[PATCH] powerpc: Remove device_node addrs/n_addr
[deliverable/linux.git] / arch / powerpc / kernel / prom.c
CommitLineData
9b6b563c
PM
1/*
2 * Procedures for creating, accessing and interpreting the device tree.
3 *
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 */
15
16#undef DEBUG
17
18#include <stdarg.h>
19#include <linux/config.h>
20#include <linux/kernel.h>
21#include <linux/string.h>
22#include <linux/init.h>
23#include <linux/threads.h>
24#include <linux/spinlock.h>
25#include <linux/types.h>
26#include <linux/pci.h>
27#include <linux/stringify.h>
28#include <linux/delay.h>
29#include <linux/initrd.h>
30#include <linux/bitops.h>
31#include <linux/module.h>
dcee3036 32#include <linux/kexec.h>
9b6b563c
PM
33
34#include <asm/prom.h>
35#include <asm/rtas.h>
36#include <asm/lmb.h>
37#include <asm/page.h>
38#include <asm/processor.h>
39#include <asm/irq.h>
40#include <asm/io.h>
0cc4746c 41#include <asm/kdump.h>
9b6b563c
PM
42#include <asm/smp.h>
43#include <asm/system.h>
44#include <asm/mmu.h>
45#include <asm/pgtable.h>
46#include <asm/pci.h>
47#include <asm/iommu.h>
48#include <asm/btext.h>
49#include <asm/sections.h>
50#include <asm/machdep.h>
51#include <asm/pSeries_reconfig.h>
40ef8cbc 52#include <asm/pci-bridge.h>
9b6b563c
PM
53
54#ifdef DEBUG
55#define DBG(fmt...) printk(KERN_ERR fmt)
56#else
57#define DBG(fmt...)
58#endif
59
9b6b563c 60
9b6b563c
PM
61static int __initdata dt_root_addr_cells;
62static int __initdata dt_root_size_cells;
63
64#ifdef CONFIG_PPC64
65static int __initdata iommu_is_off;
66int __initdata iommu_force_on;
cf00a8d1 67unsigned long tce_alloc_start, tce_alloc_end;
9b6b563c
PM
68#endif
69
70typedef u32 cell_t;
71
72#if 0
73static struct boot_param_header *initial_boot_params __initdata;
74#else
75struct boot_param_header *initial_boot_params;
76#endif
77
78static struct device_node *allnodes = NULL;
79
80/* use when traversing tree through the allnext, child, sibling,
81 * or parent members of struct device_node.
82 */
83static DEFINE_RWLOCK(devtree_lock);
84
85/* export that to outside world */
86struct device_node *of_chosen;
87
88struct device_node *dflt_interrupt_controller;
89int num_interrupt_controllers;
90
9b6b563c
PM
91/*
92 * Wrapper for allocating memory for various data that needs to be
93 * attached to device nodes as they are processed at boot or when
94 * added to the device tree later (e.g. DLPAR). At boot there is
95 * already a region reserved so we just increment *mem_start by size;
96 * otherwise we call kmalloc.
97 */
98static void * prom_alloc(unsigned long size, unsigned long *mem_start)
99{
100 unsigned long tmp;
101
102 if (!mem_start)
103 return kmalloc(size, GFP_KERNEL);
104
105 tmp = *mem_start;
106 *mem_start += size;
107 return (void *)tmp;
108}
109
110/*
111 * Find the device_node with a given phandle.
112 */
113static struct device_node * find_phandle(phandle ph)
114{
115 struct device_node *np;
116
117 for (np = allnodes; np != 0; np = np->allnext)
118 if (np->linux_phandle == ph)
119 return np;
120 return NULL;
121}
122
123/*
124 * Find the interrupt parent of a node.
125 */
126static struct device_node * __devinit intr_parent(struct device_node *p)
127{
128 phandle *parp;
129
130 parp = (phandle *) get_property(p, "interrupt-parent", NULL);
131 if (parp == NULL)
132 return p->parent;
133 p = find_phandle(*parp);
134 if (p != NULL)
135 return p;
136 /*
137 * On a powermac booted with BootX, we don't get to know the
138 * phandles for any nodes, so find_phandle will return NULL.
139 * Fortunately these machines only have one interrupt controller
140 * so there isn't in fact any ambiguity. -- paulus
141 */
142 if (num_interrupt_controllers == 1)
143 p = dflt_interrupt_controller;
144 return p;
145}
146
147/*
148 * Find out the size of each entry of the interrupts property
149 * for a node.
150 */
151int __devinit prom_n_intr_cells(struct device_node *np)
152{
153 struct device_node *p;
154 unsigned int *icp;
155
156 for (p = np; (p = intr_parent(p)) != NULL; ) {
157 icp = (unsigned int *)
158 get_property(p, "#interrupt-cells", NULL);
159 if (icp != NULL)
160 return *icp;
161 if (get_property(p, "interrupt-controller", NULL) != NULL
162 || get_property(p, "interrupt-map", NULL) != NULL) {
163 printk("oops, node %s doesn't have #interrupt-cells\n",
164 p->full_name);
165 return 1;
166 }
167 }
168#ifdef DEBUG_IRQ
169 printk("prom_n_intr_cells failed for %s\n", np->full_name);
170#endif
171 return 1;
172}
173
174/*
175 * Map an interrupt from a device up to the platform interrupt
176 * descriptor.
177 */
178static int __devinit map_interrupt(unsigned int **irq, struct device_node **ictrler,
179 struct device_node *np, unsigned int *ints,
180 int nintrc)
181{
182 struct device_node *p, *ipar;
183 unsigned int *imap, *imask, *ip;
184 int i, imaplen, match;
185 int newintrc = 0, newaddrc = 0;
186 unsigned int *reg;
187 int naddrc;
188
189 reg = (unsigned int *) get_property(np, "reg", NULL);
190 naddrc = prom_n_addr_cells(np);
191 p = intr_parent(np);
192 while (p != NULL) {
193 if (get_property(p, "interrupt-controller", NULL) != NULL)
194 /* this node is an interrupt controller, stop here */
195 break;
196 imap = (unsigned int *)
197 get_property(p, "interrupt-map", &imaplen);
198 if (imap == NULL) {
199 p = intr_parent(p);
200 continue;
201 }
202 imask = (unsigned int *)
203 get_property(p, "interrupt-map-mask", NULL);
204 if (imask == NULL) {
205 printk("oops, %s has interrupt-map but no mask\n",
206 p->full_name);
207 return 0;
208 }
209 imaplen /= sizeof(unsigned int);
210 match = 0;
211 ipar = NULL;
212 while (imaplen > 0 && !match) {
213 /* check the child-interrupt field */
214 match = 1;
215 for (i = 0; i < naddrc && match; ++i)
216 match = ((reg[i] ^ imap[i]) & imask[i]) == 0;
217 for (; i < naddrc + nintrc && match; ++i)
218 match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0;
219 imap += naddrc + nintrc;
220 imaplen -= naddrc + nintrc;
221 /* grab the interrupt parent */
222 ipar = find_phandle((phandle) *imap++);
223 --imaplen;
224 if (ipar == NULL && num_interrupt_controllers == 1)
225 /* cope with BootX not giving us phandles */
226 ipar = dflt_interrupt_controller;
227 if (ipar == NULL) {
228 printk("oops, no int parent %x in map of %s\n",
229 imap[-1], p->full_name);
230 return 0;
231 }
232 /* find the parent's # addr and intr cells */
233 ip = (unsigned int *)
234 get_property(ipar, "#interrupt-cells", NULL);
235 if (ip == NULL) {
236 printk("oops, no #interrupt-cells on %s\n",
237 ipar->full_name);
238 return 0;
239 }
240 newintrc = *ip;
241 ip = (unsigned int *)
242 get_property(ipar, "#address-cells", NULL);
243 newaddrc = (ip == NULL)? 0: *ip;
244 imap += newaddrc + newintrc;
245 imaplen -= newaddrc + newintrc;
246 }
247 if (imaplen < 0) {
248 printk("oops, error decoding int-map on %s, len=%d\n",
249 p->full_name, imaplen);
250 return 0;
251 }
252 if (!match) {
253#ifdef DEBUG_IRQ
254 printk("oops, no match in %s int-map for %s\n",
255 p->full_name, np->full_name);
256#endif
257 return 0;
258 }
259 p = ipar;
260 naddrc = newaddrc;
261 nintrc = newintrc;
262 ints = imap - nintrc;
263 reg = ints - naddrc;
264 }
265 if (p == NULL) {
266#ifdef DEBUG_IRQ
267 printk("hmmm, int tree for %s doesn't have ctrler\n",
268 np->full_name);
269#endif
270 return 0;
271 }
272 *irq = ints;
273 *ictrler = p;
274 return nintrc;
275}
276
6d0124fc
PM
277static unsigned char map_isa_senses[4] = {
278 IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
279 IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
280 IRQ_SENSE_EDGE | IRQ_POLARITY_NEGATIVE,
281 IRQ_SENSE_EDGE | IRQ_POLARITY_POSITIVE
282};
283
284static unsigned char map_mpic_senses[4] = {
285 IRQ_SENSE_EDGE | IRQ_POLARITY_POSITIVE,
286 IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
287 /* 2 seems to be used for the 8259 cascade... */
288 IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
289 IRQ_SENSE_EDGE | IRQ_POLARITY_NEGATIVE,
290};
291
9b6b563c
PM
292static int __devinit finish_node_interrupts(struct device_node *np,
293 unsigned long *mem_start,
294 int measure_only)
295{
296 unsigned int *ints;
297 int intlen, intrcells, intrcount;
6d0124fc 298 int i, j, n, sense;
9b6b563c
PM
299 unsigned int *irq, virq;
300 struct device_node *ic;
301
a575b807
PM
302 if (num_interrupt_controllers == 0) {
303 /*
304 * Old machines just have a list of interrupt numbers
305 * and no interrupt-controller nodes.
306 */
307 ints = (unsigned int *) get_property(np, "AAPL,interrupts",
308 &intlen);
309 /* XXX old interpret_pci_props looked in parent too */
310 /* XXX old interpret_macio_props looked for interrupts
311 before AAPL,interrupts */
312 if (ints == NULL)
313 ints = (unsigned int *) get_property(np, "interrupts",
314 &intlen);
315 if (ints == NULL)
316 return 0;
317
318 np->n_intrs = intlen / sizeof(unsigned int);
319 np->intrs = prom_alloc(np->n_intrs * sizeof(np->intrs[0]),
320 mem_start);
321 if (!np->intrs)
322 return -ENOMEM;
323 if (measure_only)
324 return 0;
325
326 for (i = 0; i < np->n_intrs; ++i) {
327 np->intrs[i].line = *ints++;
6d0124fc
PM
328 np->intrs[i].sense = IRQ_SENSE_LEVEL
329 | IRQ_POLARITY_NEGATIVE;
a575b807
PM
330 }
331 return 0;
332 }
333
9b6b563c
PM
334 ints = (unsigned int *) get_property(np, "interrupts", &intlen);
335 if (ints == NULL)
336 return 0;
337 intrcells = prom_n_intr_cells(np);
338 intlen /= intrcells * sizeof(unsigned int);
339
340 np->intrs = prom_alloc(intlen * sizeof(*(np->intrs)), mem_start);
341 if (!np->intrs)
342 return -ENOMEM;
343
344 if (measure_only)
345 return 0;
346
347 intrcount = 0;
348 for (i = 0; i < intlen; ++i, ints += intrcells) {
349 n = map_interrupt(&irq, &ic, np, ints, intrcells);
350 if (n <= 0)
351 continue;
352
353 /* don't map IRQ numbers under a cascaded 8259 controller */
354 if (ic && device_is_compatible(ic, "chrp,iic")) {
355 np->intrs[intrcount].line = irq[0];
6d0124fc
PM
356 sense = (n > 1)? (irq[1] & 3): 3;
357 np->intrs[intrcount].sense = map_isa_senses[sense];
9b6b563c 358 } else {
9b6b563c 359 virq = virt_irq_create_mapping(irq[0]);
6d0124fc 360#ifdef CONFIG_PPC64
9b6b563c
PM
361 if (virq == NO_IRQ) {
362 printk(KERN_CRIT "Could not allocate interrupt"
363 " number for %s\n", np->full_name);
364 continue;
365 }
9b6b563c 366#endif
6d0124fc
PM
367 np->intrs[intrcount].line = irq_offset_up(virq);
368 sense = (n > 1)? (irq[1] & 3): 1;
369 np->intrs[intrcount].sense = map_mpic_senses[sense];
9b6b563c
PM
370 }
371
372#ifdef CONFIG_PPC64
373 /* We offset irq numbers for the u3 MPIC by 128 in PowerMac */
799d6046 374 if (_machine == PLATFORM_POWERMAC && ic && ic->parent) {
9b6b563c
PM
375 char *name = get_property(ic->parent, "name", NULL);
376 if (name && !strcmp(name, "u3"))
377 np->intrs[intrcount].line += 128;
378 else if (!(name && !strcmp(name, "mac-io")))
379 /* ignore other cascaded controllers, such as
380 the k2-sata-root */
381 break;
382 }
383#endif
9b6b563c
PM
384 if (n > 2) {
385 printk("hmmm, got %d intr cells for %s:", n,
386 np->full_name);
387 for (j = 0; j < n; ++j)
388 printk(" %d", irq[j]);
389 printk("\n");
390 }
391 ++intrcount;
392 }
393 np->n_intrs = intrcount;
394
395 return 0;
396}
397
9b6b563c
PM
398static int __devinit finish_node(struct device_node *np,
399 unsigned long *mem_start,
9b6b563c
PM
400 int measure_only)
401{
402 struct device_node *child;
cc5d0189 403 int rc = 0;
9b6b563c
PM
404
405 rc = finish_node_interrupts(np, mem_start, measure_only);
406 if (rc)
407 goto out;
408
9b6b563c 409 for (child = np->child; child != NULL; child = child->sibling) {
cc5d0189 410 rc = finish_node(child, mem_start, measure_only);
9b6b563c
PM
411 if (rc)
412 goto out;
413 }
414out:
415 return rc;
416}
417
418static void __init scan_interrupt_controllers(void)
419{
420 struct device_node *np;
421 int n = 0;
422 char *name, *ic;
423 int iclen;
424
425 for (np = allnodes; np != NULL; np = np->allnext) {
426 ic = get_property(np, "interrupt-controller", &iclen);
427 name = get_property(np, "name", NULL);
428 /* checking iclen makes sure we don't get a false
429 match on /chosen.interrupt_controller */
430 if ((name != NULL
431 && strcmp(name, "interrupt-controller") == 0)
432 || (ic != NULL && iclen == 0
433 && strcmp(name, "AppleKiwi"))) {
434 if (n == 0)
435 dflt_interrupt_controller = np;
436 ++n;
437 }
438 }
439 num_interrupt_controllers = n;
440}
441
442/**
443 * finish_device_tree is called once things are running normally
444 * (i.e. with text and data mapped to the address they were linked at).
445 * It traverses the device tree and fills in some of the additional,
446 * fields in each node like {n_}addrs and {n_}intrs, the virt interrupt
447 * mapping is also initialized at this point.
448 */
449void __init finish_device_tree(void)
450{
451 unsigned long start, end, size = 0;
452
453 DBG(" -> finish_device_tree\n");
454
455#ifdef CONFIG_PPC64
456 /* Initialize virtual IRQ map */
457 virt_irq_init();
458#endif
459 scan_interrupt_controllers();
460
461 /*
462 * Finish device-tree (pre-parsing some properties etc...)
463 * We do this in 2 passes. One with "measure_only" set, which
464 * will only measure the amount of memory needed, then we can
465 * allocate that memory, and call finish_node again. However,
466 * we must be careful as most routines will fail nowadays when
467 * prom_alloc() returns 0, so we must make sure our first pass
468 * doesn't start at 0. We pre-initialize size to 16 for that
469 * reason and then remove those additional 16 bytes
470 */
471 size = 16;
cc5d0189 472 finish_node(allnodes, &size, 1);
9b6b563c
PM
473 size -= 16;
474 end = start = (unsigned long) __va(lmb_alloc(size, 128));
cc5d0189 475 finish_node(allnodes, &end, 0);
9b6b563c
PM
476 BUG_ON(end != start + size);
477
478 DBG(" <- finish_device_tree\n");
479}
480
481static inline char *find_flat_dt_string(u32 offset)
482{
483 return ((char *)initial_boot_params) +
484 initial_boot_params->off_dt_strings + offset;
485}
486
487/**
488 * This function is used to scan the flattened device-tree, it is
489 * used to extract the memory informations at boot before we can
490 * unflatten the tree
491 */
3c726f8d
BH
492int __init of_scan_flat_dt(int (*it)(unsigned long node,
493 const char *uname, int depth,
494 void *data),
495 void *data)
9b6b563c
PM
496{
497 unsigned long p = ((unsigned long)initial_boot_params) +
498 initial_boot_params->off_dt_struct;
499 int rc = 0;
500 int depth = -1;
501
502 do {
503 u32 tag = *((u32 *)p);
504 char *pathp;
505
506 p += 4;
507 if (tag == OF_DT_END_NODE) {
508 depth --;
509 continue;
510 }
511 if (tag == OF_DT_NOP)
512 continue;
513 if (tag == OF_DT_END)
514 break;
515 if (tag == OF_DT_PROP) {
516 u32 sz = *((u32 *)p);
517 p += 8;
518 if (initial_boot_params->version < 0x10)
519 p = _ALIGN(p, sz >= 8 ? 8 : 4);
520 p += sz;
521 p = _ALIGN(p, 4);
522 continue;
523 }
524 if (tag != OF_DT_BEGIN_NODE) {
525 printk(KERN_WARNING "Invalid tag %x scanning flattened"
526 " device tree !\n", tag);
527 return -EINVAL;
528 }
529 depth++;
530 pathp = (char *)p;
531 p = _ALIGN(p + strlen(pathp) + 1, 4);
532 if ((*pathp) == '/') {
533 char *lp, *np;
534 for (lp = NULL, np = pathp; *np; np++)
535 if ((*np) == '/')
536 lp = np+1;
537 if (lp != NULL)
538 pathp = lp;
539 }
540 rc = it(p, pathp, depth, data);
541 if (rc != 0)
542 break;
543 } while(1);
544
545 return rc;
546}
547
548/**
549 * This function can be used within scan_flattened_dt callback to get
550 * access to properties
551 */
3c726f8d
BH
552void* __init of_get_flat_dt_prop(unsigned long node, const char *name,
553 unsigned long *size)
9b6b563c
PM
554{
555 unsigned long p = node;
556
557 do {
558 u32 tag = *((u32 *)p);
559 u32 sz, noff;
560 const char *nstr;
561
562 p += 4;
563 if (tag == OF_DT_NOP)
564 continue;
565 if (tag != OF_DT_PROP)
566 return NULL;
567
568 sz = *((u32 *)p);
569 noff = *((u32 *)(p + 4));
570 p += 8;
571 if (initial_boot_params->version < 0x10)
572 p = _ALIGN(p, sz >= 8 ? 8 : 4);
573
574 nstr = find_flat_dt_string(noff);
575 if (nstr == NULL) {
576 printk(KERN_WARNING "Can't find property index"
577 " name !\n");
578 return NULL;
579 }
580 if (strcmp(name, nstr) == 0) {
581 if (size)
582 *size = sz;
583 return (void *)p;
584 }
585 p += sz;
586 p = _ALIGN(p, 4);
587 } while(1);
588}
589
590static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
591 unsigned long align)
592{
593 void *res;
594
595 *mem = _ALIGN(*mem, align);
596 res = (void *)*mem;
597 *mem += size;
598
599 return res;
600}
601
602static unsigned long __init unflatten_dt_node(unsigned long mem,
603 unsigned long *p,
604 struct device_node *dad,
605 struct device_node ***allnextpp,
606 unsigned long fpsize)
607{
608 struct device_node *np;
609 struct property *pp, **prev_pp = NULL;
610 char *pathp;
611 u32 tag;
612 unsigned int l, allocl;
613 int has_name = 0;
614 int new_format = 0;
615
616 tag = *((u32 *)(*p));
617 if (tag != OF_DT_BEGIN_NODE) {
618 printk("Weird tag at start of node: %x\n", tag);
619 return mem;
620 }
621 *p += 4;
622 pathp = (char *)*p;
623 l = allocl = strlen(pathp) + 1;
624 *p = _ALIGN(*p + l, 4);
625
626 /* version 0x10 has a more compact unit name here instead of the full
627 * path. we accumulate the full path size using "fpsize", we'll rebuild
628 * it later. We detect this because the first character of the name is
629 * not '/'.
630 */
631 if ((*pathp) != '/') {
632 new_format = 1;
633 if (fpsize == 0) {
634 /* root node: special case. fpsize accounts for path
635 * plus terminating zero. root node only has '/', so
636 * fpsize should be 2, but we want to avoid the first
637 * level nodes to have two '/' so we use fpsize 1 here
638 */
639 fpsize = 1;
640 allocl = 2;
641 } else {
642 /* account for '/' and path size minus terminal 0
643 * already in 'l'
644 */
645 fpsize += l;
646 allocl = fpsize;
647 }
648 }
649
650
651 np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
652 __alignof__(struct device_node));
653 if (allnextpp) {
654 memset(np, 0, sizeof(*np));
655 np->full_name = ((char*)np) + sizeof(struct device_node);
656 if (new_format) {
657 char *p = np->full_name;
658 /* rebuild full path for new format */
659 if (dad && dad->parent) {
660 strcpy(p, dad->full_name);
661#ifdef DEBUG
662 if ((strlen(p) + l + 1) != allocl) {
663 DBG("%s: p: %d, l: %d, a: %d\n",
664 pathp, strlen(p), l, allocl);
665 }
666#endif
667 p += strlen(p);
668 }
669 *(p++) = '/';
670 memcpy(p, pathp, l);
671 } else
672 memcpy(np->full_name, pathp, l);
673 prev_pp = &np->properties;
674 **allnextpp = np;
675 *allnextpp = &np->allnext;
676 if (dad != NULL) {
677 np->parent = dad;
678 /* we temporarily use the next field as `last_child'*/
679 if (dad->next == 0)
680 dad->child = np;
681 else
682 dad->next->sibling = np;
683 dad->next = np;
684 }
685 kref_init(&np->kref);
686 }
687 while(1) {
688 u32 sz, noff;
689 char *pname;
690
691 tag = *((u32 *)(*p));
692 if (tag == OF_DT_NOP) {
693 *p += 4;
694 continue;
695 }
696 if (tag != OF_DT_PROP)
697 break;
698 *p += 4;
699 sz = *((u32 *)(*p));
700 noff = *((u32 *)((*p) + 4));
701 *p += 8;
702 if (initial_boot_params->version < 0x10)
703 *p = _ALIGN(*p, sz >= 8 ? 8 : 4);
704
705 pname = find_flat_dt_string(noff);
706 if (pname == NULL) {
707 printk("Can't find property name in list !\n");
708 break;
709 }
710 if (strcmp(pname, "name") == 0)
711 has_name = 1;
712 l = strlen(pname) + 1;
713 pp = unflatten_dt_alloc(&mem, sizeof(struct property),
714 __alignof__(struct property));
715 if (allnextpp) {
716 if (strcmp(pname, "linux,phandle") == 0) {
717 np->node = *((u32 *)*p);
718 if (np->linux_phandle == 0)
719 np->linux_phandle = np->node;
720 }
721 if (strcmp(pname, "ibm,phandle") == 0)
722 np->linux_phandle = *((u32 *)*p);
723 pp->name = pname;
724 pp->length = sz;
725 pp->value = (void *)*p;
726 *prev_pp = pp;
727 prev_pp = &pp->next;
728 }
729 *p = _ALIGN((*p) + sz, 4);
730 }
731 /* with version 0x10 we may not have the name property, recreate
732 * it here from the unit name if absent
733 */
734 if (!has_name) {
735 char *p = pathp, *ps = pathp, *pa = NULL;
736 int sz;
737
738 while (*p) {
739 if ((*p) == '@')
740 pa = p;
741 if ((*p) == '/')
742 ps = p + 1;
743 p++;
744 }
745 if (pa < ps)
746 pa = p;
747 sz = (pa - ps) + 1;
748 pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
749 __alignof__(struct property));
750 if (allnextpp) {
751 pp->name = "name";
752 pp->length = sz;
753 pp->value = (unsigned char *)(pp + 1);
754 *prev_pp = pp;
755 prev_pp = &pp->next;
756 memcpy(pp->value, ps, sz - 1);
757 ((char *)pp->value)[sz - 1] = 0;
758 DBG("fixed up name for %s -> %s\n", pathp, pp->value);
759 }
760 }
761 if (allnextpp) {
762 *prev_pp = NULL;
763 np->name = get_property(np, "name", NULL);
764 np->type = get_property(np, "device_type", NULL);
765
766 if (!np->name)
767 np->name = "<NULL>";
768 if (!np->type)
769 np->type = "<NULL>";
770 }
771 while (tag == OF_DT_BEGIN_NODE) {
772 mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize);
773 tag = *((u32 *)(*p));
774 }
775 if (tag != OF_DT_END_NODE) {
776 printk("Weird tag at end of node: %x\n", tag);
777 return mem;
778 }
779 *p += 4;
780 return mem;
781}
782
783
784/**
785 * unflattens the device-tree passed by the firmware, creating the
786 * tree of struct device_node. It also fills the "name" and "type"
787 * pointers of the nodes so the normal device-tree walking functions
788 * can be used (this used to be done by finish_device_tree)
789 */
790void __init unflatten_device_tree(void)
791{
792 unsigned long start, mem, size;
793 struct device_node **allnextp = &allnodes;
794 char *p = NULL;
795 int l = 0;
796
797 DBG(" -> unflatten_device_tree()\n");
798
799 /* First pass, scan for size */
800 start = ((unsigned long)initial_boot_params) +
801 initial_boot_params->off_dt_struct;
802 size = unflatten_dt_node(0, &start, NULL, NULL, 0);
803 size = (size | 3) + 1;
804
805 DBG(" size is %lx, allocating...\n", size);
806
807 /* Allocate memory for the expanded device tree */
808 mem = lmb_alloc(size + 4, __alignof__(struct device_node));
809 if (!mem) {
810 DBG("Couldn't allocate memory with lmb_alloc()!\n");
811 panic("Couldn't allocate memory with lmb_alloc()!\n");
812 }
813 mem = (unsigned long) __va(mem);
814
815 ((u32 *)mem)[size / 4] = 0xdeadbeef;
816
817 DBG(" unflattening %lx...\n", mem);
818
819 /* Second pass, do actual unflattening */
820 start = ((unsigned long)initial_boot_params) +
821 initial_boot_params->off_dt_struct;
822 unflatten_dt_node(mem, &start, NULL, &allnextp, 0);
823 if (*((u32 *)start) != OF_DT_END)
824 printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start));
825 if (((u32 *)mem)[size / 4] != 0xdeadbeef)
826 printk(KERN_WARNING "End of tree marker overwritten: %08x\n",
827 ((u32 *)mem)[size / 4] );
828 *allnextp = NULL;
829
830 /* Get pointer to OF "/chosen" node for use everywhere */
831 of_chosen = of_find_node_by_path("/chosen");
a575b807
PM
832 if (of_chosen == NULL)
833 of_chosen = of_find_node_by_path("/chosen@0");
9b6b563c
PM
834
835 /* Retreive command line */
836 if (of_chosen != NULL) {
837 p = (char *)get_property(of_chosen, "bootargs", &l);
838 if (p != NULL && l > 0)
839 strlcpy(cmd_line, p, min(l, COMMAND_LINE_SIZE));
840 }
841#ifdef CONFIG_CMDLINE
842 if (l == 0 || (l == 1 && (*p) == 0))
843 strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
844#endif /* CONFIG_CMDLINE */
845
846 DBG("Command line is: %s\n", cmd_line);
847
848 DBG(" <- unflatten_device_tree()\n");
849}
850
851
852static int __init early_init_dt_scan_cpus(unsigned long node,
853 const char *uname, int depth, void *data)
854{
9b6b563c 855 u32 *prop;
676e2497
SR
856 unsigned long size;
857 char *type = of_get_flat_dt_prop(node, "device_type", &size);
9b6b563c
PM
858
859 /* We are scanning "cpu" nodes only */
860 if (type == NULL || strcmp(type, "cpu") != 0)
861 return 0;
862
80579e1f
PM
863 boot_cpuid = 0;
864 boot_cpuid_phys = 0;
9b6b563c
PM
865 if (initial_boot_params && initial_boot_params->version >= 2) {
866 /* version 2 of the kexec param format adds the phys cpuid
867 * of booted proc.
868 */
869 boot_cpuid_phys = initial_boot_params->boot_cpuid_phys;
9b6b563c 870 } else {
80579e1f 871 /* Check if it's the boot-cpu, set it's hw index now */
3c726f8d
BH
872 if (of_get_flat_dt_prop(node,
873 "linux,boot-cpu", NULL) != NULL) {
874 prop = of_get_flat_dt_prop(node, "reg", NULL);
80579e1f
PM
875 if (prop != NULL)
876 boot_cpuid_phys = *prop;
9b6b563c
PM
877 }
878 }
80579e1f 879 set_hard_smp_processor_id(0, boot_cpuid_phys);
9b6b563c
PM
880
881#ifdef CONFIG_ALTIVEC
882 /* Check if we have a VMX and eventually update CPU features */
676e2497 883 prop = (u32 *)of_get_flat_dt_prop(node, "ibm,vmx", NULL);
9b6b563c
PM
884 if (prop && (*prop) > 0) {
885 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
886 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
887 }
888
889 /* Same goes for Apple's "altivec" property */
3c726f8d 890 prop = (u32 *)of_get_flat_dt_prop(node, "altivec", NULL);
9b6b563c
PM
891 if (prop) {
892 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
893 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
894 }
895#endif /* CONFIG_ALTIVEC */
896
897#ifdef CONFIG_PPC_PSERIES
898 /*
899 * Check for an SMT capable CPU and set the CPU feature. We do
900 * this by looking at the size of the ibm,ppc-interrupt-server#s
901 * property
902 */
3c726f8d 903 prop = (u32 *)of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s",
9b6b563c
PM
904 &size);
905 cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
906 if (prop && ((size / sizeof(u32)) > 1))
907 cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
908#endif
909
910 return 0;
911}
912
913static int __init early_init_dt_scan_chosen(unsigned long node,
914 const char *uname, int depth, void *data)
915{
916 u32 *prop;
917 unsigned long *lprop;
918
919 DBG("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
920
a575b807
PM
921 if (depth != 1 ||
922 (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
9b6b563c
PM
923 return 0;
924
925 /* get platform type */
3c726f8d 926 prop = (u32 *)of_get_flat_dt_prop(node, "linux,platform", NULL);
9b6b563c
PM
927 if (prop == NULL)
928 return 0;
60dda256 929#ifdef CONFIG_PPC_MULTIPLATFORM
9b6b563c
PM
930 _machine = *prop;
931#endif
932
933#ifdef CONFIG_PPC64
934 /* check if iommu is forced on or off */
3c726f8d 935 if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
9b6b563c 936 iommu_is_off = 1;
3c726f8d 937 if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
9b6b563c
PM
938 iommu_force_on = 1;
939#endif
940
3c726f8d 941 lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
9b6b563c
PM
942 if (lprop)
943 memory_limit = *lprop;
944
945#ifdef CONFIG_PPC64
3c726f8d 946 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
9b6b563c
PM
947 if (lprop)
948 tce_alloc_start = *lprop;
3c726f8d 949 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
9b6b563c
PM
950 if (lprop)
951 tce_alloc_end = *lprop;
952#endif
953
954#ifdef CONFIG_PPC_RTAS
955 /* To help early debugging via the front panel, we retreive a minimal
956 * set of RTAS infos now if available
957 */
958 {
959 u64 *basep, *entryp;
960
3c726f8d
BH
961 basep = of_get_flat_dt_prop(node, "linux,rtas-base", NULL);
962 entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL);
963 prop = of_get_flat_dt_prop(node, "linux,rtas-size", NULL);
9b6b563c
PM
964 if (basep && entryp && prop) {
965 rtas.base = *basep;
966 rtas.entry = *entryp;
967 rtas.size = *prop;
968 }
969 }
970#endif /* CONFIG_PPC_RTAS */
971
dcee3036
ME
972#ifdef CONFIG_KEXEC
973 lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL);
974 if (lprop)
975 crashk_res.start = *lprop;
976
977 lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL);
978 if (lprop)
979 crashk_res.end = crashk_res.start + *lprop - 1;
980#endif
981
9b6b563c
PM
982 /* break now */
983 return 1;
984}
985
986static int __init early_init_dt_scan_root(unsigned long node,
987 const char *uname, int depth, void *data)
988{
989 u32 *prop;
990
991 if (depth != 0)
992 return 0;
993
3c726f8d 994 prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
9b6b563c
PM
995 dt_root_size_cells = (prop == NULL) ? 1 : *prop;
996 DBG("dt_root_size_cells = %x\n", dt_root_size_cells);
997
3c726f8d 998 prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
9b6b563c
PM
999 dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
1000 DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1001
1002 /* break now */
1003 return 1;
1004}
1005
1006static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp)
1007{
1008 cell_t *p = *cellp;
1009 unsigned long r;
1010
1011 /* Ignore more than 2 cells */
1012 while (s > sizeof(unsigned long) / 4) {
1013 p++;
1014 s--;
1015 }
1016 r = *p++;
1017#ifdef CONFIG_PPC64
1018 if (s > 1) {
1019 r <<= 32;
1020 r |= *(p++);
1021 s--;
1022 }
1023#endif
1024
1025 *cellp = p;
1026 return r;
1027}
1028
1029
1030static int __init early_init_dt_scan_memory(unsigned long node,
1031 const char *uname, int depth, void *data)
1032{
3c726f8d 1033 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
9b6b563c
PM
1034 cell_t *reg, *endp;
1035 unsigned long l;
1036
1037 /* We are scanning "memory" nodes only */
a23414be
PM
1038 if (type == NULL) {
1039 /*
1040 * The longtrail doesn't have a device_type on the
1041 * /memory node, so look for the node called /memory@0.
1042 */
1043 if (depth != 1 || strcmp(uname, "memory@0") != 0)
1044 return 0;
1045 } else if (strcmp(type, "memory") != 0)
9b6b563c
PM
1046 return 0;
1047
ba759485
ME
1048 reg = (cell_t *)of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1049 if (reg == NULL)
1050 reg = (cell_t *)of_get_flat_dt_prop(node, "reg", &l);
9b6b563c
PM
1051 if (reg == NULL)
1052 return 0;
1053
1054 endp = reg + (l / sizeof(cell_t));
1055
358c86fd 1056 DBG("memory scan node %s, reg size %ld, data: %x %x %x %x,\n",
9b6b563c
PM
1057 uname, l, reg[0], reg[1], reg[2], reg[3]);
1058
1059 while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1060 unsigned long base, size;
1061
1062 base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1063 size = dt_mem_next_cell(dt_root_size_cells, &reg);
1064
1065 if (size == 0)
1066 continue;
1067 DBG(" - %lx , %lx\n", base, size);
1068#ifdef CONFIG_PPC64
1069 if (iommu_is_off) {
1070 if (base >= 0x80000000ul)
1071 continue;
1072 if ((base + size) > 0x80000000ul)
1073 size = 0x80000000ul - base;
1074 }
1075#endif
1076 lmb_add(base, size);
1077 }
1078 return 0;
1079}
1080
1081static void __init early_reserve_mem(void)
1082{
1083 unsigned long base, size;
1084 unsigned long *reserve_map;
1085
1086 reserve_map = (unsigned long *)(((unsigned long)initial_boot_params) +
1087 initial_boot_params->off_mem_rsvmap);
1088 while (1) {
1089 base = *(reserve_map++);
1090 size = *(reserve_map++);
1091 if (size == 0)
1092 break;
1093 DBG("reserving: %lx -> %lx\n", base, size);
1094 lmb_reserve(base, size);
1095 }
1096
1097#if 0
1098 DBG("memory reserved, lmbs :\n");
1099 lmb_dump_all();
1100#endif
1101}
1102
1103void __init early_init_devtree(void *params)
1104{
1105 DBG(" -> early_init_devtree()\n");
1106
1107 /* Setup flat device-tree pointer */
1108 initial_boot_params = params;
1109
1110 /* Retrieve various informations from the /chosen node of the
1111 * device-tree, including the platform type, initrd location and
1112 * size, TCE reserve, and more ...
1113 */
3c726f8d 1114 of_scan_flat_dt(early_init_dt_scan_chosen, NULL);
9b6b563c
PM
1115
1116 /* Scan memory nodes and rebuild LMBs */
1117 lmb_init();
3c726f8d
BH
1118 of_scan_flat_dt(early_init_dt_scan_root, NULL);
1119 of_scan_flat_dt(early_init_dt_scan_memory, NULL);
9b6b563c
PM
1120 lmb_enforce_memory_limit(memory_limit);
1121 lmb_analyze();
9b6b563c
PM
1122
1123 DBG("Phys. mem: %lx\n", lmb_phys_mem_size());
1124
1125 /* Reserve LMB regions used by kernel, initrd, dt, etc... */
0cc4746c
ME
1126 lmb_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START);
1127#ifdef CONFIG_CRASH_DUMP
1128 lmb_reserve(0, KDUMP_RESERVE_LIMIT);
1129#endif
9b6b563c
PM
1130 early_reserve_mem();
1131
1132 DBG("Scanning CPUs ...\n");
1133
3c726f8d
BH
1134 /* Retreive CPU related informations from the flat tree
1135 * (altivec support, boot CPU ID, ...)
9b6b563c 1136 */
3c726f8d 1137 of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
9b6b563c 1138
9b6b563c
PM
1139 DBG(" <- early_init_devtree()\n");
1140}
1141
1142#undef printk
1143
1144int
1145prom_n_addr_cells(struct device_node* np)
1146{
1147 int* ip;
1148 do {
1149 if (np->parent)
1150 np = np->parent;
1151 ip = (int *) get_property(np, "#address-cells", NULL);
1152 if (ip != NULL)
1153 return *ip;
1154 } while (np->parent);
1155 /* No #address-cells property for the root node, default to 1 */
1156 return 1;
1157}
1dfc6772 1158EXPORT_SYMBOL(prom_n_addr_cells);
9b6b563c
PM
1159
1160int
1161prom_n_size_cells(struct device_node* np)
1162{
1163 int* ip;
1164 do {
1165 if (np->parent)
1166 np = np->parent;
1167 ip = (int *) get_property(np, "#size-cells", NULL);
1168 if (ip != NULL)
1169 return *ip;
1170 } while (np->parent);
1171 /* No #size-cells property for the root node, default to 1 */
1172 return 1;
1173}
1dfc6772 1174EXPORT_SYMBOL(prom_n_size_cells);
9b6b563c
PM
1175
1176/**
1177 * Work out the sense (active-low level / active-high edge)
1178 * of each interrupt from the device tree.
1179 */
1180void __init prom_get_irq_senses(unsigned char *senses, int off, int max)
1181{
1182 struct device_node *np;
1183 int i, j;
1184
1185 /* default to level-triggered */
6d0124fc 1186 memset(senses, IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE, max - off);
9b6b563c
PM
1187
1188 for (np = allnodes; np != 0; np = np->allnext) {
1189 for (j = 0; j < np->n_intrs; j++) {
1190 i = np->intrs[j].line;
1191 if (i >= off && i < max)
6d0124fc 1192 senses[i-off] = np->intrs[j].sense;
9b6b563c
PM
1193 }
1194 }
1195}
1196
1197/**
1198 * Construct and return a list of the device_nodes with a given name.
1199 */
1200struct device_node *find_devices(const char *name)
1201{
1202 struct device_node *head, **prevp, *np;
1203
1204 prevp = &head;
1205 for (np = allnodes; np != 0; np = np->allnext) {
1206 if (np->name != 0 && strcasecmp(np->name, name) == 0) {
1207 *prevp = np;
1208 prevp = &np->next;
1209 }
1210 }
1211 *prevp = NULL;
1212 return head;
1213}
1214EXPORT_SYMBOL(find_devices);
1215
1216/**
1217 * Construct and return a list of the device_nodes with a given type.
1218 */
1219struct device_node *find_type_devices(const char *type)
1220{
1221 struct device_node *head, **prevp, *np;
1222
1223 prevp = &head;
1224 for (np = allnodes; np != 0; np = np->allnext) {
1225 if (np->type != 0 && strcasecmp(np->type, type) == 0) {
1226 *prevp = np;
1227 prevp = &np->next;
1228 }
1229 }
1230 *prevp = NULL;
1231 return head;
1232}
1233EXPORT_SYMBOL(find_type_devices);
1234
1235/**
1236 * Returns all nodes linked together
1237 */
1238struct device_node *find_all_nodes(void)
1239{
1240 struct device_node *head, **prevp, *np;
1241
1242 prevp = &head;
1243 for (np = allnodes; np != 0; np = np->allnext) {
1244 *prevp = np;
1245 prevp = &np->next;
1246 }
1247 *prevp = NULL;
1248 return head;
1249}
1250EXPORT_SYMBOL(find_all_nodes);
1251
1252/** Checks if the given "compat" string matches one of the strings in
1253 * the device's "compatible" property
1254 */
1255int device_is_compatible(struct device_node *device, const char *compat)
1256{
1257 const char* cp;
1258 int cplen, l;
1259
1260 cp = (char *) get_property(device, "compatible", &cplen);
1261 if (cp == NULL)
1262 return 0;
1263 while (cplen > 0) {
1264 if (strncasecmp(cp, compat, strlen(compat)) == 0)
1265 return 1;
1266 l = strlen(cp) + 1;
1267 cp += l;
1268 cplen -= l;
1269 }
1270
1271 return 0;
1272}
1273EXPORT_SYMBOL(device_is_compatible);
1274
1275
1276/**
1277 * Indicates whether the root node has a given value in its
1278 * compatible property.
1279 */
1280int machine_is_compatible(const char *compat)
1281{
1282 struct device_node *root;
1283 int rc = 0;
1284
1285 root = of_find_node_by_path("/");
1286 if (root) {
1287 rc = device_is_compatible(root, compat);
1288 of_node_put(root);
1289 }
1290 return rc;
1291}
1292EXPORT_SYMBOL(machine_is_compatible);
1293
1294/**
1295 * Construct and return a list of the device_nodes with a given type
1296 * and compatible property.
1297 */
1298struct device_node *find_compatible_devices(const char *type,
1299 const char *compat)
1300{
1301 struct device_node *head, **prevp, *np;
1302
1303 prevp = &head;
1304 for (np = allnodes; np != 0; np = np->allnext) {
1305 if (type != NULL
1306 && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1307 continue;
1308 if (device_is_compatible(np, compat)) {
1309 *prevp = np;
1310 prevp = &np->next;
1311 }
1312 }
1313 *prevp = NULL;
1314 return head;
1315}
1316EXPORT_SYMBOL(find_compatible_devices);
1317
1318/**
1319 * Find the device_node with a given full_name.
1320 */
1321struct device_node *find_path_device(const char *path)
1322{
1323 struct device_node *np;
1324
1325 for (np = allnodes; np != 0; np = np->allnext)
1326 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
1327 return np;
1328 return NULL;
1329}
1330EXPORT_SYMBOL(find_path_device);
1331
1332/*******
1333 *
1334 * New implementation of the OF "find" APIs, return a refcounted
1335 * object, call of_node_put() when done. The device tree and list
1336 * are protected by a rw_lock.
1337 *
1338 * Note that property management will need some locking as well,
1339 * this isn't dealt with yet.
1340 *
1341 *******/
1342
1343/**
1344 * of_find_node_by_name - Find a node by its "name" property
1345 * @from: The node to start searching from or NULL, the node
1346 * you pass will not be searched, only the next one
1347 * will; typically, you pass what the previous call
1348 * returned. of_node_put() will be called on it
1349 * @name: The name string to match against
1350 *
1351 * Returns a node pointer with refcount incremented, use
1352 * of_node_put() on it when done.
1353 */
1354struct device_node *of_find_node_by_name(struct device_node *from,
1355 const char *name)
1356{
1357 struct device_node *np;
1358
1359 read_lock(&devtree_lock);
1360 np = from ? from->allnext : allnodes;
1361 for (; np != 0; np = np->allnext)
1362 if (np->name != 0 && strcasecmp(np->name, name) == 0
1363 && of_node_get(np))
1364 break;
1365 if (from)
1366 of_node_put(from);
1367 read_unlock(&devtree_lock);
1368 return np;
1369}
1370EXPORT_SYMBOL(of_find_node_by_name);
1371
1372/**
1373 * of_find_node_by_type - Find a node by its "device_type" property
1374 * @from: The node to start searching from or NULL, the node
1375 * you pass will not be searched, only the next one
1376 * will; typically, you pass what the previous call
1377 * returned. of_node_put() will be called on it
1378 * @name: The type string to match against
1379 *
1380 * Returns a node pointer with refcount incremented, use
1381 * of_node_put() on it when done.
1382 */
1383struct device_node *of_find_node_by_type(struct device_node *from,
1384 const char *type)
1385{
1386 struct device_node *np;
1387
1388 read_lock(&devtree_lock);
1389 np = from ? from->allnext : allnodes;
1390 for (; np != 0; np = np->allnext)
1391 if (np->type != 0 && strcasecmp(np->type, type) == 0
1392 && of_node_get(np))
1393 break;
1394 if (from)
1395 of_node_put(from);
1396 read_unlock(&devtree_lock);
1397 return np;
1398}
1399EXPORT_SYMBOL(of_find_node_by_type);
1400
1401/**
1402 * of_find_compatible_node - Find a node based on type and one of the
1403 * tokens in its "compatible" property
1404 * @from: The node to start searching from or NULL, the node
1405 * you pass will not be searched, only the next one
1406 * will; typically, you pass what the previous call
1407 * returned. of_node_put() will be called on it
1408 * @type: The type string to match "device_type" or NULL to ignore
1409 * @compatible: The string to match to one of the tokens in the device
1410 * "compatible" list.
1411 *
1412 * Returns a node pointer with refcount incremented, use
1413 * of_node_put() on it when done.
1414 */
1415struct device_node *of_find_compatible_node(struct device_node *from,
1416 const char *type, const char *compatible)
1417{
1418 struct device_node *np;
1419
1420 read_lock(&devtree_lock);
1421 np = from ? from->allnext : allnodes;
1422 for (; np != 0; np = np->allnext) {
1423 if (type != NULL
1424 && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1425 continue;
1426 if (device_is_compatible(np, compatible) && of_node_get(np))
1427 break;
1428 }
1429 if (from)
1430 of_node_put(from);
1431 read_unlock(&devtree_lock);
1432 return np;
1433}
1434EXPORT_SYMBOL(of_find_compatible_node);
1435
1436/**
1437 * of_find_node_by_path - Find a node matching a full OF path
1438 * @path: The full path to match
1439 *
1440 * Returns a node pointer with refcount incremented, use
1441 * of_node_put() on it when done.
1442 */
1443struct device_node *of_find_node_by_path(const char *path)
1444{
1445 struct device_node *np = allnodes;
1446
1447 read_lock(&devtree_lock);
1448 for (; np != 0; np = np->allnext) {
1449 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0
1450 && of_node_get(np))
1451 break;
1452 }
1453 read_unlock(&devtree_lock);
1454 return np;
1455}
1456EXPORT_SYMBOL(of_find_node_by_path);
1457
1458/**
1459 * of_find_node_by_phandle - Find a node given a phandle
1460 * @handle: phandle of the node to find
1461 *
1462 * Returns a node pointer with refcount incremented, use
1463 * of_node_put() on it when done.
1464 */
1465struct device_node *of_find_node_by_phandle(phandle handle)
1466{
1467 struct device_node *np;
1468
1469 read_lock(&devtree_lock);
1470 for (np = allnodes; np != 0; np = np->allnext)
1471 if (np->linux_phandle == handle)
1472 break;
1473 if (np)
1474 of_node_get(np);
1475 read_unlock(&devtree_lock);
1476 return np;
1477}
1478EXPORT_SYMBOL(of_find_node_by_phandle);
1479
1480/**
1481 * of_find_all_nodes - Get next node in global list
1482 * @prev: Previous node or NULL to start iteration
1483 * of_node_put() will be called on it
1484 *
1485 * Returns a node pointer with refcount incremented, use
1486 * of_node_put() on it when done.
1487 */
1488struct device_node *of_find_all_nodes(struct device_node *prev)
1489{
1490 struct device_node *np;
1491
1492 read_lock(&devtree_lock);
1493 np = prev ? prev->allnext : allnodes;
1494 for (; np != 0; np = np->allnext)
1495 if (of_node_get(np))
1496 break;
1497 if (prev)
1498 of_node_put(prev);
1499 read_unlock(&devtree_lock);
1500 return np;
1501}
1502EXPORT_SYMBOL(of_find_all_nodes);
1503
1504/**
1505 * of_get_parent - Get a node's parent if any
1506 * @node: Node to get parent
1507 *
1508 * Returns a node pointer with refcount incremented, use
1509 * of_node_put() on it when done.
1510 */
1511struct device_node *of_get_parent(const struct device_node *node)
1512{
1513 struct device_node *np;
1514
1515 if (!node)
1516 return NULL;
1517
1518 read_lock(&devtree_lock);
1519 np = of_node_get(node->parent);
1520 read_unlock(&devtree_lock);
1521 return np;
1522}
1523EXPORT_SYMBOL(of_get_parent);
1524
1525/**
1526 * of_get_next_child - Iterate a node childs
1527 * @node: parent node
1528 * @prev: previous child of the parent node, or NULL to get first
1529 *
1530 * Returns a node pointer with refcount incremented, use
1531 * of_node_put() on it when done.
1532 */
1533struct device_node *of_get_next_child(const struct device_node *node,
1534 struct device_node *prev)
1535{
1536 struct device_node *next;
1537
1538 read_lock(&devtree_lock);
1539 next = prev ? prev->sibling : node->child;
1540 for (; next != 0; next = next->sibling)
1541 if (of_node_get(next))
1542 break;
1543 if (prev)
1544 of_node_put(prev);
1545 read_unlock(&devtree_lock);
1546 return next;
1547}
1548EXPORT_SYMBOL(of_get_next_child);
1549
1550/**
1551 * of_node_get - Increment refcount of a node
1552 * @node: Node to inc refcount, NULL is supported to
1553 * simplify writing of callers
1554 *
1555 * Returns node.
1556 */
1557struct device_node *of_node_get(struct device_node *node)
1558{
1559 if (node)
1560 kref_get(&node->kref);
1561 return node;
1562}
1563EXPORT_SYMBOL(of_node_get);
1564
1565static inline struct device_node * kref_to_device_node(struct kref *kref)
1566{
1567 return container_of(kref, struct device_node, kref);
1568}
1569
1570/**
1571 * of_node_release - release a dynamically allocated node
1572 * @kref: kref element of the node to be released
1573 *
1574 * In of_node_put() this function is passed to kref_put()
1575 * as the destructor.
1576 */
1577static void of_node_release(struct kref *kref)
1578{
1579 struct device_node *node = kref_to_device_node(kref);
1580 struct property *prop = node->properties;
1581
1582 if (!OF_IS_DYNAMIC(node))
1583 return;
1584 while (prop) {
1585 struct property *next = prop->next;
1586 kfree(prop->name);
1587 kfree(prop->value);
1588 kfree(prop);
1589 prop = next;
1590 }
1591 kfree(node->intrs);
9b6b563c
PM
1592 kfree(node->full_name);
1593 kfree(node->data);
1594 kfree(node);
1595}
1596
1597/**
1598 * of_node_put - Decrement refcount of a node
1599 * @node: Node to dec refcount, NULL is supported to
1600 * simplify writing of callers
1601 *
1602 */
1603void of_node_put(struct device_node *node)
1604{
1605 if (node)
1606 kref_put(&node->kref, of_node_release);
1607}
1608EXPORT_SYMBOL(of_node_put);
1609
1610/*
1611 * Plug a device node into the tree and global list.
1612 */
1613void of_attach_node(struct device_node *np)
1614{
1615 write_lock(&devtree_lock);
1616 np->sibling = np->parent->child;
1617 np->allnext = allnodes;
1618 np->parent->child = np;
1619 allnodes = np;
1620 write_unlock(&devtree_lock);
1621}
1622
1623/*
1624 * "Unplug" a node from the device tree. The caller must hold
1625 * a reference to the node. The memory associated with the node
1626 * is not freed until its refcount goes to zero.
1627 */
1628void of_detach_node(const struct device_node *np)
1629{
1630 struct device_node *parent;
1631
1632 write_lock(&devtree_lock);
1633
1634 parent = np->parent;
1635
1636 if (allnodes == np)
1637 allnodes = np->allnext;
1638 else {
1639 struct device_node *prev;
1640 for (prev = allnodes;
1641 prev->allnext != np;
1642 prev = prev->allnext)
1643 ;
1644 prev->allnext = np->allnext;
1645 }
1646
1647 if (parent->child == np)
1648 parent->child = np->sibling;
1649 else {
1650 struct device_node *prevsib;
1651 for (prevsib = np->parent->child;
1652 prevsib->sibling != np;
1653 prevsib = prevsib->sibling)
1654 ;
1655 prevsib->sibling = np->sibling;
1656 }
1657
1658 write_unlock(&devtree_lock);
1659}
1660
1661#ifdef CONFIG_PPC_PSERIES
1662/*
1663 * Fix up the uninitialized fields in a new device node:
1664 * name, type, n_addrs, addrs, n_intrs, intrs, and pci-specific fields
1665 *
1666 * A lot of boot-time code is duplicated here, because functions such
1667 * as finish_node_interrupts, interpret_pci_props, etc. cannot use the
1668 * slab allocator.
1669 *
1670 * This should probably be split up into smaller chunks.
1671 */
1672
cc5d0189 1673static int of_finish_dynamic_node(struct device_node *node)
9b6b563c
PM
1674{
1675 struct device_node *parent = of_get_parent(node);
1676 int err = 0;
1677 phandle *ibm_phandle;
1678
1679 node->name = get_property(node, "name", NULL);
1680 node->type = get_property(node, "device_type", NULL);
1681
1682 if (!parent) {
1683 err = -ENODEV;
1684 goto out;
1685 }
1686
1687 /* We don't support that function on PowerMac, at least
1688 * not yet
1689 */
799d6046 1690 if (_machine == PLATFORM_POWERMAC)
9b6b563c
PM
1691 return -ENODEV;
1692
1693 /* fix up new node's linux_phandle field */
cc5d0189
BH
1694 if ((ibm_phandle = (unsigned int *)get_property(node,
1695 "ibm,phandle", NULL)))
9b6b563c
PM
1696 node->linux_phandle = *ibm_phandle;
1697
1698out:
1699 of_node_put(parent);
1700 return err;
1701}
1702
1703static int prom_reconfig_notifier(struct notifier_block *nb,
1704 unsigned long action, void *node)
1705{
1706 int err;
1707
1708 switch (action) {
1709 case PSERIES_RECONFIG_ADD:
cc5d0189
BH
1710 err = of_finish_dynamic_node(node);
1711 if (!err)
1712 finish_node(node, NULL, 0);
9b6b563c
PM
1713 if (err < 0) {
1714 printk(KERN_ERR "finish_node returned %d\n", err);
1715 err = NOTIFY_BAD;
1716 }
1717 break;
1718 default:
1719 err = NOTIFY_DONE;
1720 break;
1721 }
1722 return err;
1723}
1724
1725static struct notifier_block prom_reconfig_nb = {
1726 .notifier_call = prom_reconfig_notifier,
1727 .priority = 10, /* This one needs to run first */
1728};
1729
1730static int __init prom_reconfig_setup(void)
1731{
1732 return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
1733}
1734__initcall(prom_reconfig_setup);
1735#endif
1736
1737/*
1738 * Find a property with a given name for a given node
1739 * and return the value.
1740 */
1741unsigned char *get_property(struct device_node *np, const char *name,
1742 int *lenp)
1743{
1744 struct property *pp;
1745
1746 for (pp = np->properties; pp != 0; pp = pp->next)
1747 if (strcmp(pp->name, name) == 0) {
1748 if (lenp != 0)
1749 *lenp = pp->length;
1750 return pp->value;
1751 }
1752 return NULL;
1753}
1754EXPORT_SYMBOL(get_property);
1755
1756/*
1757 * Add a property to a node
1758 */
183d0202 1759int prom_add_property(struct device_node* np, struct property* prop)
9b6b563c 1760{
183d0202 1761 struct property **next;
9b6b563c
PM
1762
1763 prop->next = NULL;
183d0202
BH
1764 write_lock(&devtree_lock);
1765 next = &np->properties;
1766 while (*next) {
1767 if (strcmp(prop->name, (*next)->name) == 0) {
1768 /* duplicate ! don't insert it */
1769 write_unlock(&devtree_lock);
1770 return -1;
1771 }
9b6b563c 1772 next = &(*next)->next;
183d0202 1773 }
9b6b563c 1774 *next = prop;
183d0202
BH
1775 write_unlock(&devtree_lock);
1776
799d6046 1777#ifdef CONFIG_PROC_DEVICETREE
183d0202
BH
1778 /* try to add to proc as well if it was initialized */
1779 if (np->pde)
1780 proc_device_tree_add_prop(np->pde, prop);
799d6046 1781#endif /* CONFIG_PROC_DEVICETREE */
183d0202
BH
1782
1783 return 0;
9b6b563c
PM
1784}
1785
9b6b563c 1786
This page took 0.112504 seconds and 5 git commands to generate.