[PATCH] powerpc: remove useless call to touch_softlockup_watchdog
[deliverable/linux.git] / arch / powerpc / kernel / prom.c
CommitLineData
9b6b563c
PM
1/*
2 * Procedures for creating, accessing and interpreting the device tree.
3 *
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 */
15
16#undef DEBUG
17
18#include <stdarg.h>
19#include <linux/config.h>
20#include <linux/kernel.h>
21#include <linux/string.h>
22#include <linux/init.h>
23#include <linux/threads.h>
24#include <linux/spinlock.h>
25#include <linux/types.h>
26#include <linux/pci.h>
27#include <linux/stringify.h>
28#include <linux/delay.h>
29#include <linux/initrd.h>
30#include <linux/bitops.h>
31#include <linux/module.h>
dcee3036 32#include <linux/kexec.h>
9b6b563c
PM
33
34#include <asm/prom.h>
35#include <asm/rtas.h>
36#include <asm/lmb.h>
37#include <asm/page.h>
38#include <asm/processor.h>
39#include <asm/irq.h>
40#include <asm/io.h>
0cc4746c 41#include <asm/kdump.h>
9b6b563c
PM
42#include <asm/smp.h>
43#include <asm/system.h>
44#include <asm/mmu.h>
45#include <asm/pgtable.h>
46#include <asm/pci.h>
47#include <asm/iommu.h>
48#include <asm/btext.h>
49#include <asm/sections.h>
50#include <asm/machdep.h>
51#include <asm/pSeries_reconfig.h>
40ef8cbc 52#include <asm/pci-bridge.h>
9b6b563c
PM
53
54#ifdef DEBUG
55#define DBG(fmt...) printk(KERN_ERR fmt)
56#else
57#define DBG(fmt...)
58#endif
59
9b6b563c 60
9b6b563c
PM
61static int __initdata dt_root_addr_cells;
62static int __initdata dt_root_size_cells;
63
64#ifdef CONFIG_PPC64
65static int __initdata iommu_is_off;
66int __initdata iommu_force_on;
cf00a8d1 67unsigned long tce_alloc_start, tce_alloc_end;
9b6b563c
PM
68#endif
69
70typedef u32 cell_t;
71
72#if 0
73static struct boot_param_header *initial_boot_params __initdata;
74#else
75struct boot_param_header *initial_boot_params;
76#endif
77
78static struct device_node *allnodes = NULL;
79
80/* use when traversing tree through the allnext, child, sibling,
81 * or parent members of struct device_node.
82 */
83static DEFINE_RWLOCK(devtree_lock);
84
85/* export that to outside world */
86struct device_node *of_chosen;
87
88struct device_node *dflt_interrupt_controller;
89int num_interrupt_controllers;
90
9b6b563c
PM
91/*
92 * Wrapper for allocating memory for various data that needs to be
93 * attached to device nodes as they are processed at boot or when
94 * added to the device tree later (e.g. DLPAR). At boot there is
95 * already a region reserved so we just increment *mem_start by size;
96 * otherwise we call kmalloc.
97 */
98static void * prom_alloc(unsigned long size, unsigned long *mem_start)
99{
100 unsigned long tmp;
101
102 if (!mem_start)
103 return kmalloc(size, GFP_KERNEL);
104
105 tmp = *mem_start;
106 *mem_start += size;
107 return (void *)tmp;
108}
109
110/*
111 * Find the device_node with a given phandle.
112 */
113static struct device_node * find_phandle(phandle ph)
114{
115 struct device_node *np;
116
117 for (np = allnodes; np != 0; np = np->allnext)
118 if (np->linux_phandle == ph)
119 return np;
120 return NULL;
121}
122
123/*
124 * Find the interrupt parent of a node.
125 */
126static struct device_node * __devinit intr_parent(struct device_node *p)
127{
128 phandle *parp;
129
130 parp = (phandle *) get_property(p, "interrupt-parent", NULL);
131 if (parp == NULL)
132 return p->parent;
133 p = find_phandle(*parp);
134 if (p != NULL)
135 return p;
136 /*
137 * On a powermac booted with BootX, we don't get to know the
138 * phandles for any nodes, so find_phandle will return NULL.
139 * Fortunately these machines only have one interrupt controller
140 * so there isn't in fact any ambiguity. -- paulus
141 */
142 if (num_interrupt_controllers == 1)
143 p = dflt_interrupt_controller;
144 return p;
145}
146
147/*
148 * Find out the size of each entry of the interrupts property
149 * for a node.
150 */
151int __devinit prom_n_intr_cells(struct device_node *np)
152{
153 struct device_node *p;
154 unsigned int *icp;
155
156 for (p = np; (p = intr_parent(p)) != NULL; ) {
157 icp = (unsigned int *)
158 get_property(p, "#interrupt-cells", NULL);
159 if (icp != NULL)
160 return *icp;
161 if (get_property(p, "interrupt-controller", NULL) != NULL
162 || get_property(p, "interrupt-map", NULL) != NULL) {
163 printk("oops, node %s doesn't have #interrupt-cells\n",
164 p->full_name);
165 return 1;
166 }
167 }
168#ifdef DEBUG_IRQ
169 printk("prom_n_intr_cells failed for %s\n", np->full_name);
170#endif
171 return 1;
172}
173
174/*
175 * Map an interrupt from a device up to the platform interrupt
176 * descriptor.
177 */
178static int __devinit map_interrupt(unsigned int **irq, struct device_node **ictrler,
179 struct device_node *np, unsigned int *ints,
180 int nintrc)
181{
182 struct device_node *p, *ipar;
183 unsigned int *imap, *imask, *ip;
184 int i, imaplen, match;
185 int newintrc = 0, newaddrc = 0;
186 unsigned int *reg;
187 int naddrc;
188
189 reg = (unsigned int *) get_property(np, "reg", NULL);
190 naddrc = prom_n_addr_cells(np);
191 p = intr_parent(np);
192 while (p != NULL) {
193 if (get_property(p, "interrupt-controller", NULL) != NULL)
194 /* this node is an interrupt controller, stop here */
195 break;
196 imap = (unsigned int *)
197 get_property(p, "interrupt-map", &imaplen);
198 if (imap == NULL) {
199 p = intr_parent(p);
200 continue;
201 }
202 imask = (unsigned int *)
203 get_property(p, "interrupt-map-mask", NULL);
204 if (imask == NULL) {
205 printk("oops, %s has interrupt-map but no mask\n",
206 p->full_name);
207 return 0;
208 }
209 imaplen /= sizeof(unsigned int);
210 match = 0;
211 ipar = NULL;
212 while (imaplen > 0 && !match) {
213 /* check the child-interrupt field */
214 match = 1;
215 for (i = 0; i < naddrc && match; ++i)
216 match = ((reg[i] ^ imap[i]) & imask[i]) == 0;
217 for (; i < naddrc + nintrc && match; ++i)
218 match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0;
219 imap += naddrc + nintrc;
220 imaplen -= naddrc + nintrc;
221 /* grab the interrupt parent */
222 ipar = find_phandle((phandle) *imap++);
223 --imaplen;
224 if (ipar == NULL && num_interrupt_controllers == 1)
225 /* cope with BootX not giving us phandles */
226 ipar = dflt_interrupt_controller;
227 if (ipar == NULL) {
228 printk("oops, no int parent %x in map of %s\n",
229 imap[-1], p->full_name);
230 return 0;
231 }
232 /* find the parent's # addr and intr cells */
233 ip = (unsigned int *)
234 get_property(ipar, "#interrupt-cells", NULL);
235 if (ip == NULL) {
236 printk("oops, no #interrupt-cells on %s\n",
237 ipar->full_name);
238 return 0;
239 }
240 newintrc = *ip;
241 ip = (unsigned int *)
242 get_property(ipar, "#address-cells", NULL);
243 newaddrc = (ip == NULL)? 0: *ip;
244 imap += newaddrc + newintrc;
245 imaplen -= newaddrc + newintrc;
246 }
247 if (imaplen < 0) {
248 printk("oops, error decoding int-map on %s, len=%d\n",
249 p->full_name, imaplen);
250 return 0;
251 }
252 if (!match) {
253#ifdef DEBUG_IRQ
254 printk("oops, no match in %s int-map for %s\n",
255 p->full_name, np->full_name);
256#endif
257 return 0;
258 }
259 p = ipar;
260 naddrc = newaddrc;
261 nintrc = newintrc;
262 ints = imap - nintrc;
263 reg = ints - naddrc;
264 }
265 if (p == NULL) {
266#ifdef DEBUG_IRQ
267 printk("hmmm, int tree for %s doesn't have ctrler\n",
268 np->full_name);
269#endif
270 return 0;
271 }
272 *irq = ints;
273 *ictrler = p;
274 return nintrc;
275}
276
6d0124fc
PM
277static unsigned char map_isa_senses[4] = {
278 IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
279 IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
280 IRQ_SENSE_EDGE | IRQ_POLARITY_NEGATIVE,
281 IRQ_SENSE_EDGE | IRQ_POLARITY_POSITIVE
282};
283
284static unsigned char map_mpic_senses[4] = {
285 IRQ_SENSE_EDGE | IRQ_POLARITY_POSITIVE,
286 IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
287 /* 2 seems to be used for the 8259 cascade... */
288 IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
289 IRQ_SENSE_EDGE | IRQ_POLARITY_NEGATIVE,
290};
291
9b6b563c
PM
292static int __devinit finish_node_interrupts(struct device_node *np,
293 unsigned long *mem_start,
294 int measure_only)
295{
296 unsigned int *ints;
297 int intlen, intrcells, intrcount;
6d0124fc 298 int i, j, n, sense;
9b6b563c
PM
299 unsigned int *irq, virq;
300 struct device_node *ic;
1beb6a7d
BH
301 int trace = 0;
302
303 //#define TRACE(fmt...) do { if (trace) { printk(fmt); mdelay(1000); } } while(0)
304#define TRACE(fmt...)
305
306 if (!strcmp(np->name, "smu-doorbell"))
307 trace = 1;
308
309 TRACE("Finishing SMU doorbell ! num_interrupt_controllers = %d\n",
310 num_interrupt_controllers);
9b6b563c 311
a575b807
PM
312 if (num_interrupt_controllers == 0) {
313 /*
314 * Old machines just have a list of interrupt numbers
315 * and no interrupt-controller nodes.
316 */
317 ints = (unsigned int *) get_property(np, "AAPL,interrupts",
318 &intlen);
319 /* XXX old interpret_pci_props looked in parent too */
320 /* XXX old interpret_macio_props looked for interrupts
321 before AAPL,interrupts */
322 if (ints == NULL)
323 ints = (unsigned int *) get_property(np, "interrupts",
324 &intlen);
325 if (ints == NULL)
326 return 0;
327
328 np->n_intrs = intlen / sizeof(unsigned int);
329 np->intrs = prom_alloc(np->n_intrs * sizeof(np->intrs[0]),
330 mem_start);
331 if (!np->intrs)
332 return -ENOMEM;
333 if (measure_only)
334 return 0;
335
336 for (i = 0; i < np->n_intrs; ++i) {
337 np->intrs[i].line = *ints++;
6d0124fc
PM
338 np->intrs[i].sense = IRQ_SENSE_LEVEL
339 | IRQ_POLARITY_NEGATIVE;
a575b807
PM
340 }
341 return 0;
342 }
343
9b6b563c 344 ints = (unsigned int *) get_property(np, "interrupts", &intlen);
1beb6a7d 345 TRACE("ints=%p, intlen=%d\n", ints, intlen);
9b6b563c
PM
346 if (ints == NULL)
347 return 0;
348 intrcells = prom_n_intr_cells(np);
349 intlen /= intrcells * sizeof(unsigned int);
1beb6a7d 350 TRACE("intrcells=%d, new intlen=%d\n", intrcells, intlen);
9b6b563c
PM
351 np->intrs = prom_alloc(intlen * sizeof(*(np->intrs)), mem_start);
352 if (!np->intrs)
353 return -ENOMEM;
354
355 if (measure_only)
356 return 0;
357
358 intrcount = 0;
359 for (i = 0; i < intlen; ++i, ints += intrcells) {
360 n = map_interrupt(&irq, &ic, np, ints, intrcells);
1beb6a7d 361 TRACE("map, irq=%d, ic=%p, n=%d\n", irq, ic, n);
9b6b563c
PM
362 if (n <= 0)
363 continue;
364
365 /* don't map IRQ numbers under a cascaded 8259 controller */
366 if (ic && device_is_compatible(ic, "chrp,iic")) {
367 np->intrs[intrcount].line = irq[0];
6d0124fc
PM
368 sense = (n > 1)? (irq[1] & 3): 3;
369 np->intrs[intrcount].sense = map_isa_senses[sense];
9b6b563c 370 } else {
9b6b563c 371 virq = virt_irq_create_mapping(irq[0]);
1beb6a7d 372 TRACE("virq=%d\n", virq);
6d0124fc 373#ifdef CONFIG_PPC64
9b6b563c
PM
374 if (virq == NO_IRQ) {
375 printk(KERN_CRIT "Could not allocate interrupt"
376 " number for %s\n", np->full_name);
377 continue;
378 }
9b6b563c 379#endif
6d0124fc
PM
380 np->intrs[intrcount].line = irq_offset_up(virq);
381 sense = (n > 1)? (irq[1] & 3): 1;
1beb6a7d
BH
382
383 /* Apple uses bits in there in a different way, let's
384 * only keep the real sense bit on macs
385 */
386 if (_machine == PLATFORM_POWERMAC)
387 sense &= 0x1;
6d0124fc 388 np->intrs[intrcount].sense = map_mpic_senses[sense];
9b6b563c
PM
389 }
390
391#ifdef CONFIG_PPC64
392 /* We offset irq numbers for the u3 MPIC by 128 in PowerMac */
799d6046 393 if (_machine == PLATFORM_POWERMAC && ic && ic->parent) {
9b6b563c
PM
394 char *name = get_property(ic->parent, "name", NULL);
395 if (name && !strcmp(name, "u3"))
396 np->intrs[intrcount].line += 128;
1beb6a7d
BH
397 else if (!(name && (!strcmp(name, "mac-io") ||
398 !strcmp(name, "u4"))))
9b6b563c
PM
399 /* ignore other cascaded controllers, such as
400 the k2-sata-root */
401 break;
402 }
1beb6a7d 403#endif /* CONFIG_PPC64 */
9b6b563c
PM
404 if (n > 2) {
405 printk("hmmm, got %d intr cells for %s:", n,
406 np->full_name);
407 for (j = 0; j < n; ++j)
408 printk(" %d", irq[j]);
409 printk("\n");
410 }
411 ++intrcount;
412 }
413 np->n_intrs = intrcount;
414
415 return 0;
416}
417
9b6b563c
PM
418static int __devinit finish_node(struct device_node *np,
419 unsigned long *mem_start,
9b6b563c
PM
420 int measure_only)
421{
422 struct device_node *child;
cc5d0189 423 int rc = 0;
9b6b563c
PM
424
425 rc = finish_node_interrupts(np, mem_start, measure_only);
426 if (rc)
427 goto out;
428
9b6b563c 429 for (child = np->child; child != NULL; child = child->sibling) {
cc5d0189 430 rc = finish_node(child, mem_start, measure_only);
9b6b563c
PM
431 if (rc)
432 goto out;
433 }
434out:
435 return rc;
436}
437
438static void __init scan_interrupt_controllers(void)
439{
440 struct device_node *np;
441 int n = 0;
442 char *name, *ic;
443 int iclen;
444
445 for (np = allnodes; np != NULL; np = np->allnext) {
446 ic = get_property(np, "interrupt-controller", &iclen);
447 name = get_property(np, "name", NULL);
448 /* checking iclen makes sure we don't get a false
449 match on /chosen.interrupt_controller */
450 if ((name != NULL
451 && strcmp(name, "interrupt-controller") == 0)
452 || (ic != NULL && iclen == 0
453 && strcmp(name, "AppleKiwi"))) {
454 if (n == 0)
455 dflt_interrupt_controller = np;
456 ++n;
457 }
458 }
459 num_interrupt_controllers = n;
460}
461
462/**
463 * finish_device_tree is called once things are running normally
464 * (i.e. with text and data mapped to the address they were linked at).
465 * It traverses the device tree and fills in some of the additional,
466 * fields in each node like {n_}addrs and {n_}intrs, the virt interrupt
467 * mapping is also initialized at this point.
468 */
469void __init finish_device_tree(void)
470{
471 unsigned long start, end, size = 0;
472
473 DBG(" -> finish_device_tree\n");
474
475#ifdef CONFIG_PPC64
476 /* Initialize virtual IRQ map */
477 virt_irq_init();
478#endif
479 scan_interrupt_controllers();
480
481 /*
482 * Finish device-tree (pre-parsing some properties etc...)
483 * We do this in 2 passes. One with "measure_only" set, which
484 * will only measure the amount of memory needed, then we can
485 * allocate that memory, and call finish_node again. However,
486 * we must be careful as most routines will fail nowadays when
487 * prom_alloc() returns 0, so we must make sure our first pass
488 * doesn't start at 0. We pre-initialize size to 16 for that
489 * reason and then remove those additional 16 bytes
490 */
491 size = 16;
cc5d0189 492 finish_node(allnodes, &size, 1);
9b6b563c 493 size -= 16;
fa938953
ME
494
495 if (0 == size)
496 end = start = 0;
497 else
498 end = start = (unsigned long)__va(lmb_alloc(size, 128));
499
cc5d0189 500 finish_node(allnodes, &end, 0);
9b6b563c
PM
501 BUG_ON(end != start + size);
502
503 DBG(" <- finish_device_tree\n");
504}
505
506static inline char *find_flat_dt_string(u32 offset)
507{
508 return ((char *)initial_boot_params) +
509 initial_boot_params->off_dt_strings + offset;
510}
511
512/**
513 * This function is used to scan the flattened device-tree, it is
514 * used to extract the memory informations at boot before we can
515 * unflatten the tree
516 */
3c726f8d
BH
517int __init of_scan_flat_dt(int (*it)(unsigned long node,
518 const char *uname, int depth,
519 void *data),
520 void *data)
9b6b563c
PM
521{
522 unsigned long p = ((unsigned long)initial_boot_params) +
523 initial_boot_params->off_dt_struct;
524 int rc = 0;
525 int depth = -1;
526
527 do {
528 u32 tag = *((u32 *)p);
529 char *pathp;
530
531 p += 4;
532 if (tag == OF_DT_END_NODE) {
533 depth --;
534 continue;
535 }
536 if (tag == OF_DT_NOP)
537 continue;
538 if (tag == OF_DT_END)
539 break;
540 if (tag == OF_DT_PROP) {
541 u32 sz = *((u32 *)p);
542 p += 8;
543 if (initial_boot_params->version < 0x10)
544 p = _ALIGN(p, sz >= 8 ? 8 : 4);
545 p += sz;
546 p = _ALIGN(p, 4);
547 continue;
548 }
549 if (tag != OF_DT_BEGIN_NODE) {
550 printk(KERN_WARNING "Invalid tag %x scanning flattened"
551 " device tree !\n", tag);
552 return -EINVAL;
553 }
554 depth++;
555 pathp = (char *)p;
556 p = _ALIGN(p + strlen(pathp) + 1, 4);
557 if ((*pathp) == '/') {
558 char *lp, *np;
559 for (lp = NULL, np = pathp; *np; np++)
560 if ((*np) == '/')
561 lp = np+1;
562 if (lp != NULL)
563 pathp = lp;
564 }
565 rc = it(p, pathp, depth, data);
566 if (rc != 0)
567 break;
568 } while(1);
569
570 return rc;
571}
572
573/**
574 * This function can be used within scan_flattened_dt callback to get
575 * access to properties
576 */
3c726f8d
BH
577void* __init of_get_flat_dt_prop(unsigned long node, const char *name,
578 unsigned long *size)
9b6b563c
PM
579{
580 unsigned long p = node;
581
582 do {
583 u32 tag = *((u32 *)p);
584 u32 sz, noff;
585 const char *nstr;
586
587 p += 4;
588 if (tag == OF_DT_NOP)
589 continue;
590 if (tag != OF_DT_PROP)
591 return NULL;
592
593 sz = *((u32 *)p);
594 noff = *((u32 *)(p + 4));
595 p += 8;
596 if (initial_boot_params->version < 0x10)
597 p = _ALIGN(p, sz >= 8 ? 8 : 4);
598
599 nstr = find_flat_dt_string(noff);
600 if (nstr == NULL) {
601 printk(KERN_WARNING "Can't find property index"
602 " name !\n");
603 return NULL;
604 }
605 if (strcmp(name, nstr) == 0) {
606 if (size)
607 *size = sz;
608 return (void *)p;
609 }
610 p += sz;
611 p = _ALIGN(p, 4);
612 } while(1);
613}
614
615static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
616 unsigned long align)
617{
618 void *res;
619
620 *mem = _ALIGN(*mem, align);
621 res = (void *)*mem;
622 *mem += size;
623
624 return res;
625}
626
627static unsigned long __init unflatten_dt_node(unsigned long mem,
628 unsigned long *p,
629 struct device_node *dad,
630 struct device_node ***allnextpp,
631 unsigned long fpsize)
632{
633 struct device_node *np;
634 struct property *pp, **prev_pp = NULL;
635 char *pathp;
636 u32 tag;
637 unsigned int l, allocl;
638 int has_name = 0;
639 int new_format = 0;
640
641 tag = *((u32 *)(*p));
642 if (tag != OF_DT_BEGIN_NODE) {
643 printk("Weird tag at start of node: %x\n", tag);
644 return mem;
645 }
646 *p += 4;
647 pathp = (char *)*p;
648 l = allocl = strlen(pathp) + 1;
649 *p = _ALIGN(*p + l, 4);
650
651 /* version 0x10 has a more compact unit name here instead of the full
652 * path. we accumulate the full path size using "fpsize", we'll rebuild
653 * it later. We detect this because the first character of the name is
654 * not '/'.
655 */
656 if ((*pathp) != '/') {
657 new_format = 1;
658 if (fpsize == 0) {
659 /* root node: special case. fpsize accounts for path
660 * plus terminating zero. root node only has '/', so
661 * fpsize should be 2, but we want to avoid the first
662 * level nodes to have two '/' so we use fpsize 1 here
663 */
664 fpsize = 1;
665 allocl = 2;
666 } else {
667 /* account for '/' and path size minus terminal 0
668 * already in 'l'
669 */
670 fpsize += l;
671 allocl = fpsize;
672 }
673 }
674
675
676 np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
677 __alignof__(struct device_node));
678 if (allnextpp) {
679 memset(np, 0, sizeof(*np));
680 np->full_name = ((char*)np) + sizeof(struct device_node);
681 if (new_format) {
682 char *p = np->full_name;
683 /* rebuild full path for new format */
684 if (dad && dad->parent) {
685 strcpy(p, dad->full_name);
686#ifdef DEBUG
687 if ((strlen(p) + l + 1) != allocl) {
688 DBG("%s: p: %d, l: %d, a: %d\n",
689 pathp, strlen(p), l, allocl);
690 }
691#endif
692 p += strlen(p);
693 }
694 *(p++) = '/';
695 memcpy(p, pathp, l);
696 } else
697 memcpy(np->full_name, pathp, l);
698 prev_pp = &np->properties;
699 **allnextpp = np;
700 *allnextpp = &np->allnext;
701 if (dad != NULL) {
702 np->parent = dad;
703 /* we temporarily use the next field as `last_child'*/
704 if (dad->next == 0)
705 dad->child = np;
706 else
707 dad->next->sibling = np;
708 dad->next = np;
709 }
710 kref_init(&np->kref);
711 }
712 while(1) {
713 u32 sz, noff;
714 char *pname;
715
716 tag = *((u32 *)(*p));
717 if (tag == OF_DT_NOP) {
718 *p += 4;
719 continue;
720 }
721 if (tag != OF_DT_PROP)
722 break;
723 *p += 4;
724 sz = *((u32 *)(*p));
725 noff = *((u32 *)((*p) + 4));
726 *p += 8;
727 if (initial_boot_params->version < 0x10)
728 *p = _ALIGN(*p, sz >= 8 ? 8 : 4);
729
730 pname = find_flat_dt_string(noff);
731 if (pname == NULL) {
732 printk("Can't find property name in list !\n");
733 break;
734 }
735 if (strcmp(pname, "name") == 0)
736 has_name = 1;
737 l = strlen(pname) + 1;
738 pp = unflatten_dt_alloc(&mem, sizeof(struct property),
739 __alignof__(struct property));
740 if (allnextpp) {
741 if (strcmp(pname, "linux,phandle") == 0) {
742 np->node = *((u32 *)*p);
743 if (np->linux_phandle == 0)
744 np->linux_phandle = np->node;
745 }
746 if (strcmp(pname, "ibm,phandle") == 0)
747 np->linux_phandle = *((u32 *)*p);
748 pp->name = pname;
749 pp->length = sz;
750 pp->value = (void *)*p;
751 *prev_pp = pp;
752 prev_pp = &pp->next;
753 }
754 *p = _ALIGN((*p) + sz, 4);
755 }
756 /* with version 0x10 we may not have the name property, recreate
757 * it here from the unit name if absent
758 */
759 if (!has_name) {
760 char *p = pathp, *ps = pathp, *pa = NULL;
761 int sz;
762
763 while (*p) {
764 if ((*p) == '@')
765 pa = p;
766 if ((*p) == '/')
767 ps = p + 1;
768 p++;
769 }
770 if (pa < ps)
771 pa = p;
772 sz = (pa - ps) + 1;
773 pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
774 __alignof__(struct property));
775 if (allnextpp) {
776 pp->name = "name";
777 pp->length = sz;
778 pp->value = (unsigned char *)(pp + 1);
779 *prev_pp = pp;
780 prev_pp = &pp->next;
781 memcpy(pp->value, ps, sz - 1);
782 ((char *)pp->value)[sz - 1] = 0;
783 DBG("fixed up name for %s -> %s\n", pathp, pp->value);
784 }
785 }
786 if (allnextpp) {
787 *prev_pp = NULL;
788 np->name = get_property(np, "name", NULL);
789 np->type = get_property(np, "device_type", NULL);
790
791 if (!np->name)
792 np->name = "<NULL>";
793 if (!np->type)
794 np->type = "<NULL>";
795 }
796 while (tag == OF_DT_BEGIN_NODE) {
797 mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize);
798 tag = *((u32 *)(*p));
799 }
800 if (tag != OF_DT_END_NODE) {
801 printk("Weird tag at end of node: %x\n", tag);
802 return mem;
803 }
804 *p += 4;
805 return mem;
806}
807
808
809/**
810 * unflattens the device-tree passed by the firmware, creating the
811 * tree of struct device_node. It also fills the "name" and "type"
812 * pointers of the nodes so the normal device-tree walking functions
813 * can be used (this used to be done by finish_device_tree)
814 */
815void __init unflatten_device_tree(void)
816{
817 unsigned long start, mem, size;
818 struct device_node **allnextp = &allnodes;
819 char *p = NULL;
820 int l = 0;
821
822 DBG(" -> unflatten_device_tree()\n");
823
824 /* First pass, scan for size */
825 start = ((unsigned long)initial_boot_params) +
826 initial_boot_params->off_dt_struct;
827 size = unflatten_dt_node(0, &start, NULL, NULL, 0);
828 size = (size | 3) + 1;
829
830 DBG(" size is %lx, allocating...\n", size);
831
832 /* Allocate memory for the expanded device tree */
833 mem = lmb_alloc(size + 4, __alignof__(struct device_node));
834 if (!mem) {
835 DBG("Couldn't allocate memory with lmb_alloc()!\n");
836 panic("Couldn't allocate memory with lmb_alloc()!\n");
837 }
838 mem = (unsigned long) __va(mem);
839
840 ((u32 *)mem)[size / 4] = 0xdeadbeef;
841
842 DBG(" unflattening %lx...\n", mem);
843
844 /* Second pass, do actual unflattening */
845 start = ((unsigned long)initial_boot_params) +
846 initial_boot_params->off_dt_struct;
847 unflatten_dt_node(mem, &start, NULL, &allnextp, 0);
848 if (*((u32 *)start) != OF_DT_END)
849 printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start));
850 if (((u32 *)mem)[size / 4] != 0xdeadbeef)
851 printk(KERN_WARNING "End of tree marker overwritten: %08x\n",
852 ((u32 *)mem)[size / 4] );
853 *allnextp = NULL;
854
855 /* Get pointer to OF "/chosen" node for use everywhere */
856 of_chosen = of_find_node_by_path("/chosen");
a575b807
PM
857 if (of_chosen == NULL)
858 of_chosen = of_find_node_by_path("/chosen@0");
9b6b563c
PM
859
860 /* Retreive command line */
861 if (of_chosen != NULL) {
862 p = (char *)get_property(of_chosen, "bootargs", &l);
863 if (p != NULL && l > 0)
864 strlcpy(cmd_line, p, min(l, COMMAND_LINE_SIZE));
865 }
866#ifdef CONFIG_CMDLINE
867 if (l == 0 || (l == 1 && (*p) == 0))
868 strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
869#endif /* CONFIG_CMDLINE */
870
871 DBG("Command line is: %s\n", cmd_line);
872
873 DBG(" <- unflatten_device_tree()\n");
874}
875
876
877static int __init early_init_dt_scan_cpus(unsigned long node,
878 const char *uname, int depth, void *data)
879{
9b6b563c 880 u32 *prop;
676e2497
SR
881 unsigned long size;
882 char *type = of_get_flat_dt_prop(node, "device_type", &size);
9b6b563c
PM
883
884 /* We are scanning "cpu" nodes only */
885 if (type == NULL || strcmp(type, "cpu") != 0)
886 return 0;
887
80579e1f
PM
888 boot_cpuid = 0;
889 boot_cpuid_phys = 0;
9b6b563c
PM
890 if (initial_boot_params && initial_boot_params->version >= 2) {
891 /* version 2 of the kexec param format adds the phys cpuid
892 * of booted proc.
893 */
894 boot_cpuid_phys = initial_boot_params->boot_cpuid_phys;
9b6b563c 895 } else {
80579e1f 896 /* Check if it's the boot-cpu, set it's hw index now */
3c726f8d
BH
897 if (of_get_flat_dt_prop(node,
898 "linux,boot-cpu", NULL) != NULL) {
899 prop = of_get_flat_dt_prop(node, "reg", NULL);
80579e1f
PM
900 if (prop != NULL)
901 boot_cpuid_phys = *prop;
9b6b563c
PM
902 }
903 }
80579e1f 904 set_hard_smp_processor_id(0, boot_cpuid_phys);
9b6b563c
PM
905
906#ifdef CONFIG_ALTIVEC
907 /* Check if we have a VMX and eventually update CPU features */
676e2497 908 prop = (u32 *)of_get_flat_dt_prop(node, "ibm,vmx", NULL);
9b6b563c
PM
909 if (prop && (*prop) > 0) {
910 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
911 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
912 }
913
914 /* Same goes for Apple's "altivec" property */
3c726f8d 915 prop = (u32 *)of_get_flat_dt_prop(node, "altivec", NULL);
9b6b563c
PM
916 if (prop) {
917 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
918 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
919 }
920#endif /* CONFIG_ALTIVEC */
921
922#ifdef CONFIG_PPC_PSERIES
923 /*
924 * Check for an SMT capable CPU and set the CPU feature. We do
925 * this by looking at the size of the ibm,ppc-interrupt-server#s
926 * property
927 */
3c726f8d 928 prop = (u32 *)of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s",
9b6b563c
PM
929 &size);
930 cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
931 if (prop && ((size / sizeof(u32)) > 1))
932 cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
933#endif
934
935 return 0;
936}
937
938static int __init early_init_dt_scan_chosen(unsigned long node,
939 const char *uname, int depth, void *data)
940{
941 u32 *prop;
942 unsigned long *lprop;
943
944 DBG("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
945
a575b807
PM
946 if (depth != 1 ||
947 (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
9b6b563c
PM
948 return 0;
949
950 /* get platform type */
3c726f8d 951 prop = (u32 *)of_get_flat_dt_prop(node, "linux,platform", NULL);
9b6b563c
PM
952 if (prop == NULL)
953 return 0;
60dda256 954#ifdef CONFIG_PPC_MULTIPLATFORM
9b6b563c
PM
955 _machine = *prop;
956#endif
957
958#ifdef CONFIG_PPC64
959 /* check if iommu is forced on or off */
3c726f8d 960 if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
9b6b563c 961 iommu_is_off = 1;
3c726f8d 962 if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
9b6b563c
PM
963 iommu_force_on = 1;
964#endif
965
3c726f8d 966 lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
9b6b563c
PM
967 if (lprop)
968 memory_limit = *lprop;
969
970#ifdef CONFIG_PPC64
3c726f8d 971 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
9b6b563c
PM
972 if (lprop)
973 tce_alloc_start = *lprop;
3c726f8d 974 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
9b6b563c
PM
975 if (lprop)
976 tce_alloc_end = *lprop;
977#endif
978
979#ifdef CONFIG_PPC_RTAS
943ffb58 980 /* To help early debugging via the front panel, we retrieve a minimal
9b6b563c
PM
981 * set of RTAS infos now if available
982 */
983 {
984 u64 *basep, *entryp;
985
3c726f8d
BH
986 basep = of_get_flat_dt_prop(node, "linux,rtas-base", NULL);
987 entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL);
988 prop = of_get_flat_dt_prop(node, "linux,rtas-size", NULL);
9b6b563c
PM
989 if (basep && entryp && prop) {
990 rtas.base = *basep;
991 rtas.entry = *entryp;
992 rtas.size = *prop;
993 }
994 }
995#endif /* CONFIG_PPC_RTAS */
996
dcee3036
ME
997#ifdef CONFIG_KEXEC
998 lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL);
999 if (lprop)
1000 crashk_res.start = *lprop;
1001
1002 lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL);
1003 if (lprop)
1004 crashk_res.end = crashk_res.start + *lprop - 1;
1005#endif
1006
9b6b563c
PM
1007 /* break now */
1008 return 1;
1009}
1010
1011static int __init early_init_dt_scan_root(unsigned long node,
1012 const char *uname, int depth, void *data)
1013{
1014 u32 *prop;
1015
1016 if (depth != 0)
1017 return 0;
1018
3c726f8d 1019 prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
9b6b563c
PM
1020 dt_root_size_cells = (prop == NULL) ? 1 : *prop;
1021 DBG("dt_root_size_cells = %x\n", dt_root_size_cells);
1022
3c726f8d 1023 prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
9b6b563c
PM
1024 dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
1025 DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1026
1027 /* break now */
1028 return 1;
1029}
1030
1031static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp)
1032{
1033 cell_t *p = *cellp;
1034 unsigned long r;
1035
1036 /* Ignore more than 2 cells */
1037 while (s > sizeof(unsigned long) / 4) {
1038 p++;
1039 s--;
1040 }
1041 r = *p++;
1042#ifdef CONFIG_PPC64
1043 if (s > 1) {
1044 r <<= 32;
1045 r |= *(p++);
1046 s--;
1047 }
1048#endif
1049
1050 *cellp = p;
1051 return r;
1052}
1053
1054
1055static int __init early_init_dt_scan_memory(unsigned long node,
1056 const char *uname, int depth, void *data)
1057{
3c726f8d 1058 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
9b6b563c
PM
1059 cell_t *reg, *endp;
1060 unsigned long l;
1061
1062 /* We are scanning "memory" nodes only */
a23414be
PM
1063 if (type == NULL) {
1064 /*
1065 * The longtrail doesn't have a device_type on the
1066 * /memory node, so look for the node called /memory@0.
1067 */
1068 if (depth != 1 || strcmp(uname, "memory@0") != 0)
1069 return 0;
1070 } else if (strcmp(type, "memory") != 0)
9b6b563c
PM
1071 return 0;
1072
ba759485
ME
1073 reg = (cell_t *)of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1074 if (reg == NULL)
1075 reg = (cell_t *)of_get_flat_dt_prop(node, "reg", &l);
9b6b563c
PM
1076 if (reg == NULL)
1077 return 0;
1078
1079 endp = reg + (l / sizeof(cell_t));
1080
358c86fd 1081 DBG("memory scan node %s, reg size %ld, data: %x %x %x %x,\n",
9b6b563c
PM
1082 uname, l, reg[0], reg[1], reg[2], reg[3]);
1083
1084 while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1085 unsigned long base, size;
1086
1087 base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1088 size = dt_mem_next_cell(dt_root_size_cells, &reg);
1089
1090 if (size == 0)
1091 continue;
1092 DBG(" - %lx , %lx\n", base, size);
1093#ifdef CONFIG_PPC64
1094 if (iommu_is_off) {
1095 if (base >= 0x80000000ul)
1096 continue;
1097 if ((base + size) > 0x80000000ul)
1098 size = 0x80000000ul - base;
1099 }
1100#endif
1101 lmb_add(base, size);
1102 }
1103 return 0;
1104}
1105
1106static void __init early_reserve_mem(void)
1107{
cbbcf340
KG
1108 u64 base, size;
1109 u64 *reserve_map;
9b6b563c 1110
cbbcf340 1111 reserve_map = (u64 *)(((unsigned long)initial_boot_params) +
9b6b563c 1112 initial_boot_params->off_mem_rsvmap);
cbbcf340
KG
1113#ifdef CONFIG_PPC32
1114 /*
1115 * Handle the case where we might be booting from an old kexec
1116 * image that setup the mem_rsvmap as pairs of 32-bit values
1117 */
1118 if (*reserve_map > 0xffffffffull) {
1119 u32 base_32, size_32;
1120 u32 *reserve_map_32 = (u32 *)reserve_map;
1121
1122 while (1) {
1123 base_32 = *(reserve_map_32++);
1124 size_32 = *(reserve_map_32++);
1125 if (size_32 == 0)
1126 break;
1127 DBG("reserving: %lx -> %lx\n", base_32, size_32);
1128 lmb_reserve(base_32, size_32);
1129 }
1130 return;
1131 }
1132#endif
9b6b563c
PM
1133 while (1) {
1134 base = *(reserve_map++);
1135 size = *(reserve_map++);
1136 if (size == 0)
1137 break;
cbbcf340 1138 DBG("reserving: %llx -> %llx\n", base, size);
9b6b563c
PM
1139 lmb_reserve(base, size);
1140 }
1141
1142#if 0
1143 DBG("memory reserved, lmbs :\n");
1144 lmb_dump_all();
1145#endif
1146}
1147
1148void __init early_init_devtree(void *params)
1149{
1150 DBG(" -> early_init_devtree()\n");
1151
1152 /* Setup flat device-tree pointer */
1153 initial_boot_params = params;
1154
1155 /* Retrieve various informations from the /chosen node of the
1156 * device-tree, including the platform type, initrd location and
1157 * size, TCE reserve, and more ...
1158 */
3c726f8d 1159 of_scan_flat_dt(early_init_dt_scan_chosen, NULL);
9b6b563c
PM
1160
1161 /* Scan memory nodes and rebuild LMBs */
1162 lmb_init();
3c726f8d
BH
1163 of_scan_flat_dt(early_init_dt_scan_root, NULL);
1164 of_scan_flat_dt(early_init_dt_scan_memory, NULL);
9b6b563c
PM
1165 lmb_enforce_memory_limit(memory_limit);
1166 lmb_analyze();
9b6b563c
PM
1167
1168 DBG("Phys. mem: %lx\n", lmb_phys_mem_size());
1169
1170 /* Reserve LMB regions used by kernel, initrd, dt, etc... */
0cc4746c
ME
1171 lmb_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START);
1172#ifdef CONFIG_CRASH_DUMP
1173 lmb_reserve(0, KDUMP_RESERVE_LIMIT);
1174#endif
9b6b563c
PM
1175 early_reserve_mem();
1176
1177 DBG("Scanning CPUs ...\n");
1178
3c726f8d
BH
1179 /* Retreive CPU related informations from the flat tree
1180 * (altivec support, boot CPU ID, ...)
9b6b563c 1181 */
3c726f8d 1182 of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
9b6b563c 1183
9b6b563c
PM
1184 DBG(" <- early_init_devtree()\n");
1185}
1186
1187#undef printk
1188
1189int
1190prom_n_addr_cells(struct device_node* np)
1191{
1192 int* ip;
1193 do {
1194 if (np->parent)
1195 np = np->parent;
1196 ip = (int *) get_property(np, "#address-cells", NULL);
1197 if (ip != NULL)
1198 return *ip;
1199 } while (np->parent);
1200 /* No #address-cells property for the root node, default to 1 */
1201 return 1;
1202}
1dfc6772 1203EXPORT_SYMBOL(prom_n_addr_cells);
9b6b563c
PM
1204
1205int
1206prom_n_size_cells(struct device_node* np)
1207{
1208 int* ip;
1209 do {
1210 if (np->parent)
1211 np = np->parent;
1212 ip = (int *) get_property(np, "#size-cells", NULL);
1213 if (ip != NULL)
1214 return *ip;
1215 } while (np->parent);
1216 /* No #size-cells property for the root node, default to 1 */
1217 return 1;
1218}
1dfc6772 1219EXPORT_SYMBOL(prom_n_size_cells);
9b6b563c
PM
1220
1221/**
1222 * Work out the sense (active-low level / active-high edge)
1223 * of each interrupt from the device tree.
1224 */
1225void __init prom_get_irq_senses(unsigned char *senses, int off, int max)
1226{
1227 struct device_node *np;
1228 int i, j;
1229
1230 /* default to level-triggered */
6d0124fc 1231 memset(senses, IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE, max - off);
9b6b563c
PM
1232
1233 for (np = allnodes; np != 0; np = np->allnext) {
1234 for (j = 0; j < np->n_intrs; j++) {
1235 i = np->intrs[j].line;
1236 if (i >= off && i < max)
6d0124fc 1237 senses[i-off] = np->intrs[j].sense;
9b6b563c
PM
1238 }
1239 }
1240}
1241
1242/**
1243 * Construct and return a list of the device_nodes with a given name.
1244 */
1245struct device_node *find_devices(const char *name)
1246{
1247 struct device_node *head, **prevp, *np;
1248
1249 prevp = &head;
1250 for (np = allnodes; np != 0; np = np->allnext) {
1251 if (np->name != 0 && strcasecmp(np->name, name) == 0) {
1252 *prevp = np;
1253 prevp = &np->next;
1254 }
1255 }
1256 *prevp = NULL;
1257 return head;
1258}
1259EXPORT_SYMBOL(find_devices);
1260
1261/**
1262 * Construct and return a list of the device_nodes with a given type.
1263 */
1264struct device_node *find_type_devices(const char *type)
1265{
1266 struct device_node *head, **prevp, *np;
1267
1268 prevp = &head;
1269 for (np = allnodes; np != 0; np = np->allnext) {
1270 if (np->type != 0 && strcasecmp(np->type, type) == 0) {
1271 *prevp = np;
1272 prevp = &np->next;
1273 }
1274 }
1275 *prevp = NULL;
1276 return head;
1277}
1278EXPORT_SYMBOL(find_type_devices);
1279
1280/**
1281 * Returns all nodes linked together
1282 */
1283struct device_node *find_all_nodes(void)
1284{
1285 struct device_node *head, **prevp, *np;
1286
1287 prevp = &head;
1288 for (np = allnodes; np != 0; np = np->allnext) {
1289 *prevp = np;
1290 prevp = &np->next;
1291 }
1292 *prevp = NULL;
1293 return head;
1294}
1295EXPORT_SYMBOL(find_all_nodes);
1296
1297/** Checks if the given "compat" string matches one of the strings in
1298 * the device's "compatible" property
1299 */
1300int device_is_compatible(struct device_node *device, const char *compat)
1301{
1302 const char* cp;
1303 int cplen, l;
1304
1305 cp = (char *) get_property(device, "compatible", &cplen);
1306 if (cp == NULL)
1307 return 0;
1308 while (cplen > 0) {
1309 if (strncasecmp(cp, compat, strlen(compat)) == 0)
1310 return 1;
1311 l = strlen(cp) + 1;
1312 cp += l;
1313 cplen -= l;
1314 }
1315
1316 return 0;
1317}
1318EXPORT_SYMBOL(device_is_compatible);
1319
1320
1321/**
1322 * Indicates whether the root node has a given value in its
1323 * compatible property.
1324 */
1325int machine_is_compatible(const char *compat)
1326{
1327 struct device_node *root;
1328 int rc = 0;
1329
1330 root = of_find_node_by_path("/");
1331 if (root) {
1332 rc = device_is_compatible(root, compat);
1333 of_node_put(root);
1334 }
1335 return rc;
1336}
1337EXPORT_SYMBOL(machine_is_compatible);
1338
1339/**
1340 * Construct and return a list of the device_nodes with a given type
1341 * and compatible property.
1342 */
1343struct device_node *find_compatible_devices(const char *type,
1344 const char *compat)
1345{
1346 struct device_node *head, **prevp, *np;
1347
1348 prevp = &head;
1349 for (np = allnodes; np != 0; np = np->allnext) {
1350 if (type != NULL
1351 && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1352 continue;
1353 if (device_is_compatible(np, compat)) {
1354 *prevp = np;
1355 prevp = &np->next;
1356 }
1357 }
1358 *prevp = NULL;
1359 return head;
1360}
1361EXPORT_SYMBOL(find_compatible_devices);
1362
1363/**
1364 * Find the device_node with a given full_name.
1365 */
1366struct device_node *find_path_device(const char *path)
1367{
1368 struct device_node *np;
1369
1370 for (np = allnodes; np != 0; np = np->allnext)
1371 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
1372 return np;
1373 return NULL;
1374}
1375EXPORT_SYMBOL(find_path_device);
1376
1377/*******
1378 *
1379 * New implementation of the OF "find" APIs, return a refcounted
1380 * object, call of_node_put() when done. The device tree and list
1381 * are protected by a rw_lock.
1382 *
1383 * Note that property management will need some locking as well,
1384 * this isn't dealt with yet.
1385 *
1386 *******/
1387
1388/**
1389 * of_find_node_by_name - Find a node by its "name" property
1390 * @from: The node to start searching from or NULL, the node
1391 * you pass will not be searched, only the next one
1392 * will; typically, you pass what the previous call
1393 * returned. of_node_put() will be called on it
1394 * @name: The name string to match against
1395 *
1396 * Returns a node pointer with refcount incremented, use
1397 * of_node_put() on it when done.
1398 */
1399struct device_node *of_find_node_by_name(struct device_node *from,
1400 const char *name)
1401{
1402 struct device_node *np;
1403
1404 read_lock(&devtree_lock);
1405 np = from ? from->allnext : allnodes;
1406 for (; np != 0; np = np->allnext)
1407 if (np->name != 0 && strcasecmp(np->name, name) == 0
1408 && of_node_get(np))
1409 break;
1410 if (from)
1411 of_node_put(from);
1412 read_unlock(&devtree_lock);
1413 return np;
1414}
1415EXPORT_SYMBOL(of_find_node_by_name);
1416
1417/**
1418 * of_find_node_by_type - Find a node by its "device_type" property
1419 * @from: The node to start searching from or NULL, the node
1420 * you pass will not be searched, only the next one
1421 * will; typically, you pass what the previous call
1422 * returned. of_node_put() will be called on it
1423 * @name: The type string to match against
1424 *
1425 * Returns a node pointer with refcount incremented, use
1426 * of_node_put() on it when done.
1427 */
1428struct device_node *of_find_node_by_type(struct device_node *from,
1429 const char *type)
1430{
1431 struct device_node *np;
1432
1433 read_lock(&devtree_lock);
1434 np = from ? from->allnext : allnodes;
1435 for (; np != 0; np = np->allnext)
1436 if (np->type != 0 && strcasecmp(np->type, type) == 0
1437 && of_node_get(np))
1438 break;
1439 if (from)
1440 of_node_put(from);
1441 read_unlock(&devtree_lock);
1442 return np;
1443}
1444EXPORT_SYMBOL(of_find_node_by_type);
1445
1446/**
1447 * of_find_compatible_node - Find a node based on type and one of the
1448 * tokens in its "compatible" property
1449 * @from: The node to start searching from or NULL, the node
1450 * you pass will not be searched, only the next one
1451 * will; typically, you pass what the previous call
1452 * returned. of_node_put() will be called on it
1453 * @type: The type string to match "device_type" or NULL to ignore
1454 * @compatible: The string to match to one of the tokens in the device
1455 * "compatible" list.
1456 *
1457 * Returns a node pointer with refcount incremented, use
1458 * of_node_put() on it when done.
1459 */
1460struct device_node *of_find_compatible_node(struct device_node *from,
1461 const char *type, const char *compatible)
1462{
1463 struct device_node *np;
1464
1465 read_lock(&devtree_lock);
1466 np = from ? from->allnext : allnodes;
1467 for (; np != 0; np = np->allnext) {
1468 if (type != NULL
1469 && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1470 continue;
1471 if (device_is_compatible(np, compatible) && of_node_get(np))
1472 break;
1473 }
1474 if (from)
1475 of_node_put(from);
1476 read_unlock(&devtree_lock);
1477 return np;
1478}
1479EXPORT_SYMBOL(of_find_compatible_node);
1480
1481/**
1482 * of_find_node_by_path - Find a node matching a full OF path
1483 * @path: The full path to match
1484 *
1485 * Returns a node pointer with refcount incremented, use
1486 * of_node_put() on it when done.
1487 */
1488struct device_node *of_find_node_by_path(const char *path)
1489{
1490 struct device_node *np = allnodes;
1491
1492 read_lock(&devtree_lock);
1493 for (; np != 0; np = np->allnext) {
1494 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0
1495 && of_node_get(np))
1496 break;
1497 }
1498 read_unlock(&devtree_lock);
1499 return np;
1500}
1501EXPORT_SYMBOL(of_find_node_by_path);
1502
1503/**
1504 * of_find_node_by_phandle - Find a node given a phandle
1505 * @handle: phandle of the node to find
1506 *
1507 * Returns a node pointer with refcount incremented, use
1508 * of_node_put() on it when done.
1509 */
1510struct device_node *of_find_node_by_phandle(phandle handle)
1511{
1512 struct device_node *np;
1513
1514 read_lock(&devtree_lock);
1515 for (np = allnodes; np != 0; np = np->allnext)
1516 if (np->linux_phandle == handle)
1517 break;
1518 if (np)
1519 of_node_get(np);
1520 read_unlock(&devtree_lock);
1521 return np;
1522}
1523EXPORT_SYMBOL(of_find_node_by_phandle);
1524
1525/**
1526 * of_find_all_nodes - Get next node in global list
1527 * @prev: Previous node or NULL to start iteration
1528 * of_node_put() will be called on it
1529 *
1530 * Returns a node pointer with refcount incremented, use
1531 * of_node_put() on it when done.
1532 */
1533struct device_node *of_find_all_nodes(struct device_node *prev)
1534{
1535 struct device_node *np;
1536
1537 read_lock(&devtree_lock);
1538 np = prev ? prev->allnext : allnodes;
1539 for (; np != 0; np = np->allnext)
1540 if (of_node_get(np))
1541 break;
1542 if (prev)
1543 of_node_put(prev);
1544 read_unlock(&devtree_lock);
1545 return np;
1546}
1547EXPORT_SYMBOL(of_find_all_nodes);
1548
1549/**
1550 * of_get_parent - Get a node's parent if any
1551 * @node: Node to get parent
1552 *
1553 * Returns a node pointer with refcount incremented, use
1554 * of_node_put() on it when done.
1555 */
1556struct device_node *of_get_parent(const struct device_node *node)
1557{
1558 struct device_node *np;
1559
1560 if (!node)
1561 return NULL;
1562
1563 read_lock(&devtree_lock);
1564 np = of_node_get(node->parent);
1565 read_unlock(&devtree_lock);
1566 return np;
1567}
1568EXPORT_SYMBOL(of_get_parent);
1569
1570/**
1571 * of_get_next_child - Iterate a node childs
1572 * @node: parent node
1573 * @prev: previous child of the parent node, or NULL to get first
1574 *
1575 * Returns a node pointer with refcount incremented, use
1576 * of_node_put() on it when done.
1577 */
1578struct device_node *of_get_next_child(const struct device_node *node,
1579 struct device_node *prev)
1580{
1581 struct device_node *next;
1582
1583 read_lock(&devtree_lock);
1584 next = prev ? prev->sibling : node->child;
1585 for (; next != 0; next = next->sibling)
1586 if (of_node_get(next))
1587 break;
1588 if (prev)
1589 of_node_put(prev);
1590 read_unlock(&devtree_lock);
1591 return next;
1592}
1593EXPORT_SYMBOL(of_get_next_child);
1594
1595/**
1596 * of_node_get - Increment refcount of a node
1597 * @node: Node to inc refcount, NULL is supported to
1598 * simplify writing of callers
1599 *
1600 * Returns node.
1601 */
1602struct device_node *of_node_get(struct device_node *node)
1603{
1604 if (node)
1605 kref_get(&node->kref);
1606 return node;
1607}
1608EXPORT_SYMBOL(of_node_get);
1609
1610static inline struct device_node * kref_to_device_node(struct kref *kref)
1611{
1612 return container_of(kref, struct device_node, kref);
1613}
1614
1615/**
1616 * of_node_release - release a dynamically allocated node
1617 * @kref: kref element of the node to be released
1618 *
1619 * In of_node_put() this function is passed to kref_put()
1620 * as the destructor.
1621 */
1622static void of_node_release(struct kref *kref)
1623{
1624 struct device_node *node = kref_to_device_node(kref);
1625 struct property *prop = node->properties;
1626
1627 if (!OF_IS_DYNAMIC(node))
1628 return;
1629 while (prop) {
1630 struct property *next = prop->next;
1631 kfree(prop->name);
1632 kfree(prop->value);
1633 kfree(prop);
1634 prop = next;
088186de
DB
1635
1636 if (!prop) {
1637 prop = node->deadprops;
1638 node->deadprops = NULL;
1639 }
9b6b563c
PM
1640 }
1641 kfree(node->intrs);
9b6b563c
PM
1642 kfree(node->full_name);
1643 kfree(node->data);
1644 kfree(node);
1645}
1646
1647/**
1648 * of_node_put - Decrement refcount of a node
1649 * @node: Node to dec refcount, NULL is supported to
1650 * simplify writing of callers
1651 *
1652 */
1653void of_node_put(struct device_node *node)
1654{
1655 if (node)
1656 kref_put(&node->kref, of_node_release);
1657}
1658EXPORT_SYMBOL(of_node_put);
1659
1660/*
1661 * Plug a device node into the tree and global list.
1662 */
1663void of_attach_node(struct device_node *np)
1664{
1665 write_lock(&devtree_lock);
1666 np->sibling = np->parent->child;
1667 np->allnext = allnodes;
1668 np->parent->child = np;
1669 allnodes = np;
1670 write_unlock(&devtree_lock);
1671}
1672
1673/*
1674 * "Unplug" a node from the device tree. The caller must hold
1675 * a reference to the node. The memory associated with the node
1676 * is not freed until its refcount goes to zero.
1677 */
1678void of_detach_node(const struct device_node *np)
1679{
1680 struct device_node *parent;
1681
1682 write_lock(&devtree_lock);
1683
1684 parent = np->parent;
1685
1686 if (allnodes == np)
1687 allnodes = np->allnext;
1688 else {
1689 struct device_node *prev;
1690 for (prev = allnodes;
1691 prev->allnext != np;
1692 prev = prev->allnext)
1693 ;
1694 prev->allnext = np->allnext;
1695 }
1696
1697 if (parent->child == np)
1698 parent->child = np->sibling;
1699 else {
1700 struct device_node *prevsib;
1701 for (prevsib = np->parent->child;
1702 prevsib->sibling != np;
1703 prevsib = prevsib->sibling)
1704 ;
1705 prevsib->sibling = np->sibling;
1706 }
1707
1708 write_unlock(&devtree_lock);
1709}
1710
1711#ifdef CONFIG_PPC_PSERIES
1712/*
1713 * Fix up the uninitialized fields in a new device node:
1714 * name, type, n_addrs, addrs, n_intrs, intrs, and pci-specific fields
1715 *
1716 * A lot of boot-time code is duplicated here, because functions such
1717 * as finish_node_interrupts, interpret_pci_props, etc. cannot use the
1718 * slab allocator.
1719 *
1720 * This should probably be split up into smaller chunks.
1721 */
1722
cc5d0189 1723static int of_finish_dynamic_node(struct device_node *node)
9b6b563c
PM
1724{
1725 struct device_node *parent = of_get_parent(node);
1726 int err = 0;
1727 phandle *ibm_phandle;
1728
1729 node->name = get_property(node, "name", NULL);
1730 node->type = get_property(node, "device_type", NULL);
1731
1732 if (!parent) {
1733 err = -ENODEV;
1734 goto out;
1735 }
1736
1737 /* We don't support that function on PowerMac, at least
1738 * not yet
1739 */
799d6046 1740 if (_machine == PLATFORM_POWERMAC)
9b6b563c
PM
1741 return -ENODEV;
1742
1743 /* fix up new node's linux_phandle field */
cc5d0189
BH
1744 if ((ibm_phandle = (unsigned int *)get_property(node,
1745 "ibm,phandle", NULL)))
9b6b563c
PM
1746 node->linux_phandle = *ibm_phandle;
1747
1748out:
1749 of_node_put(parent);
1750 return err;
1751}
1752
1753static int prom_reconfig_notifier(struct notifier_block *nb,
1754 unsigned long action, void *node)
1755{
1756 int err;
1757
1758 switch (action) {
1759 case PSERIES_RECONFIG_ADD:
cc5d0189
BH
1760 err = of_finish_dynamic_node(node);
1761 if (!err)
1762 finish_node(node, NULL, 0);
9b6b563c
PM
1763 if (err < 0) {
1764 printk(KERN_ERR "finish_node returned %d\n", err);
1765 err = NOTIFY_BAD;
1766 }
1767 break;
1768 default:
1769 err = NOTIFY_DONE;
1770 break;
1771 }
1772 return err;
1773}
1774
1775static struct notifier_block prom_reconfig_nb = {
1776 .notifier_call = prom_reconfig_notifier,
1777 .priority = 10, /* This one needs to run first */
1778};
1779
1780static int __init prom_reconfig_setup(void)
1781{
1782 return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
1783}
1784__initcall(prom_reconfig_setup);
1785#endif
1786
ecaa8b0f
DB
1787struct property *of_find_property(struct device_node *np, const char *name,
1788 int *lenp)
9b6b563c
PM
1789{
1790 struct property *pp;
1791
088186de 1792 read_lock(&devtree_lock);
9b6b563c
PM
1793 for (pp = np->properties; pp != 0; pp = pp->next)
1794 if (strcmp(pp->name, name) == 0) {
1795 if (lenp != 0)
1796 *lenp = pp->length;
088186de 1797 break;
9b6b563c 1798 }
088186de
DB
1799 read_unlock(&devtree_lock);
1800
ecaa8b0f
DB
1801 return pp;
1802}
1803
1804/*
1805 * Find a property with a given name for a given node
1806 * and return the value.
1807 */
1808unsigned char *get_property(struct device_node *np, const char *name,
1809 int *lenp)
1810{
1811 struct property *pp = of_find_property(np,name,lenp);
088186de 1812 return pp ? pp->value : NULL;
9b6b563c
PM
1813}
1814EXPORT_SYMBOL(get_property);
1815
1816/*
1817 * Add a property to a node
1818 */
183d0202 1819int prom_add_property(struct device_node* np, struct property* prop)
9b6b563c 1820{
183d0202 1821 struct property **next;
9b6b563c
PM
1822
1823 prop->next = NULL;
183d0202
BH
1824 write_lock(&devtree_lock);
1825 next = &np->properties;
1826 while (*next) {
1827 if (strcmp(prop->name, (*next)->name) == 0) {
1828 /* duplicate ! don't insert it */
1829 write_unlock(&devtree_lock);
1830 return -1;
1831 }
9b6b563c 1832 next = &(*next)->next;
183d0202 1833 }
9b6b563c 1834 *next = prop;
183d0202
BH
1835 write_unlock(&devtree_lock);
1836
799d6046 1837#ifdef CONFIG_PROC_DEVICETREE
183d0202
BH
1838 /* try to add to proc as well if it was initialized */
1839 if (np->pde)
1840 proc_device_tree_add_prop(np->pde, prop);
799d6046 1841#endif /* CONFIG_PROC_DEVICETREE */
183d0202
BH
1842
1843 return 0;
9b6b563c
PM
1844}
1845
088186de
DB
1846/*
1847 * Remove a property from a node. Note that we don't actually
1848 * remove it, since we have given out who-knows-how-many pointers
1849 * to the data using get-property. Instead we just move the property
1850 * to the "dead properties" list, so it won't be found any more.
1851 */
1852int prom_remove_property(struct device_node *np, struct property *prop)
1853{
1854 struct property **next;
1855 int found = 0;
1856
1857 write_lock(&devtree_lock);
1858 next = &np->properties;
1859 while (*next) {
1860 if (*next == prop) {
1861 /* found the node */
1862 *next = prop->next;
1863 prop->next = np->deadprops;
1864 np->deadprops = prop;
1865 found = 1;
1866 break;
1867 }
1868 next = &(*next)->next;
1869 }
1870 write_unlock(&devtree_lock);
1871
1872 if (!found)
1873 return -ENODEV;
1874
1875#ifdef CONFIG_PROC_DEVICETREE
1876 /* try to remove the proc node as well */
1877 if (np->pde)
1878 proc_device_tree_remove_prop(np->pde, prop);
1879#endif /* CONFIG_PROC_DEVICETREE */
1880
1881 return 0;
1882}
1883
1884/*
1885 * Update a property in a node. Note that we don't actually
1886 * remove it, since we have given out who-knows-how-many pointers
1887 * to the data using get-property. Instead we just move the property
1888 * to the "dead properties" list, and add the new property to the
1889 * property list
1890 */
1891int prom_update_property(struct device_node *np,
1892 struct property *newprop,
1893 struct property *oldprop)
1894{
1895 struct property **next;
1896 int found = 0;
1897
1898 write_lock(&devtree_lock);
1899 next = &np->properties;
1900 while (*next) {
1901 if (*next == oldprop) {
1902 /* found the node */
1903 newprop->next = oldprop->next;
1904 *next = newprop;
1905 oldprop->next = np->deadprops;
1906 np->deadprops = oldprop;
1907 found = 1;
1908 break;
1909 }
1910 next = &(*next)->next;
1911 }
1912 write_unlock(&devtree_lock);
1913
1914 if (!found)
1915 return -ENODEV;
9b6b563c 1916
088186de
DB
1917#ifdef CONFIG_PROC_DEVICETREE
1918 /* try to add to proc as well if it was initialized */
1919 if (np->pde)
1920 proc_device_tree_update_prop(np->pde, newprop, oldprop);
1921#endif /* CONFIG_PROC_DEVICETREE */
1922
1923 return 0;
1924}
This page took 0.127163 seconds and 5 git commands to generate.