powerpc: New macros for transactional memory support
[deliverable/linux.git] / arch / powerpc / include / asm / ppc_asm.h
CommitLineData
1da177e4 1/*
1da177e4 2 * Copyright (C) 1995-1999 Gary Thomas, Paul Mackerras, Cort Dougan.
1da177e4 3 */
5f7c6907
KG
4#ifndef _ASM_POWERPC_PPC_ASM_H
5#define _ASM_POWERPC_PPC_ASM_H
6
9203fc9c 7#include <linux/init.h>
40ef8cbc 8#include <linux/stringify.h>
3ddfbcf1 9#include <asm/asm-compat.h>
9c75a31c 10#include <asm/processor.h>
16c57b36 11#include <asm/ppc-opcode.h>
cf9efce0 12#include <asm/firmware.h>
40ef8cbc 13
3ddfbcf1
DG
14#ifndef __ASSEMBLY__
15#error __FILE__ should only be used in assembler files
16#else
17
18#define SZL (BITS_PER_LONG/8)
1da177e4 19
c6622f63
PM
20/*
21 * Stuff for accurate CPU time accounting.
22 * These macros handle transitions between user and system state
23 * in exception entry and exit and accumulate time to the
24 * user_time and system_time fields in the paca.
25 */
26
27#ifndef CONFIG_VIRT_CPU_ACCOUNTING
28#define ACCOUNT_CPU_USER_ENTRY(ra, rb)
29#define ACCOUNT_CPU_USER_EXIT(ra, rb)
cf9efce0 30#define ACCOUNT_STOLEN_TIME
c6622f63
PM
31#else
32#define ACCOUNT_CPU_USER_ENTRY(ra, rb) \
cf9efce0
PM
33 MFTB(ra); /* get timebase */ \
34 ld rb,PACA_STARTTIME_USER(r13); \
35 std ra,PACA_STARTTIME(r13); \
c6622f63
PM
36 subf rb,rb,ra; /* subtract start value */ \
37 ld ra,PACA_USER_TIME(r13); \
38 add ra,ra,rb; /* add on to user time */ \
39 std ra,PACA_USER_TIME(r13); \
c6622f63
PM
40
41#define ACCOUNT_CPU_USER_EXIT(ra, rb) \
cf9efce0
PM
42 MFTB(ra); /* get timebase */ \
43 ld rb,PACA_STARTTIME(r13); \
44 std ra,PACA_STARTTIME_USER(r13); \
c6622f63
PM
45 subf rb,rb,ra; /* subtract start value */ \
46 ld ra,PACA_SYSTEM_TIME(r13); \
cf9efce0
PM
47 add ra,ra,rb; /* add on to system time */ \
48 std ra,PACA_SYSTEM_TIME(r13)
49
50#ifdef CONFIG_PPC_SPLPAR
51#define ACCOUNT_STOLEN_TIME \
52BEGIN_FW_FTR_SECTION; \
53 beq 33f; \
54 /* from user - see if there are any DTL entries to process */ \
55 ld r10,PACALPPACAPTR(r13); /* get ptr to VPA */ \
56 ld r11,PACA_DTL_RIDX(r13); /* get log read index */ \
57 ld r10,LPPACA_DTLIDX(r10); /* get log write index */ \
58 cmpd cr1,r11,r10; \
59 beq+ cr1,33f; \
60 bl .accumulate_stolen_time; \
990118c8
BH
61 ld r12,_MSR(r1); \
62 andi. r10,r12,MSR_PR; /* Restore cr0 (coming from user) */ \
cf9efce0
PM
6333: \
64END_FW_FTR_SECTION_IFSET(FW_FEATURE_SPLPAR)
65
66#else /* CONFIG_PPC_SPLPAR */
67#define ACCOUNT_STOLEN_TIME
68
69#endif /* CONFIG_PPC_SPLPAR */
70
71#endif /* CONFIG_VIRT_CPU_ACCOUNTING */
c6622f63 72
1da177e4
LT
73/*
74 * Macros for storing registers into and loading registers from
75 * exception frames.
76 */
5f7c6907
KG
77#ifdef __powerpc64__
78#define SAVE_GPR(n, base) std n,GPR0+8*(n)(base)
79#define REST_GPR(n, base) ld n,GPR0+8*(n)(base)
80#define SAVE_NVGPRS(base) SAVE_8GPRS(14, base); SAVE_10GPRS(22, base)
81#define REST_NVGPRS(base) REST_8GPRS(14, base); REST_10GPRS(22, base)
82#else
1da177e4 83#define SAVE_GPR(n, base) stw n,GPR0+4*(n)(base)
5f7c6907
KG
84#define REST_GPR(n, base) lwz n,GPR0+4*(n)(base)
85#define SAVE_NVGPRS(base) SAVE_GPR(13, base); SAVE_8GPRS(14, base); \
86 SAVE_10GPRS(22, base)
87#define REST_NVGPRS(base) REST_GPR(13, base); REST_8GPRS(14, base); \
88 REST_10GPRS(22, base)
89#endif
90
1da177e4
LT
91#define SAVE_2GPRS(n, base) SAVE_GPR(n, base); SAVE_GPR(n+1, base)
92#define SAVE_4GPRS(n, base) SAVE_2GPRS(n, base); SAVE_2GPRS(n+2, base)
93#define SAVE_8GPRS(n, base) SAVE_4GPRS(n, base); SAVE_4GPRS(n+4, base)
94#define SAVE_10GPRS(n, base) SAVE_8GPRS(n, base); SAVE_2GPRS(n+8, base)
1da177e4
LT
95#define REST_2GPRS(n, base) REST_GPR(n, base); REST_GPR(n+1, base)
96#define REST_4GPRS(n, base) REST_2GPRS(n, base); REST_2GPRS(n+2, base)
97#define REST_8GPRS(n, base) REST_4GPRS(n, base); REST_4GPRS(n+4, base)
98#define REST_10GPRS(n, base) REST_8GPRS(n, base); REST_2GPRS(n+8, base)
99
9c75a31c 100#define SAVE_FPR(n, base) stfd n,THREAD_FPR0+8*TS_FPRWIDTH*(n)(base)
1da177e4
LT
101#define SAVE_2FPRS(n, base) SAVE_FPR(n, base); SAVE_FPR(n+1, base)
102#define SAVE_4FPRS(n, base) SAVE_2FPRS(n, base); SAVE_2FPRS(n+2, base)
103#define SAVE_8FPRS(n, base) SAVE_4FPRS(n, base); SAVE_4FPRS(n+4, base)
104#define SAVE_16FPRS(n, base) SAVE_8FPRS(n, base); SAVE_8FPRS(n+8, base)
105#define SAVE_32FPRS(n, base) SAVE_16FPRS(n, base); SAVE_16FPRS(n+16, base)
9c75a31c 106#define REST_FPR(n, base) lfd n,THREAD_FPR0+8*TS_FPRWIDTH*(n)(base)
1da177e4
LT
107#define REST_2FPRS(n, base) REST_FPR(n, base); REST_FPR(n+1, base)
108#define REST_4FPRS(n, base) REST_2FPRS(n, base); REST_2FPRS(n+2, base)
109#define REST_8FPRS(n, base) REST_4FPRS(n, base); REST_4FPRS(n+4, base)
110#define REST_16FPRS(n, base) REST_8FPRS(n, base); REST_8FPRS(n+8, base)
111#define REST_32FPRS(n, base) REST_16FPRS(n, base); REST_16FPRS(n+16, base)
112
23e55f92 113#define SAVE_VR(n,b,base) li b,THREAD_VR0+(16*(n)); stvx n,base,b
5f7c6907
KG
114#define SAVE_2VRS(n,b,base) SAVE_VR(n,b,base); SAVE_VR(n+1,b,base)
115#define SAVE_4VRS(n,b,base) SAVE_2VRS(n,b,base); SAVE_2VRS(n+2,b,base)
116#define SAVE_8VRS(n,b,base) SAVE_4VRS(n,b,base); SAVE_4VRS(n+4,b,base)
117#define SAVE_16VRS(n,b,base) SAVE_8VRS(n,b,base); SAVE_8VRS(n+8,b,base)
118#define SAVE_32VRS(n,b,base) SAVE_16VRS(n,b,base); SAVE_16VRS(n+16,b,base)
23e55f92 119#define REST_VR(n,b,base) li b,THREAD_VR0+(16*(n)); lvx n,base,b
5f7c6907
KG
120#define REST_2VRS(n,b,base) REST_VR(n,b,base); REST_VR(n+1,b,base)
121#define REST_4VRS(n,b,base) REST_2VRS(n,b,base); REST_2VRS(n+2,b,base)
122#define REST_8VRS(n,b,base) REST_4VRS(n,b,base); REST_4VRS(n+4,b,base)
123#define REST_16VRS(n,b,base) REST_8VRS(n,b,base); REST_8VRS(n+8,b,base)
124#define REST_32VRS(n,b,base) REST_16VRS(n,b,base); REST_16VRS(n+16,b,base)
1da177e4 125
8b3c34cf
MN
126/* Save/restore FPRs, VRs and VSRs from their checkpointed backups in
127 * thread_struct:
128 */
129#define SAVE_FPR_TRANSACT(n, base) stfd n,THREAD_TRANSACT_FPR0+ \
130 8*TS_FPRWIDTH*(n)(base)
131#define SAVE_2FPRS_TRANSACT(n, base) SAVE_FPR_TRANSACT(n, base); \
132 SAVE_FPR_TRANSACT(n+1, base)
133#define SAVE_4FPRS_TRANSACT(n, base) SAVE_2FPRS_TRANSACT(n, base); \
134 SAVE_2FPRS_TRANSACT(n+2, base)
135#define SAVE_8FPRS_TRANSACT(n, base) SAVE_4FPRS_TRANSACT(n, base); \
136 SAVE_4FPRS_TRANSACT(n+4, base)
137#define SAVE_16FPRS_TRANSACT(n, base) SAVE_8FPRS_TRANSACT(n, base); \
138 SAVE_8FPRS_TRANSACT(n+8, base)
139#define SAVE_32FPRS_TRANSACT(n, base) SAVE_16FPRS_TRANSACT(n, base); \
140 SAVE_16FPRS_TRANSACT(n+16, base)
141
142#define REST_FPR_TRANSACT(n, base) lfd n,THREAD_TRANSACT_FPR0+ \
143 8*TS_FPRWIDTH*(n)(base)
144#define REST_2FPRS_TRANSACT(n, base) REST_FPR_TRANSACT(n, base); \
145 REST_FPR_TRANSACT(n+1, base)
146#define REST_4FPRS_TRANSACT(n, base) REST_2FPRS_TRANSACT(n, base); \
147 REST_2FPRS_TRANSACT(n+2, base)
148#define REST_8FPRS_TRANSACT(n, base) REST_4FPRS_TRANSACT(n, base); \
149 REST_4FPRS_TRANSACT(n+4, base)
150#define REST_16FPRS_TRANSACT(n, base) REST_8FPRS_TRANSACT(n, base); \
151 REST_8FPRS_TRANSACT(n+8, base)
152#define REST_32FPRS_TRANSACT(n, base) REST_16FPRS_TRANSACT(n, base); \
153 REST_16FPRS_TRANSACT(n+16, base)
154
155
156#define SAVE_VR_TRANSACT(n,b,base) li b,THREAD_TRANSACT_VR0+(16*(n)); \
157 stvx n,b,base
158#define SAVE_2VRS_TRANSACT(n,b,base) SAVE_VR_TRANSACT(n,b,base); \
159 SAVE_VR_TRANSACT(n+1,b,base)
160#define SAVE_4VRS_TRANSACT(n,b,base) SAVE_2VRS_TRANSACT(n,b,base); \
161 SAVE_2VRS_TRANSACT(n+2,b,base)
162#define SAVE_8VRS_TRANSACT(n,b,base) SAVE_4VRS_TRANSACT(n,b,base); \
163 SAVE_4VRS_TRANSACT(n+4,b,base)
164#define SAVE_16VRS_TRANSACT(n,b,base) SAVE_8VRS_TRANSACT(n,b,base); \
165 SAVE_8VRS_TRANSACT(n+8,b,base)
166#define SAVE_32VRS_TRANSACT(n,b,base) SAVE_16VRS_TRANSACT(n,b,base); \
167 SAVE_16VRS_TRANSACT(n+16,b,base)
168
169#define REST_VR_TRANSACT(n,b,base) li b,THREAD_TRANSACT_VR0+(16*(n)); \
170 lvx n,b,base
171#define REST_2VRS_TRANSACT(n,b,base) REST_VR_TRANSACT(n,b,base); \
172 REST_VR_TRANSACT(n+1,b,base)
173#define REST_4VRS_TRANSACT(n,b,base) REST_2VRS_TRANSACT(n,b,base); \
174 REST_2VRS_TRANSACT(n+2,b,base)
175#define REST_8VRS_TRANSACT(n,b,base) REST_4VRS_TRANSACT(n,b,base); \
176 REST_4VRS_TRANSACT(n+4,b,base)
177#define REST_16VRS_TRANSACT(n,b,base) REST_8VRS_TRANSACT(n,b,base); \
178 REST_8VRS_TRANSACT(n+8,b,base)
179#define REST_32VRS_TRANSACT(n,b,base) REST_16VRS_TRANSACT(n,b,base); \
180 REST_16VRS_TRANSACT(n+16,b,base)
181
182
183#define SAVE_VSR_TRANSACT(n,b,base) li b,THREAD_TRANSACT_VSR0+(16*(n)); \
184 STXVD2X(n,R##base,R##b)
185#define SAVE_2VSRS_TRANSACT(n,b,base) SAVE_VSR_TRANSACT(n,b,base); \
186 SAVE_VSR_TRANSACT(n+1,b,base)
187#define SAVE_4VSRS_TRANSACT(n,b,base) SAVE_2VSRS_TRANSACT(n,b,base); \
188 SAVE_2VSRS_TRANSACT(n+2,b,base)
189#define SAVE_8VSRS_TRANSACT(n,b,base) SAVE_4VSRS_TRANSACT(n,b,base); \
190 SAVE_4VSRS_TRANSACT(n+4,b,base)
191#define SAVE_16VSRS_TRANSACT(n,b,base) SAVE_8VSRS_TRANSACT(n,b,base); \
192 SAVE_8VSRS_TRANSACT(n+8,b,base)
193#define SAVE_32VSRS_TRANSACT(n,b,base) SAVE_16VSRS_TRANSACT(n,b,base); \
194 SAVE_16VSRS_TRANSACT(n+16,b,base)
195
196#define REST_VSR_TRANSACT(n,b,base) li b,THREAD_TRANSACT_VSR0+(16*(n)); \
197 LXVD2X(n,R##base,R##b)
198#define REST_2VSRS_TRANSACT(n,b,base) REST_VSR_TRANSACT(n,b,base); \
199 REST_VSR_TRANSACT(n+1,b,base)
200#define REST_4VSRS_TRANSACT(n,b,base) REST_2VSRS_TRANSACT(n,b,base); \
201 REST_2VSRS_TRANSACT(n+2,b,base)
202#define REST_8VSRS_TRANSACT(n,b,base) REST_4VSRS_TRANSACT(n,b,base); \
203 REST_4VSRS_TRANSACT(n+4,b,base)
204#define REST_16VSRS_TRANSACT(n,b,base) REST_8VSRS_TRANSACT(n,b,base); \
205 REST_8VSRS_TRANSACT(n+8,b,base)
206#define REST_32VSRS_TRANSACT(n,b,base) REST_16VSRS_TRANSACT(n,b,base); \
207 REST_16VSRS_TRANSACT(n+16,b,base)
208
72ffff5b 209/* Save the lower 32 VSRs in the thread VSR region */
0b7673c3 210#define SAVE_VSR(n,b,base) li b,THREAD_VSR0+(16*(n)); STXVD2X(n,R##base,R##b)
72ffff5b
MN
211#define SAVE_2VSRS(n,b,base) SAVE_VSR(n,b,base); SAVE_VSR(n+1,b,base)
212#define SAVE_4VSRS(n,b,base) SAVE_2VSRS(n,b,base); SAVE_2VSRS(n+2,b,base)
213#define SAVE_8VSRS(n,b,base) SAVE_4VSRS(n,b,base); SAVE_4VSRS(n+4,b,base)
214#define SAVE_16VSRS(n,b,base) SAVE_8VSRS(n,b,base); SAVE_8VSRS(n+8,b,base)
215#define SAVE_32VSRS(n,b,base) SAVE_16VSRS(n,b,base); SAVE_16VSRS(n+16,b,base)
0b7673c3 216#define REST_VSR(n,b,base) li b,THREAD_VSR0+(16*(n)); LXVD2X(n,R##base,R##b)
72ffff5b
MN
217#define REST_2VSRS(n,b,base) REST_VSR(n,b,base); REST_VSR(n+1,b,base)
218#define REST_4VSRS(n,b,base) REST_2VSRS(n,b,base); REST_2VSRS(n+2,b,base)
219#define REST_8VSRS(n,b,base) REST_4VSRS(n,b,base); REST_4VSRS(n+4,b,base)
220#define REST_16VSRS(n,b,base) REST_8VSRS(n,b,base); REST_8VSRS(n+8,b,base)
221#define REST_32VSRS(n,b,base) REST_16VSRS(n,b,base); REST_16VSRS(n+16,b,base)
222/* Save the upper 32 VSRs (32-63) in the thread VSX region (0-31) */
0b7673c3 223#define SAVE_VSRU(n,b,base) li b,THREAD_VR0+(16*(n)); STXVD2X(n+32,R##base,R##b)
72ffff5b
MN
224#define SAVE_2VSRSU(n,b,base) SAVE_VSRU(n,b,base); SAVE_VSRU(n+1,b,base)
225#define SAVE_4VSRSU(n,b,base) SAVE_2VSRSU(n,b,base); SAVE_2VSRSU(n+2,b,base)
226#define SAVE_8VSRSU(n,b,base) SAVE_4VSRSU(n,b,base); SAVE_4VSRSU(n+4,b,base)
227#define SAVE_16VSRSU(n,b,base) SAVE_8VSRSU(n,b,base); SAVE_8VSRSU(n+8,b,base)
228#define SAVE_32VSRSU(n,b,base) SAVE_16VSRSU(n,b,base); SAVE_16VSRSU(n+16,b,base)
0b7673c3 229#define REST_VSRU(n,b,base) li b,THREAD_VR0+(16*(n)); LXVD2X(n+32,R##base,R##b)
72ffff5b
MN
230#define REST_2VSRSU(n,b,base) REST_VSRU(n,b,base); REST_VSRU(n+1,b,base)
231#define REST_4VSRSU(n,b,base) REST_2VSRSU(n,b,base); REST_2VSRSU(n+2,b,base)
232#define REST_8VSRSU(n,b,base) REST_4VSRSU(n,b,base); REST_4VSRSU(n+4,b,base)
233#define REST_16VSRSU(n,b,base) REST_8VSRSU(n,b,base); REST_8VSRSU(n+8,b,base)
234#define REST_32VSRSU(n,b,base) REST_16VSRSU(n,b,base); REST_16VSRSU(n+16,b,base)
235
c51584d5
SW
236/*
237 * b = base register for addressing, o = base offset from register of 1st EVR
238 * n = first EVR, s = scratch
239 */
240#define SAVE_EVR(n,s,b,o) evmergehi s,s,n; stw s,o+4*(n)(b)
241#define SAVE_2EVRS(n,s,b,o) SAVE_EVR(n,s,b,o); SAVE_EVR(n+1,s,b,o)
242#define SAVE_4EVRS(n,s,b,o) SAVE_2EVRS(n,s,b,o); SAVE_2EVRS(n+2,s,b,o)
243#define SAVE_8EVRS(n,s,b,o) SAVE_4EVRS(n,s,b,o); SAVE_4EVRS(n+4,s,b,o)
244#define SAVE_16EVRS(n,s,b,o) SAVE_8EVRS(n,s,b,o); SAVE_8EVRS(n+8,s,b,o)
245#define SAVE_32EVRS(n,s,b,o) SAVE_16EVRS(n,s,b,o); SAVE_16EVRS(n+16,s,b,o)
246#define REST_EVR(n,s,b,o) lwz s,o+4*(n)(b); evmergelo n,s,n
247#define REST_2EVRS(n,s,b,o) REST_EVR(n,s,b,o); REST_EVR(n+1,s,b,o)
248#define REST_4EVRS(n,s,b,o) REST_2EVRS(n,s,b,o); REST_2EVRS(n+2,s,b,o)
249#define REST_8EVRS(n,s,b,o) REST_4EVRS(n,s,b,o); REST_4EVRS(n+4,s,b,o)
250#define REST_16EVRS(n,s,b,o) REST_8EVRS(n,s,b,o); REST_8EVRS(n+8,s,b,o)
251#define REST_32EVRS(n,s,b,o) REST_16EVRS(n,s,b,o); REST_16EVRS(n+16,s,b,o)
5f7c6907 252
8c71632f
ME
253/* Macros to adjust thread priority for hardware multithreading */
254#define HMT_VERY_LOW or 31,31,31 # very low priority
255#define HMT_LOW or 1,1,1
256#define HMT_MEDIUM_LOW or 6,6,6 # medium low priority
257#define HMT_MEDIUM or 2,2,2
258#define HMT_MEDIUM_HIGH or 5,5,5 # medium high priority
259#define HMT_HIGH or 3,3,3
50fb8ebe 260#define HMT_EXTRA_HIGH or 7,7,7 # power7 only
5f7c6907 261
d72be892
MN
262#ifdef CONFIG_PPC64
263#define ULONG_SIZE 8
264#else
265#define ULONG_SIZE 4
266#endif
0b7673c3
MN
267#define __VCPU_GPR(n) (VCPU_GPRS + (n * ULONG_SIZE))
268#define VCPU_GPR(n) __VCPU_GPR(__REG_##n)
d72be892 269
88ced031 270#ifdef __KERNEL__
40ef8cbc
PM
271#ifdef CONFIG_PPC64
272
44ce6a5e 273#define STACKFRAMESIZE 256
0b7673c3
MN
274#define __STK_REG(i) (112 + ((i)-14)*8)
275#define STK_REG(i) __STK_REG(__REG_##i)
44ce6a5e 276
0b7673c3
MN
277#define __STK_PARAM(i) (48 + ((i)-3)*8)
278#define STK_PARAM(i) __STK_PARAM(__REG_##i)
44ce6a5e 279
40ef8cbc
PM
280#define XGLUE(a,b) a##b
281#define GLUE(a,b) XGLUE(a,b)
282
283#define _GLOBAL(name) \
284 .section ".text"; \
285 .align 2 ; \
286 .globl name; \
287 .globl GLUE(.,name); \
288 .section ".opd","aw"; \
289name: \
290 .quad GLUE(.,name); \
291 .quad .TOC.@tocbase; \
292 .quad 0; \
293 .previous; \
294 .type GLUE(.,name),@function; \
295GLUE(.,name):
296
fc68e869 297#define _INIT_GLOBAL(name) \
9203fc9c 298 __REF; \
fc68e869
SR
299 .align 2 ; \
300 .globl name; \
301 .globl GLUE(.,name); \
302 .section ".opd","aw"; \
303name: \
304 .quad GLUE(.,name); \
305 .quad .TOC.@tocbase; \
306 .quad 0; \
307 .previous; \
308 .type GLUE(.,name),@function; \
309GLUE(.,name):
310
40ef8cbc
PM
311#define _KPROBE(name) \
312 .section ".kprobes.text","a"; \
313 .align 2 ; \
314 .globl name; \
315 .globl GLUE(.,name); \
316 .section ".opd","aw"; \
317name: \
318 .quad GLUE(.,name); \
319 .quad .TOC.@tocbase; \
320 .quad 0; \
321 .previous; \
322 .type GLUE(.,name),@function; \
323GLUE(.,name):
324
325#define _STATIC(name) \
326 .section ".text"; \
327 .align 2 ; \
328 .section ".opd","aw"; \
329name: \
330 .quad GLUE(.,name); \
331 .quad .TOC.@tocbase; \
332 .quad 0; \
333 .previous; \
334 .type GLUE(.,name),@function; \
c40b91b5
SR
335GLUE(.,name):
336
337#define _INIT_STATIC(name) \
9203fc9c 338 __REF; \
c40b91b5
SR
339 .align 2 ; \
340 .section ".opd","aw"; \
341name: \
342 .quad GLUE(.,name); \
343 .quad .TOC.@tocbase; \
344 .quad 0; \
345 .previous; \
346 .type GLUE(.,name),@function; \
40ef8cbc
PM
347GLUE(.,name):
348
349#else /* 32-bit */
350
748a7683
KG
351#define _ENTRY(n) \
352 .globl n; \
353n:
354
40ef8cbc
PM
355#define _GLOBAL(n) \
356 .text; \
357 .stabs __stringify(n:F-1),N_FUN,0,0,n;\
358 .globl n; \
359n:
360
361#define _KPROBE(n) \
362 .section ".kprobes.text","a"; \
363 .globl n; \
364n:
365
366#endif
367
5f7c6907 368/*
e58c3495
DG
369 * LOAD_REG_IMMEDIATE(rn, expr)
370 * Loads the value of the constant expression 'expr' into register 'rn'
371 * using immediate instructions only. Use this when it's important not
372 * to reference other data (i.e. on ppc64 when the TOC pointer is not
e31aa453 373 * valid) and when 'expr' is a constant or absolute address.
5f7c6907 374 *
e58c3495
DG
375 * LOAD_REG_ADDR(rn, name)
376 * Loads the address of label 'name' into register 'rn'. Use this when
377 * you don't particularly need immediate instructions only, but you need
378 * the whole address in one register (e.g. it's a structure address and
379 * you want to access various offsets within it). On ppc32 this is
380 * identical to LOAD_REG_IMMEDIATE.
381 *
382 * LOAD_REG_ADDRBASE(rn, name)
383 * ADDROFF(name)
384 * LOAD_REG_ADDRBASE loads part of the address of label 'name' into
385 * register 'rn'. ADDROFF(name) returns the remainder of the address as
386 * a constant expression. ADDROFF(name) is a signed expression < 16 bits
387 * in size, so is suitable for use directly as an offset in load and store
388 * instructions. Use this when loading/storing a single word or less as:
389 * LOAD_REG_ADDRBASE(rX, name)
390 * ld rY,ADDROFF(name)(rX)
5f7c6907
KG
391 */
392#ifdef __powerpc64__
e58c3495 393#define LOAD_REG_IMMEDIATE(reg,expr) \
564aa5cf
MN
394 lis reg,(expr)@highest; \
395 ori reg,reg,(expr)@higher; \
396 rldicr reg,reg,32,31; \
397 oris reg,reg,(expr)@h; \
398 ori reg,reg,(expr)@l;
e58c3495
DG
399
400#define LOAD_REG_ADDR(reg,name) \
564aa5cf 401 ld reg,name@got(r2)
e58c3495
DG
402
403#define LOAD_REG_ADDRBASE(reg,name) LOAD_REG_ADDR(reg,name)
404#define ADDROFF(name) 0
b85a046a 405
f78541dc
PM
406/* offsets for stack frame layout */
407#define LRSAVE 16
b85a046a
PM
408
409#else /* 32-bit */
70620186 410
e58c3495 411#define LOAD_REG_IMMEDIATE(reg,expr) \
564aa5cf
MN
412 lis reg,(expr)@ha; \
413 addi reg,reg,(expr)@l;
e58c3495
DG
414
415#define LOAD_REG_ADDR(reg,name) LOAD_REG_IMMEDIATE(reg, name)
b85a046a 416
564aa5cf 417#define LOAD_REG_ADDRBASE(reg, name) lis reg,name@ha
e58c3495 418#define ADDROFF(name) name@l
b85a046a 419
f78541dc
PM
420/* offsets for stack frame layout */
421#define LRSAVE 4
b85a046a 422
5f7c6907 423#endif
1da177e4 424
5f7c6907 425/* various errata or part fixups */
1da177e4
LT
426#ifdef CONFIG_PPC601_SYNC_FIX
427#define SYNC \
428BEGIN_FTR_SECTION \
429 sync; \
430 isync; \
431END_FTR_SECTION_IFSET(CPU_FTR_601)
432#define SYNC_601 \
433BEGIN_FTR_SECTION \
434 sync; \
435END_FTR_SECTION_IFSET(CPU_FTR_601)
436#define ISYNC_601 \
437BEGIN_FTR_SECTION \
438 isync; \
439END_FTR_SECTION_IFSET(CPU_FTR_601)
440#else
441#define SYNC
442#define SYNC_601
443#define ISYNC_601
444#endif
445
859deea9
BH
446#ifdef CONFIG_PPC_CELL
447#define MFTB(dest) \
44890: mftb dest; \
449BEGIN_FTR_SECTION_NESTED(96); \
450 cmpwi dest,0; \
451 beq- 90b; \
452END_FTR_SECTION_NESTED(CPU_FTR_CELL_TB_BUG, CPU_FTR_CELL_TB_BUG, 96)
453#else
454#define MFTB(dest) mftb dest
455#endif
5f7c6907 456
1da177e4
LT
457#ifndef CONFIG_SMP
458#define TLBSYNC
459#else /* CONFIG_SMP */
460/* tlbsync is not implemented on 601 */
461#define TLBSYNC \
462BEGIN_FTR_SECTION \
463 tlbsync; \
464 sync; \
465END_FTR_SECTION_IFCLR(CPU_FTR_601)
466#endif
467
694caf02
AB
468#ifdef CONFIG_PPC64
469#define MTOCRF(FXM, RS) \
470 BEGIN_FTR_SECTION_NESTED(848); \
86e32fdc 471 mtcrf (FXM), RS; \
694caf02 472 FTR_SECTION_ELSE_NESTED(848); \
86e32fdc 473 mtocrf (FXM), RS; \
694caf02 474 ALT_FTR_SECTION_END_NESTED_IFCLR(CPU_FTR_NOEXECUTE, 848)
13e7a8e8
HM
475
476/*
477 * PPR restore macros used in entry_64.S
478 * Used for P7 or later processors
479 */
480#define HMT_MEDIUM_LOW_HAS_PPR \
481BEGIN_FTR_SECTION_NESTED(944) \
482 HMT_MEDIUM_LOW; \
483END_FTR_SECTION_NESTED(CPU_FTR_HAS_PPR,CPU_FTR_HAS_PPR,944)
484
485#define SET_DEFAULT_THREAD_PPR(ra, rb) \
486BEGIN_FTR_SECTION_NESTED(945) \
487 lis ra,INIT_PPR@highest; /* default ppr=3 */ \
488 ld rb,PACACURRENT(r13); \
489 sldi ra,ra,32; /* 11- 13 bits are used for ppr */ \
490 std ra,TASKTHREADPPR(rb); \
491END_FTR_SECTION_NESTED(CPU_FTR_HAS_PPR,CPU_FTR_HAS_PPR,945)
492
493#define RESTORE_PPR(ra, rb) \
494BEGIN_FTR_SECTION_NESTED(946) \
495 ld ra,PACACURRENT(r13); \
496 ld rb,TASKTHREADPPR(ra); \
497 mtspr SPRN_PPR,rb; /* Restore PPR */ \
498END_FTR_SECTION_NESTED(CPU_FTR_HAS_PPR,CPU_FTR_HAS_PPR,946)
499
694caf02
AB
500#endif
501
1da177e4
LT
502/*
503 * This instruction is not implemented on the PPC 603 or 601; however, on
504 * the 403GCX and 405GP tlbia IS defined and tlbie is not.
505 * All of these instructions exist in the 8xx, they have magical powers,
506 * and they must be used.
507 */
508
509#if !defined(CONFIG_4xx) && !defined(CONFIG_8xx)
510#define tlbia \
511 li r4,1024; \
512 mtctr r4; \
513 lis r4,KERNELBASE@h; \
5140: tlbie r4; \
515 addi r4,r4,0x1000; \
516 bdnz 0b
517#endif
518
5f7c6907 519
5f7c6907
KG
520#ifdef CONFIG_IBM440EP_ERR42
521#define PPC440EP_ERR42 isync
522#else
523#define PPC440EP_ERR42
524#endif
525
44c58ccc
BH
526/*
527 * toreal/fromreal/tophys/tovirt macros. 32-bit BookE makes them
528 * keep the address intact to be compatible with code shared with
529 * 32-bit classic.
530 *
531 * On the other hand, I find it useful to have them behave as expected
532 * by their name (ie always do the addition) on 64-bit BookE
533 */
534#if defined(CONFIG_BOOKE) && !defined(CONFIG_PPC64)
6316222e
PM
535#define toreal(rd)
536#define fromreal(rd)
537
2ca7633d
RM
538/*
539 * We use addis to ensure compatibility with the "classic" ppc versions of
540 * these macros, which use rs = 0 to get the tophys offset in rd, rather than
541 * converting the address in r0, and so this version has to do that too
542 * (i.e. set register rd to 0 when rs == 0).
543 */
1da177e4
LT
544#define tophys(rd,rs) \
545 addis rd,rs,0
546
547#define tovirt(rd,rs) \
548 addis rd,rs,0
549
5f7c6907 550#elif defined(CONFIG_PPC64)
6316222e
PM
551#define toreal(rd) /* we can access c000... in real mode */
552#define fromreal(rd)
553
5f7c6907 554#define tophys(rd,rs) \
6316222e 555 clrldi rd,rs,2
5f7c6907
KG
556
557#define tovirt(rd,rs) \
6316222e
PM
558 rotldi rd,rs,16; \
559 ori rd,rd,((KERNELBASE>>48)&0xFFFF);\
560 rotldi rd,rd,48
5f7c6907 561#else
1da177e4
LT
562/*
563 * On APUS (Amiga PowerPC cpu upgrade board), we don't know the
564 * physical base address of RAM at compile time.
565 */
6316222e
PM
566#define toreal(rd) tophys(rd,rd)
567#define fromreal(rd) tovirt(rd,rd)
568
1da177e4 569#define tophys(rd,rs) \
ccdcef72 5700: addis rd,rs,-PAGE_OFFSET@h; \
1da177e4
LT
571 .section ".vtop_fixup","aw"; \
572 .align 1; \
573 .long 0b; \
574 .previous
575
576#define tovirt(rd,rs) \
ccdcef72 5770: addis rd,rs,PAGE_OFFSET@h; \
1da177e4
LT
578 .section ".ptov_fixup","aw"; \
579 .align 1; \
580 .long 0b; \
581 .previous
5f7c6907 582#endif
1da177e4 583
44c58ccc 584#ifdef CONFIG_PPC_BOOK3S_64
40ef8cbc
PM
585#define RFI rfid
586#define MTMSRD(r) mtmsrd r
b38c77d8 587#define MTMSR_EERI(reg) mtmsrd reg,1
1da177e4
LT
588#else
589#define FIX_SRR1(ra, rb)
590#ifndef CONFIG_40x
591#define RFI rfi
592#else
593#define RFI rfi; b . /* Prevent prefetch past rfi */
594#endif
595#define MTMSRD(r) mtmsr r
b38c77d8 596#define MTMSR_EERI(reg) mtmsr reg
1da177e4 597#define CLR_TOP32(r)
c9cf73ae
MP
598#endif
599
88ced031
AB
600#endif /* __KERNEL__ */
601
1da177e4
LT
602/* The boring bits... */
603
604/* Condition Register Bit Fields */
605
606#define cr0 0
607#define cr1 1
608#define cr2 2
609#define cr3 3
610#define cr4 4
611#define cr5 5
612#define cr6 6
613#define cr7 7
614
615
9a13a524
MN
616/*
617 * General Purpose Registers (GPRs)
618 *
619 * The lower case r0-r31 should be used in preference to the upper
620 * case R0-R31 as they provide more error checking in the assembler.
621 * Use R0-31 only when really nessesary.
622 */
623
624#define r0 %r0
625#define r1 %r1
626#define r2 %r2
627#define r3 %r3
628#define r4 %r4
629#define r5 %r5
630#define r6 %r6
631#define r7 %r7
632#define r8 %r8
633#define r9 %r9
634#define r10 %r10
635#define r11 %r11
636#define r12 %r12
637#define r13 %r13
638#define r14 %r14
639#define r15 %r15
640#define r16 %r16
641#define r17 %r17
642#define r18 %r18
643#define r19 %r19
644#define r20 %r20
645#define r21 %r21
646#define r22 %r22
647#define r23 %r23
648#define r24 %r24
649#define r25 %r25
650#define r26 %r26
651#define r27 %r27
652#define r28 %r28
653#define r29 %r29
654#define r30 %r30
655#define r31 %r31
1da177e4
LT
656
657
658/* Floating Point Registers (FPRs) */
659
660#define fr0 0
661#define fr1 1
662#define fr2 2
663#define fr3 3
664#define fr4 4
665#define fr5 5
666#define fr6 6
667#define fr7 7
668#define fr8 8
669#define fr9 9
670#define fr10 10
671#define fr11 11
672#define fr12 12
673#define fr13 13
674#define fr14 14
675#define fr15 15
676#define fr16 16
677#define fr17 17
678#define fr18 18
679#define fr19 19
680#define fr20 20
681#define fr21 21
682#define fr22 22
683#define fr23 23
684#define fr24 24
685#define fr25 25
686#define fr26 26
687#define fr27 27
688#define fr28 28
689#define fr29 29
690#define fr30 30
691#define fr31 31
692
5f7c6907
KG
693/* AltiVec Registers (VPRs) */
694
1da177e4
LT
695#define vr0 0
696#define vr1 1
697#define vr2 2
698#define vr3 3
699#define vr4 4
700#define vr5 5
701#define vr6 6
702#define vr7 7
703#define vr8 8
704#define vr9 9
705#define vr10 10
706#define vr11 11
707#define vr12 12
708#define vr13 13
709#define vr14 14
710#define vr15 15
711#define vr16 16
712#define vr17 17
713#define vr18 18
714#define vr19 19
715#define vr20 20
716#define vr21 21
717#define vr22 22
718#define vr23 23
719#define vr24 24
720#define vr25 25
721#define vr26 26
722#define vr27 27
723#define vr28 28
724#define vr29 29
725#define vr30 30
726#define vr31 31
727
72ffff5b
MN
728/* VSX Registers (VSRs) */
729
730#define vsr0 0
731#define vsr1 1
732#define vsr2 2
733#define vsr3 3
734#define vsr4 4
735#define vsr5 5
736#define vsr6 6
737#define vsr7 7
738#define vsr8 8
739#define vsr9 9
740#define vsr10 10
741#define vsr11 11
742#define vsr12 12
743#define vsr13 13
744#define vsr14 14
745#define vsr15 15
746#define vsr16 16
747#define vsr17 17
748#define vsr18 18
749#define vsr19 19
750#define vsr20 20
751#define vsr21 21
752#define vsr22 22
753#define vsr23 23
754#define vsr24 24
755#define vsr25 25
756#define vsr26 26
757#define vsr27 27
758#define vsr28 28
759#define vsr29 29
760#define vsr30 30
761#define vsr31 31
762#define vsr32 32
763#define vsr33 33
764#define vsr34 34
765#define vsr35 35
766#define vsr36 36
767#define vsr37 37
768#define vsr38 38
769#define vsr39 39
770#define vsr40 40
771#define vsr41 41
772#define vsr42 42
773#define vsr43 43
774#define vsr44 44
775#define vsr45 45
776#define vsr46 46
777#define vsr47 47
778#define vsr48 48
779#define vsr49 49
780#define vsr50 50
781#define vsr51 51
782#define vsr52 52
783#define vsr53 53
784#define vsr54 54
785#define vsr55 55
786#define vsr56 56
787#define vsr57 57
788#define vsr58 58
789#define vsr59 59
790#define vsr60 60
791#define vsr61 61
792#define vsr62 62
793#define vsr63 63
794
5f7c6907
KG
795/* SPE Registers (EVPRs) */
796
1da177e4
LT
797#define evr0 0
798#define evr1 1
799#define evr2 2
800#define evr3 3
801#define evr4 4
802#define evr5 5
803#define evr6 6
804#define evr7 7
805#define evr8 8
806#define evr9 9
807#define evr10 10
808#define evr11 11
809#define evr12 12
810#define evr13 13
811#define evr14 14
812#define evr15 15
813#define evr16 16
814#define evr17 17
815#define evr18 18
816#define evr19 19
817#define evr20 20
818#define evr21 21
819#define evr22 22
820#define evr23 23
821#define evr24 24
822#define evr25 25
823#define evr26 26
824#define evr27 27
825#define evr28 28
826#define evr29 29
827#define evr30 30
828#define evr31 31
829
830/* some stab codes */
831#define N_FUN 36
832#define N_RSYM 64
833#define N_SLINE 68
834#define N_SO 100
5f7c6907 835
5f7c6907
KG
836#endif /* __ASSEMBLY__ */
837
838#endif /* _ASM_POWERPC_PPC_ASM_H */
This page took 0.63742 seconds and 5 git commands to generate.