powerpc/mm: Move hugetlb related headers
[deliverable/linux.git] / arch / powerpc / include / asm / nohash / pgtable.h
CommitLineData
17ed9e31
AK
1#ifndef _ASM_POWERPC_NOHASH_PGTABLE_H
2#define _ASM_POWERPC_NOHASH_PGTABLE_H
ee4889c7
AK
3
4#if defined(CONFIG_PPC64)
17ed9e31 5#include <asm/nohash/64/pgtable.h>
ee4889c7 6#else
17ed9e31 7#include <asm/nohash/32/pgtable.h>
ee4889c7
AK
8#endif
9
10#ifndef __ASSEMBLY__
11
12/* Generic accessors to PTE bits */
13static inline int pte_write(pte_t pte)
14{
15 return (pte_val(pte) & (_PAGE_RW | _PAGE_RO)) != _PAGE_RO;
16}
17static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
18static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
19static inline int pte_special(pte_t pte) { return pte_val(pte) & _PAGE_SPECIAL; }
20static inline int pte_none(pte_t pte) { return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; }
21static inline pgprot_t pte_pgprot(pte_t pte) { return __pgprot(pte_val(pte) & PAGE_PROT_BITS); }
22
23#ifdef CONFIG_NUMA_BALANCING
24/*
25 * These work without NUMA balancing but the kernel does not care. See the
26 * comment in include/asm-generic/pgtable.h . On powerpc, this will only
27 * work for user pages and always return true for kernel pages.
28 */
29static inline int pte_protnone(pte_t pte)
30{
31 return (pte_val(pte) &
32 (_PAGE_PRESENT | _PAGE_USER)) == _PAGE_PRESENT;
33}
34
35static inline int pmd_protnone(pmd_t pmd)
36{
37 return pte_protnone(pmd_pte(pmd));
38}
39#endif /* CONFIG_NUMA_BALANCING */
40
41static inline int pte_present(pte_t pte)
42{
43 return pte_val(pte) & _PAGE_PRESENT;
44}
45
46/* Conversion functions: convert a page and protection to a page entry,
47 * and a page entry and page directory to the page they refer to.
48 *
49 * Even if PTEs can be unsigned long long, a PFN is always an unsigned
50 * long for now.
51 */
52static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) {
53 return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) |
54 pgprot_val(pgprot)); }
55static inline unsigned long pte_pfn(pte_t pte) {
56 return pte_val(pte) >> PTE_RPN_SHIFT; }
57
58/* Generic modifiers for PTE bits */
10bd3808
AK
59static inline pte_t pte_wrprotect(pte_t pte)
60{
61 pte_basic_t ptev;
62
63 ptev = pte_val(pte) & ~(_PAGE_RW | _PAGE_HWWRITE);
64 ptev |= _PAGE_RO;
65 return __pte(ptev);
66}
67
68static inline pte_t pte_mkclean(pte_t pte)
69{
70 return __pte(pte_val(pte) & ~(_PAGE_DIRTY | _PAGE_HWWRITE));
71}
72
73static inline pte_t pte_mkold(pte_t pte)
74{
75 return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
76}
77
78static inline pte_t pte_mkwrite(pte_t pte)
79{
80 pte_basic_t ptev;
81
82 ptev = pte_val(pte) & ~_PAGE_RO;
83 ptev |= _PAGE_RW;
84 return __pte(ptev);
85}
86
87static inline pte_t pte_mkdirty(pte_t pte)
88{
89 return __pte(pte_val(pte) | _PAGE_DIRTY);
90}
91
92static inline pte_t pte_mkyoung(pte_t pte)
93{
94 return __pte(pte_val(pte) | _PAGE_ACCESSED);
95}
96
97static inline pte_t pte_mkspecial(pte_t pte)
98{
99 return __pte(pte_val(pte) | _PAGE_SPECIAL);
100}
101
102static inline pte_t pte_mkhuge(pte_t pte)
ee4889c7 103{
ee4889c7
AK
104 return pte;
105}
106
10bd3808
AK
107static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
108{
109 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
110}
ee4889c7
AK
111
112/* Insert a PTE, top-level function is out of line. It uses an inline
113 * low level function in the respective pgtable-* files
114 */
115extern void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
116 pte_t pte);
117
118/* This low level function performs the actual PTE insertion
119 * Setting the PTE depends on the MMU type and other factors. It's
120 * an horrible mess that I'm not going to try to clean up now but
121 * I'm keeping it in one place rather than spread around
122 */
123static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
124 pte_t *ptep, pte_t pte, int percpu)
125{
126#if defined(CONFIG_PPC_STD_MMU_32) && defined(CONFIG_SMP) && !defined(CONFIG_PTE_64BIT)
127 /* First case is 32-bit Hash MMU in SMP mode with 32-bit PTEs. We use the
128 * helper pte_update() which does an atomic update. We need to do that
129 * because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a
130 * per-CPU PTE such as a kmap_atomic, we do a simple update preserving
131 * the hash bits instead (ie, same as the non-SMP case)
132 */
133 if (percpu)
134 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
135 | (pte_val(pte) & ~_PAGE_HASHPTE));
136 else
137 pte_update(ptep, ~_PAGE_HASHPTE, pte_val(pte));
138
139#elif defined(CONFIG_PPC32) && defined(CONFIG_PTE_64BIT)
140 /* Second case is 32-bit with 64-bit PTE. In this case, we
141 * can just store as long as we do the two halves in the right order
142 * with a barrier in between. This is possible because we take care,
143 * in the hash code, to pre-invalidate if the PTE was already hashed,
144 * which synchronizes us with any concurrent invalidation.
145 * In the percpu case, we also fallback to the simple update preserving
146 * the hash bits
147 */
148 if (percpu) {
149 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
150 | (pte_val(pte) & ~_PAGE_HASHPTE));
151 return;
152 }
153#if _PAGE_HASHPTE != 0
154 if (pte_val(*ptep) & _PAGE_HASHPTE)
155 flush_hash_entry(mm, ptep, addr);
156#endif
157 __asm__ __volatile__("\
158 stw%U0%X0 %2,%0\n\
159 eieio\n\
160 stw%U0%X0 %L2,%1"
161 : "=m" (*ptep), "=m" (*((unsigned char *)ptep+4))
162 : "r" (pte) : "memory");
163
164#elif defined(CONFIG_PPC_STD_MMU_32)
165 /* Third case is 32-bit hash table in UP mode, we need to preserve
166 * the _PAGE_HASHPTE bit since we may not have invalidated the previous
167 * translation in the hash yet (done in a subsequent flush_tlb_xxx())
168 * and see we need to keep track that this PTE needs invalidating
169 */
170 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
171 | (pte_val(pte) & ~_PAGE_HASHPTE));
172
173#else
174 /* Anything else just stores the PTE normally. That covers all 64-bit
175 * cases, and 32-bit non-hash with 32-bit PTEs.
176 */
177 *ptep = pte;
178
179#ifdef CONFIG_PPC_BOOK3E_64
180 /*
181 * With hardware tablewalk, a sync is needed to ensure that
182 * subsequent accesses see the PTE we just wrote. Unlike userspace
183 * mappings, we can't tolerate spurious faults, so make sure
184 * the new PTE will be seen the first time.
185 */
186 if (is_kernel_addr(addr))
187 mb();
188#endif
189#endif
190}
191
192
193#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
194extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
195 pte_t *ptep, pte_t entry, int dirty);
196
197/*
198 * Macro to mark a page protection value as "uncacheable".
199 */
200
201#define _PAGE_CACHE_CTL (_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \
202 _PAGE_WRITETHRU)
203
204#define pgprot_noncached(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
205 _PAGE_NO_CACHE | _PAGE_GUARDED))
206
207#define pgprot_noncached_wc(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
208 _PAGE_NO_CACHE))
209
210#define pgprot_cached(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
211 _PAGE_COHERENT))
212
213#define pgprot_cached_wthru(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
214 _PAGE_COHERENT | _PAGE_WRITETHRU))
215
216#define pgprot_cached_noncoherent(prot) \
217 (__pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL))
218
219#define pgprot_writecombine pgprot_noncached_wc
220
221struct file;
222extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
223 unsigned long size, pgprot_t vma_prot);
224#define __HAVE_PHYS_MEM_ACCESS_PROT
225
26a344ae
AK
226#ifdef CONFIG_HUGETLB_PAGE
227static inline int hugepd_ok(hugepd_t hpd)
228{
229 return (hpd.pd > 0);
230}
231
232static inline int pmd_huge(pmd_t pmd)
233{
234 return 0;
235}
236
237static inline int pud_huge(pud_t pud)
238{
239 return 0;
240}
241
242static inline int pgd_huge(pgd_t pgd)
243{
244 return 0;
245}
246#define pgd_huge pgd_huge
247
248#define is_hugepd(hpd) (hugepd_ok(hpd))
249#endif
250
ee4889c7
AK
251#endif /* __ASSEMBLY__ */
252#endif
This page took 0.034296 seconds and 5 git commands to generate.