TR << CAUSEB_EXCCODE));
0a560427
JH
2212
2213 /* Set PC to the exception entry point */
2214 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2215
2216 } else {
2217 kvm_err("Trying to deliver TRAP when EXL is already set\n");
2218 er = EMULATE_FAIL;
2219 }
2220
2221 return er;
2222}
2223
31cf7498 2224enum emulation_result kvm_mips_emulate_msafpe_exc(u32 cause,
bdb7ed86 2225 u32 *opc,
c2537ed9
JH
2226 struct kvm_run *run,
2227 struct kvm_vcpu *vcpu)
2228{
2229 struct mips_coproc *cop0 = vcpu->arch.cop0;
2230 struct kvm_vcpu_arch *arch = &vcpu->arch;
2231 enum emulation_result er = EMULATE_DONE;
2232
2233 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2234 /* save old pc */
2235 kvm_write_c0_guest_epc(cop0, arch->pc);
2236 kvm_set_c0_guest_status(cop0, ST0_EXL);
2237
2238 if (cause & CAUSEF_BD)
2239 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2240 else
2241 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2242
2243 kvm_debug("Delivering MSAFPE @ pc %#lx\n", arch->pc);
2244
2245 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 2246 (EXCCODE_MSAFPE << CAUSEB_EXCCODE));
c2537ed9
JH
2247
2248 /* Set PC to the exception entry point */
2249 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2250
2251 } else {
2252 kvm_err("Trying to deliver MSAFPE when EXL is already set\n");
2253 er = EMULATE_FAIL;
2254 }
2255
2256 return er;
2257}
2258
31cf7498 2259enum emulation_result kvm_mips_emulate_fpe_exc(u32 cause,
bdb7ed86 2260 u32 *opc,
1c0cd66a
JH
2261 struct kvm_run *run,
2262 struct kvm_vcpu *vcpu)
2263{
2264 struct mips_coproc *cop0 = vcpu->arch.cop0;
2265 struct kvm_vcpu_arch *arch = &vcpu->arch;
2266 enum emulation_result er = EMULATE_DONE;
2267
2268 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2269 /* save old pc */
2270 kvm_write_c0_guest_epc(cop0, arch->pc);
2271 kvm_set_c0_guest_status(cop0, ST0_EXL);
2272
2273 if (cause & CAUSEF_BD)
2274 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2275 else
2276 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2277
2278 kvm_debug("Delivering FPE @ pc %#lx\n", arch->pc);
2279
2280 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 2281 (EXCCODE_FPE << CAUSEB_EXCCODE));
1c0cd66a
JH
2282
2283 /* Set PC to the exception entry point */
2284 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2285
2286 } else {
2287 kvm_err("Trying to deliver FPE when EXL is already set\n");
2288 er = EMULATE_FAIL;
2289 }
2290
2291 return er;
2292}
2293
31cf7498 2294enum emulation_result kvm_mips_emulate_msadis_exc(u32 cause,
bdb7ed86 2295 u32 *opc,
c2537ed9
JH
2296 struct kvm_run *run,
2297 struct kvm_vcpu *vcpu)
2298{
2299 struct mips_coproc *cop0 = vcpu->arch.cop0;
2300 struct kvm_vcpu_arch *arch = &vcpu->arch;
2301 enum emulation_result er = EMULATE_DONE;
2302
2303 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2304 /* save old pc */
2305 kvm_write_c0_guest_epc(cop0, arch->pc);
2306 kvm_set_c0_guest_status(cop0, ST0_EXL);
2307
2308 if (cause & CAUSEF_BD)
2309 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2310 else
2311 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2312
2313 kvm_debug("Delivering MSADIS @ pc %#lx\n", arch->pc);
2314
2315 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 2316 (EXCCODE_MSADIS << CAUSEB_EXCCODE));
c2537ed9
JH
2317
2318 /* Set PC to the exception entry point */
2319 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2320
2321 } else {
2322 kvm_err("Trying to deliver MSADIS when EXL is already set\n");
2323 er = EMULATE_FAIL;
2324 }
2325
2326 return er;
2327}
2328
31cf7498 2329enum emulation_result kvm_mips_handle_ri(u32 cause, u32 *opc,
d116e812
DCZ
2330 struct kvm_run *run,
2331 struct kvm_vcpu *vcpu)
e685c689
SL
2332{
2333 struct mips_coproc *cop0 = vcpu->arch.cop0;
2334 struct kvm_vcpu_arch *arch = &vcpu->arch;
2335 enum emulation_result er = EMULATE_DONE;
2336 unsigned long curr_pc;
258f3a2e 2337 union mips_instruction inst;
e685c689
SL
2338
2339 /*
2340 * Update PC and hold onto current PC in case there is
2341 * an error and we want to rollback the PC
2342 */
2343 curr_pc = vcpu->arch.pc;
2344 er = update_pc(vcpu, cause);
2345 if (er == EMULATE_FAIL)
2346 return er;
2347
d116e812 2348 /* Fetch the instruction. */
e685c689
SL
2349 if (cause & CAUSEF_BD)
2350 opc += 1;
2351
258f3a2e 2352 inst.word = kvm_get_inst(opc, vcpu);
e685c689 2353
258f3a2e 2354 if (inst.word == KVM_INVALID_INST) {
6ad78a5c 2355 kvm_err("%s: Cannot get inst @ %p\n", __func__, opc);
e685c689
SL
2356 return EMULATE_FAIL;
2357 }
2358
258f3a2e
JH
2359 if (inst.r_format.opcode == spec3_op &&
2360 inst.r_format.func == rdhwr_op) {
26f4f3b5 2361 int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
258f3a2e
JH
2362 int rd = inst.r_format.rd;
2363 int rt = inst.r_format.rt;
2364 int sel = inst.r_format.re & 0x7;
6398da13 2365
26f4f3b5
JH
2366 /* If usermode, check RDHWR rd is allowed by guest HWREna */
2367 if (usermode && !(kvm_read_c0_guest_hwrena(cop0) & BIT(rd))) {
2368 kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n",
2369 rd, opc);
2370 goto emulate_ri;
2371 }
e685c689 2372 switch (rd) {
aff565aa 2373 case MIPS_HWR_CPUNUM: /* CPU number */
cf1fb0f2 2374 arch->gprs[rt] = vcpu->vcpu_id;
e685c689 2375 break;
aff565aa 2376 case MIPS_HWR_SYNCISTEP: /* SYNCI length */
e685c689
SL
2377 arch->gprs[rt] = min(current_cpu_data.dcache.linesz,
2378 current_cpu_data.icache.linesz);
2379 break;
aff565aa 2380 case MIPS_HWR_CC: /* Read count register */
e30492bb 2381 arch->gprs[rt] = kvm_mips_read_count(vcpu);
e685c689 2382 break;
aff565aa 2383 case MIPS_HWR_CCRES: /* Count register resolution */
e685c689
SL
2384 switch (current_cpu_data.cputype) {
2385 case CPU_20KC:
2386 case CPU_25KF:
2387 arch->gprs[rt] = 1;
2388 break;
2389 default:
2390 arch->gprs[rt] = 2;
2391 }
2392 break;
aff565aa 2393 case MIPS_HWR_ULR: /* Read UserLocal register */
e685c689 2394 arch->gprs[rt] = kvm_read_c0_guest_userlocal(cop0);
e685c689
SL
2395 break;
2396
2397 default:
15505679 2398 kvm_debug("RDHWR %#x not supported @ %p\n", rd, opc);
26f4f3b5 2399 goto emulate_ri;
e685c689 2400 }
6398da13
JH
2401
2402 trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR, KVM_TRACE_HWR(rd, sel),
2403 vcpu->arch.gprs[rt]);
e685c689 2404 } else {
258f3a2e
JH
2405 kvm_debug("Emulate RI not supported @ %p: %#x\n",
2406 opc, inst.word);
26f4f3b5 2407 goto emulate_ri;
e685c689
SL
2408 }
2409
26f4f3b5
JH
2410 return EMULATE_DONE;
2411
2412emulate_ri:
e685c689 2413 /*
26f4f3b5
JH
2414 * Rollback PC (if in branch delay slot then the PC already points to
2415 * branch target), and pass the RI exception to the guest OS.
e685c689 2416 */
26f4f3b5
JH
2417 vcpu->arch.pc = curr_pc;
2418 return kvm_mips_emulate_ri_exc(cause, opc, run, vcpu);
e685c689
SL
2419}
2420
d116e812
DCZ
2421enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu,
2422 struct kvm_run *run)
e685c689
SL
2423{
2424 unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
2425 enum emulation_result er = EMULATE_DONE;
e685c689
SL
2426
2427 if (run->mmio.len > sizeof(*gpr)) {
6ad78a5c 2428 kvm_err("Bad MMIO length: %d", run->mmio.len);
e685c689
SL
2429 er = EMULATE_FAIL;
2430 goto done;
2431 }
2432
e685c689
SL
2433 er = update_pc(vcpu, vcpu->arch.pending_load_cause);
2434 if (er == EMULATE_FAIL)
2435 return er;
2436
2437 switch (run->mmio.len) {
2438 case 4:
8cffd197 2439 *gpr = *(s32 *) run->mmio.data;
e685c689
SL
2440 break;
2441
2442 case 2:
2443 if (vcpu->mmio_needed == 2)
8cffd197 2444 *gpr = *(s16 *) run->mmio.data;
e685c689 2445 else
8cffd197 2446 *gpr = *(u16 *)run->mmio.data;
e685c689
SL
2447
2448 break;
2449 case 1:
2450 if (vcpu->mmio_needed == 2)
8cffd197 2451 *gpr = *(s8 *) run->mmio.data;
e685c689
SL
2452 else
2453 *gpr = *(u8 *) run->mmio.data;
2454 break;
2455 }
2456
2457 if (vcpu->arch.pending_load_cause & CAUSEF_BD)
d116e812
DCZ
2458 kvm_debug("[%#lx] Completing %d byte BD Load to gpr %d (0x%08lx) type %d\n",
2459 vcpu->arch.pc, run->mmio.len, vcpu->arch.io_gpr, *gpr,
2460 vcpu->mmio_needed);
e685c689
SL
2461
2462done:
2463 return er;
2464}
2465
31cf7498 2466static enum emulation_result kvm_mips_emulate_exc(u32 cause,
bdb7ed86 2467 u32 *opc,
d116e812
DCZ
2468 struct kvm_run *run,
2469 struct kvm_vcpu *vcpu)
e685c689 2470{
8cffd197 2471 u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
e685c689
SL
2472 struct mips_coproc *cop0 = vcpu->arch.cop0;
2473 struct kvm_vcpu_arch *arch = &vcpu->arch;
2474 enum emulation_result er = EMULATE_DONE;
2475
2476 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2477 /* save old pc */
2478 kvm_write_c0_guest_epc(cop0, arch->pc);
2479 kvm_set_c0_guest_status(cop0, ST0_EXL);
2480
2481 if (cause & CAUSEF_BD)
2482 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2483 else
2484 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2485
2486 kvm_change_c0_guest_cause(cop0, (0xff),
2487 (exccode << CAUSEB_EXCCODE));
2488
2489 /* Set PC to the exception entry point */
2490 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2491 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2492
2493 kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n",
2494 exccode, kvm_read_c0_guest_epc(cop0),
2495 kvm_read_c0_guest_badvaddr(cop0));
2496 } else {
6ad78a5c 2497 kvm_err("Trying to deliver EXC when EXL is already set\n");
e685c689
SL
2498 er = EMULATE_FAIL;
2499 }
2500
2501 return er;
2502}
2503
31cf7498 2504enum emulation_result kvm_mips_check_privilege(u32 cause,
bdb7ed86 2505 u32 *opc,
d116e812
DCZ
2506 struct kvm_run *run,
2507 struct kvm_vcpu *vcpu)
e685c689
SL
2508{
2509 enum emulation_result er = EMULATE_DONE;
8cffd197 2510 u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
e685c689
SL
2511 unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
2512
2513 int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2514
2515 if (usermode) {
2516 switch (exccode) {
16d100db
JH
2517 case EXCCODE_INT:
2518 case EXCCODE_SYS:
2519 case EXCCODE_BP:
2520 case EXCCODE_RI:
2521 case EXCCODE_TR:
2522 case EXCCODE_MSAFPE:
2523 case EXCCODE_FPE:
2524 case EXCCODE_MSADIS:
e685c689
SL
2525 break;
2526
16d100db 2527 case EXCCODE_CPU:
e685c689
SL
2528 if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 0)
2529 er = EMULATE_PRIV_FAIL;
2530 break;
2531
16d100db 2532 case EXCCODE_MOD:
e685c689
SL
2533 break;
2534
16d100db 2535 case EXCCODE_TLBL:
d116e812
DCZ
2536 /*
2537 * We we are accessing Guest kernel space, then send an
2538 * address error exception to the guest
2539 */
e685c689 2540 if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
6ad78a5c
DCZ
2541 kvm_debug("%s: LD MISS @ %#lx\n", __func__,
2542 badvaddr);
e685c689 2543 cause &= ~0xff;
16d100db 2544 cause |= (EXCCODE_ADEL << CAUSEB_EXCCODE);
e685c689
SL
2545 er = EMULATE_PRIV_FAIL;
2546 }
2547 break;
2548
16d100db 2549 case EXCCODE_TLBS:
d116e812
DCZ
2550 /*
2551 * We we are accessing Guest kernel space, then send an
2552 * address error exception to the guest
2553 */
e685c689 2554 if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
6ad78a5c
DCZ
2555 kvm_debug("%s: ST MISS @ %#lx\n", __func__,
2556 badvaddr);
e685c689 2557 cause &= ~0xff;
16d100db 2558 cause |= (EXCCODE_ADES << CAUSEB_EXCCODE);
e685c689
SL
2559 er = EMULATE_PRIV_FAIL;
2560 }
2561 break;
2562
16d100db 2563 case EXCCODE_ADES:
6ad78a5c
DCZ
2564 kvm_debug("%s: address error ST @ %#lx\n", __func__,
2565 badvaddr);
e685c689
SL
2566 if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2567 cause &= ~0xff;
16d100db 2568 cause |= (EXCCODE_TLBS << CAUSEB_EXCCODE);
e685c689
SL
2569 }
2570 er = EMULATE_PRIV_FAIL;
2571 break;
16d100db 2572 case EXCCODE_ADEL:
6ad78a5c
DCZ
2573 kvm_debug("%s: address error LD @ %#lx\n", __func__,
2574 badvaddr);
e685c689
SL
2575 if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2576 cause &= ~0xff;
16d100db 2577 cause |= (EXCCODE_TLBL << CAUSEB_EXCCODE);
e685c689
SL
2578 }
2579 er = EMULATE_PRIV_FAIL;
2580 break;
2581 default:
2582 er = EMULATE_PRIV_FAIL;
2583 break;
2584 }
2585 }
2586
d116e812 2587 if (er == EMULATE_PRIV_FAIL)
e685c689 2588 kvm_mips_emulate_exc(cause, opc, run, vcpu);
d116e812 2589
e685c689
SL
2590 return er;
2591}
2592
d116e812
DCZ
2593/*
2594 * User Address (UA) fault, this could happen if
e685c689
SL
2595 * (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this
2596 * case we pass on the fault to the guest kernel and let it handle it.
2597 * (2) TLB entry is present in the Guest TLB but not in the shadow, in this
2598 * case we inject the TLB from the Guest TLB into the shadow host TLB
2599 */
31cf7498 2600enum emulation_result kvm_mips_handle_tlbmiss(u32 cause,
bdb7ed86 2601 u32 *opc,
d116e812
DCZ
2602 struct kvm_run *run,
2603 struct kvm_vcpu *vcpu)
e685c689
SL
2604{
2605 enum emulation_result er = EMULATE_DONE;
8cffd197 2606 u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
e685c689
SL
2607 unsigned long va = vcpu->arch.host_cp0_badvaddr;
2608 int index;
2609
e4e94c0f
JH
2610 kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx\n",
2611 vcpu->arch.host_cp0_badvaddr);
e685c689 2612
d116e812
DCZ
2613 /*
2614 * KVM would not have got the exception if this entry was valid in the
2615 * shadow host TLB. Check the Guest TLB, if the entry is not there then
2616 * send the guest an exception. The guest exc handler should then inject
2617 * an entry into the guest TLB.
e685c689
SL
2618 */
2619 index = kvm_mips_guest_tlb_lookup(vcpu,
caa1faa7 2620 (va & VPN2_MASK) |
ca64c2be
PB
2621 (kvm_read_c0_guest_entryhi(vcpu->arch.cop0) &
2622 KVM_ENTRYHI_ASID));
e685c689 2623 if (index < 0) {
16d100db 2624 if (exccode == EXCCODE_TLBL) {
e685c689 2625 er = kvm_mips_emulate_tlbmiss_ld(cause, opc, run, vcpu);
16d100db 2626 } else if (exccode == EXCCODE_TLBS) {
e685c689
SL
2627 er = kvm_mips_emulate_tlbmiss_st(cause, opc, run, vcpu);
2628 } else {
6ad78a5c
DCZ
2629 kvm_err("%s: invalid exc code: %d\n", __func__,
2630 exccode);
e685c689
SL
2631 er = EMULATE_FAIL;
2632 }
2633 } else {
2634 struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
2635
d116e812
DCZ
2636 /*
2637 * Check if the entry is valid, if not then setup a TLB invalid
2638 * exception to the guest
2639 */
e685c689 2640 if (!TLB_IS_VALID(*tlb, va)) {
16d100db 2641 if (exccode == EXCCODE_TLBL) {
e685c689
SL
2642 er = kvm_mips_emulate_tlbinv_ld(cause, opc, run,
2643 vcpu);
16d100db 2644 } else if (exccode == EXCCODE_TLBS) {
e685c689
SL
2645 er = kvm_mips_emulate_tlbinv_st(cause, opc, run,
2646 vcpu);
2647 } else {
6ad78a5c
DCZ
2648 kvm_err("%s: invalid exc code: %d\n", __func__,
2649 exccode);
e685c689
SL
2650 er = EMULATE_FAIL;
2651 }
2652 } else {
d116e812 2653 kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n",
9fbfb06a 2654 tlb->tlb_hi, tlb->tlb_lo[0], tlb->tlb_lo[1]);
d116e812
DCZ
2655 /*
2656 * OK we have a Guest TLB entry, now inject it into the
2657 * shadow host TLB
2658 */
26ee17ff 2659 kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb);
e685c689
SL
2660 }
2661 }
2662
2663 return er;
2664}
This page took 0.329642 seconds and 5 git commands to generate.