powerpc: Fix interrupt-tree parsing
[deliverable/linux.git] / arch / powerpc / kernel / prom.c
CommitLineData
9b6b563c
PM
1/*
2 * Procedures for creating, accessing and interpreting the device tree.
3 *
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 */
15
16#undef DEBUG
17
18#include <stdarg.h>
19#include <linux/config.h>
20#include <linux/kernel.h>
21#include <linux/string.h>
22#include <linux/init.h>
23#include <linux/threads.h>
24#include <linux/spinlock.h>
25#include <linux/types.h>
26#include <linux/pci.h>
27#include <linux/stringify.h>
28#include <linux/delay.h>
29#include <linux/initrd.h>
30#include <linux/bitops.h>
31#include <linux/module.h>
32
33#include <asm/prom.h>
34#include <asm/rtas.h>
35#include <asm/lmb.h>
36#include <asm/page.h>
37#include <asm/processor.h>
38#include <asm/irq.h>
39#include <asm/io.h>
40#include <asm/smp.h>
41#include <asm/system.h>
42#include <asm/mmu.h>
43#include <asm/pgtable.h>
44#include <asm/pci.h>
45#include <asm/iommu.h>
46#include <asm/btext.h>
47#include <asm/sections.h>
48#include <asm/machdep.h>
49#include <asm/pSeries_reconfig.h>
40ef8cbc
PM
50#include <asm/pci-bridge.h>
51#ifdef CONFIG_PPC64
52#include <asm/systemcfg.h>
53#endif
9b6b563c
PM
54
55#ifdef DEBUG
56#define DBG(fmt...) printk(KERN_ERR fmt)
57#else
58#define DBG(fmt...)
59#endif
60
61struct pci_reg_property {
62 struct pci_address addr;
63 u32 size_hi;
64 u32 size_lo;
65};
66
67struct isa_reg_property {
68 u32 space;
69 u32 address;
70 u32 size;
71};
72
73
74typedef int interpret_func(struct device_node *, unsigned long *,
75 int, int, int);
76
77extern struct rtas_t rtas;
78extern struct lmb lmb;
79extern unsigned long klimit;
80
81static unsigned long memory_limit;
82
83static int __initdata dt_root_addr_cells;
84static int __initdata dt_root_size_cells;
85
86#ifdef CONFIG_PPC64
87static int __initdata iommu_is_off;
88int __initdata iommu_force_on;
89extern unsigned long tce_alloc_start, tce_alloc_end;
90#endif
91
92typedef u32 cell_t;
93
94#if 0
95static struct boot_param_header *initial_boot_params __initdata;
96#else
97struct boot_param_header *initial_boot_params;
98#endif
99
100static struct device_node *allnodes = NULL;
101
102/* use when traversing tree through the allnext, child, sibling,
103 * or parent members of struct device_node.
104 */
105static DEFINE_RWLOCK(devtree_lock);
106
107/* export that to outside world */
108struct device_node *of_chosen;
109
110struct device_node *dflt_interrupt_controller;
111int num_interrupt_controllers;
112
9b6b563c
PM
113/*
114 * Wrapper for allocating memory for various data that needs to be
115 * attached to device nodes as they are processed at boot or when
116 * added to the device tree later (e.g. DLPAR). At boot there is
117 * already a region reserved so we just increment *mem_start by size;
118 * otherwise we call kmalloc.
119 */
120static void * prom_alloc(unsigned long size, unsigned long *mem_start)
121{
122 unsigned long tmp;
123
124 if (!mem_start)
125 return kmalloc(size, GFP_KERNEL);
126
127 tmp = *mem_start;
128 *mem_start += size;
129 return (void *)tmp;
130}
131
132/*
133 * Find the device_node with a given phandle.
134 */
135static struct device_node * find_phandle(phandle ph)
136{
137 struct device_node *np;
138
139 for (np = allnodes; np != 0; np = np->allnext)
140 if (np->linux_phandle == ph)
141 return np;
142 return NULL;
143}
144
145/*
146 * Find the interrupt parent of a node.
147 */
148static struct device_node * __devinit intr_parent(struct device_node *p)
149{
150 phandle *parp;
151
152 parp = (phandle *) get_property(p, "interrupt-parent", NULL);
153 if (parp == NULL)
154 return p->parent;
155 p = find_phandle(*parp);
156 if (p != NULL)
157 return p;
158 /*
159 * On a powermac booted with BootX, we don't get to know the
160 * phandles for any nodes, so find_phandle will return NULL.
161 * Fortunately these machines only have one interrupt controller
162 * so there isn't in fact any ambiguity. -- paulus
163 */
164 if (num_interrupt_controllers == 1)
165 p = dflt_interrupt_controller;
166 return p;
167}
168
169/*
170 * Find out the size of each entry of the interrupts property
171 * for a node.
172 */
173int __devinit prom_n_intr_cells(struct device_node *np)
174{
175 struct device_node *p;
176 unsigned int *icp;
177
178 for (p = np; (p = intr_parent(p)) != NULL; ) {
179 icp = (unsigned int *)
180 get_property(p, "#interrupt-cells", NULL);
181 if (icp != NULL)
182 return *icp;
183 if (get_property(p, "interrupt-controller", NULL) != NULL
184 || get_property(p, "interrupt-map", NULL) != NULL) {
185 printk("oops, node %s doesn't have #interrupt-cells\n",
186 p->full_name);
187 return 1;
188 }
189 }
190#ifdef DEBUG_IRQ
191 printk("prom_n_intr_cells failed for %s\n", np->full_name);
192#endif
193 return 1;
194}
195
196/*
197 * Map an interrupt from a device up to the platform interrupt
198 * descriptor.
199 */
200static int __devinit map_interrupt(unsigned int **irq, struct device_node **ictrler,
201 struct device_node *np, unsigned int *ints,
202 int nintrc)
203{
204 struct device_node *p, *ipar;
205 unsigned int *imap, *imask, *ip;
206 int i, imaplen, match;
207 int newintrc = 0, newaddrc = 0;
208 unsigned int *reg;
209 int naddrc;
210
211 reg = (unsigned int *) get_property(np, "reg", NULL);
212 naddrc = prom_n_addr_cells(np);
213 p = intr_parent(np);
214 while (p != NULL) {
215 if (get_property(p, "interrupt-controller", NULL) != NULL)
216 /* this node is an interrupt controller, stop here */
217 break;
218 imap = (unsigned int *)
219 get_property(p, "interrupt-map", &imaplen);
220 if (imap == NULL) {
221 p = intr_parent(p);
222 continue;
223 }
224 imask = (unsigned int *)
225 get_property(p, "interrupt-map-mask", NULL);
226 if (imask == NULL) {
227 printk("oops, %s has interrupt-map but no mask\n",
228 p->full_name);
229 return 0;
230 }
231 imaplen /= sizeof(unsigned int);
232 match = 0;
233 ipar = NULL;
234 while (imaplen > 0 && !match) {
235 /* check the child-interrupt field */
236 match = 1;
237 for (i = 0; i < naddrc && match; ++i)
238 match = ((reg[i] ^ imap[i]) & imask[i]) == 0;
239 for (; i < naddrc + nintrc && match; ++i)
240 match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0;
241 imap += naddrc + nintrc;
242 imaplen -= naddrc + nintrc;
243 /* grab the interrupt parent */
244 ipar = find_phandle((phandle) *imap++);
245 --imaplen;
246 if (ipar == NULL && num_interrupt_controllers == 1)
247 /* cope with BootX not giving us phandles */
248 ipar = dflt_interrupt_controller;
249 if (ipar == NULL) {
250 printk("oops, no int parent %x in map of %s\n",
251 imap[-1], p->full_name);
252 return 0;
253 }
254 /* find the parent's # addr and intr cells */
255 ip = (unsigned int *)
256 get_property(ipar, "#interrupt-cells", NULL);
257 if (ip == NULL) {
258 printk("oops, no #interrupt-cells on %s\n",
259 ipar->full_name);
260 return 0;
261 }
262 newintrc = *ip;
263 ip = (unsigned int *)
264 get_property(ipar, "#address-cells", NULL);
265 newaddrc = (ip == NULL)? 0: *ip;
266 imap += newaddrc + newintrc;
267 imaplen -= newaddrc + newintrc;
268 }
269 if (imaplen < 0) {
270 printk("oops, error decoding int-map on %s, len=%d\n",
271 p->full_name, imaplen);
272 return 0;
273 }
274 if (!match) {
275#ifdef DEBUG_IRQ
276 printk("oops, no match in %s int-map for %s\n",
277 p->full_name, np->full_name);
278#endif
279 return 0;
280 }
281 p = ipar;
282 naddrc = newaddrc;
283 nintrc = newintrc;
284 ints = imap - nintrc;
285 reg = ints - naddrc;
286 }
287 if (p == NULL) {
288#ifdef DEBUG_IRQ
289 printk("hmmm, int tree for %s doesn't have ctrler\n",
290 np->full_name);
291#endif
292 return 0;
293 }
294 *irq = ints;
295 *ictrler = p;
296 return nintrc;
297}
298
6d0124fc
PM
299static unsigned char map_isa_senses[4] = {
300 IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
301 IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
302 IRQ_SENSE_EDGE | IRQ_POLARITY_NEGATIVE,
303 IRQ_SENSE_EDGE | IRQ_POLARITY_POSITIVE
304};
305
306static unsigned char map_mpic_senses[4] = {
307 IRQ_SENSE_EDGE | IRQ_POLARITY_POSITIVE,
308 IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
309 /* 2 seems to be used for the 8259 cascade... */
310 IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
311 IRQ_SENSE_EDGE | IRQ_POLARITY_NEGATIVE,
312};
313
9b6b563c
PM
314static int __devinit finish_node_interrupts(struct device_node *np,
315 unsigned long *mem_start,
316 int measure_only)
317{
318 unsigned int *ints;
319 int intlen, intrcells, intrcount;
6d0124fc 320 int i, j, n, sense;
9b6b563c
PM
321 unsigned int *irq, virq;
322 struct device_node *ic;
323
a575b807
PM
324 if (num_interrupt_controllers == 0) {
325 /*
326 * Old machines just have a list of interrupt numbers
327 * and no interrupt-controller nodes.
328 */
329 ints = (unsigned int *) get_property(np, "AAPL,interrupts",
330 &intlen);
331 /* XXX old interpret_pci_props looked in parent too */
332 /* XXX old interpret_macio_props looked for interrupts
333 before AAPL,interrupts */
334 if (ints == NULL)
335 ints = (unsigned int *) get_property(np, "interrupts",
336 &intlen);
337 if (ints == NULL)
338 return 0;
339
340 np->n_intrs = intlen / sizeof(unsigned int);
341 np->intrs = prom_alloc(np->n_intrs * sizeof(np->intrs[0]),
342 mem_start);
343 if (!np->intrs)
344 return -ENOMEM;
345 if (measure_only)
346 return 0;
347
348 for (i = 0; i < np->n_intrs; ++i) {
349 np->intrs[i].line = *ints++;
6d0124fc
PM
350 np->intrs[i].sense = IRQ_SENSE_LEVEL
351 | IRQ_POLARITY_NEGATIVE;
a575b807
PM
352 }
353 return 0;
354 }
355
9b6b563c
PM
356 ints = (unsigned int *) get_property(np, "interrupts", &intlen);
357 if (ints == NULL)
358 return 0;
359 intrcells = prom_n_intr_cells(np);
360 intlen /= intrcells * sizeof(unsigned int);
361
362 np->intrs = prom_alloc(intlen * sizeof(*(np->intrs)), mem_start);
363 if (!np->intrs)
364 return -ENOMEM;
365
366 if (measure_only)
367 return 0;
368
369 intrcount = 0;
370 for (i = 0; i < intlen; ++i, ints += intrcells) {
371 n = map_interrupt(&irq, &ic, np, ints, intrcells);
372 if (n <= 0)
373 continue;
374
375 /* don't map IRQ numbers under a cascaded 8259 controller */
376 if (ic && device_is_compatible(ic, "chrp,iic")) {
377 np->intrs[intrcount].line = irq[0];
6d0124fc
PM
378 sense = (n > 1)? (irq[1] & 3): 3;
379 np->intrs[intrcount].sense = map_isa_senses[sense];
9b6b563c 380 } else {
9b6b563c 381 virq = virt_irq_create_mapping(irq[0]);
6d0124fc 382#ifdef CONFIG_PPC64
9b6b563c
PM
383 if (virq == NO_IRQ) {
384 printk(KERN_CRIT "Could not allocate interrupt"
385 " number for %s\n", np->full_name);
386 continue;
387 }
9b6b563c 388#endif
6d0124fc
PM
389 np->intrs[intrcount].line = irq_offset_up(virq);
390 sense = (n > 1)? (irq[1] & 3): 1;
391 np->intrs[intrcount].sense = map_mpic_senses[sense];
9b6b563c
PM
392 }
393
394#ifdef CONFIG_PPC64
395 /* We offset irq numbers for the u3 MPIC by 128 in PowerMac */
396 if (systemcfg->platform == PLATFORM_POWERMAC && ic && ic->parent) {
397 char *name = get_property(ic->parent, "name", NULL);
398 if (name && !strcmp(name, "u3"))
399 np->intrs[intrcount].line += 128;
400 else if (!(name && !strcmp(name, "mac-io")))
401 /* ignore other cascaded controllers, such as
402 the k2-sata-root */
403 break;
404 }
405#endif
9b6b563c
PM
406 if (n > 2) {
407 printk("hmmm, got %d intr cells for %s:", n,
408 np->full_name);
409 for (j = 0; j < n; ++j)
410 printk(" %d", irq[j]);
411 printk("\n");
412 }
413 ++intrcount;
414 }
415 np->n_intrs = intrcount;
416
417 return 0;
418}
419
420static int __devinit interpret_pci_props(struct device_node *np,
421 unsigned long *mem_start,
422 int naddrc, int nsizec,
423 int measure_only)
424{
425 struct address_range *adr;
426 struct pci_reg_property *pci_addrs;
427 int i, l, n_addrs;
428
429 pci_addrs = (struct pci_reg_property *)
430 get_property(np, "assigned-addresses", &l);
431 if (!pci_addrs)
432 return 0;
433
434 n_addrs = l / sizeof(*pci_addrs);
435
436 adr = prom_alloc(n_addrs * sizeof(*adr), mem_start);
437 if (!adr)
438 return -ENOMEM;
439
440 if (measure_only)
441 return 0;
442
443 np->addrs = adr;
444 np->n_addrs = n_addrs;
445
446 for (i = 0; i < n_addrs; i++) {
447 adr[i].space = pci_addrs[i].addr.a_hi;
448 adr[i].address = pci_addrs[i].addr.a_lo |
449 ((u64)pci_addrs[i].addr.a_mid << 32);
450 adr[i].size = pci_addrs[i].size_lo;
451 }
452
453 return 0;
454}
455
456static int __init interpret_dbdma_props(struct device_node *np,
457 unsigned long *mem_start,
458 int naddrc, int nsizec,
459 int measure_only)
460{
461 struct reg_property32 *rp;
462 struct address_range *adr;
463 unsigned long base_address;
464 int i, l;
465 struct device_node *db;
466
467 base_address = 0;
468 if (!measure_only) {
469 for (db = np->parent; db != NULL; db = db->parent) {
470 if (!strcmp(db->type, "dbdma") && db->n_addrs != 0) {
471 base_address = db->addrs[0].address;
472 break;
473 }
474 }
475 }
476
477 rp = (struct reg_property32 *) get_property(np, "reg", &l);
478 if (rp != 0 && l >= sizeof(struct reg_property32)) {
479 i = 0;
480 adr = (struct address_range *) (*mem_start);
481 while ((l -= sizeof(struct reg_property32)) >= 0) {
482 if (!measure_only) {
483 adr[i].space = 2;
484 adr[i].address = rp[i].address + base_address;
485 adr[i].size = rp[i].size;
486 }
487 ++i;
488 }
489 np->addrs = adr;
490 np->n_addrs = i;
491 (*mem_start) += i * sizeof(struct address_range);
492 }
493
494 return 0;
495}
496
497static int __init interpret_macio_props(struct device_node *np,
498 unsigned long *mem_start,
499 int naddrc, int nsizec,
500 int measure_only)
501{
502 struct reg_property32 *rp;
503 struct address_range *adr;
504 unsigned long base_address;
505 int i, l;
506 struct device_node *db;
507
508 base_address = 0;
509 if (!measure_only) {
510 for (db = np->parent; db != NULL; db = db->parent) {
511 if (!strcmp(db->type, "mac-io") && db->n_addrs != 0) {
512 base_address = db->addrs[0].address;
513 break;
514 }
515 }
516 }
517
518 rp = (struct reg_property32 *) get_property(np, "reg", &l);
519 if (rp != 0 && l >= sizeof(struct reg_property32)) {
520 i = 0;
521 adr = (struct address_range *) (*mem_start);
522 while ((l -= sizeof(struct reg_property32)) >= 0) {
523 if (!measure_only) {
524 adr[i].space = 2;
525 adr[i].address = rp[i].address + base_address;
526 adr[i].size = rp[i].size;
527 }
528 ++i;
529 }
530 np->addrs = adr;
531 np->n_addrs = i;
532 (*mem_start) += i * sizeof(struct address_range);
533 }
534
535 return 0;
536}
537
538static int __init interpret_isa_props(struct device_node *np,
539 unsigned long *mem_start,
540 int naddrc, int nsizec,
541 int measure_only)
542{
543 struct isa_reg_property *rp;
544 struct address_range *adr;
545 int i, l;
546
547 rp = (struct isa_reg_property *) get_property(np, "reg", &l);
548 if (rp != 0 && l >= sizeof(struct isa_reg_property)) {
549 i = 0;
550 adr = (struct address_range *) (*mem_start);
551 while ((l -= sizeof(struct isa_reg_property)) >= 0) {
552 if (!measure_only) {
553 adr[i].space = rp[i].space;
554 adr[i].address = rp[i].address;
555 adr[i].size = rp[i].size;
556 }
557 ++i;
558 }
559 np->addrs = adr;
560 np->n_addrs = i;
561 (*mem_start) += i * sizeof(struct address_range);
562 }
563
564 return 0;
565}
566
567static int __init interpret_root_props(struct device_node *np,
568 unsigned long *mem_start,
569 int naddrc, int nsizec,
570 int measure_only)
571{
572 struct address_range *adr;
573 int i, l;
574 unsigned int *rp;
575 int rpsize = (naddrc + nsizec) * sizeof(unsigned int);
576
577 rp = (unsigned int *) get_property(np, "reg", &l);
578 if (rp != 0 && l >= rpsize) {
579 i = 0;
580 adr = (struct address_range *) (*mem_start);
581 while ((l -= rpsize) >= 0) {
582 if (!measure_only) {
583 adr[i].space = 0;
584 adr[i].address = rp[naddrc - 1];
585 adr[i].size = rp[naddrc + nsizec - 1];
586 }
587 ++i;
588 rp += naddrc + nsizec;
589 }
590 np->addrs = adr;
591 np->n_addrs = i;
592 (*mem_start) += i * sizeof(struct address_range);
593 }
594
595 return 0;
596}
597
598static int __devinit finish_node(struct device_node *np,
599 unsigned long *mem_start,
600 interpret_func *ifunc,
601 int naddrc, int nsizec,
602 int measure_only)
603{
604 struct device_node *child;
605 int *ip, rc = 0;
606
607 /* get the device addresses and interrupts */
608 if (ifunc != NULL)
609 rc = ifunc(np, mem_start, naddrc, nsizec, measure_only);
610 if (rc)
611 goto out;
612
613 rc = finish_node_interrupts(np, mem_start, measure_only);
614 if (rc)
615 goto out;
616
617 /* Look for #address-cells and #size-cells properties. */
618 ip = (int *) get_property(np, "#address-cells", NULL);
619 if (ip != NULL)
620 naddrc = *ip;
621 ip = (int *) get_property(np, "#size-cells", NULL);
622 if (ip != NULL)
623 nsizec = *ip;
624
625 if (!strcmp(np->name, "device-tree") || np->parent == NULL)
626 ifunc = interpret_root_props;
627 else if (np->type == 0)
628 ifunc = NULL;
629 else if (!strcmp(np->type, "pci") || !strcmp(np->type, "vci"))
630 ifunc = interpret_pci_props;
631 else if (!strcmp(np->type, "dbdma"))
632 ifunc = interpret_dbdma_props;
633 else if (!strcmp(np->type, "mac-io") || ifunc == interpret_macio_props)
634 ifunc = interpret_macio_props;
635 else if (!strcmp(np->type, "isa"))
636 ifunc = interpret_isa_props;
637 else if (!strcmp(np->name, "uni-n") || !strcmp(np->name, "u3"))
638 ifunc = interpret_root_props;
639 else if (!((ifunc == interpret_dbdma_props
640 || ifunc == interpret_macio_props)
641 && (!strcmp(np->type, "escc")
642 || !strcmp(np->type, "media-bay"))))
643 ifunc = NULL;
644
645 for (child = np->child; child != NULL; child = child->sibling) {
646 rc = finish_node(child, mem_start, ifunc,
647 naddrc, nsizec, measure_only);
648 if (rc)
649 goto out;
650 }
651out:
652 return rc;
653}
654
655static void __init scan_interrupt_controllers(void)
656{
657 struct device_node *np;
658 int n = 0;
659 char *name, *ic;
660 int iclen;
661
662 for (np = allnodes; np != NULL; np = np->allnext) {
663 ic = get_property(np, "interrupt-controller", &iclen);
664 name = get_property(np, "name", NULL);
665 /* checking iclen makes sure we don't get a false
666 match on /chosen.interrupt_controller */
667 if ((name != NULL
668 && strcmp(name, "interrupt-controller") == 0)
669 || (ic != NULL && iclen == 0
670 && strcmp(name, "AppleKiwi"))) {
671 if (n == 0)
672 dflt_interrupt_controller = np;
673 ++n;
674 }
675 }
676 num_interrupt_controllers = n;
677}
678
679/**
680 * finish_device_tree is called once things are running normally
681 * (i.e. with text and data mapped to the address they were linked at).
682 * It traverses the device tree and fills in some of the additional,
683 * fields in each node like {n_}addrs and {n_}intrs, the virt interrupt
684 * mapping is also initialized at this point.
685 */
686void __init finish_device_tree(void)
687{
688 unsigned long start, end, size = 0;
689
690 DBG(" -> finish_device_tree\n");
691
692#ifdef CONFIG_PPC64
693 /* Initialize virtual IRQ map */
694 virt_irq_init();
695#endif
696 scan_interrupt_controllers();
697
698 /*
699 * Finish device-tree (pre-parsing some properties etc...)
700 * We do this in 2 passes. One with "measure_only" set, which
701 * will only measure the amount of memory needed, then we can
702 * allocate that memory, and call finish_node again. However,
703 * we must be careful as most routines will fail nowadays when
704 * prom_alloc() returns 0, so we must make sure our first pass
705 * doesn't start at 0. We pre-initialize size to 16 for that
706 * reason and then remove those additional 16 bytes
707 */
708 size = 16;
709 finish_node(allnodes, &size, NULL, 0, 0, 1);
710 size -= 16;
711 end = start = (unsigned long) __va(lmb_alloc(size, 128));
712 finish_node(allnodes, &end, NULL, 0, 0, 0);
713 BUG_ON(end != start + size);
714
715 DBG(" <- finish_device_tree\n");
716}
717
718static inline char *find_flat_dt_string(u32 offset)
719{
720 return ((char *)initial_boot_params) +
721 initial_boot_params->off_dt_strings + offset;
722}
723
724/**
725 * This function is used to scan the flattened device-tree, it is
726 * used to extract the memory informations at boot before we can
727 * unflatten the tree
728 */
729static int __init scan_flat_dt(int (*it)(unsigned long node,
730 const char *uname, int depth,
731 void *data),
732 void *data)
733{
734 unsigned long p = ((unsigned long)initial_boot_params) +
735 initial_boot_params->off_dt_struct;
736 int rc = 0;
737 int depth = -1;
738
739 do {
740 u32 tag = *((u32 *)p);
741 char *pathp;
742
743 p += 4;
744 if (tag == OF_DT_END_NODE) {
745 depth --;
746 continue;
747 }
748 if (tag == OF_DT_NOP)
749 continue;
750 if (tag == OF_DT_END)
751 break;
752 if (tag == OF_DT_PROP) {
753 u32 sz = *((u32 *)p);
754 p += 8;
755 if (initial_boot_params->version < 0x10)
756 p = _ALIGN(p, sz >= 8 ? 8 : 4);
757 p += sz;
758 p = _ALIGN(p, 4);
759 continue;
760 }
761 if (tag != OF_DT_BEGIN_NODE) {
762 printk(KERN_WARNING "Invalid tag %x scanning flattened"
763 " device tree !\n", tag);
764 return -EINVAL;
765 }
766 depth++;
767 pathp = (char *)p;
768 p = _ALIGN(p + strlen(pathp) + 1, 4);
769 if ((*pathp) == '/') {
770 char *lp, *np;
771 for (lp = NULL, np = pathp; *np; np++)
772 if ((*np) == '/')
773 lp = np+1;
774 if (lp != NULL)
775 pathp = lp;
776 }
777 rc = it(p, pathp, depth, data);
778 if (rc != 0)
779 break;
780 } while(1);
781
782 return rc;
783}
784
785/**
786 * This function can be used within scan_flattened_dt callback to get
787 * access to properties
788 */
789static void* __init get_flat_dt_prop(unsigned long node, const char *name,
790 unsigned long *size)
791{
792 unsigned long p = node;
793
794 do {
795 u32 tag = *((u32 *)p);
796 u32 sz, noff;
797 const char *nstr;
798
799 p += 4;
800 if (tag == OF_DT_NOP)
801 continue;
802 if (tag != OF_DT_PROP)
803 return NULL;
804
805 sz = *((u32 *)p);
806 noff = *((u32 *)(p + 4));
807 p += 8;
808 if (initial_boot_params->version < 0x10)
809 p = _ALIGN(p, sz >= 8 ? 8 : 4);
810
811 nstr = find_flat_dt_string(noff);
812 if (nstr == NULL) {
813 printk(KERN_WARNING "Can't find property index"
814 " name !\n");
815 return NULL;
816 }
817 if (strcmp(name, nstr) == 0) {
818 if (size)
819 *size = sz;
820 return (void *)p;
821 }
822 p += sz;
823 p = _ALIGN(p, 4);
824 } while(1);
825}
826
827static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
828 unsigned long align)
829{
830 void *res;
831
832 *mem = _ALIGN(*mem, align);
833 res = (void *)*mem;
834 *mem += size;
835
836 return res;
837}
838
839static unsigned long __init unflatten_dt_node(unsigned long mem,
840 unsigned long *p,
841 struct device_node *dad,
842 struct device_node ***allnextpp,
843 unsigned long fpsize)
844{
845 struct device_node *np;
846 struct property *pp, **prev_pp = NULL;
847 char *pathp;
848 u32 tag;
849 unsigned int l, allocl;
850 int has_name = 0;
851 int new_format = 0;
852
853 tag = *((u32 *)(*p));
854 if (tag != OF_DT_BEGIN_NODE) {
855 printk("Weird tag at start of node: %x\n", tag);
856 return mem;
857 }
858 *p += 4;
859 pathp = (char *)*p;
860 l = allocl = strlen(pathp) + 1;
861 *p = _ALIGN(*p + l, 4);
862
863 /* version 0x10 has a more compact unit name here instead of the full
864 * path. we accumulate the full path size using "fpsize", we'll rebuild
865 * it later. We detect this because the first character of the name is
866 * not '/'.
867 */
868 if ((*pathp) != '/') {
869 new_format = 1;
870 if (fpsize == 0) {
871 /* root node: special case. fpsize accounts for path
872 * plus terminating zero. root node only has '/', so
873 * fpsize should be 2, but we want to avoid the first
874 * level nodes to have two '/' so we use fpsize 1 here
875 */
876 fpsize = 1;
877 allocl = 2;
878 } else {
879 /* account for '/' and path size minus terminal 0
880 * already in 'l'
881 */
882 fpsize += l;
883 allocl = fpsize;
884 }
885 }
886
887
888 np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
889 __alignof__(struct device_node));
890 if (allnextpp) {
891 memset(np, 0, sizeof(*np));
892 np->full_name = ((char*)np) + sizeof(struct device_node);
893 if (new_format) {
894 char *p = np->full_name;
895 /* rebuild full path for new format */
896 if (dad && dad->parent) {
897 strcpy(p, dad->full_name);
898#ifdef DEBUG
899 if ((strlen(p) + l + 1) != allocl) {
900 DBG("%s: p: %d, l: %d, a: %d\n",
901 pathp, strlen(p), l, allocl);
902 }
903#endif
904 p += strlen(p);
905 }
906 *(p++) = '/';
907 memcpy(p, pathp, l);
908 } else
909 memcpy(np->full_name, pathp, l);
910 prev_pp = &np->properties;
911 **allnextpp = np;
912 *allnextpp = &np->allnext;
913 if (dad != NULL) {
914 np->parent = dad;
915 /* we temporarily use the next field as `last_child'*/
916 if (dad->next == 0)
917 dad->child = np;
918 else
919 dad->next->sibling = np;
920 dad->next = np;
921 }
922 kref_init(&np->kref);
923 }
924 while(1) {
925 u32 sz, noff;
926 char *pname;
927
928 tag = *((u32 *)(*p));
929 if (tag == OF_DT_NOP) {
930 *p += 4;
931 continue;
932 }
933 if (tag != OF_DT_PROP)
934 break;
935 *p += 4;
936 sz = *((u32 *)(*p));
937 noff = *((u32 *)((*p) + 4));
938 *p += 8;
939 if (initial_boot_params->version < 0x10)
940 *p = _ALIGN(*p, sz >= 8 ? 8 : 4);
941
942 pname = find_flat_dt_string(noff);
943 if (pname == NULL) {
944 printk("Can't find property name in list !\n");
945 break;
946 }
947 if (strcmp(pname, "name") == 0)
948 has_name = 1;
949 l = strlen(pname) + 1;
950 pp = unflatten_dt_alloc(&mem, sizeof(struct property),
951 __alignof__(struct property));
952 if (allnextpp) {
953 if (strcmp(pname, "linux,phandle") == 0) {
954 np->node = *((u32 *)*p);
955 if (np->linux_phandle == 0)
956 np->linux_phandle = np->node;
957 }
958 if (strcmp(pname, "ibm,phandle") == 0)
959 np->linux_phandle = *((u32 *)*p);
960 pp->name = pname;
961 pp->length = sz;
962 pp->value = (void *)*p;
963 *prev_pp = pp;
964 prev_pp = &pp->next;
965 }
966 *p = _ALIGN((*p) + sz, 4);
967 }
968 /* with version 0x10 we may not have the name property, recreate
969 * it here from the unit name if absent
970 */
971 if (!has_name) {
972 char *p = pathp, *ps = pathp, *pa = NULL;
973 int sz;
974
975 while (*p) {
976 if ((*p) == '@')
977 pa = p;
978 if ((*p) == '/')
979 ps = p + 1;
980 p++;
981 }
982 if (pa < ps)
983 pa = p;
984 sz = (pa - ps) + 1;
985 pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
986 __alignof__(struct property));
987 if (allnextpp) {
988 pp->name = "name";
989 pp->length = sz;
990 pp->value = (unsigned char *)(pp + 1);
991 *prev_pp = pp;
992 prev_pp = &pp->next;
993 memcpy(pp->value, ps, sz - 1);
994 ((char *)pp->value)[sz - 1] = 0;
995 DBG("fixed up name for %s -> %s\n", pathp, pp->value);
996 }
997 }
998 if (allnextpp) {
999 *prev_pp = NULL;
1000 np->name = get_property(np, "name", NULL);
1001 np->type = get_property(np, "device_type", NULL);
1002
1003 if (!np->name)
1004 np->name = "<NULL>";
1005 if (!np->type)
1006 np->type = "<NULL>";
1007 }
1008 while (tag == OF_DT_BEGIN_NODE) {
1009 mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize);
1010 tag = *((u32 *)(*p));
1011 }
1012 if (tag != OF_DT_END_NODE) {
1013 printk("Weird tag at end of node: %x\n", tag);
1014 return mem;
1015 }
1016 *p += 4;
1017 return mem;
1018}
1019
1020
1021/**
1022 * unflattens the device-tree passed by the firmware, creating the
1023 * tree of struct device_node. It also fills the "name" and "type"
1024 * pointers of the nodes so the normal device-tree walking functions
1025 * can be used (this used to be done by finish_device_tree)
1026 */
1027void __init unflatten_device_tree(void)
1028{
1029 unsigned long start, mem, size;
1030 struct device_node **allnextp = &allnodes;
1031 char *p = NULL;
1032 int l = 0;
1033
1034 DBG(" -> unflatten_device_tree()\n");
1035
1036 /* First pass, scan for size */
1037 start = ((unsigned long)initial_boot_params) +
1038 initial_boot_params->off_dt_struct;
1039 size = unflatten_dt_node(0, &start, NULL, NULL, 0);
1040 size = (size | 3) + 1;
1041
1042 DBG(" size is %lx, allocating...\n", size);
1043
1044 /* Allocate memory for the expanded device tree */
1045 mem = lmb_alloc(size + 4, __alignof__(struct device_node));
1046 if (!mem) {
1047 DBG("Couldn't allocate memory with lmb_alloc()!\n");
1048 panic("Couldn't allocate memory with lmb_alloc()!\n");
1049 }
1050 mem = (unsigned long) __va(mem);
1051
1052 ((u32 *)mem)[size / 4] = 0xdeadbeef;
1053
1054 DBG(" unflattening %lx...\n", mem);
1055
1056 /* Second pass, do actual unflattening */
1057 start = ((unsigned long)initial_boot_params) +
1058 initial_boot_params->off_dt_struct;
1059 unflatten_dt_node(mem, &start, NULL, &allnextp, 0);
1060 if (*((u32 *)start) != OF_DT_END)
1061 printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start));
1062 if (((u32 *)mem)[size / 4] != 0xdeadbeef)
1063 printk(KERN_WARNING "End of tree marker overwritten: %08x\n",
1064 ((u32 *)mem)[size / 4] );
1065 *allnextp = NULL;
1066
1067 /* Get pointer to OF "/chosen" node for use everywhere */
1068 of_chosen = of_find_node_by_path("/chosen");
a575b807
PM
1069 if (of_chosen == NULL)
1070 of_chosen = of_find_node_by_path("/chosen@0");
9b6b563c
PM
1071
1072 /* Retreive command line */
1073 if (of_chosen != NULL) {
1074 p = (char *)get_property(of_chosen, "bootargs", &l);
1075 if (p != NULL && l > 0)
1076 strlcpy(cmd_line, p, min(l, COMMAND_LINE_SIZE));
1077 }
1078#ifdef CONFIG_CMDLINE
1079 if (l == 0 || (l == 1 && (*p) == 0))
1080 strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1081#endif /* CONFIG_CMDLINE */
1082
1083 DBG("Command line is: %s\n", cmd_line);
1084
1085 DBG(" <- unflatten_device_tree()\n");
1086}
1087
1088
1089static int __init early_init_dt_scan_cpus(unsigned long node,
1090 const char *uname, int depth, void *data)
1091{
1092 char *type = get_flat_dt_prop(node, "device_type", NULL);
1093 u32 *prop;
1094 unsigned long size = 0;
1095
1096 /* We are scanning "cpu" nodes only */
1097 if (type == NULL || strcmp(type, "cpu") != 0)
1098 return 0;
1099
1100#ifdef CONFIG_PPC_PSERIES
1101 /* On LPAR, look for the first ibm,pft-size property for the hash table size
1102 */
1103 if (systemcfg->platform == PLATFORM_PSERIES_LPAR && ppc64_pft_size == 0) {
1104 u32 *pft_size;
1105 pft_size = get_flat_dt_prop(node, "ibm,pft-size", NULL);
1106 if (pft_size != NULL) {
1107 /* pft_size[0] is the NUMA CEC cookie */
1108 ppc64_pft_size = pft_size[1];
1109 }
1110 }
1111#endif
1112
1113#ifdef CONFIG_PPC64
1114 if (initial_boot_params && initial_boot_params->version >= 2) {
1115 /* version 2 of the kexec param format adds the phys cpuid
1116 * of booted proc.
1117 */
1118 boot_cpuid_phys = initial_boot_params->boot_cpuid_phys;
1119 boot_cpuid = 0;
1120 } else {
1121 /* Check if it's the boot-cpu, set it's hw index in paca now */
1122 if (get_flat_dt_prop(node, "linux,boot-cpu", NULL) != NULL) {
40ef8cbc 1123 prop = get_flat_dt_prop(node, "reg", NULL);
9b6b563c
PM
1124 set_hard_smp_processor_id(0, prop == NULL ? 0 : *prop);
1125 boot_cpuid_phys = get_hard_smp_processor_id(0);
1126 }
1127 }
1128#endif
1129
1130#ifdef CONFIG_ALTIVEC
1131 /* Check if we have a VMX and eventually update CPU features */
1132 prop = (u32 *)get_flat_dt_prop(node, "ibm,vmx", &size);
1133 if (prop && (*prop) > 0) {
1134 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
1135 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
1136 }
1137
1138 /* Same goes for Apple's "altivec" property */
1139 prop = (u32 *)get_flat_dt_prop(node, "altivec", NULL);
1140 if (prop) {
1141 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
1142 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
1143 }
1144#endif /* CONFIG_ALTIVEC */
1145
1146#ifdef CONFIG_PPC_PSERIES
1147 /*
1148 * Check for an SMT capable CPU and set the CPU feature. We do
1149 * this by looking at the size of the ibm,ppc-interrupt-server#s
1150 * property
1151 */
1152 prop = (u32 *)get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s",
1153 &size);
1154 cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
1155 if (prop && ((size / sizeof(u32)) > 1))
1156 cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
1157#endif
1158
1159 return 0;
1160}
1161
1162static int __init early_init_dt_scan_chosen(unsigned long node,
1163 const char *uname, int depth, void *data)
1164{
1165 u32 *prop;
1166 unsigned long *lprop;
1167
1168 DBG("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1169
a575b807
PM
1170 if (depth != 1 ||
1171 (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
9b6b563c
PM
1172 return 0;
1173
1174 /* get platform type */
1175 prop = (u32 *)get_flat_dt_prop(node, "linux,platform", NULL);
1176 if (prop == NULL)
1177 return 0;
1178#ifdef CONFIG_PPC64
1179 systemcfg->platform = *prop;
1180#else
60dda256 1181#ifdef CONFIG_PPC_MULTIPLATFORM
9b6b563c
PM
1182 _machine = *prop;
1183#endif
60dda256 1184#endif
9b6b563c
PM
1185
1186#ifdef CONFIG_PPC64
1187 /* check if iommu is forced on or off */
1188 if (get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
1189 iommu_is_off = 1;
1190 if (get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
1191 iommu_force_on = 1;
1192#endif
1193
1194 lprop = get_flat_dt_prop(node, "linux,memory-limit", NULL);
1195 if (lprop)
1196 memory_limit = *lprop;
1197
1198#ifdef CONFIG_PPC64
1199 lprop = get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
1200 if (lprop)
1201 tce_alloc_start = *lprop;
1202 lprop = get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
1203 if (lprop)
1204 tce_alloc_end = *lprop;
1205#endif
1206
1207#ifdef CONFIG_PPC_RTAS
1208 /* To help early debugging via the front panel, we retreive a minimal
1209 * set of RTAS infos now if available
1210 */
1211 {
1212 u64 *basep, *entryp;
1213
1214 basep = get_flat_dt_prop(node, "linux,rtas-base", NULL);
1215 entryp = get_flat_dt_prop(node, "linux,rtas-entry", NULL);
1216 prop = get_flat_dt_prop(node, "linux,rtas-size", NULL);
1217 if (basep && entryp && prop) {
1218 rtas.base = *basep;
1219 rtas.entry = *entryp;
1220 rtas.size = *prop;
1221 }
1222 }
1223#endif /* CONFIG_PPC_RTAS */
1224
1225 /* break now */
1226 return 1;
1227}
1228
1229static int __init early_init_dt_scan_root(unsigned long node,
1230 const char *uname, int depth, void *data)
1231{
1232 u32 *prop;
1233
1234 if (depth != 0)
1235 return 0;
1236
1237 prop = get_flat_dt_prop(node, "#size-cells", NULL);
1238 dt_root_size_cells = (prop == NULL) ? 1 : *prop;
1239 DBG("dt_root_size_cells = %x\n", dt_root_size_cells);
1240
1241 prop = get_flat_dt_prop(node, "#address-cells", NULL);
1242 dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
1243 DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1244
1245 /* break now */
1246 return 1;
1247}
1248
1249static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp)
1250{
1251 cell_t *p = *cellp;
1252 unsigned long r;
1253
1254 /* Ignore more than 2 cells */
1255 while (s > sizeof(unsigned long) / 4) {
1256 p++;
1257 s--;
1258 }
1259 r = *p++;
1260#ifdef CONFIG_PPC64
1261 if (s > 1) {
1262 r <<= 32;
1263 r |= *(p++);
1264 s--;
1265 }
1266#endif
1267
1268 *cellp = p;
1269 return r;
1270}
1271
1272
1273static int __init early_init_dt_scan_memory(unsigned long node,
1274 const char *uname, int depth, void *data)
1275{
1276 char *type = get_flat_dt_prop(node, "device_type", NULL);
1277 cell_t *reg, *endp;
1278 unsigned long l;
1279
1280 /* We are scanning "memory" nodes only */
1281 if (type == NULL || strcmp(type, "memory") != 0)
1282 return 0;
1283
1284 reg = (cell_t *)get_flat_dt_prop(node, "reg", &l);
1285 if (reg == NULL)
1286 return 0;
1287
1288 endp = reg + (l / sizeof(cell_t));
1289
1290 DBG("memory scan node %s ..., reg size %ld, data: %x %x %x %x, ...\n",
1291 uname, l, reg[0], reg[1], reg[2], reg[3]);
1292
1293 while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1294 unsigned long base, size;
1295
1296 base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1297 size = dt_mem_next_cell(dt_root_size_cells, &reg);
1298
1299 if (size == 0)
1300 continue;
1301 DBG(" - %lx , %lx\n", base, size);
1302#ifdef CONFIG_PPC64
1303 if (iommu_is_off) {
1304 if (base >= 0x80000000ul)
1305 continue;
1306 if ((base + size) > 0x80000000ul)
1307 size = 0x80000000ul - base;
1308 }
1309#endif
1310 lmb_add(base, size);
1311 }
1312 return 0;
1313}
1314
1315static void __init early_reserve_mem(void)
1316{
1317 unsigned long base, size;
1318 unsigned long *reserve_map;
1319
1320 reserve_map = (unsigned long *)(((unsigned long)initial_boot_params) +
1321 initial_boot_params->off_mem_rsvmap);
1322 while (1) {
1323 base = *(reserve_map++);
1324 size = *(reserve_map++);
1325 if (size == 0)
1326 break;
1327 DBG("reserving: %lx -> %lx\n", base, size);
1328 lmb_reserve(base, size);
1329 }
1330
1331#if 0
1332 DBG("memory reserved, lmbs :\n");
1333 lmb_dump_all();
1334#endif
1335}
1336
1337void __init early_init_devtree(void *params)
1338{
1339 DBG(" -> early_init_devtree()\n");
1340
1341 /* Setup flat device-tree pointer */
1342 initial_boot_params = params;
1343
1344 /* Retrieve various informations from the /chosen node of the
1345 * device-tree, including the platform type, initrd location and
1346 * size, TCE reserve, and more ...
1347 */
1348 scan_flat_dt(early_init_dt_scan_chosen, NULL);
1349
1350 /* Scan memory nodes and rebuild LMBs */
1351 lmb_init();
1352 scan_flat_dt(early_init_dt_scan_root, NULL);
1353 scan_flat_dt(early_init_dt_scan_memory, NULL);
1354 lmb_enforce_memory_limit(memory_limit);
1355 lmb_analyze();
1356#ifdef CONFIG_PPC64
1357 systemcfg->physicalMemorySize = lmb_phys_mem_size();
1358#endif
1359 lmb_reserve(0, __pa(klimit));
1360
1361 DBG("Phys. mem: %lx\n", lmb_phys_mem_size());
1362
1363 /* Reserve LMB regions used by kernel, initrd, dt, etc... */
1364 early_reserve_mem();
1365
1366 DBG("Scanning CPUs ...\n");
1367
1368 /* Retreive hash table size from flattened tree plus other
1369 * CPU related informations (altivec support, boot CPU ID, ...)
1370 */
1371 scan_flat_dt(early_init_dt_scan_cpus, NULL);
1372
9b6b563c
PM
1373 DBG(" <- early_init_devtree()\n");
1374}
1375
1376#undef printk
1377
1378int
1379prom_n_addr_cells(struct device_node* np)
1380{
1381 int* ip;
1382 do {
1383 if (np->parent)
1384 np = np->parent;
1385 ip = (int *) get_property(np, "#address-cells", NULL);
1386 if (ip != NULL)
1387 return *ip;
1388 } while (np->parent);
1389 /* No #address-cells property for the root node, default to 1 */
1390 return 1;
1391}
1392
1393int
1394prom_n_size_cells(struct device_node* np)
1395{
1396 int* ip;
1397 do {
1398 if (np->parent)
1399 np = np->parent;
1400 ip = (int *) get_property(np, "#size-cells", NULL);
1401 if (ip != NULL)
1402 return *ip;
1403 } while (np->parent);
1404 /* No #size-cells property for the root node, default to 1 */
1405 return 1;
1406}
1407
1408/**
1409 * Work out the sense (active-low level / active-high edge)
1410 * of each interrupt from the device tree.
1411 */
1412void __init prom_get_irq_senses(unsigned char *senses, int off, int max)
1413{
1414 struct device_node *np;
1415 int i, j;
1416
1417 /* default to level-triggered */
6d0124fc 1418 memset(senses, IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE, max - off);
9b6b563c
PM
1419
1420 for (np = allnodes; np != 0; np = np->allnext) {
1421 for (j = 0; j < np->n_intrs; j++) {
1422 i = np->intrs[j].line;
1423 if (i >= off && i < max)
6d0124fc 1424 senses[i-off] = np->intrs[j].sense;
9b6b563c
PM
1425 }
1426 }
1427}
1428
1429/**
1430 * Construct and return a list of the device_nodes with a given name.
1431 */
1432struct device_node *find_devices(const char *name)
1433{
1434 struct device_node *head, **prevp, *np;
1435
1436 prevp = &head;
1437 for (np = allnodes; np != 0; np = np->allnext) {
1438 if (np->name != 0 && strcasecmp(np->name, name) == 0) {
1439 *prevp = np;
1440 prevp = &np->next;
1441 }
1442 }
1443 *prevp = NULL;
1444 return head;
1445}
1446EXPORT_SYMBOL(find_devices);
1447
1448/**
1449 * Construct and return a list of the device_nodes with a given type.
1450 */
1451struct device_node *find_type_devices(const char *type)
1452{
1453 struct device_node *head, **prevp, *np;
1454
1455 prevp = &head;
1456 for (np = allnodes; np != 0; np = np->allnext) {
1457 if (np->type != 0 && strcasecmp(np->type, type) == 0) {
1458 *prevp = np;
1459 prevp = &np->next;
1460 }
1461 }
1462 *prevp = NULL;
1463 return head;
1464}
1465EXPORT_SYMBOL(find_type_devices);
1466
1467/**
1468 * Returns all nodes linked together
1469 */
1470struct device_node *find_all_nodes(void)
1471{
1472 struct device_node *head, **prevp, *np;
1473
1474 prevp = &head;
1475 for (np = allnodes; np != 0; np = np->allnext) {
1476 *prevp = np;
1477 prevp = &np->next;
1478 }
1479 *prevp = NULL;
1480 return head;
1481}
1482EXPORT_SYMBOL(find_all_nodes);
1483
1484/** Checks if the given "compat" string matches one of the strings in
1485 * the device's "compatible" property
1486 */
1487int device_is_compatible(struct device_node *device, const char *compat)
1488{
1489 const char* cp;
1490 int cplen, l;
1491
1492 cp = (char *) get_property(device, "compatible", &cplen);
1493 if (cp == NULL)
1494 return 0;
1495 while (cplen > 0) {
1496 if (strncasecmp(cp, compat, strlen(compat)) == 0)
1497 return 1;
1498 l = strlen(cp) + 1;
1499 cp += l;
1500 cplen -= l;
1501 }
1502
1503 return 0;
1504}
1505EXPORT_SYMBOL(device_is_compatible);
1506
1507
1508/**
1509 * Indicates whether the root node has a given value in its
1510 * compatible property.
1511 */
1512int machine_is_compatible(const char *compat)
1513{
1514 struct device_node *root;
1515 int rc = 0;
1516
1517 root = of_find_node_by_path("/");
1518 if (root) {
1519 rc = device_is_compatible(root, compat);
1520 of_node_put(root);
1521 }
1522 return rc;
1523}
1524EXPORT_SYMBOL(machine_is_compatible);
1525
1526/**
1527 * Construct and return a list of the device_nodes with a given type
1528 * and compatible property.
1529 */
1530struct device_node *find_compatible_devices(const char *type,
1531 const char *compat)
1532{
1533 struct device_node *head, **prevp, *np;
1534
1535 prevp = &head;
1536 for (np = allnodes; np != 0; np = np->allnext) {
1537 if (type != NULL
1538 && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1539 continue;
1540 if (device_is_compatible(np, compat)) {
1541 *prevp = np;
1542 prevp = &np->next;
1543 }
1544 }
1545 *prevp = NULL;
1546 return head;
1547}
1548EXPORT_SYMBOL(find_compatible_devices);
1549
1550/**
1551 * Find the device_node with a given full_name.
1552 */
1553struct device_node *find_path_device(const char *path)
1554{
1555 struct device_node *np;
1556
1557 for (np = allnodes; np != 0; np = np->allnext)
1558 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
1559 return np;
1560 return NULL;
1561}
1562EXPORT_SYMBOL(find_path_device);
1563
1564/*******
1565 *
1566 * New implementation of the OF "find" APIs, return a refcounted
1567 * object, call of_node_put() when done. The device tree and list
1568 * are protected by a rw_lock.
1569 *
1570 * Note that property management will need some locking as well,
1571 * this isn't dealt with yet.
1572 *
1573 *******/
1574
1575/**
1576 * of_find_node_by_name - Find a node by its "name" property
1577 * @from: The node to start searching from or NULL, the node
1578 * you pass will not be searched, only the next one
1579 * will; typically, you pass what the previous call
1580 * returned. of_node_put() will be called on it
1581 * @name: The name string to match against
1582 *
1583 * Returns a node pointer with refcount incremented, use
1584 * of_node_put() on it when done.
1585 */
1586struct device_node *of_find_node_by_name(struct device_node *from,
1587 const char *name)
1588{
1589 struct device_node *np;
1590
1591 read_lock(&devtree_lock);
1592 np = from ? from->allnext : allnodes;
1593 for (; np != 0; np = np->allnext)
1594 if (np->name != 0 && strcasecmp(np->name, name) == 0
1595 && of_node_get(np))
1596 break;
1597 if (from)
1598 of_node_put(from);
1599 read_unlock(&devtree_lock);
1600 return np;
1601}
1602EXPORT_SYMBOL(of_find_node_by_name);
1603
1604/**
1605 * of_find_node_by_type - Find a node by its "device_type" property
1606 * @from: The node to start searching from or NULL, the node
1607 * you pass will not be searched, only the next one
1608 * will; typically, you pass what the previous call
1609 * returned. of_node_put() will be called on it
1610 * @name: The type string to match against
1611 *
1612 * Returns a node pointer with refcount incremented, use
1613 * of_node_put() on it when done.
1614 */
1615struct device_node *of_find_node_by_type(struct device_node *from,
1616 const char *type)
1617{
1618 struct device_node *np;
1619
1620 read_lock(&devtree_lock);
1621 np = from ? from->allnext : allnodes;
1622 for (; np != 0; np = np->allnext)
1623 if (np->type != 0 && strcasecmp(np->type, type) == 0
1624 && of_node_get(np))
1625 break;
1626 if (from)
1627 of_node_put(from);
1628 read_unlock(&devtree_lock);
1629 return np;
1630}
1631EXPORT_SYMBOL(of_find_node_by_type);
1632
1633/**
1634 * of_find_compatible_node - Find a node based on type and one of the
1635 * tokens in its "compatible" property
1636 * @from: The node to start searching from or NULL, the node
1637 * you pass will not be searched, only the next one
1638 * will; typically, you pass what the previous call
1639 * returned. of_node_put() will be called on it
1640 * @type: The type string to match "device_type" or NULL to ignore
1641 * @compatible: The string to match to one of the tokens in the device
1642 * "compatible" list.
1643 *
1644 * Returns a node pointer with refcount incremented, use
1645 * of_node_put() on it when done.
1646 */
1647struct device_node *of_find_compatible_node(struct device_node *from,
1648 const char *type, const char *compatible)
1649{
1650 struct device_node *np;
1651
1652 read_lock(&devtree_lock);
1653 np = from ? from->allnext : allnodes;
1654 for (; np != 0; np = np->allnext) {
1655 if (type != NULL
1656 && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1657 continue;
1658 if (device_is_compatible(np, compatible) && of_node_get(np))
1659 break;
1660 }
1661 if (from)
1662 of_node_put(from);
1663 read_unlock(&devtree_lock);
1664 return np;
1665}
1666EXPORT_SYMBOL(of_find_compatible_node);
1667
1668/**
1669 * of_find_node_by_path - Find a node matching a full OF path
1670 * @path: The full path to match
1671 *
1672 * Returns a node pointer with refcount incremented, use
1673 * of_node_put() on it when done.
1674 */
1675struct device_node *of_find_node_by_path(const char *path)
1676{
1677 struct device_node *np = allnodes;
1678
1679 read_lock(&devtree_lock);
1680 for (; np != 0; np = np->allnext) {
1681 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0
1682 && of_node_get(np))
1683 break;
1684 }
1685 read_unlock(&devtree_lock);
1686 return np;
1687}
1688EXPORT_SYMBOL(of_find_node_by_path);
1689
1690/**
1691 * of_find_node_by_phandle - Find a node given a phandle
1692 * @handle: phandle of the node to find
1693 *
1694 * Returns a node pointer with refcount incremented, use
1695 * of_node_put() on it when done.
1696 */
1697struct device_node *of_find_node_by_phandle(phandle handle)
1698{
1699 struct device_node *np;
1700
1701 read_lock(&devtree_lock);
1702 for (np = allnodes; np != 0; np = np->allnext)
1703 if (np->linux_phandle == handle)
1704 break;
1705 if (np)
1706 of_node_get(np);
1707 read_unlock(&devtree_lock);
1708 return np;
1709}
1710EXPORT_SYMBOL(of_find_node_by_phandle);
1711
1712/**
1713 * of_find_all_nodes - Get next node in global list
1714 * @prev: Previous node or NULL to start iteration
1715 * of_node_put() will be called on it
1716 *
1717 * Returns a node pointer with refcount incremented, use
1718 * of_node_put() on it when done.
1719 */
1720struct device_node *of_find_all_nodes(struct device_node *prev)
1721{
1722 struct device_node *np;
1723
1724 read_lock(&devtree_lock);
1725 np = prev ? prev->allnext : allnodes;
1726 for (; np != 0; np = np->allnext)
1727 if (of_node_get(np))
1728 break;
1729 if (prev)
1730 of_node_put(prev);
1731 read_unlock(&devtree_lock);
1732 return np;
1733}
1734EXPORT_SYMBOL(of_find_all_nodes);
1735
1736/**
1737 * of_get_parent - Get a node's parent if any
1738 * @node: Node to get parent
1739 *
1740 * Returns a node pointer with refcount incremented, use
1741 * of_node_put() on it when done.
1742 */
1743struct device_node *of_get_parent(const struct device_node *node)
1744{
1745 struct device_node *np;
1746
1747 if (!node)
1748 return NULL;
1749
1750 read_lock(&devtree_lock);
1751 np = of_node_get(node->parent);
1752 read_unlock(&devtree_lock);
1753 return np;
1754}
1755EXPORT_SYMBOL(of_get_parent);
1756
1757/**
1758 * of_get_next_child - Iterate a node childs
1759 * @node: parent node
1760 * @prev: previous child of the parent node, or NULL to get first
1761 *
1762 * Returns a node pointer with refcount incremented, use
1763 * of_node_put() on it when done.
1764 */
1765struct device_node *of_get_next_child(const struct device_node *node,
1766 struct device_node *prev)
1767{
1768 struct device_node *next;
1769
1770 read_lock(&devtree_lock);
1771 next = prev ? prev->sibling : node->child;
1772 for (; next != 0; next = next->sibling)
1773 if (of_node_get(next))
1774 break;
1775 if (prev)
1776 of_node_put(prev);
1777 read_unlock(&devtree_lock);
1778 return next;
1779}
1780EXPORT_SYMBOL(of_get_next_child);
1781
1782/**
1783 * of_node_get - Increment refcount of a node
1784 * @node: Node to inc refcount, NULL is supported to
1785 * simplify writing of callers
1786 *
1787 * Returns node.
1788 */
1789struct device_node *of_node_get(struct device_node *node)
1790{
1791 if (node)
1792 kref_get(&node->kref);
1793 return node;
1794}
1795EXPORT_SYMBOL(of_node_get);
1796
1797static inline struct device_node * kref_to_device_node(struct kref *kref)
1798{
1799 return container_of(kref, struct device_node, kref);
1800}
1801
1802/**
1803 * of_node_release - release a dynamically allocated node
1804 * @kref: kref element of the node to be released
1805 *
1806 * In of_node_put() this function is passed to kref_put()
1807 * as the destructor.
1808 */
1809static void of_node_release(struct kref *kref)
1810{
1811 struct device_node *node = kref_to_device_node(kref);
1812 struct property *prop = node->properties;
1813
1814 if (!OF_IS_DYNAMIC(node))
1815 return;
1816 while (prop) {
1817 struct property *next = prop->next;
1818 kfree(prop->name);
1819 kfree(prop->value);
1820 kfree(prop);
1821 prop = next;
1822 }
1823 kfree(node->intrs);
1824 kfree(node->addrs);
1825 kfree(node->full_name);
1826 kfree(node->data);
1827 kfree(node);
1828}
1829
1830/**
1831 * of_node_put - Decrement refcount of a node
1832 * @node: Node to dec refcount, NULL is supported to
1833 * simplify writing of callers
1834 *
1835 */
1836void of_node_put(struct device_node *node)
1837{
1838 if (node)
1839 kref_put(&node->kref, of_node_release);
1840}
1841EXPORT_SYMBOL(of_node_put);
1842
1843/*
1844 * Plug a device node into the tree and global list.
1845 */
1846void of_attach_node(struct device_node *np)
1847{
1848 write_lock(&devtree_lock);
1849 np->sibling = np->parent->child;
1850 np->allnext = allnodes;
1851 np->parent->child = np;
1852 allnodes = np;
1853 write_unlock(&devtree_lock);
1854}
1855
1856/*
1857 * "Unplug" a node from the device tree. The caller must hold
1858 * a reference to the node. The memory associated with the node
1859 * is not freed until its refcount goes to zero.
1860 */
1861void of_detach_node(const struct device_node *np)
1862{
1863 struct device_node *parent;
1864
1865 write_lock(&devtree_lock);
1866
1867 parent = np->parent;
1868
1869 if (allnodes == np)
1870 allnodes = np->allnext;
1871 else {
1872 struct device_node *prev;
1873 for (prev = allnodes;
1874 prev->allnext != np;
1875 prev = prev->allnext)
1876 ;
1877 prev->allnext = np->allnext;
1878 }
1879
1880 if (parent->child == np)
1881 parent->child = np->sibling;
1882 else {
1883 struct device_node *prevsib;
1884 for (prevsib = np->parent->child;
1885 prevsib->sibling != np;
1886 prevsib = prevsib->sibling)
1887 ;
1888 prevsib->sibling = np->sibling;
1889 }
1890
1891 write_unlock(&devtree_lock);
1892}
1893
1894#ifdef CONFIG_PPC_PSERIES
1895/*
1896 * Fix up the uninitialized fields in a new device node:
1897 * name, type, n_addrs, addrs, n_intrs, intrs, and pci-specific fields
1898 *
1899 * A lot of boot-time code is duplicated here, because functions such
1900 * as finish_node_interrupts, interpret_pci_props, etc. cannot use the
1901 * slab allocator.
1902 *
1903 * This should probably be split up into smaller chunks.
1904 */
1905
1906static int of_finish_dynamic_node(struct device_node *node,
1907 unsigned long *unused1, int unused2,
1908 int unused3, int unused4)
1909{
1910 struct device_node *parent = of_get_parent(node);
1911 int err = 0;
1912 phandle *ibm_phandle;
1913
1914 node->name = get_property(node, "name", NULL);
1915 node->type = get_property(node, "device_type", NULL);
1916
1917 if (!parent) {
1918 err = -ENODEV;
1919 goto out;
1920 }
1921
1922 /* We don't support that function on PowerMac, at least
1923 * not yet
1924 */
1925 if (systemcfg->platform == PLATFORM_POWERMAC)
1926 return -ENODEV;
1927
1928 /* fix up new node's linux_phandle field */
1929 if ((ibm_phandle = (unsigned int *)get_property(node, "ibm,phandle", NULL)))
1930 node->linux_phandle = *ibm_phandle;
1931
1932out:
1933 of_node_put(parent);
1934 return err;
1935}
1936
1937static int prom_reconfig_notifier(struct notifier_block *nb,
1938 unsigned long action, void *node)
1939{
1940 int err;
1941
1942 switch (action) {
1943 case PSERIES_RECONFIG_ADD:
1944 err = finish_node(node, NULL, of_finish_dynamic_node, 0, 0, 0);
1945 if (err < 0) {
1946 printk(KERN_ERR "finish_node returned %d\n", err);
1947 err = NOTIFY_BAD;
1948 }
1949 break;
1950 default:
1951 err = NOTIFY_DONE;
1952 break;
1953 }
1954 return err;
1955}
1956
1957static struct notifier_block prom_reconfig_nb = {
1958 .notifier_call = prom_reconfig_notifier,
1959 .priority = 10, /* This one needs to run first */
1960};
1961
1962static int __init prom_reconfig_setup(void)
1963{
1964 return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
1965}
1966__initcall(prom_reconfig_setup);
1967#endif
1968
1969/*
1970 * Find a property with a given name for a given node
1971 * and return the value.
1972 */
1973unsigned char *get_property(struct device_node *np, const char *name,
1974 int *lenp)
1975{
1976 struct property *pp;
1977
1978 for (pp = np->properties; pp != 0; pp = pp->next)
1979 if (strcmp(pp->name, name) == 0) {
1980 if (lenp != 0)
1981 *lenp = pp->length;
1982 return pp->value;
1983 }
1984 return NULL;
1985}
1986EXPORT_SYMBOL(get_property);
1987
1988/*
1989 * Add a property to a node
1990 */
1991void prom_add_property(struct device_node* np, struct property* prop)
1992{
1993 struct property **next = &np->properties;
1994
1995 prop->next = NULL;
1996 while (*next)
1997 next = &(*next)->next;
1998 *next = prop;
1999}
2000
2001/* I quickly hacked that one, check against spec ! */
2002static inline unsigned long
2003bus_space_to_resource_flags(unsigned int bus_space)
2004{
2005 u8 space = (bus_space >> 24) & 0xf;
2006 if (space == 0)
2007 space = 0x02;
2008 if (space == 0x02)
2009 return IORESOURCE_MEM;
2010 else if (space == 0x01)
2011 return IORESOURCE_IO;
2012 else {
2013 printk(KERN_WARNING "prom.c: bus_space_to_resource_flags(), space: %x\n",
2014 bus_space);
2015 return 0;
2016 }
2017}
2018
60dda256 2019#ifdef CONFIG_PCI
9b6b563c
PM
2020static struct resource *find_parent_pci_resource(struct pci_dev* pdev,
2021 struct address_range *range)
2022{
2023 unsigned long mask;
2024 int i;
2025
2026 /* Check this one */
2027 mask = bus_space_to_resource_flags(range->space);
2028 for (i=0; i<DEVICE_COUNT_RESOURCE; i++) {
2029 if ((pdev->resource[i].flags & mask) == mask &&
2030 pdev->resource[i].start <= range->address &&
2031 pdev->resource[i].end > range->address) {
2032 if ((range->address + range->size - 1) > pdev->resource[i].end) {
2033 /* Add better message */
2034 printk(KERN_WARNING "PCI/OF resource overlap !\n");
2035 return NULL;
2036 }
2037 break;
2038 }
2039 }
2040 if (i == DEVICE_COUNT_RESOURCE)
2041 return NULL;
2042 return &pdev->resource[i];
2043}
2044
2045/*
2046 * Request an OF device resource. Currently handles child of PCI devices,
2047 * or other nodes attached to the root node. Ultimately, put some
2048 * link to resources in the OF node.
2049 */
2050struct resource *request_OF_resource(struct device_node* node, int index,
2051 const char* name_postfix)
2052{
2053 struct pci_dev* pcidev;
2054 u8 pci_bus, pci_devfn;
2055 unsigned long iomask;
2056 struct device_node* nd;
2057 struct resource* parent;
2058 struct resource *res = NULL;
2059 int nlen, plen;
2060
2061 if (index >= node->n_addrs)
2062 goto fail;
2063
2064 /* Sanity check on bus space */
2065 iomask = bus_space_to_resource_flags(node->addrs[index].space);
2066 if (iomask & IORESOURCE_MEM)
2067 parent = &iomem_resource;
2068 else if (iomask & IORESOURCE_IO)
2069 parent = &ioport_resource;
2070 else
2071 goto fail;
2072
2073 /* Find a PCI parent if any */
2074 nd = node;
2075 pcidev = NULL;
2076 while (nd) {
2077 if (!pci_device_from_OF_node(nd, &pci_bus, &pci_devfn))
2078 pcidev = pci_find_slot(pci_bus, pci_devfn);
2079 if (pcidev) break;
2080 nd = nd->parent;
2081 }
2082 if (pcidev)
2083 parent = find_parent_pci_resource(pcidev, &node->addrs[index]);
2084 if (!parent) {
2085 printk(KERN_WARNING "request_OF_resource(%s), parent not found\n",
2086 node->name);
2087 goto fail;
2088 }
2089
2090 res = __request_region(parent, node->addrs[index].address,
2091 node->addrs[index].size, NULL);
2092 if (!res)
2093 goto fail;
2094 nlen = strlen(node->name);
2095 plen = name_postfix ? strlen(name_postfix) : 0;
2096 res->name = (const char *)kmalloc(nlen+plen+1, GFP_KERNEL);
2097 if (res->name) {
2098 strcpy((char *)res->name, node->name);
2099 if (plen)
2100 strcpy((char *)res->name+nlen, name_postfix);
2101 }
2102 return res;
2103fail:
2104 return NULL;
2105}
2106EXPORT_SYMBOL(request_OF_resource);
2107
2108int release_OF_resource(struct device_node *node, int index)
2109{
2110 struct pci_dev* pcidev;
2111 u8 pci_bus, pci_devfn;
2112 unsigned long iomask, start, end;
2113 struct device_node* nd;
2114 struct resource* parent;
2115 struct resource *res = NULL;
2116
2117 if (index >= node->n_addrs)
2118 return -EINVAL;
2119
2120 /* Sanity check on bus space */
2121 iomask = bus_space_to_resource_flags(node->addrs[index].space);
2122 if (iomask & IORESOURCE_MEM)
2123 parent = &iomem_resource;
2124 else if (iomask & IORESOURCE_IO)
2125 parent = &ioport_resource;
2126 else
2127 return -EINVAL;
2128
2129 /* Find a PCI parent if any */
2130 nd = node;
2131 pcidev = NULL;
2132 while(nd) {
2133 if (!pci_device_from_OF_node(nd, &pci_bus, &pci_devfn))
2134 pcidev = pci_find_slot(pci_bus, pci_devfn);
2135 if (pcidev) break;
2136 nd = nd->parent;
2137 }
2138 if (pcidev)
2139 parent = find_parent_pci_resource(pcidev, &node->addrs[index]);
2140 if (!parent) {
2141 printk(KERN_WARNING "release_OF_resource(%s), parent not found\n",
2142 node->name);
2143 return -ENODEV;
2144 }
2145
2146 /* Find us in the parent and its childs */
2147 res = parent->child;
2148 start = node->addrs[index].address;
2149 end = start + node->addrs[index].size - 1;
2150 while (res) {
2151 if (res->start == start && res->end == end &&
2152 (res->flags & IORESOURCE_BUSY))
2153 break;
2154 if (res->start <= start && res->end >= end)
2155 res = res->child;
2156 else
2157 res = res->sibling;
2158 }
2159 if (!res)
2160 return -ENODEV;
2161
2162 if (res->name) {
2163 kfree(res->name);
2164 res->name = NULL;
2165 }
2166 release_resource(res);
2167 kfree(res);
2168
2169 return 0;
2170}
2171EXPORT_SYMBOL(release_OF_resource);
60dda256 2172#endif /* CONFIG_PCI */
This page took 0.108213 seconds and 5 git commands to generate.