[PARISC] a and b in "break a,b" message were swapped
[deliverable/linux.git] / arch / parisc / kernel / time.c
CommitLineData
1da177e4
LT
1/*
2 * linux/arch/parisc/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
5 * Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
6 * Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
7 *
8 * 1994-07-02 Alan Modra
9 * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10 * 1998-12-20 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 */
1da177e4
LT
13#include <linux/errno.h>
14#include <linux/module.h>
15#include <linux/sched.h>
16#include <linux/kernel.h>
17#include <linux/param.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/interrupt.h>
21#include <linux/time.h>
22#include <linux/init.h>
23#include <linux/smp.h>
24#include <linux/profile.h>
25
26#include <asm/uaccess.h>
27#include <asm/io.h>
28#include <asm/irq.h>
29#include <asm/param.h>
30#include <asm/pdc.h>
31#include <asm/led.h>
32
33#include <linux/timex.h>
34
bed583f7 35static unsigned long clocktick __read_mostly; /* timer cycles per tick */
1da177e4 36
1604f318
MW
37/*
38 * We keep time on PA-RISC Linux by using the Interval Timer which is
39 * a pair of registers; one is read-only and one is write-only; both
40 * accessed through CR16. The read-only register is 32 or 64 bits wide,
41 * and increments by 1 every CPU clock tick. The architecture only
42 * guarantees us a rate between 0.5 and 2, but all implementations use a
43 * rate of 1. The write-only register is 32-bits wide. When the lowest
44 * 32 bits of the read-only register compare equal to the write-only
45 * register, it raises a maskable external interrupt. Each processor has
46 * an Interval Timer of its own and they are not synchronised.
47 *
48 * We want to generate an interrupt every 1/HZ seconds. So we program
49 * CR16 to interrupt every @clocktick cycles. The it_value in cpu_data
50 * is programmed with the intended time of the next tick. We can be
51 * held off for an arbitrarily long period of time by interrupts being
52 * disabled, so we may miss one or more ticks.
53 */
c7753f18 54irqreturn_t timer_interrupt(int irq, void *dev_id)
1da177e4 55{
bed583f7
GG
56 unsigned long now;
57 unsigned long next_tick;
1604f318 58 unsigned long cycles_elapsed, ticks_elapsed;
6e5dc42b
GG
59 unsigned long cycles_remainder;
60 unsigned int cpu = smp_processor_id();
c7753f18 61 struct cpuinfo_parisc *cpuinfo = &cpu_data[cpu];
1da177e4 62
6b799d92 63 /* gcc can optimize for "read-only" case with a local clocktick */
6e5dc42b 64 unsigned long cpt = clocktick;
6b799d92 65
be577a52 66 profile_tick(CPU_PROFILING);
1da177e4 67
bed583f7 68 /* Initialize next_tick to the expected tick time. */
c7753f18 69 next_tick = cpuinfo->it_value;
1da177e4 70
bed583f7
GG
71 /* Get current interval timer.
72 * CR16 reads as 64 bits in CPU wide mode.
73 * CR16 reads as 32 bits in CPU narrow mode.
1da177e4 74 */
bed583f7 75 now = mfctl(16);
1da177e4 76
bed583f7
GG
77 cycles_elapsed = now - next_tick;
78
6e5dc42b
GG
79 if ((cycles_elapsed >> 5) < cpt) {
80 /* use "cheap" math (add/subtract) instead
81 * of the more expensive div/mul method
bed583f7 82 */
6b799d92 83 cycles_remainder = cycles_elapsed;
1604f318 84 ticks_elapsed = 1;
6e5dc42b
GG
85 while (cycles_remainder > cpt) {
86 cycles_remainder -= cpt;
1604f318 87 ticks_elapsed++;
6e5dc42b 88 }
6b799d92 89 } else {
6e5dc42b 90 cycles_remainder = cycles_elapsed % cpt;
1604f318 91 ticks_elapsed = 1 + cycles_elapsed / cpt;
6b799d92 92 }
bed583f7
GG
93
94 /* Can we differentiate between "early CR16" (aka Scenario 1) and
95 * "long delay" (aka Scenario 3)? I don't think so.
96 *
97 * We expected timer_interrupt to be delivered at least a few hundred
98 * cycles after the IT fires. But it's arbitrary how much time passes
99 * before we call it "late". I've picked one second.
100 */
1604f318 101 if (ticks_elapsed > HZ) {
bed583f7 102 /* Scenario 3: very long delay? bad in any case */
6b799d92 103 printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!"
6e5dc42b 104 " cycles %lX rem %lX "
bed583f7
GG
105 " next/now %lX/%lX\n",
106 cpu,
6e5dc42b 107 cycles_elapsed, cycles_remainder,
bed583f7 108 next_tick, now );
bed583f7
GG
109 }
110
6e5dc42b
GG
111 /* convert from "division remainder" to "remainder of clock tick" */
112 cycles_remainder = cpt - cycles_remainder;
bed583f7
GG
113
114 /* Determine when (in CR16 cycles) next IT interrupt will fire.
115 * We want IT to fire modulo clocktick even if we miss/skip some.
116 * But those interrupts don't in fact get delivered that regularly.
117 */
6e5dc42b
GG
118 next_tick = now + cycles_remainder;
119
c7753f18 120 cpuinfo->it_value = next_tick;
6b799d92
GG
121
122 /* Skip one clocktick on purpose if we are likely to miss next_tick.
6e5dc42b
GG
123 * We want to avoid the new next_tick being less than CR16.
124 * If that happened, itimer wouldn't fire until CR16 wrapped.
125 * We'll catch the tick we missed on the tick after that.
126 */
127 if (!(cycles_remainder >> 13))
128 next_tick += cpt;
bed583f7
GG
129
130 /* Program the IT when to deliver the next interrupt. */
c7753f18 131 /* Only bottom 32-bits of next_tick are written to cr16. */
6b799d92 132 mtctl(next_tick, 16);
1da177e4 133
6e5dc42b
GG
134
135 /* Done mucking with unreliable delivery of interrupts.
136 * Go do system house keeping.
bed583f7 137 */
c7753f18
MW
138
139 if (!--cpuinfo->prof_counter) {
140 cpuinfo->prof_counter = cpuinfo->prof_multiplier;
141 update_process_times(user_mode(get_irq_regs()));
142 }
143
6e5dc42b
GG
144 if (cpu == 0) {
145 write_seqlock(&xtime_lock);
1604f318 146 do_timer(ticks_elapsed);
6e5dc42b 147 write_sequnlock(&xtime_lock);
1da177e4 148 }
6e5dc42b 149
1da177e4
LT
150 /* check soft power switch status */
151 if (cpu == 0 && !atomic_read(&power_tasklet.count))
152 tasklet_schedule(&power_tasklet);
153
154 return IRQ_HANDLED;
155}
156
5cd55b0e
RC
157
158unsigned long profile_pc(struct pt_regs *regs)
159{
160 unsigned long pc = instruction_pointer(regs);
161
162 if (regs->gr[0] & PSW_N)
163 pc -= 4;
164
165#ifdef CONFIG_SMP
166 if (in_lock_functions(pc))
167 pc = regs->gr[2];
168#endif
169
170 return pc;
171}
172EXPORT_SYMBOL(profile_pc);
173
174
1da177e4
LT
175/*
176 * Return the number of micro-seconds that elapsed since the last
8ef38609 177 * update to wall time (aka xtime). The xtime_lock
1da177e4
LT
178 * must be at least read-locked when calling this routine.
179 */
6e5dc42b 180static inline unsigned long gettimeoffset (void)
1da177e4
LT
181{
182#ifndef CONFIG_SMP
183 /*
184 * FIXME: This won't work on smp because jiffies are updated by cpu 0.
185 * Once parisc-linux learns the cr16 difference between processors,
186 * this could be made to work.
187 */
bed583f7
GG
188 unsigned long now;
189 unsigned long prev_tick;
190 unsigned long next_tick;
191 unsigned long elapsed_cycles;
192 unsigned long usec;
6b799d92 193 unsigned long cpuid = smp_processor_id();
6e5dc42b 194 unsigned long cpt = clocktick;
1da177e4 195
6b799d92 196 next_tick = cpu_data[cpuid].it_value;
bed583f7 197 now = mfctl(16); /* Read the hardware interval timer. */
1da177e4 198
6e5dc42b 199 prev_tick = next_tick - cpt;
bed583f7
GG
200
201 /* Assume Scenario 1: "now" is later than prev_tick. */
202 elapsed_cycles = now - prev_tick;
203
6e5dc42b
GG
204/* aproximate HZ with shifts. Intended math is "(elapsed/clocktick) > HZ" */
205#if HZ == 1000
206 if (elapsed_cycles > (cpt << 10) )
207#elif HZ == 250
208 if (elapsed_cycles > (cpt << 8) )
209#elif HZ == 100
210 if (elapsed_cycles > (cpt << 7) )
211#else
212#warn WTF is HZ set to anyway?
213 if (elapsed_cycles > (HZ * cpt) )
214#endif
215 {
bed583f7 216 /* Scenario 3: clock ticks are missing. */
6e5dc42b
GG
217 printk (KERN_CRIT "gettimeoffset(CPU %ld): missing %ld ticks!"
218 " cycles %lX prev/now/next %lX/%lX/%lX clock %lX\n",
219 cpuid, elapsed_cycles / cpt,
220 elapsed_cycles, prev_tick, now, next_tick, cpt);
bed583f7
GG
221 }
222
223 /* FIXME: Can we improve the precision? Not with PAGE0. */
224 usec = (elapsed_cycles * 10000) / PAGE0->mem_10msec;
bed583f7 225 return usec;
1da177e4
LT
226#else
227 return 0;
228#endif
229}
230
231void
232do_gettimeofday (struct timeval *tv)
233{
234 unsigned long flags, seq, usec, sec;
235
bed583f7 236 /* Hold xtime_lock and adjust timeval. */
1da177e4
LT
237 do {
238 seq = read_seqbegin_irqsave(&xtime_lock, flags);
239 usec = gettimeoffset();
240 sec = xtime.tv_sec;
241 usec += (xtime.tv_nsec / 1000);
242 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
243
bed583f7 244 /* Move adjusted usec's into sec's. */
61c34016
JB
245 while (usec >= USEC_PER_SEC) {
246 usec -= USEC_PER_SEC;
1da177e4
LT
247 ++sec;
248 }
249
bed583f7 250 /* Return adjusted result. */
1da177e4
LT
251 tv->tv_sec = sec;
252 tv->tv_usec = usec;
253}
254
255EXPORT_SYMBOL(do_gettimeofday);
256
257int
258do_settimeofday (struct timespec *tv)
259{
260 time_t wtm_sec, sec = tv->tv_sec;
261 long wtm_nsec, nsec = tv->tv_nsec;
262
263 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
264 return -EINVAL;
265
266 write_seqlock_irq(&xtime_lock);
267 {
268 /*
269 * This is revolting. We need to set "xtime"
270 * correctly. However, the value in this location is
271 * the value at the most recent update of wall time.
272 * Discover what correction gettimeofday would have
273 * done, and then undo it!
274 */
275 nsec -= gettimeoffset() * 1000;
276
277 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
278 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
279
280 set_normalized_timespec(&xtime, sec, nsec);
281 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
282
b149ee22 283 ntp_clear();
1da177e4
LT
284 }
285 write_sequnlock_irq(&xtime_lock);
286 clock_was_set();
287 return 0;
288}
289EXPORT_SYMBOL(do_settimeofday);
290
291/*
292 * XXX: We can do better than this.
293 * Returns nanoseconds
294 */
295
296unsigned long long sched_clock(void)
297{
298 return (unsigned long long)jiffies * (1000000000 / HZ);
299}
300
301
56f335c8
GG
302void __init start_cpu_itimer(void)
303{
304 unsigned int cpu = smp_processor_id();
305 unsigned long next_tick = mfctl(16) + clocktick;
306
307 mtctl(next_tick, 16); /* kick off Interval Timer (CR16) */
308
309 cpu_data[cpu].it_value = next_tick;
310}
311
1da177e4
LT
312void __init time_init(void)
313{
1da177e4
LT
314 static struct pdc_tod tod_data;
315
316 clocktick = (100 * PAGE0->mem_10msec) / HZ;
1da177e4 317
56f335c8 318 start_cpu_itimer(); /* get CPU 0 started */
1da177e4 319
09690b18
KM
320 if (pdc_tod_read(&tod_data) == 0) {
321 unsigned long flags;
322
323 write_seqlock_irqsave(&xtime_lock, flags);
1da177e4
LT
324 xtime.tv_sec = tod_data.tod_sec;
325 xtime.tv_nsec = tod_data.tod_usec * 1000;
326 set_normalized_timespec(&wall_to_monotonic,
327 -xtime.tv_sec, -xtime.tv_nsec);
09690b18 328 write_sequnlock_irqrestore(&xtime_lock, flags);
1da177e4
LT
329 } else {
330 printk(KERN_ERR "Error reading tod clock\n");
331 xtime.tv_sec = 0;
332 xtime.tv_nsec = 0;
333 }
334}
335
This page took 0.280695 seconds and 5 git commands to generate.