powerpc/ptrace: Enable support for NT_PPC_CFPR
[deliverable/linux.git] / arch / powerpc / kernel / ptrace.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * PowerPC version
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4 *
5 * Derived from "arch/m68k/kernel/ptrace.c"
6 * Copyright (C) 1994 by Hamish Macdonald
7 * Taken from linux/kernel/ptrace.c and modified for M680x0.
8 * linux/kernel/ptrace.c is by Ross Biro 1/23/92, edited by Linus Torvalds
9 *
10 * Modified by Cort Dougan (cort@hq.fsmlabs.com)
b123923d 11 * and Paul Mackerras (paulus@samba.org).
1da177e4
LT
12 *
13 * This file is subject to the terms and conditions of the GNU General
14 * Public License. See the file README.legal in the main directory of
15 * this archive for more details.
16 */
17
18#include <linux/kernel.h>
19#include <linux/sched.h>
20#include <linux/mm.h>
21#include <linux/smp.h>
1da177e4
LT
22#include <linux/errno.h>
23#include <linux/ptrace.h>
f65255e8 24#include <linux/regset.h>
4f72c427 25#include <linux/tracehook.h>
3caf06c6 26#include <linux/elf.h>
1da177e4
LT
27#include <linux/user.h>
28#include <linux/security.h>
7ed20e1a 29#include <linux/signal.h>
ea9c102c
DW
30#include <linux/seccomp.h>
31#include <linux/audit.h>
02424d89 32#include <trace/syscall.h>
5aae8a53
P
33#include <linux/hw_breakpoint.h>
34#include <linux/perf_event.h>
22ecbe8d 35#include <linux/context_tracking.h>
1da177e4
LT
36
37#include <asm/uaccess.h>
38#include <asm/page.h>
39#include <asm/pgtable.h>
ae3a197e 40#include <asm/switch_to.h>
21a62902 41
02424d89
IM
42#define CREATE_TRACE_POINTS
43#include <trace/events/syscalls.h>
44
359e4284
MS
45/*
46 * The parameter save area on the stack is used to store arguments being passed
47 * to callee function and is located at fixed offset from stack pointer.
48 */
49#ifdef CONFIG_PPC32
50#define PARAMETER_SAVE_AREA_OFFSET 24 /* bytes */
51#else /* CONFIG_PPC32 */
52#define PARAMETER_SAVE_AREA_OFFSET 48 /* bytes */
53#endif
54
55struct pt_regs_offset {
56 const char *name;
57 int offset;
58};
59
60#define STR(s) #s /* convert to string */
61#define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
62#define GPR_OFFSET_NAME(num) \
343c3327 63 {.name = STR(r##num), .offset = offsetof(struct pt_regs, gpr[num])}, \
359e4284
MS
64 {.name = STR(gpr##num), .offset = offsetof(struct pt_regs, gpr[num])}
65#define REG_OFFSET_END {.name = NULL, .offset = 0}
66
67static const struct pt_regs_offset regoffset_table[] = {
68 GPR_OFFSET_NAME(0),
69 GPR_OFFSET_NAME(1),
70 GPR_OFFSET_NAME(2),
71 GPR_OFFSET_NAME(3),
72 GPR_OFFSET_NAME(4),
73 GPR_OFFSET_NAME(5),
74 GPR_OFFSET_NAME(6),
75 GPR_OFFSET_NAME(7),
76 GPR_OFFSET_NAME(8),
77 GPR_OFFSET_NAME(9),
78 GPR_OFFSET_NAME(10),
79 GPR_OFFSET_NAME(11),
80 GPR_OFFSET_NAME(12),
81 GPR_OFFSET_NAME(13),
82 GPR_OFFSET_NAME(14),
83 GPR_OFFSET_NAME(15),
84 GPR_OFFSET_NAME(16),
85 GPR_OFFSET_NAME(17),
86 GPR_OFFSET_NAME(18),
87 GPR_OFFSET_NAME(19),
88 GPR_OFFSET_NAME(20),
89 GPR_OFFSET_NAME(21),
90 GPR_OFFSET_NAME(22),
91 GPR_OFFSET_NAME(23),
92 GPR_OFFSET_NAME(24),
93 GPR_OFFSET_NAME(25),
94 GPR_OFFSET_NAME(26),
95 GPR_OFFSET_NAME(27),
96 GPR_OFFSET_NAME(28),
97 GPR_OFFSET_NAME(29),
98 GPR_OFFSET_NAME(30),
99 GPR_OFFSET_NAME(31),
100 REG_OFFSET_NAME(nip),
101 REG_OFFSET_NAME(msr),
102 REG_OFFSET_NAME(ctr),
103 REG_OFFSET_NAME(link),
104 REG_OFFSET_NAME(xer),
105 REG_OFFSET_NAME(ccr),
106#ifdef CONFIG_PPC64
107 REG_OFFSET_NAME(softe),
108#else
109 REG_OFFSET_NAME(mq),
110#endif
111 REG_OFFSET_NAME(trap),
112 REG_OFFSET_NAME(dar),
113 REG_OFFSET_NAME(dsisr),
114 REG_OFFSET_END,
115};
116
117/**
118 * regs_query_register_offset() - query register offset from its name
119 * @name: the name of a register
120 *
121 * regs_query_register_offset() returns the offset of a register in struct
122 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
123 */
124int regs_query_register_offset(const char *name)
125{
126 const struct pt_regs_offset *roff;
127 for (roff = regoffset_table; roff->name != NULL; roff++)
128 if (!strcmp(roff->name, name))
129 return roff->offset;
130 return -EINVAL;
131}
132
133/**
134 * regs_query_register_name() - query register name from its offset
135 * @offset: the offset of a register in struct pt_regs.
136 *
137 * regs_query_register_name() returns the name of a register from its
138 * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
139 */
140const char *regs_query_register_name(unsigned int offset)
141{
142 const struct pt_regs_offset *roff;
143 for (roff = regoffset_table; roff->name != NULL; roff++)
144 if (roff->offset == offset)
145 return roff->name;
146 return NULL;
147}
148
abd06505
BH
149/*
150 * does not yet catch signals sent when the child dies.
151 * in exit.c or in signal.c.
152 */
153
154/*
155 * Set of msr bits that gdb can change on behalf of a process.
156 */
172ae2e7 157#ifdef CONFIG_PPC_ADV_DEBUG_REGS
abd06505 158#define MSR_DEBUGCHANGE 0
1da177e4 159#else
abd06505 160#define MSR_DEBUGCHANGE (MSR_SE | MSR_BE)
1da177e4 161#endif
acd89828 162
1da177e4 163/*
abd06505 164 * Max register writeable via put_reg
1da177e4 165 */
abd06505
BH
166#ifdef CONFIG_PPC32
167#define PT_MAX_PUT_REG PT_MQ
168#else
169#define PT_MAX_PUT_REG PT_CCR
170#endif
1da177e4 171
26f77130
RM
172static unsigned long get_user_msr(struct task_struct *task)
173{
174 return task->thread.regs->msr | task->thread.fpexc_mode;
175}
176
177static int set_user_msr(struct task_struct *task, unsigned long msr)
178{
179 task->thread.regs->msr &= ~MSR_DEBUGCHANGE;
180 task->thread.regs->msr |= msr & MSR_DEBUGCHANGE;
181 return 0;
182}
183
25847fb1
AK
184#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
185static unsigned long get_user_ckpt_msr(struct task_struct *task)
186{
187 return task->thread.ckpt_regs.msr | task->thread.fpexc_mode;
188}
189
190static int set_user_ckpt_msr(struct task_struct *task, unsigned long msr)
191{
192 task->thread.ckpt_regs.msr &= ~MSR_DEBUGCHANGE;
193 task->thread.ckpt_regs.msr |= msr & MSR_DEBUGCHANGE;
194 return 0;
195}
196
197static int set_user_ckpt_trap(struct task_struct *task, unsigned long trap)
198{
199 task->thread.ckpt_regs.trap = trap & 0xfff0;
200 return 0;
201}
202#endif
203
1715a826 204#ifdef CONFIG_PPC64
ee4a3916 205static int get_user_dscr(struct task_struct *task, unsigned long *data)
1715a826 206{
ee4a3916
AK
207 *data = task->thread.dscr;
208 return 0;
1715a826
AK
209}
210
211static int set_user_dscr(struct task_struct *task, unsigned long dscr)
212{
213 task->thread.dscr = dscr;
214 task->thread.dscr_inherit = 1;
215 return 0;
216}
217#else
ee4a3916 218static int get_user_dscr(struct task_struct *task, unsigned long *data)
1715a826
AK
219{
220 return -EIO;
221}
222
223static int set_user_dscr(struct task_struct *task, unsigned long dscr)
224{
225 return -EIO;
226}
227#endif
228
26f77130
RM
229/*
230 * We prevent mucking around with the reserved area of trap
231 * which are used internally by the kernel.
232 */
233static int set_user_trap(struct task_struct *task, unsigned long trap)
234{
235 task->thread.regs->trap = trap & 0xfff0;
236 return 0;
237}
238
865418d8
BH
239/*
240 * Get contents of register REGNO in task TASK.
241 */
ee4a3916 242int ptrace_get_reg(struct task_struct *task, int regno, unsigned long *data)
865418d8 243{
ee4a3916 244 if ((task->thread.regs == NULL) || !data)
865418d8
BH
245 return -EIO;
246
ee4a3916
AK
247 if (regno == PT_MSR) {
248 *data = get_user_msr(task);
249 return 0;
250 }
865418d8 251
1715a826 252 if (regno == PT_DSCR)
ee4a3916 253 return get_user_dscr(task, data);
1715a826 254
ee4a3916
AK
255 if (regno < (sizeof(struct pt_regs) / sizeof(unsigned long))) {
256 *data = ((unsigned long *)task->thread.regs)[regno];
257 return 0;
258 }
865418d8
BH
259
260 return -EIO;
261}
262
263/*
264 * Write contents of register REGNO in task TASK.
265 */
266int ptrace_put_reg(struct task_struct *task, int regno, unsigned long data)
267{
268 if (task->thread.regs == NULL)
269 return -EIO;
270
26f77130
RM
271 if (regno == PT_MSR)
272 return set_user_msr(task, data);
273 if (regno == PT_TRAP)
274 return set_user_trap(task, data);
1715a826
AK
275 if (regno == PT_DSCR)
276 return set_user_dscr(task, data);
26f77130
RM
277
278 if (regno <= PT_MAX_PUT_REG) {
865418d8
BH
279 ((unsigned long *)task->thread.regs)[regno] = data;
280 return 0;
281 }
282 return -EIO;
283}
284
44dd3f50
RM
285static int gpr_get(struct task_struct *target, const struct user_regset *regset,
286 unsigned int pos, unsigned int count,
287 void *kbuf, void __user *ubuf)
288{
a71f5d5d 289 int i, ret;
44dd3f50
RM
290
291 if (target->thread.regs == NULL)
292 return -EIO;
293
a71f5d5d
MW
294 if (!FULL_REGS(target->thread.regs)) {
295 /* We have a partial register set. Fill 14-31 with bogus values */
296 for (i = 14; i < 32; i++)
297 target->thread.regs->gpr[i] = NV_REG_POISON;
298 }
44dd3f50
RM
299
300 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
301 target->thread.regs,
302 0, offsetof(struct pt_regs, msr));
303 if (!ret) {
304 unsigned long msr = get_user_msr(target);
305 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &msr,
306 offsetof(struct pt_regs, msr),
307 offsetof(struct pt_regs, msr) +
308 sizeof(msr));
309 }
310
311 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
312 offsetof(struct pt_regs, msr) + sizeof(long));
313
314 if (!ret)
315 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
316 &target->thread.regs->orig_gpr3,
317 offsetof(struct pt_regs, orig_gpr3),
318 sizeof(struct pt_regs));
319 if (!ret)
320 ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
321 sizeof(struct pt_regs), -1);
322
323 return ret;
324}
325
326static int gpr_set(struct task_struct *target, const struct user_regset *regset,
327 unsigned int pos, unsigned int count,
328 const void *kbuf, const void __user *ubuf)
329{
330 unsigned long reg;
331 int ret;
332
333 if (target->thread.regs == NULL)
334 return -EIO;
335
336 CHECK_FULL_REGS(target->thread.regs);
337
338 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
339 target->thread.regs,
340 0, PT_MSR * sizeof(reg));
341
342 if (!ret && count > 0) {
343 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
344 PT_MSR * sizeof(reg),
345 (PT_MSR + 1) * sizeof(reg));
346 if (!ret)
347 ret = set_user_msr(target, reg);
348 }
349
350 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
351 offsetof(struct pt_regs, msr) + sizeof(long));
352
353 if (!ret)
354 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
355 &target->thread.regs->orig_gpr3,
356 PT_ORIG_R3 * sizeof(reg),
357 (PT_MAX_PUT_REG + 1) * sizeof(reg));
358
359 if (PT_MAX_PUT_REG + 1 < PT_TRAP && !ret)
360 ret = user_regset_copyin_ignore(
361 &pos, &count, &kbuf, &ubuf,
362 (PT_MAX_PUT_REG + 1) * sizeof(reg),
363 PT_TRAP * sizeof(reg));
364
365 if (!ret && count > 0) {
366 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
367 PT_TRAP * sizeof(reg),
368 (PT_TRAP + 1) * sizeof(reg));
369 if (!ret)
370 ret = set_user_trap(target, reg);
371 }
372
373 if (!ret)
374 ret = user_regset_copyin_ignore(
375 &pos, &count, &kbuf, &ubuf,
376 (PT_TRAP + 1) * sizeof(reg), -1);
377
378 return ret;
379}
865418d8 380
1ec8549d
AK
381/*
382 * When the transaction is active, 'transact_fp' holds the current running
383 * value of all FPR registers and 'fp_state' holds the last checkpointed
384 * value of all FPR registers for the current transaction. When transaction
385 * is not active 'fp_state' holds the current running state of all the FPR
386 * registers. So this function which returns the current running values of
387 * all the FPR registers, needs to know whether any transaction is active
388 * or not.
389 *
390 * Userspace interface buffer layout:
391 *
392 * struct data {
393 * u64 fpr[32];
394 * u64 fpscr;
395 * };
396 *
397 * There are two config options CONFIG_VSX and CONFIG_PPC_TRANSACTIONAL_MEM
398 * which determines the final code in this function. All the combinations of
399 * these two config options are possible except the one below as transactional
400 * memory config pulls in CONFIG_VSX automatically.
401 *
402 * !defined(CONFIG_VSX) && defined(CONFIG_PPC_TRANSACTIONAL_MEM)
403 */
f65255e8
RM
404static int fpr_get(struct task_struct *target, const struct user_regset *regset,
405 unsigned int pos, unsigned int count,
406 void *kbuf, void __user *ubuf)
407{
c6e6771b 408#ifdef CONFIG_VSX
de79f7b9 409 u64 buf[33];
c6e6771b
MN
410 int i;
411#endif
f65255e8
RM
412 flush_fp_to_thread(target);
413
1ec8549d
AK
414#if defined(CONFIG_VSX) && defined(CONFIG_PPC_TRANSACTIONAL_MEM)
415 /* copy to local buffer then write that out */
416 if (MSR_TM_ACTIVE(target->thread.regs->msr)) {
417 flush_altivec_to_thread(target);
418 flush_tmregs_to_thread(target);
419 for (i = 0; i < 32 ; i++)
420 buf[i] = target->thread.TS_TRANS_FPR(i);
421 buf[32] = target->thread.transact_fp.fpscr;
422 } else {
423 for (i = 0; i < 32 ; i++)
424 buf[i] = target->thread.TS_FPR(i);
425 buf[32] = target->thread.fp_state.fpscr;
426 }
427 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
428#endif
429
430#if defined(CONFIG_VSX) && !defined(CONFIG_PPC_TRANSACTIONAL_MEM)
c6e6771b
MN
431 /* copy to local buffer then write that out */
432 for (i = 0; i < 32 ; i++)
433 buf[i] = target->thread.TS_FPR(i);
de79f7b9 434 buf[32] = target->thread.fp_state.fpscr;
c6e6771b 435 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
1ec8549d 436#endif
c6e6771b 437
1ec8549d 438#if !defined(CONFIG_VSX) && !defined(CONFIG_PPC_TRANSACTIONAL_MEM)
de79f7b9 439 BUILD_BUG_ON(offsetof(struct thread_fp_state, fpscr) !=
1e407ee3 440 offsetof(struct thread_fp_state, fpr[32]));
f65255e8
RM
441
442 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
de79f7b9 443 &target->thread.fp_state, 0, -1);
c6e6771b 444#endif
f65255e8
RM
445}
446
1ec8549d
AK
447/*
448 * When the transaction is active, 'transact_fp' holds the current running
449 * value of all FPR registers and 'fp_state' holds the last checkpointed
450 * value of all FPR registers for the current transaction. When transaction
451 * is not active 'fp_state' holds the current running state of all the FPR
452 * registers. So this function which setss the current running values of
453 * all the FPR registers, needs to know whether any transaction is active
454 * or not.
455 *
456 * Userspace interface buffer layout:
457 *
458 * struct data {
459 * u64 fpr[32];
460 * u64 fpscr;
461 * };
462 *
463 * There are two config options CONFIG_VSX and CONFIG_PPC_TRANSACTIONAL_MEM
464 * which determines the final code in this function. All the combinations of
465 * these two config options are possible except the one below as transactional
466 * memory config pulls in CONFIG_VSX automatically.
467 *
468 * !defined(CONFIG_VSX) && defined(CONFIG_PPC_TRANSACTIONAL_MEM)
469 */
f65255e8
RM
470static int fpr_set(struct task_struct *target, const struct user_regset *regset,
471 unsigned int pos, unsigned int count,
472 const void *kbuf, const void __user *ubuf)
473{
c6e6771b 474#ifdef CONFIG_VSX
de79f7b9 475 u64 buf[33];
c6e6771b
MN
476 int i;
477#endif
f65255e8
RM
478 flush_fp_to_thread(target);
479
1ec8549d
AK
480#if defined(CONFIG_VSX) && defined(CONFIG_PPC_TRANSACTIONAL_MEM)
481 /* copy to local buffer then write that out */
482 i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
483 if (i)
484 return i;
485
486 if (MSR_TM_ACTIVE(target->thread.regs->msr)) {
487 flush_altivec_to_thread(target);
488 flush_tmregs_to_thread(target);
489 for (i = 0; i < 32 ; i++)
490 target->thread.TS_TRANS_FPR(i) = buf[i];
491 target->thread.transact_fp.fpscr = buf[32];
492 } else {
493 for (i = 0; i < 32 ; i++)
494 target->thread.TS_FPR(i) = buf[i];
495 target->thread.fp_state.fpscr = buf[32];
496 }
497 return 0;
498#endif
499
500#if defined(CONFIG_VSX) && !defined(CONFIG_PPC_TRANSACTIONAL_MEM)
c6e6771b
MN
501 /* copy to local buffer then write that out */
502 i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
503 if (i)
504 return i;
505 for (i = 0; i < 32 ; i++)
506 target->thread.TS_FPR(i) = buf[i];
de79f7b9 507 target->thread.fp_state.fpscr = buf[32];
c6e6771b 508 return 0;
1ec8549d
AK
509#endif
510
511#if !defined(CONFIG_VSX) && !defined(CONFIG_PPC_TRANSACTIONAL_MEM)
de79f7b9 512 BUILD_BUG_ON(offsetof(struct thread_fp_state, fpscr) !=
1e407ee3 513 offsetof(struct thread_fp_state, fpr[32]));
f65255e8
RM
514
515 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
de79f7b9 516 &target->thread.fp_state, 0, -1);
c6e6771b 517#endif
f65255e8
RM
518}
519
865418d8
BH
520#ifdef CONFIG_ALTIVEC
521/*
522 * Get/set all the altivec registers vr0..vr31, vscr, vrsave, in one go.
523 * The transfer totals 34 quadword. Quadwords 0-31 contain the
524 * corresponding vector registers. Quadword 32 contains the vscr as the
525 * last word (offset 12) within that quadword. Quadword 33 contains the
526 * vrsave as the first word (offset 0) within the quadword.
527 *
528 * This definition of the VMX state is compatible with the current PPC32
529 * ptrace interface. This allows signal handling and ptrace to use the
530 * same structures. This also simplifies the implementation of a bi-arch
531 * (combined (32- and 64-bit) gdb.
532 */
533
3caf06c6
RM
534static int vr_active(struct task_struct *target,
535 const struct user_regset *regset)
536{
537 flush_altivec_to_thread(target);
538 return target->thread.used_vr ? regset->n : 0;
539}
540
d844e279
AK
541/*
542 * When the transaction is active, 'transact_vr' holds the current running
543 * value of all the VMX registers and 'vr_state' holds the last checkpointed
544 * value of all the VMX registers for the current transaction to fall back
545 * on in case it aborts. When transaction is not active 'vr_state' holds
546 * the current running state of all the VMX registers. So this function which
547 * gets the current running values of all the VMX registers, needs to know
548 * whether any transaction is active or not.
549 *
550 * Userspace interface buffer layout:
551 *
552 * struct data {
553 * vector128 vr[32];
554 * vector128 vscr;
555 * vector128 vrsave;
556 * };
557 */
3caf06c6
RM
558static int vr_get(struct task_struct *target, const struct user_regset *regset,
559 unsigned int pos, unsigned int count,
560 void *kbuf, void __user *ubuf)
561{
d844e279 562 struct thread_vr_state *addr;
3caf06c6
RM
563 int ret;
564
565 flush_altivec_to_thread(target);
566
de79f7b9
PM
567 BUILD_BUG_ON(offsetof(struct thread_vr_state, vscr) !=
568 offsetof(struct thread_vr_state, vr[32]));
3caf06c6 569
d844e279
AK
570#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
571 if (MSR_TM_ACTIVE(target->thread.regs->msr)) {
572 flush_fp_to_thread(target);
573 flush_tmregs_to_thread(target);
574 addr = &target->thread.transact_vr;
575 } else {
576 addr = &target->thread.vr_state;
577 }
578#else
579 addr = &target->thread.vr_state;
580#endif
3caf06c6 581 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
d844e279 582 addr, 0,
3caf06c6
RM
583 33 * sizeof(vector128));
584 if (!ret) {
585 /*
586 * Copy out only the low-order word of vrsave.
587 */
588 union {
589 elf_vrreg_t reg;
590 u32 word;
591 } vrsave;
592 memset(&vrsave, 0, sizeof(vrsave));
d844e279
AK
593
594#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
595 if (MSR_TM_ACTIVE(target->thread.regs->msr))
596 vrsave.word = target->thread.transact_vrsave;
597 else
598 vrsave.word = target->thread.vrsave;
599#else
3caf06c6 600 vrsave.word = target->thread.vrsave;
d844e279
AK
601#endif
602
3caf06c6
RM
603 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &vrsave,
604 33 * sizeof(vector128), -1);
605 }
606
607 return ret;
608}
609
d844e279
AK
610/*
611 * When the transaction is active, 'transact_vr' holds the current running
612 * value of all the VMX registers and 'vr_state' holds the last checkpointed
613 * value of all the VMX registers for the current transaction to fall back
614 * on in case it aborts. When transaction is not active 'vr_state' holds
615 * the current running state of all the VMX registers. So this function which
616 * sets the current running values of all the VMX registers, needs to know
617 * whether any transaction is active or not.
618 *
619 * Userspace interface buffer layout:
620 *
621 * struct data {
622 * vector128 vr[32];
623 * vector128 vscr;
624 * vector128 vrsave;
625 * };
626 */
3caf06c6
RM
627static int vr_set(struct task_struct *target, const struct user_regset *regset,
628 unsigned int pos, unsigned int count,
629 const void *kbuf, const void __user *ubuf)
630{
d844e279 631 struct thread_vr_state *addr;
3caf06c6
RM
632 int ret;
633
634 flush_altivec_to_thread(target);
635
de79f7b9
PM
636 BUILD_BUG_ON(offsetof(struct thread_vr_state, vscr) !=
637 offsetof(struct thread_vr_state, vr[32]));
3caf06c6 638
d844e279
AK
639#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
640 if (MSR_TM_ACTIVE(target->thread.regs->msr)) {
641 flush_fp_to_thread(target);
642 flush_tmregs_to_thread(target);
643 addr = &target->thread.transact_vr;
644 } else {
645 addr = &target->thread.vr_state;
646 }
647#else
648 addr = &target->thread.vr_state;
649#endif
3caf06c6 650 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
d844e279 651 addr, 0,
de79f7b9 652 33 * sizeof(vector128));
3caf06c6
RM
653 if (!ret && count > 0) {
654 /*
655 * We use only the first word of vrsave.
656 */
657 union {
658 elf_vrreg_t reg;
659 u32 word;
660 } vrsave;
661 memset(&vrsave, 0, sizeof(vrsave));
d844e279
AK
662
663#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
664 if (MSR_TM_ACTIVE(target->thread.regs->msr))
665 vrsave.word = target->thread.transact_vrsave;
666 else
667 vrsave.word = target->thread.vrsave;
668#else
3caf06c6 669 vrsave.word = target->thread.vrsave;
d844e279 670#endif
3caf06c6
RM
671 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &vrsave,
672 33 * sizeof(vector128), -1);
d844e279
AK
673 if (!ret) {
674
675#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
676 if (MSR_TM_ACTIVE(target->thread.regs->msr))
677 target->thread.transact_vrsave = vrsave.word;
678 else
679 target->thread.vrsave = vrsave.word;
680#else
3caf06c6 681 target->thread.vrsave = vrsave.word;
d844e279
AK
682#endif
683 }
3caf06c6
RM
684 }
685
686 return ret;
687}
865418d8
BH
688#endif /* CONFIG_ALTIVEC */
689
ce48b210
MN
690#ifdef CONFIG_VSX
691/*
692 * Currently to set and and get all the vsx state, you need to call
25985edc 693 * the fp and VMX calls as well. This only get/sets the lower 32
ce48b210
MN
694 * 128bit VSX registers.
695 */
696
697static int vsr_active(struct task_struct *target,
698 const struct user_regset *regset)
699{
700 flush_vsx_to_thread(target);
701 return target->thread.used_vsr ? regset->n : 0;
702}
703
94b7d361
AK
704/*
705 * When the transaction is active, 'transact_fp' holds the current running
706 * value of all FPR registers and 'fp_state' holds the last checkpointed
707 * value of all FPR registers for the current transaction. When transaction
708 * is not active 'fp_state' holds the current running state of all the FPR
709 * registers. So this function which returns the current running values of
710 * all the FPR registers, needs to know whether any transaction is active
711 * or not.
712 *
713 * Userspace interface buffer layout:
714 *
715 * struct data {
716 * u64 vsx[32];
717 * };
718 */
ce48b210
MN
719static int vsr_get(struct task_struct *target, const struct user_regset *regset,
720 unsigned int pos, unsigned int count,
721 void *kbuf, void __user *ubuf)
722{
de79f7b9 723 u64 buf[32];
f3e909c2 724 int ret, i;
ce48b210 725
94b7d361
AK
726#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
727 flush_fp_to_thread(target);
728 flush_altivec_to_thread(target);
729 flush_tmregs_to_thread(target);
730#endif
ce48b210
MN
731 flush_vsx_to_thread(target);
732
94b7d361
AK
733#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
734 if (MSR_TM_ACTIVE(target->thread.regs->msr)) {
735 for (i = 0; i < 32 ; i++)
736 buf[i] = target->thread.
737 transact_fp.fpr[i][TS_VSRLOWOFFSET];
738 } else {
739 for (i = 0; i < 32 ; i++)
740 buf[i] = target->thread.
741 fp_state.fpr[i][TS_VSRLOWOFFSET];
742 }
743#else
f3e909c2 744 for (i = 0; i < 32 ; i++)
de79f7b9 745 buf[i] = target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
94b7d361 746#endif
ce48b210 747 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
f3e909c2 748 buf, 0, 32 * sizeof(double));
ce48b210
MN
749
750 return ret;
751}
752
94b7d361
AK
753/*
754 * When the transaction is active, 'transact_fp' holds the current running
755 * value of all FPR registers and 'fp_state' holds the last checkpointed
756 * value of all FPR registers for the current transaction. When transaction
757 * is not active 'fp_state' holds the current running state of all the FPR
758 * registers. So this function which sets the current running values of all
759 * the FPR registers, needs to know whether any transaction is active or not.
760 *
761 * Userspace interface buffer layout:
762 *
763 * struct data {
764 * u64 vsx[32];
765 * };
766 */
ce48b210
MN
767static int vsr_set(struct task_struct *target, const struct user_regset *regset,
768 unsigned int pos, unsigned int count,
769 const void *kbuf, const void __user *ubuf)
770{
de79f7b9 771 u64 buf[32];
f3e909c2 772 int ret,i;
ce48b210 773
94b7d361
AK
774#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
775 flush_fp_to_thread(target);
776 flush_altivec_to_thread(target);
777 flush_tmregs_to_thread(target);
778#endif
ce48b210
MN
779 flush_vsx_to_thread(target);
780
781 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
f3e909c2 782 buf, 0, 32 * sizeof(double));
94b7d361
AK
783
784#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
785 if (MSR_TM_ACTIVE(target->thread.regs->msr)) {
786 for (i = 0; i < 32 ; i++)
787 target->thread.transact_fp.
788 fpr[i][TS_VSRLOWOFFSET] = buf[i];
789 } else {
790 for (i = 0; i < 32 ; i++)
791 target->thread.fp_state.
792 fpr[i][TS_VSRLOWOFFSET] = buf[i];
793 }
794#else
f3e909c2 795 for (i = 0; i < 32 ; i++)
de79f7b9 796 target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
94b7d361 797#endif
f3e909c2 798
ce48b210
MN
799
800 return ret;
801}
802#endif /* CONFIG_VSX */
803
865418d8
BH
804#ifdef CONFIG_SPE
805
806/*
807 * For get_evrregs/set_evrregs functions 'data' has the following layout:
808 *
809 * struct {
810 * u32 evr[32];
811 * u64 acc;
812 * u32 spefscr;
813 * }
814 */
815
a4e4b175
RM
816static int evr_active(struct task_struct *target,
817 const struct user_regset *regset)
865418d8 818{
a4e4b175
RM
819 flush_spe_to_thread(target);
820 return target->thread.used_spe ? regset->n : 0;
821}
865418d8 822
a4e4b175
RM
823static int evr_get(struct task_struct *target, const struct user_regset *regset,
824 unsigned int pos, unsigned int count,
825 void *kbuf, void __user *ubuf)
826{
827 int ret;
865418d8 828
a4e4b175 829 flush_spe_to_thread(target);
865418d8 830
a4e4b175
RM
831 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
832 &target->thread.evr,
833 0, sizeof(target->thread.evr));
865418d8 834
a4e4b175
RM
835 BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) !=
836 offsetof(struct thread_struct, spefscr));
837
838 if (!ret)
839 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
840 &target->thread.acc,
841 sizeof(target->thread.evr), -1);
842
843 return ret;
844}
845
846static int evr_set(struct task_struct *target, const struct user_regset *regset,
847 unsigned int pos, unsigned int count,
848 const void *kbuf, const void __user *ubuf)
849{
850 int ret;
851
852 flush_spe_to_thread(target);
853
854 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
855 &target->thread.evr,
856 0, sizeof(target->thread.evr));
865418d8 857
a4e4b175
RM
858 BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) !=
859 offsetof(struct thread_struct, spefscr));
860
861 if (!ret)
862 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
863 &target->thread.acc,
864 sizeof(target->thread.evr), -1);
865
866 return ret;
865418d8 867}
865418d8
BH
868#endif /* CONFIG_SPE */
869
25847fb1
AK
870#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
871/**
872 * tm_cgpr_active - get active number of registers in CGPR
873 * @target: The target task.
874 * @regset: The user regset structure.
875 *
876 * This function checks for the active number of available
877 * regisers in transaction checkpointed GPR category.
878 */
879static int tm_cgpr_active(struct task_struct *target,
880 const struct user_regset *regset)
881{
882 if (!cpu_has_feature(CPU_FTR_TM))
883 return -ENODEV;
884
885 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
886 return 0;
887
888 return regset->n;
889}
890
891/**
892 * tm_cgpr_get - get CGPR registers
893 * @target: The target task.
894 * @regset: The user regset structure.
895 * @pos: The buffer position.
896 * @count: Number of bytes to copy.
897 * @kbuf: Kernel buffer to copy from.
898 * @ubuf: User buffer to copy into.
899 *
900 * This function gets transaction checkpointed GPR registers.
901 *
902 * When the transaction is active, 'ckpt_regs' holds all the checkpointed
903 * GPR register values for the current transaction to fall back on if it
904 * aborts in between. This function gets those checkpointed GPR registers.
905 * The userspace interface buffer layout is as follows.
906 *
907 * struct data {
908 * struct pt_regs ckpt_regs;
909 * };
910 */
911static int tm_cgpr_get(struct task_struct *target,
912 const struct user_regset *regset,
913 unsigned int pos, unsigned int count,
914 void *kbuf, void __user *ubuf)
915{
916 int ret;
917
918 if (!cpu_has_feature(CPU_FTR_TM))
919 return -ENODEV;
920
921 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
922 return -ENODATA;
923
924 flush_fp_to_thread(target);
925 flush_altivec_to_thread(target);
926 flush_tmregs_to_thread(target);
927
928 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
929 &target->thread.ckpt_regs,
930 0, offsetof(struct pt_regs, msr));
931 if (!ret) {
932 unsigned long msr = get_user_ckpt_msr(target);
933
934 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &msr,
935 offsetof(struct pt_regs, msr),
936 offsetof(struct pt_regs, msr) +
937 sizeof(msr));
938 }
939
940 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
941 offsetof(struct pt_regs, msr) + sizeof(long));
942
943 if (!ret)
944 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
945 &target->thread.ckpt_regs.orig_gpr3,
946 offsetof(struct pt_regs, orig_gpr3),
947 sizeof(struct pt_regs));
948 if (!ret)
949 ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
950 sizeof(struct pt_regs), -1);
951
952 return ret;
953}
954
955/*
956 * tm_cgpr_set - set the CGPR registers
957 * @target: The target task.
958 * @regset: The user regset structure.
959 * @pos: The buffer position.
960 * @count: Number of bytes to copy.
961 * @kbuf: Kernel buffer to copy into.
962 * @ubuf: User buffer to copy from.
963 *
964 * This function sets in transaction checkpointed GPR registers.
965 *
966 * When the transaction is active, 'ckpt_regs' holds the checkpointed
967 * GPR register values for the current transaction to fall back on if it
968 * aborts in between. This function sets those checkpointed GPR registers.
969 * The userspace interface buffer layout is as follows.
970 *
971 * struct data {
972 * struct pt_regs ckpt_regs;
973 * };
974 */
975static int tm_cgpr_set(struct task_struct *target,
976 const struct user_regset *regset,
977 unsigned int pos, unsigned int count,
978 const void *kbuf, const void __user *ubuf)
979{
980 unsigned long reg;
981 int ret;
982
983 if (!cpu_has_feature(CPU_FTR_TM))
984 return -ENODEV;
985
986 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
987 return -ENODATA;
988
989 flush_fp_to_thread(target);
990 flush_altivec_to_thread(target);
991 flush_tmregs_to_thread(target);
992
993 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
994 &target->thread.ckpt_regs,
995 0, PT_MSR * sizeof(reg));
996
997 if (!ret && count > 0) {
998 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
999 PT_MSR * sizeof(reg),
1000 (PT_MSR + 1) * sizeof(reg));
1001 if (!ret)
1002 ret = set_user_ckpt_msr(target, reg);
1003 }
1004
1005 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
1006 offsetof(struct pt_regs, msr) + sizeof(long));
1007
1008 if (!ret)
1009 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1010 &target->thread.ckpt_regs.orig_gpr3,
1011 PT_ORIG_R3 * sizeof(reg),
1012 (PT_MAX_PUT_REG + 1) * sizeof(reg));
1013
1014 if (PT_MAX_PUT_REG + 1 < PT_TRAP && !ret)
1015 ret = user_regset_copyin_ignore(
1016 &pos, &count, &kbuf, &ubuf,
1017 (PT_MAX_PUT_REG + 1) * sizeof(reg),
1018 PT_TRAP * sizeof(reg));
1019
1020 if (!ret && count > 0) {
1021 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
1022 PT_TRAP * sizeof(reg),
1023 (PT_TRAP + 1) * sizeof(reg));
1024 if (!ret)
1025 ret = set_user_ckpt_trap(target, reg);
1026 }
1027
1028 if (!ret)
1029 ret = user_regset_copyin_ignore(
1030 &pos, &count, &kbuf, &ubuf,
1031 (PT_TRAP + 1) * sizeof(reg), -1);
1032
1033 return ret;
1034}
19cbcbf7
AK
1035
1036/**
1037 * tm_cfpr_active - get active number of registers in CFPR
1038 * @target: The target task.
1039 * @regset: The user regset structure.
1040 *
1041 * This function checks for the active number of available
1042 * regisers in transaction checkpointed FPR category.
1043 */
1044static int tm_cfpr_active(struct task_struct *target,
1045 const struct user_regset *regset)
1046{
1047 if (!cpu_has_feature(CPU_FTR_TM))
1048 return -ENODEV;
1049
1050 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1051 return 0;
1052
1053 return regset->n;
1054}
1055
1056/**
1057 * tm_cfpr_get - get CFPR registers
1058 * @target: The target task.
1059 * @regset: The user regset structure.
1060 * @pos: The buffer position.
1061 * @count: Number of bytes to copy.
1062 * @kbuf: Kernel buffer to copy from.
1063 * @ubuf: User buffer to copy into.
1064 *
1065 * This function gets in transaction checkpointed FPR registers.
1066 *
1067 * When the transaction is active 'fp_state' holds the checkpointed
1068 * values for the current transaction to fall back on if it aborts
1069 * in between. This function gets those checkpointed FPR registers.
1070 * The userspace interface buffer layout is as follows.
1071 *
1072 * struct data {
1073 * u64 fpr[32];
1074 * u64 fpscr;
1075 *};
1076 */
1077static int tm_cfpr_get(struct task_struct *target,
1078 const struct user_regset *regset,
1079 unsigned int pos, unsigned int count,
1080 void *kbuf, void __user *ubuf)
1081{
1082 u64 buf[33];
1083 int i;
1084
1085 if (!cpu_has_feature(CPU_FTR_TM))
1086 return -ENODEV;
1087
1088 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1089 return -ENODATA;
1090
1091 flush_fp_to_thread(target);
1092 flush_altivec_to_thread(target);
1093 flush_tmregs_to_thread(target);
1094
1095 /* copy to local buffer then write that out */
1096 for (i = 0; i < 32 ; i++)
1097 buf[i] = target->thread.TS_FPR(i);
1098 buf[32] = target->thread.fp_state.fpscr;
1099 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
1100}
1101
1102/**
1103 * tm_cfpr_set - set CFPR registers
1104 * @target: The target task.
1105 * @regset: The user regset structure.
1106 * @pos: The buffer position.
1107 * @count: Number of bytes to copy.
1108 * @kbuf: Kernel buffer to copy into.
1109 * @ubuf: User buffer to copy from.
1110 *
1111 * This function sets in transaction checkpointed FPR registers.
1112 *
1113 * When the transaction is active 'fp_state' holds the checkpointed
1114 * FPR register values for the current transaction to fall back on
1115 * if it aborts in between. This function sets these checkpointed
1116 * FPR registers. The userspace interface buffer layout is as follows.
1117 *
1118 * struct data {
1119 * u64 fpr[32];
1120 * u64 fpscr;
1121 *};
1122 */
1123static int tm_cfpr_set(struct task_struct *target,
1124 const struct user_regset *regset,
1125 unsigned int pos, unsigned int count,
1126 const void *kbuf, const void __user *ubuf)
1127{
1128 u64 buf[33];
1129 int i;
1130
1131 if (!cpu_has_feature(CPU_FTR_TM))
1132 return -ENODEV;
1133
1134 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1135 return -ENODATA;
1136
1137 flush_fp_to_thread(target);
1138 flush_altivec_to_thread(target);
1139 flush_tmregs_to_thread(target);
1140
1141 /* copy to local buffer then write that out */
1142 i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
1143 if (i)
1144 return i;
1145 for (i = 0; i < 32 ; i++)
1146 target->thread.TS_FPR(i) = buf[i];
1147 target->thread.fp_state.fpscr = buf[32];
1148 return 0;
1149}
25847fb1 1150#endif
865418d8 1151
80fdf470
RM
1152/*
1153 * These are our native regset flavors.
1154 */
1155enum powerpc_regset {
1156 REGSET_GPR,
1157 REGSET_FPR,
1158#ifdef CONFIG_ALTIVEC
1159 REGSET_VMX,
1160#endif
ce48b210
MN
1161#ifdef CONFIG_VSX
1162 REGSET_VSX,
1163#endif
80fdf470
RM
1164#ifdef CONFIG_SPE
1165 REGSET_SPE,
1166#endif
25847fb1
AK
1167#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1168 REGSET_TM_CGPR, /* TM checkpointed GPR registers */
19cbcbf7 1169 REGSET_TM_CFPR, /* TM checkpointed FPR registers */
25847fb1 1170#endif
80fdf470
RM
1171};
1172
1173static const struct user_regset native_regsets[] = {
1174 [REGSET_GPR] = {
1175 .core_note_type = NT_PRSTATUS, .n = ELF_NGREG,
1176 .size = sizeof(long), .align = sizeof(long),
1177 .get = gpr_get, .set = gpr_set
1178 },
1179 [REGSET_FPR] = {
1180 .core_note_type = NT_PRFPREG, .n = ELF_NFPREG,
1181 .size = sizeof(double), .align = sizeof(double),
1182 .get = fpr_get, .set = fpr_set
1183 },
1184#ifdef CONFIG_ALTIVEC
1185 [REGSET_VMX] = {
1186 .core_note_type = NT_PPC_VMX, .n = 34,
1187 .size = sizeof(vector128), .align = sizeof(vector128),
1188 .active = vr_active, .get = vr_get, .set = vr_set
1189 },
1190#endif
ce48b210
MN
1191#ifdef CONFIG_VSX
1192 [REGSET_VSX] = {
f3e909c2
MN
1193 .core_note_type = NT_PPC_VSX, .n = 32,
1194 .size = sizeof(double), .align = sizeof(double),
ce48b210
MN
1195 .active = vsr_active, .get = vsr_get, .set = vsr_set
1196 },
1197#endif
80fdf470
RM
1198#ifdef CONFIG_SPE
1199 [REGSET_SPE] = {
a0b38b4e 1200 .core_note_type = NT_PPC_SPE, .n = 35,
80fdf470
RM
1201 .size = sizeof(u32), .align = sizeof(u32),
1202 .active = evr_active, .get = evr_get, .set = evr_set
1203 },
1204#endif
25847fb1
AK
1205#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1206 [REGSET_TM_CGPR] = {
1207 .core_note_type = NT_PPC_TM_CGPR, .n = ELF_NGREG,
1208 .size = sizeof(long), .align = sizeof(long),
1209 .active = tm_cgpr_active, .get = tm_cgpr_get, .set = tm_cgpr_set
1210 },
19cbcbf7
AK
1211 [REGSET_TM_CFPR] = {
1212 .core_note_type = NT_PPC_TM_CFPR, .n = ELF_NFPREG,
1213 .size = sizeof(double), .align = sizeof(double),
1214 .active = tm_cfpr_active, .get = tm_cfpr_get, .set = tm_cfpr_set
1215 },
25847fb1 1216#endif
80fdf470
RM
1217};
1218
1219static const struct user_regset_view user_ppc_native_view = {
1220 .name = UTS_MACHINE, .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
1221 .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
1222};
1223
fa8f5cb0
RM
1224#ifdef CONFIG_PPC64
1225#include <linux/compat.h>
1226
04fcadce 1227static int gpr32_get_common(struct task_struct *target,
fa8f5cb0
RM
1228 const struct user_regset *regset,
1229 unsigned int pos, unsigned int count,
04fcadce 1230 void *kbuf, void __user *ubuf, bool tm_active)
fa8f5cb0
RM
1231{
1232 const unsigned long *regs = &target->thread.regs->gpr[0];
04fcadce 1233 const unsigned long *ckpt_regs;
fa8f5cb0
RM
1234 compat_ulong_t *k = kbuf;
1235 compat_ulong_t __user *u = ubuf;
1236 compat_ulong_t reg;
a71f5d5d 1237 int i;
fa8f5cb0 1238
04fcadce
AK
1239#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1240 ckpt_regs = &target->thread.ckpt_regs.gpr[0];
1241#endif
1242 if (tm_active) {
1243 regs = ckpt_regs;
1244 } else {
1245 if (target->thread.regs == NULL)
1246 return -EIO;
1247
1248 if (!FULL_REGS(target->thread.regs)) {
1249 /*
1250 * We have a partial register set.
1251 * Fill 14-31 with bogus values.
1252 */
1253 for (i = 14; i < 32; i++)
1254 target->thread.regs->gpr[i] = NV_REG_POISON;
1255 }
a71f5d5d 1256 }
fa8f5cb0
RM
1257
1258 pos /= sizeof(reg);
1259 count /= sizeof(reg);
1260
1261 if (kbuf)
1262 for (; count > 0 && pos < PT_MSR; --count)
1263 *k++ = regs[pos++];
1264 else
1265 for (; count > 0 && pos < PT_MSR; --count)
1266 if (__put_user((compat_ulong_t) regs[pos++], u++))
1267 return -EFAULT;
1268
1269 if (count > 0 && pos == PT_MSR) {
1270 reg = get_user_msr(target);
1271 if (kbuf)
1272 *k++ = reg;
1273 else if (__put_user(reg, u++))
1274 return -EFAULT;
1275 ++pos;
1276 --count;
1277 }
1278
1279 if (kbuf)
1280 for (; count > 0 && pos < PT_REGS_COUNT; --count)
1281 *k++ = regs[pos++];
1282 else
1283 for (; count > 0 && pos < PT_REGS_COUNT; --count)
1284 if (__put_user((compat_ulong_t) regs[pos++], u++))
1285 return -EFAULT;
1286
1287 kbuf = k;
1288 ubuf = u;
1289 pos *= sizeof(reg);
1290 count *= sizeof(reg);
1291 return user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
1292 PT_REGS_COUNT * sizeof(reg), -1);
1293}
1294
04fcadce 1295static int gpr32_set_common(struct task_struct *target,
fa8f5cb0
RM
1296 const struct user_regset *regset,
1297 unsigned int pos, unsigned int count,
04fcadce 1298 const void *kbuf, const void __user *ubuf, bool tm_active)
fa8f5cb0
RM
1299{
1300 unsigned long *regs = &target->thread.regs->gpr[0];
04fcadce 1301 unsigned long *ckpt_regs;
fa8f5cb0
RM
1302 const compat_ulong_t *k = kbuf;
1303 const compat_ulong_t __user *u = ubuf;
1304 compat_ulong_t reg;
1305
04fcadce
AK
1306#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1307 ckpt_regs = &target->thread.ckpt_regs.gpr[0];
1308#endif
fa8f5cb0 1309
04fcadce
AK
1310 if (tm_active) {
1311 regs = ckpt_regs;
1312 } else {
1313 regs = &target->thread.regs->gpr[0];
1314
1315 if (target->thread.regs == NULL)
1316 return -EIO;
1317
1318 CHECK_FULL_REGS(target->thread.regs);
1319 }
fa8f5cb0
RM
1320
1321 pos /= sizeof(reg);
1322 count /= sizeof(reg);
1323
1324 if (kbuf)
1325 for (; count > 0 && pos < PT_MSR; --count)
1326 regs[pos++] = *k++;
1327 else
1328 for (; count > 0 && pos < PT_MSR; --count) {
1329 if (__get_user(reg, u++))
1330 return -EFAULT;
1331 regs[pos++] = reg;
1332 }
1333
1334
1335 if (count > 0 && pos == PT_MSR) {
1336 if (kbuf)
1337 reg = *k++;
1338 else if (__get_user(reg, u++))
1339 return -EFAULT;
1340 set_user_msr(target, reg);
1341 ++pos;
1342 --count;
1343 }
1344
c2372eb9 1345 if (kbuf) {
fa8f5cb0
RM
1346 for (; count > 0 && pos <= PT_MAX_PUT_REG; --count)
1347 regs[pos++] = *k++;
c2372eb9
RM
1348 for (; count > 0 && pos < PT_TRAP; --count, ++pos)
1349 ++k;
1350 } else {
fa8f5cb0
RM
1351 for (; count > 0 && pos <= PT_MAX_PUT_REG; --count) {
1352 if (__get_user(reg, u++))
1353 return -EFAULT;
1354 regs[pos++] = reg;
1355 }
c2372eb9
RM
1356 for (; count > 0 && pos < PT_TRAP; --count, ++pos)
1357 if (__get_user(reg, u++))
1358 return -EFAULT;
1359 }
fa8f5cb0
RM
1360
1361 if (count > 0 && pos == PT_TRAP) {
1362 if (kbuf)
1363 reg = *k++;
1364 else if (__get_user(reg, u++))
1365 return -EFAULT;
1366 set_user_trap(target, reg);
1367 ++pos;
1368 --count;
1369 }
1370
1371 kbuf = k;
1372 ubuf = u;
1373 pos *= sizeof(reg);
1374 count *= sizeof(reg);
1375 return user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
1376 (PT_TRAP + 1) * sizeof(reg), -1);
1377}
1378
25847fb1
AK
1379#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1380static int tm_cgpr32_get(struct task_struct *target,
1381 const struct user_regset *regset,
1382 unsigned int pos, unsigned int count,
1383 void *kbuf, void __user *ubuf)
1384{
1385 return gpr32_get_common(target, regset, pos, count, kbuf, ubuf, 1);
1386}
1387
1388static int tm_cgpr32_set(struct task_struct *target,
1389 const struct user_regset *regset,
1390 unsigned int pos, unsigned int count,
1391 const void *kbuf, const void __user *ubuf)
1392{
1393 return gpr32_set_common(target, regset, pos, count, kbuf, ubuf, 1);
1394}
1395#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1396
04fcadce
AK
1397static int gpr32_get(struct task_struct *target,
1398 const struct user_regset *regset,
1399 unsigned int pos, unsigned int count,
1400 void *kbuf, void __user *ubuf)
1401{
1402 return gpr32_get_common(target, regset, pos, count, kbuf, ubuf, 0);
1403}
1404
1405static int gpr32_set(struct task_struct *target,
1406 const struct user_regset *regset,
1407 unsigned int pos, unsigned int count,
1408 const void *kbuf, const void __user *ubuf)
1409{
1410 return gpr32_set_common(target, regset, pos, count, kbuf, ubuf, 0);
1411}
1412
fa8f5cb0
RM
1413/*
1414 * These are the regset flavors matching the CONFIG_PPC32 native set.
1415 */
1416static const struct user_regset compat_regsets[] = {
1417 [REGSET_GPR] = {
1418 .core_note_type = NT_PRSTATUS, .n = ELF_NGREG,
1419 .size = sizeof(compat_long_t), .align = sizeof(compat_long_t),
1420 .get = gpr32_get, .set = gpr32_set
1421 },
1422 [REGSET_FPR] = {
1423 .core_note_type = NT_PRFPREG, .n = ELF_NFPREG,
1424 .size = sizeof(double), .align = sizeof(double),
1425 .get = fpr_get, .set = fpr_set
1426 },
1427#ifdef CONFIG_ALTIVEC
1428 [REGSET_VMX] = {
1429 .core_note_type = NT_PPC_VMX, .n = 34,
1430 .size = sizeof(vector128), .align = sizeof(vector128),
1431 .active = vr_active, .get = vr_get, .set = vr_set
1432 },
1433#endif
1434#ifdef CONFIG_SPE
1435 [REGSET_SPE] = {
24f1a849 1436 .core_note_type = NT_PPC_SPE, .n = 35,
fa8f5cb0
RM
1437 .size = sizeof(u32), .align = sizeof(u32),
1438 .active = evr_active, .get = evr_get, .set = evr_set
1439 },
1440#endif
25847fb1
AK
1441#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1442 [REGSET_TM_CGPR] = {
1443 .core_note_type = NT_PPC_TM_CGPR, .n = ELF_NGREG,
1444 .size = sizeof(long), .align = sizeof(long),
1445 .active = tm_cgpr_active,
1446 .get = tm_cgpr32_get, .set = tm_cgpr32_set
1447 },
19cbcbf7
AK
1448 [REGSET_TM_CFPR] = {
1449 .core_note_type = NT_PPC_TM_CFPR, .n = ELF_NFPREG,
1450 .size = sizeof(double), .align = sizeof(double),
1451 .active = tm_cfpr_active, .get = tm_cfpr_get, .set = tm_cfpr_set
1452 },
25847fb1 1453#endif
fa8f5cb0
RM
1454};
1455
1456static const struct user_regset_view user_ppc_compat_view = {
1457 .name = "ppc", .e_machine = EM_PPC, .ei_osabi = ELF_OSABI,
1458 .regsets = compat_regsets, .n = ARRAY_SIZE(compat_regsets)
1459};
1460#endif /* CONFIG_PPC64 */
1461
80fdf470
RM
1462const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1463{
fa8f5cb0
RM
1464#ifdef CONFIG_PPC64
1465 if (test_tsk_thread_flag(task, TIF_32BIT))
1466 return &user_ppc_compat_view;
1467#endif
80fdf470
RM
1468 return &user_ppc_native_view;
1469}
1470
1471
2a84b0d7 1472void user_enable_single_step(struct task_struct *task)
865418d8
BH
1473{
1474 struct pt_regs *regs = task->thread.regs;
1475
1476 if (regs != NULL) {
172ae2e7 1477#ifdef CONFIG_PPC_ADV_DEBUG_REGS
51ae8d4a
BB
1478 task->thread.debug.dbcr0 &= ~DBCR0_BT;
1479 task->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
865418d8
BH
1480 regs->msr |= MSR_DE;
1481#else
ec097c84 1482 regs->msr &= ~MSR_BE;
865418d8
BH
1483 regs->msr |= MSR_SE;
1484#endif
1485 }
1486 set_tsk_thread_flag(task, TIF_SINGLESTEP);
1487}
1488
ec097c84
RM
1489void user_enable_block_step(struct task_struct *task)
1490{
1491 struct pt_regs *regs = task->thread.regs;
1492
1493 if (regs != NULL) {
172ae2e7 1494#ifdef CONFIG_PPC_ADV_DEBUG_REGS
51ae8d4a
BB
1495 task->thread.debug.dbcr0 &= ~DBCR0_IC;
1496 task->thread.debug.dbcr0 = DBCR0_IDM | DBCR0_BT;
ec097c84
RM
1497 regs->msr |= MSR_DE;
1498#else
1499 regs->msr &= ~MSR_SE;
1500 regs->msr |= MSR_BE;
1501#endif
1502 }
1503 set_tsk_thread_flag(task, TIF_SINGLESTEP);
1504}
1505
2a84b0d7 1506void user_disable_single_step(struct task_struct *task)
865418d8
BH
1507{
1508 struct pt_regs *regs = task->thread.regs;
1509
1510 if (regs != NULL) {
172ae2e7 1511#ifdef CONFIG_PPC_ADV_DEBUG_REGS
3bffb652
DK
1512 /*
1513 * The logic to disable single stepping should be as
1514 * simple as turning off the Instruction Complete flag.
1515 * And, after doing so, if all debug flags are off, turn
1516 * off DBCR0(IDM) and MSR(DE) .... Torez
1517 */
682775b8 1518 task->thread.debug.dbcr0 &= ~(DBCR0_IC|DBCR0_BT);
3bffb652
DK
1519 /*
1520 * Test to see if any of the DBCR_ACTIVE_EVENTS bits are set.
1521 */
51ae8d4a
BB
1522 if (!DBCR_ACTIVE_EVENTS(task->thread.debug.dbcr0,
1523 task->thread.debug.dbcr1)) {
3bffb652
DK
1524 /*
1525 * All debug events were off.....
1526 */
51ae8d4a 1527 task->thread.debug.dbcr0 &= ~DBCR0_IDM;
28477fb1
DK
1528 regs->msr &= ~MSR_DE;
1529 }
865418d8 1530#else
ec097c84 1531 regs->msr &= ~(MSR_SE | MSR_BE);
865418d8
BH
1532#endif
1533 }
1534 clear_tsk_thread_flag(task, TIF_SINGLESTEP);
1535}
1536
5aae8a53 1537#ifdef CONFIG_HAVE_HW_BREAKPOINT
a8b0ca17 1538void ptrace_triggered(struct perf_event *bp,
5aae8a53
P
1539 struct perf_sample_data *data, struct pt_regs *regs)
1540{
1541 struct perf_event_attr attr;
1542
1543 /*
1544 * Disable the breakpoint request here since ptrace has defined a
1545 * one-shot behaviour for breakpoint exceptions in PPC64.
1546 * The SIGTRAP signal is generated automatically for us in do_dabr().
1547 * We don't have to do anything about that here
1548 */
1549 attr = bp->attr;
1550 attr.disabled = true;
1551 modify_user_hw_breakpoint(bp, &attr);
1552}
1553#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1554
e51df2c1 1555static int ptrace_set_debugreg(struct task_struct *task, unsigned long addr,
abd06505
BH
1556 unsigned long data)
1557{
5aae8a53
P
1558#ifdef CONFIG_HAVE_HW_BREAKPOINT
1559 int ret;
1560 struct thread_struct *thread = &(task->thread);
1561 struct perf_event *bp;
1562 struct perf_event_attr attr;
1563#endif /* CONFIG_HAVE_HW_BREAKPOINT */
9422de3e
MN
1564#ifndef CONFIG_PPC_ADV_DEBUG_REGS
1565 struct arch_hw_breakpoint hw_brk;
1566#endif
5aae8a53 1567
d6a61bfc
LM
1568 /* For ppc64 we support one DABR and no IABR's at the moment (ppc64).
1569 * For embedded processors we support one DAC and no IAC's at the
1570 * moment.
1571 */
abd06505
BH
1572 if (addr > 0)
1573 return -EINVAL;
1574
2325f0a0 1575 /* The bottom 3 bits in dabr are flags */
abd06505
BH
1576 if ((data & ~0x7UL) >= TASK_SIZE)
1577 return -EIO;
1578
172ae2e7 1579#ifndef CONFIG_PPC_ADV_DEBUG_REGS
d6a61bfc
LM
1580 /* For processors using DABR (i.e. 970), the bottom 3 bits are flags.
1581 * It was assumed, on previous implementations, that 3 bits were
1582 * passed together with the data address, fitting the design of the
1583 * DABR register, as follows:
1584 *
1585 * bit 0: Read flag
1586 * bit 1: Write flag
1587 * bit 2: Breakpoint translation
1588 *
1589 * Thus, we use them here as so.
1590 */
1591
1592 /* Ensure breakpoint translation bit is set */
9422de3e 1593 if (data && !(data & HW_BRK_TYPE_TRANSLATE))
abd06505 1594 return -EIO;
9422de3e
MN
1595 hw_brk.address = data & (~HW_BRK_TYPE_DABR);
1596 hw_brk.type = (data & HW_BRK_TYPE_DABR) | HW_BRK_TYPE_PRIV_ALL;
1597 hw_brk.len = 8;
5aae8a53
P
1598#ifdef CONFIG_HAVE_HW_BREAKPOINT
1599 bp = thread->ptrace_bps[0];
9422de3e 1600 if ((!data) || !(hw_brk.type & HW_BRK_TYPE_RDWR)) {
5aae8a53
P
1601 if (bp) {
1602 unregister_hw_breakpoint(bp);
1603 thread->ptrace_bps[0] = NULL;
1604 }
1605 return 0;
1606 }
1607 if (bp) {
1608 attr = bp->attr;
9422de3e
MN
1609 attr.bp_addr = hw_brk.address;
1610 arch_bp_generic_fields(hw_brk.type, &attr.bp_type);
a53fd61a
AP
1611
1612 /* Enable breakpoint */
1613 attr.disabled = false;
1614
5aae8a53 1615 ret = modify_user_hw_breakpoint(bp, &attr);
925f83c0 1616 if (ret) {
5aae8a53 1617 return ret;
925f83c0 1618 }
5aae8a53 1619 thread->ptrace_bps[0] = bp;
9422de3e 1620 thread->hw_brk = hw_brk;
5aae8a53
P
1621 return 0;
1622 }
1623
1624 /* Create a new breakpoint request if one doesn't exist already */
1625 hw_breakpoint_init(&attr);
9422de3e
MN
1626 attr.bp_addr = hw_brk.address;
1627 arch_bp_generic_fields(hw_brk.type,
1628 &attr.bp_type);
5aae8a53
P
1629
1630 thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr,
4dc0da86 1631 ptrace_triggered, NULL, task);
5aae8a53
P
1632 if (IS_ERR(bp)) {
1633 thread->ptrace_bps[0] = NULL;
1634 return PTR_ERR(bp);
1635 }
1636
1637#endif /* CONFIG_HAVE_HW_BREAKPOINT */
9422de3e 1638 task->thread.hw_brk = hw_brk;
172ae2e7 1639#else /* CONFIG_PPC_ADV_DEBUG_REGS */
d6a61bfc
LM
1640 /* As described above, it was assumed 3 bits were passed with the data
1641 * address, but we will assume only the mode bits will be passed
1642 * as to not cause alignment restrictions for DAC-based processors.
1643 */
1644
1645 /* DAC's hold the whole address without any mode flags */
51ae8d4a 1646 task->thread.debug.dac1 = data & ~0x3UL;
3bffb652 1647
51ae8d4a 1648 if (task->thread.debug.dac1 == 0) {
3bffb652 1649 dbcr_dac(task) &= ~(DBCR_DAC1R | DBCR_DAC1W);
51ae8d4a
BB
1650 if (!DBCR_ACTIVE_EVENTS(task->thread.debug.dbcr0,
1651 task->thread.debug.dbcr1)) {
3bffb652 1652 task->thread.regs->msr &= ~MSR_DE;
51ae8d4a 1653 task->thread.debug.dbcr0 &= ~DBCR0_IDM;
3bffb652 1654 }
d6a61bfc
LM
1655 return 0;
1656 }
1657
1658 /* Read or Write bits must be set */
1659
1660 if (!(data & 0x3UL))
1661 return -EINVAL;
1662
1663 /* Set the Internal Debugging flag (IDM bit 1) for the DBCR0
1664 register */
51ae8d4a 1665 task->thread.debug.dbcr0 |= DBCR0_IDM;
d6a61bfc
LM
1666
1667 /* Check for write and read flags and set DBCR0
1668 accordingly */
3bffb652 1669 dbcr_dac(task) &= ~(DBCR_DAC1R|DBCR_DAC1W);
d6a61bfc 1670 if (data & 0x1UL)
3bffb652 1671 dbcr_dac(task) |= DBCR_DAC1R;
d6a61bfc 1672 if (data & 0x2UL)
3bffb652 1673 dbcr_dac(task) |= DBCR_DAC1W;
d6a61bfc 1674 task->thread.regs->msr |= MSR_DE;
172ae2e7 1675#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
abd06505
BH
1676 return 0;
1677}
abd06505 1678
1da177e4
LT
1679/*
1680 * Called by kernel/ptrace.c when detaching..
1681 *
1682 * Make sure single step bits etc are not set.
1683 */
1684void ptrace_disable(struct task_struct *child)
1685{
1686 /* make sure the single step bit is not set. */
2a84b0d7 1687 user_disable_single_step(child);
1da177e4
LT
1688}
1689
3bffb652 1690#ifdef CONFIG_PPC_ADV_DEBUG_REGS
84295dfc 1691static long set_instruction_bp(struct task_struct *child,
3bffb652
DK
1692 struct ppc_hw_breakpoint *bp_info)
1693{
1694 int slot;
51ae8d4a
BB
1695 int slot1_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC1) != 0);
1696 int slot2_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC2) != 0);
1697 int slot3_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC3) != 0);
1698 int slot4_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC4) != 0);
3bffb652
DK
1699
1700 if (dbcr_iac_range(child) & DBCR_IAC12MODE)
1701 slot2_in_use = 1;
1702 if (dbcr_iac_range(child) & DBCR_IAC34MODE)
1703 slot4_in_use = 1;
1704
1705 if (bp_info->addr >= TASK_SIZE)
1706 return -EIO;
1707
1708 if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT) {
1709
1710 /* Make sure range is valid. */
1711 if (bp_info->addr2 >= TASK_SIZE)
1712 return -EIO;
1713
1714 /* We need a pair of IAC regsisters */
1715 if ((!slot1_in_use) && (!slot2_in_use)) {
1716 slot = 1;
51ae8d4a
BB
1717 child->thread.debug.iac1 = bp_info->addr;
1718 child->thread.debug.iac2 = bp_info->addr2;
1719 child->thread.debug.dbcr0 |= DBCR0_IAC1;
3bffb652
DK
1720 if (bp_info->addr_mode ==
1721 PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
1722 dbcr_iac_range(child) |= DBCR_IAC12X;
1723 else
1724 dbcr_iac_range(child) |= DBCR_IAC12I;
1725#if CONFIG_PPC_ADV_DEBUG_IACS > 2
1726 } else if ((!slot3_in_use) && (!slot4_in_use)) {
1727 slot = 3;
51ae8d4a
BB
1728 child->thread.debug.iac3 = bp_info->addr;
1729 child->thread.debug.iac4 = bp_info->addr2;
1730 child->thread.debug.dbcr0 |= DBCR0_IAC3;
3bffb652
DK
1731 if (bp_info->addr_mode ==
1732 PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
1733 dbcr_iac_range(child) |= DBCR_IAC34X;
1734 else
1735 dbcr_iac_range(child) |= DBCR_IAC34I;
1736#endif
1737 } else
1738 return -ENOSPC;
1739 } else {
1740 /* We only need one. If possible leave a pair free in
1741 * case a range is needed later
1742 */
1743 if (!slot1_in_use) {
1744 /*
1745 * Don't use iac1 if iac1-iac2 are free and either
1746 * iac3 or iac4 (but not both) are free
1747 */
1748 if (slot2_in_use || (slot3_in_use == slot4_in_use)) {
1749 slot = 1;
51ae8d4a
BB
1750 child->thread.debug.iac1 = bp_info->addr;
1751 child->thread.debug.dbcr0 |= DBCR0_IAC1;
3bffb652
DK
1752 goto out;
1753 }
1754 }
1755 if (!slot2_in_use) {
1756 slot = 2;
51ae8d4a
BB
1757 child->thread.debug.iac2 = bp_info->addr;
1758 child->thread.debug.dbcr0 |= DBCR0_IAC2;
3bffb652
DK
1759#if CONFIG_PPC_ADV_DEBUG_IACS > 2
1760 } else if (!slot3_in_use) {
1761 slot = 3;
51ae8d4a
BB
1762 child->thread.debug.iac3 = bp_info->addr;
1763 child->thread.debug.dbcr0 |= DBCR0_IAC3;
3bffb652
DK
1764 } else if (!slot4_in_use) {
1765 slot = 4;
51ae8d4a
BB
1766 child->thread.debug.iac4 = bp_info->addr;
1767 child->thread.debug.dbcr0 |= DBCR0_IAC4;
3bffb652
DK
1768#endif
1769 } else
1770 return -ENOSPC;
1771 }
1772out:
51ae8d4a 1773 child->thread.debug.dbcr0 |= DBCR0_IDM;
3bffb652
DK
1774 child->thread.regs->msr |= MSR_DE;
1775
1776 return slot;
1777}
1778
1779static int del_instruction_bp(struct task_struct *child, int slot)
1780{
1781 switch (slot) {
1782 case 1:
51ae8d4a 1783 if ((child->thread.debug.dbcr0 & DBCR0_IAC1) == 0)
3bffb652
DK
1784 return -ENOENT;
1785
1786 if (dbcr_iac_range(child) & DBCR_IAC12MODE) {
1787 /* address range - clear slots 1 & 2 */
51ae8d4a 1788 child->thread.debug.iac2 = 0;
3bffb652
DK
1789 dbcr_iac_range(child) &= ~DBCR_IAC12MODE;
1790 }
51ae8d4a
BB
1791 child->thread.debug.iac1 = 0;
1792 child->thread.debug.dbcr0 &= ~DBCR0_IAC1;
3bffb652
DK
1793 break;
1794 case 2:
51ae8d4a 1795 if ((child->thread.debug.dbcr0 & DBCR0_IAC2) == 0)
3bffb652
DK
1796 return -ENOENT;
1797
1798 if (dbcr_iac_range(child) & DBCR_IAC12MODE)
1799 /* used in a range */
1800 return -EINVAL;
51ae8d4a
BB
1801 child->thread.debug.iac2 = 0;
1802 child->thread.debug.dbcr0 &= ~DBCR0_IAC2;
3bffb652
DK
1803 break;
1804#if CONFIG_PPC_ADV_DEBUG_IACS > 2
1805 case 3:
51ae8d4a 1806 if ((child->thread.debug.dbcr0 & DBCR0_IAC3) == 0)
3bffb652
DK
1807 return -ENOENT;
1808
1809 if (dbcr_iac_range(child) & DBCR_IAC34MODE) {
1810 /* address range - clear slots 3 & 4 */
51ae8d4a 1811 child->thread.debug.iac4 = 0;
3bffb652
DK
1812 dbcr_iac_range(child) &= ~DBCR_IAC34MODE;
1813 }
51ae8d4a
BB
1814 child->thread.debug.iac3 = 0;
1815 child->thread.debug.dbcr0 &= ~DBCR0_IAC3;
3bffb652
DK
1816 break;
1817 case 4:
51ae8d4a 1818 if ((child->thread.debug.dbcr0 & DBCR0_IAC4) == 0)
3bffb652
DK
1819 return -ENOENT;
1820
1821 if (dbcr_iac_range(child) & DBCR_IAC34MODE)
1822 /* Used in a range */
1823 return -EINVAL;
51ae8d4a
BB
1824 child->thread.debug.iac4 = 0;
1825 child->thread.debug.dbcr0 &= ~DBCR0_IAC4;
3bffb652
DK
1826 break;
1827#endif
1828 default:
1829 return -EINVAL;
1830 }
1831 return 0;
1832}
1833
1834static int set_dac(struct task_struct *child, struct ppc_hw_breakpoint *bp_info)
1835{
1836 int byte_enable =
1837 (bp_info->condition_mode >> PPC_BREAKPOINT_CONDITION_BE_SHIFT)
1838 & 0xf;
1839 int condition_mode =
1840 bp_info->condition_mode & PPC_BREAKPOINT_CONDITION_MODE;
1841 int slot;
1842
1843 if (byte_enable && (condition_mode == 0))
1844 return -EINVAL;
1845
1846 if (bp_info->addr >= TASK_SIZE)
1847 return -EIO;
1848
1849 if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0) {
1850 slot = 1;
1851 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
1852 dbcr_dac(child) |= DBCR_DAC1R;
1853 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
1854 dbcr_dac(child) |= DBCR_DAC1W;
51ae8d4a 1855 child->thread.debug.dac1 = (unsigned long)bp_info->addr;
3bffb652
DK
1856#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
1857 if (byte_enable) {
51ae8d4a 1858 child->thread.debug.dvc1 =
3bffb652 1859 (unsigned long)bp_info->condition_value;
51ae8d4a 1860 child->thread.debug.dbcr2 |=
3bffb652
DK
1861 ((byte_enable << DBCR2_DVC1BE_SHIFT) |
1862 (condition_mode << DBCR2_DVC1M_SHIFT));
1863 }
1864#endif
1865#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
51ae8d4a 1866 } else if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) {
3bffb652
DK
1867 /* Both dac1 and dac2 are part of a range */
1868 return -ENOSPC;
1869#endif
1870 } else if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0) {
1871 slot = 2;
1872 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
1873 dbcr_dac(child) |= DBCR_DAC2R;
1874 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
1875 dbcr_dac(child) |= DBCR_DAC2W;
51ae8d4a 1876 child->thread.debug.dac2 = (unsigned long)bp_info->addr;
3bffb652
DK
1877#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
1878 if (byte_enable) {
51ae8d4a 1879 child->thread.debug.dvc2 =
3bffb652 1880 (unsigned long)bp_info->condition_value;
51ae8d4a 1881 child->thread.debug.dbcr2 |=
3bffb652
DK
1882 ((byte_enable << DBCR2_DVC2BE_SHIFT) |
1883 (condition_mode << DBCR2_DVC2M_SHIFT));
1884 }
1885#endif
1886 } else
1887 return -ENOSPC;
51ae8d4a 1888 child->thread.debug.dbcr0 |= DBCR0_IDM;
3bffb652
DK
1889 child->thread.regs->msr |= MSR_DE;
1890
1891 return slot + 4;
1892}
1893
1894static int del_dac(struct task_struct *child, int slot)
1895{
1896 if (slot == 1) {
30124d11 1897 if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0)
3bffb652
DK
1898 return -ENOENT;
1899
51ae8d4a 1900 child->thread.debug.dac1 = 0;
3bffb652
DK
1901 dbcr_dac(child) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1902#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
51ae8d4a
BB
1903 if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) {
1904 child->thread.debug.dac2 = 0;
1905 child->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
3bffb652 1906 }
51ae8d4a 1907 child->thread.debug.dbcr2 &= ~(DBCR2_DVC1M | DBCR2_DVC1BE);
3bffb652
DK
1908#endif
1909#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
51ae8d4a 1910 child->thread.debug.dvc1 = 0;
3bffb652
DK
1911#endif
1912 } else if (slot == 2) {
30124d11 1913 if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0)
3bffb652
DK
1914 return -ENOENT;
1915
1916#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
51ae8d4a 1917 if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE)
3bffb652
DK
1918 /* Part of a range */
1919 return -EINVAL;
51ae8d4a 1920 child->thread.debug.dbcr2 &= ~(DBCR2_DVC2M | DBCR2_DVC2BE);
3bffb652
DK
1921#endif
1922#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
51ae8d4a 1923 child->thread.debug.dvc2 = 0;
3bffb652 1924#endif
51ae8d4a 1925 child->thread.debug.dac2 = 0;
3bffb652
DK
1926 dbcr_dac(child) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1927 } else
1928 return -EINVAL;
1929
1930 return 0;
1931}
1932#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1933
1934#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1935static int set_dac_range(struct task_struct *child,
1936 struct ppc_hw_breakpoint *bp_info)
1937{
1938 int mode = bp_info->addr_mode & PPC_BREAKPOINT_MODE_MASK;
1939
1940 /* We don't allow range watchpoints to be used with DVC */
1941 if (bp_info->condition_mode)
1942 return -EINVAL;
1943
1944 /*
1945 * Best effort to verify the address range. The user/supervisor bits
1946 * prevent trapping in kernel space, but let's fail on an obvious bad
1947 * range. The simple test on the mask is not fool-proof, and any
1948 * exclusive range will spill over into kernel space.
1949 */
1950 if (bp_info->addr >= TASK_SIZE)
1951 return -EIO;
1952 if (mode == PPC_BREAKPOINT_MODE_MASK) {
1953 /*
1954 * dac2 is a bitmask. Don't allow a mask that makes a
1955 * kernel space address from a valid dac1 value
1956 */
1957 if (~((unsigned long)bp_info->addr2) >= TASK_SIZE)
1958 return -EIO;
1959 } else {
1960 /*
1961 * For range breakpoints, addr2 must also be a valid address
1962 */
1963 if (bp_info->addr2 >= TASK_SIZE)
1964 return -EIO;
1965 }
1966
51ae8d4a 1967 if (child->thread.debug.dbcr0 &
3bffb652
DK
1968 (DBCR0_DAC1R | DBCR0_DAC1W | DBCR0_DAC2R | DBCR0_DAC2W))
1969 return -ENOSPC;
1970
1971 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
51ae8d4a 1972 child->thread.debug.dbcr0 |= (DBCR0_DAC1R | DBCR0_IDM);
3bffb652 1973 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
51ae8d4a
BB
1974 child->thread.debug.dbcr0 |= (DBCR0_DAC1W | DBCR0_IDM);
1975 child->thread.debug.dac1 = bp_info->addr;
1976 child->thread.debug.dac2 = bp_info->addr2;
3bffb652 1977 if (mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE)
51ae8d4a 1978 child->thread.debug.dbcr2 |= DBCR2_DAC12M;
3bffb652 1979 else if (mode == PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
51ae8d4a 1980 child->thread.debug.dbcr2 |= DBCR2_DAC12MX;
3bffb652 1981 else /* PPC_BREAKPOINT_MODE_MASK */
51ae8d4a 1982 child->thread.debug.dbcr2 |= DBCR2_DAC12MM;
3bffb652
DK
1983 child->thread.regs->msr |= MSR_DE;
1984
1985 return 5;
1986}
1987#endif /* CONFIG_PPC_ADV_DEBUG_DAC_RANGE */
1988
3162d92d
DK
1989static long ppc_set_hwdebug(struct task_struct *child,
1990 struct ppc_hw_breakpoint *bp_info)
1991{
6c7a2856
P
1992#ifdef CONFIG_HAVE_HW_BREAKPOINT
1993 int len = 0;
1994 struct thread_struct *thread = &(child->thread);
1995 struct perf_event *bp;
1996 struct perf_event_attr attr;
1997#endif /* CONFIG_HAVE_HW_BREAKPOINT */
4dfbf290 1998#ifndef CONFIG_PPC_ADV_DEBUG_REGS
9422de3e 1999 struct arch_hw_breakpoint brk;
4dfbf290
AS
2000#endif
2001
3bffb652
DK
2002 if (bp_info->version != 1)
2003 return -ENOTSUPP;
2004#ifdef CONFIG_PPC_ADV_DEBUG_REGS
2005 /*
2006 * Check for invalid flags and combinations
2007 */
2008 if ((bp_info->trigger_type == 0) ||
2009 (bp_info->trigger_type & ~(PPC_BREAKPOINT_TRIGGER_EXECUTE |
2010 PPC_BREAKPOINT_TRIGGER_RW)) ||
2011 (bp_info->addr_mode & ~PPC_BREAKPOINT_MODE_MASK) ||
2012 (bp_info->condition_mode &
2013 ~(PPC_BREAKPOINT_CONDITION_MODE |
2014 PPC_BREAKPOINT_CONDITION_BE_ALL)))
2015 return -EINVAL;
2016#if CONFIG_PPC_ADV_DEBUG_DVCS == 0
2017 if (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
2018 return -EINVAL;
2019#endif
2020
2021 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_EXECUTE) {
2022 if ((bp_info->trigger_type != PPC_BREAKPOINT_TRIGGER_EXECUTE) ||
2023 (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE))
2024 return -EINVAL;
84295dfc 2025 return set_instruction_bp(child, bp_info);
3bffb652
DK
2026 }
2027 if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT)
2028 return set_dac(child, bp_info);
2029
2030#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2031 return set_dac_range(child, bp_info);
2032#else
2033 return -EINVAL;
2034#endif
2035#else /* !CONFIG_PPC_ADV_DEBUG_DVCS */
3162d92d 2036 /*
3bffb652 2037 * We only support one data breakpoint
3162d92d 2038 */
4dfbf290
AS
2039 if ((bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_RW) == 0 ||
2040 (bp_info->trigger_type & ~PPC_BREAKPOINT_TRIGGER_RW) != 0 ||
4dfbf290 2041 bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
3162d92d
DK
2042 return -EINVAL;
2043
3162d92d
DK
2044 if ((unsigned long)bp_info->addr >= TASK_SIZE)
2045 return -EIO;
2046
9422de3e
MN
2047 brk.address = bp_info->addr & ~7UL;
2048 brk.type = HW_BRK_TYPE_TRANSLATE;
2bb78efa 2049 brk.len = 8;
4dfbf290 2050 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
9422de3e 2051 brk.type |= HW_BRK_TYPE_READ;
4dfbf290 2052 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
9422de3e 2053 brk.type |= HW_BRK_TYPE_WRITE;
6c7a2856 2054#ifdef CONFIG_HAVE_HW_BREAKPOINT
6c7a2856
P
2055 /*
2056 * Check if the request is for 'range' breakpoints. We can
2057 * support it if range < 8 bytes.
2058 */
6961ed96 2059 if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE)
6c7a2856 2060 len = bp_info->addr2 - bp_info->addr;
6961ed96 2061 else if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT)
b0b0aa9c 2062 len = 1;
6961ed96 2063 else
6c7a2856 2064 return -EINVAL;
6c7a2856 2065 bp = thread->ptrace_bps[0];
6961ed96 2066 if (bp)
6c7a2856 2067 return -ENOSPC;
6c7a2856
P
2068
2069 /* Create a new breakpoint request if one doesn't exist already */
2070 hw_breakpoint_init(&attr);
2071 attr.bp_addr = (unsigned long)bp_info->addr & ~HW_BREAKPOINT_ALIGN;
2072 attr.bp_len = len;
9422de3e 2073 arch_bp_generic_fields(brk.type, &attr.bp_type);
6c7a2856
P
2074
2075 thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr,
2076 ptrace_triggered, NULL, child);
2077 if (IS_ERR(bp)) {
2078 thread->ptrace_bps[0] = NULL;
6c7a2856
P
2079 return PTR_ERR(bp);
2080 }
2081
6c7a2856
P
2082 return 1;
2083#endif /* CONFIG_HAVE_HW_BREAKPOINT */
2084
2085 if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT)
2086 return -EINVAL;
2087
9422de3e 2088 if (child->thread.hw_brk.address)
6c7a2856 2089 return -ENOSPC;
4dfbf290 2090
9422de3e 2091 child->thread.hw_brk = brk;
3bffb652 2092
3162d92d 2093 return 1;
3bffb652 2094#endif /* !CONFIG_PPC_ADV_DEBUG_DVCS */
3162d92d
DK
2095}
2096
ec1b33dc 2097static long ppc_del_hwdebug(struct task_struct *child, long data)
3162d92d 2098{
6c7a2856
P
2099#ifdef CONFIG_HAVE_HW_BREAKPOINT
2100 int ret = 0;
2101 struct thread_struct *thread = &(child->thread);
2102 struct perf_event *bp;
2103#endif /* CONFIG_HAVE_HW_BREAKPOINT */
3bffb652
DK
2104#ifdef CONFIG_PPC_ADV_DEBUG_REGS
2105 int rc;
2106
2107 if (data <= 4)
2108 rc = del_instruction_bp(child, (int)data);
2109 else
2110 rc = del_dac(child, (int)data - 4);
2111
2112 if (!rc) {
51ae8d4a
BB
2113 if (!DBCR_ACTIVE_EVENTS(child->thread.debug.dbcr0,
2114 child->thread.debug.dbcr1)) {
2115 child->thread.debug.dbcr0 &= ~DBCR0_IDM;
3bffb652
DK
2116 child->thread.regs->msr &= ~MSR_DE;
2117 }
2118 }
2119 return rc;
2120#else
3162d92d
DK
2121 if (data != 1)
2122 return -EINVAL;
6c7a2856
P
2123
2124#ifdef CONFIG_HAVE_HW_BREAKPOINT
6c7a2856
P
2125 bp = thread->ptrace_bps[0];
2126 if (bp) {
2127 unregister_hw_breakpoint(bp);
2128 thread->ptrace_bps[0] = NULL;
2129 } else
2130 ret = -ENOENT;
6c7a2856
P
2131 return ret;
2132#else /* CONFIG_HAVE_HW_BREAKPOINT */
9422de3e 2133 if (child->thread.hw_brk.address == 0)
3162d92d
DK
2134 return -ENOENT;
2135
9422de3e
MN
2136 child->thread.hw_brk.address = 0;
2137 child->thread.hw_brk.type = 0;
6c7a2856 2138#endif /* CONFIG_HAVE_HW_BREAKPOINT */
3bffb652 2139
3162d92d 2140 return 0;
3bffb652 2141#endif
3162d92d
DK
2142}
2143
9b05a69e
NK
2144long arch_ptrace(struct task_struct *child, long request,
2145 unsigned long addr, unsigned long data)
1da177e4 2146{
1da177e4 2147 int ret = -EPERM;
f68d2048
NK
2148 void __user *datavp = (void __user *) data;
2149 unsigned long __user *datalp = datavp;
1da177e4 2150
1da177e4 2151 switch (request) {
1da177e4 2152 /* read the word at location addr in the USER area. */
1da177e4
LT
2153 case PTRACE_PEEKUSR: {
2154 unsigned long index, tmp;
2155
2156 ret = -EIO;
2157 /* convert to index and check */
e8a30302 2158#ifdef CONFIG_PPC32
9b05a69e 2159 index = addr >> 2;
e8a30302
SR
2160 if ((addr & 3) || (index > PT_FPSCR)
2161 || (child->thread.regs == NULL))
2162#else
9b05a69e 2163 index = addr >> 3;
e8a30302
SR
2164 if ((addr & 7) || (index > PT_FPSCR))
2165#endif
1da177e4
LT
2166 break;
2167
2168 CHECK_FULL_REGS(child->thread.regs);
2169 if (index < PT_FPR0) {
ee4a3916
AK
2170 ret = ptrace_get_reg(child, (int) index, &tmp);
2171 if (ret)
2172 break;
1da177e4 2173 } else {
e69b742a
BH
2174 unsigned int fpidx = index - PT_FPR0;
2175
e8a30302 2176 flush_fp_to_thread(child);
e69b742a 2177 if (fpidx < (PT_FPSCR - PT_FPR0))
36aa1b18 2178 memcpy(&tmp, &child->thread.TS_FPR(fpidx),
87fec051 2179 sizeof(long));
e69b742a 2180 else
de79f7b9 2181 tmp = child->thread.fp_state.fpscr;
1da177e4 2182 }
f68d2048 2183 ret = put_user(tmp, datalp);
1da177e4
LT
2184 break;
2185 }
2186
1da177e4
LT
2187 /* write the word at location addr in the USER area */
2188 case PTRACE_POKEUSR: {
2189 unsigned long index;
2190
2191 ret = -EIO;
2192 /* convert to index and check */
e8a30302 2193#ifdef CONFIG_PPC32
9b05a69e 2194 index = addr >> 2;
e8a30302
SR
2195 if ((addr & 3) || (index > PT_FPSCR)
2196 || (child->thread.regs == NULL))
2197#else
9b05a69e 2198 index = addr >> 3;
e8a30302
SR
2199 if ((addr & 7) || (index > PT_FPSCR))
2200#endif
1da177e4
LT
2201 break;
2202
2203 CHECK_FULL_REGS(child->thread.regs);
1da177e4 2204 if (index < PT_FPR0) {
865418d8 2205 ret = ptrace_put_reg(child, index, data);
1da177e4 2206 } else {
e69b742a
BH
2207 unsigned int fpidx = index - PT_FPR0;
2208
e8a30302 2209 flush_fp_to_thread(child);
e69b742a 2210 if (fpidx < (PT_FPSCR - PT_FPR0))
36aa1b18 2211 memcpy(&child->thread.TS_FPR(fpidx), &data,
87fec051 2212 sizeof(long));
e69b742a 2213 else
de79f7b9 2214 child->thread.fp_state.fpscr = data;
1da177e4
LT
2215 ret = 0;
2216 }
2217 break;
2218 }
2219
3162d92d
DK
2220 case PPC_PTRACE_GETHWDBGINFO: {
2221 struct ppc_debug_info dbginfo;
2222
2223 dbginfo.version = 1;
3bffb652
DK
2224#ifdef CONFIG_PPC_ADV_DEBUG_REGS
2225 dbginfo.num_instruction_bps = CONFIG_PPC_ADV_DEBUG_IACS;
2226 dbginfo.num_data_bps = CONFIG_PPC_ADV_DEBUG_DACS;
2227 dbginfo.num_condition_regs = CONFIG_PPC_ADV_DEBUG_DVCS;
2228 dbginfo.data_bp_alignment = 4;
2229 dbginfo.sizeof_condition = 4;
2230 dbginfo.features = PPC_DEBUG_FEATURE_INSN_BP_RANGE |
2231 PPC_DEBUG_FEATURE_INSN_BP_MASK;
2232#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2233 dbginfo.features |=
2234 PPC_DEBUG_FEATURE_DATA_BP_RANGE |
2235 PPC_DEBUG_FEATURE_DATA_BP_MASK;
2236#endif
2237#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
3162d92d
DK
2238 dbginfo.num_instruction_bps = 0;
2239 dbginfo.num_data_bps = 1;
2240 dbginfo.num_condition_regs = 0;
2241#ifdef CONFIG_PPC64
2242 dbginfo.data_bp_alignment = 8;
2243#else
2244 dbginfo.data_bp_alignment = 4;
2245#endif
2246 dbginfo.sizeof_condition = 0;
6c7a2856
P
2247#ifdef CONFIG_HAVE_HW_BREAKPOINT
2248 dbginfo.features = PPC_DEBUG_FEATURE_DATA_BP_RANGE;
517b7314
MN
2249 if (cpu_has_feature(CPU_FTR_DAWR))
2250 dbginfo.features |= PPC_DEBUG_FEATURE_DATA_BP_DAWR;
6c7a2856 2251#else
3162d92d 2252 dbginfo.features = 0;
6c7a2856 2253#endif /* CONFIG_HAVE_HW_BREAKPOINT */
3bffb652 2254#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
3162d92d 2255
f68d2048 2256 if (!access_ok(VERIFY_WRITE, datavp,
3162d92d
DK
2257 sizeof(struct ppc_debug_info)))
2258 return -EFAULT;
f68d2048
NK
2259 ret = __copy_to_user(datavp, &dbginfo,
2260 sizeof(struct ppc_debug_info)) ?
3162d92d
DK
2261 -EFAULT : 0;
2262 break;
2263 }
2264
2265 case PPC_PTRACE_SETHWDEBUG: {
2266 struct ppc_hw_breakpoint bp_info;
2267
f68d2048 2268 if (!access_ok(VERIFY_READ, datavp,
3162d92d
DK
2269 sizeof(struct ppc_hw_breakpoint)))
2270 return -EFAULT;
f68d2048 2271 ret = __copy_from_user(&bp_info, datavp,
3162d92d
DK
2272 sizeof(struct ppc_hw_breakpoint)) ?
2273 -EFAULT : 0;
2274 if (!ret)
2275 ret = ppc_set_hwdebug(child, &bp_info);
2276 break;
2277 }
2278
2279 case PPC_PTRACE_DELHWDEBUG: {
ec1b33dc 2280 ret = ppc_del_hwdebug(child, data);
3162d92d
DK
2281 break;
2282 }
2283
e8a30302 2284 case PTRACE_GET_DEBUGREG: {
9422de3e
MN
2285#ifndef CONFIG_PPC_ADV_DEBUG_REGS
2286 unsigned long dabr_fake;
2287#endif
e8a30302
SR
2288 ret = -EINVAL;
2289 /* We only support one DABR and no IABRS at the moment */
2290 if (addr > 0)
2291 break;
3bffb652 2292#ifdef CONFIG_PPC_ADV_DEBUG_REGS
51ae8d4a 2293 ret = put_user(child->thread.debug.dac1, datalp);
3bffb652 2294#else
9422de3e
MN
2295 dabr_fake = ((child->thread.hw_brk.address & (~HW_BRK_TYPE_DABR)) |
2296 (child->thread.hw_brk.type & HW_BRK_TYPE_DABR));
2297 ret = put_user(dabr_fake, datalp);
3bffb652 2298#endif
e8a30302
SR
2299 break;
2300 }
2301
2302 case PTRACE_SET_DEBUGREG:
2303 ret = ptrace_set_debugreg(child, addr, data);
2304 break;
e8a30302 2305
e17666ba
BH
2306#ifdef CONFIG_PPC64
2307 case PTRACE_GETREGS64:
2308#endif
c391cd00
RM
2309 case PTRACE_GETREGS: /* Get all pt_regs from the child. */
2310 return copy_regset_to_user(child, &user_ppc_native_view,
2311 REGSET_GPR,
2312 0, sizeof(struct pt_regs),
f68d2048 2313 datavp);
e8a30302 2314
e17666ba
BH
2315#ifdef CONFIG_PPC64
2316 case PTRACE_SETREGS64:
2317#endif
c391cd00
RM
2318 case PTRACE_SETREGS: /* Set all gp regs in the child. */
2319 return copy_regset_from_user(child, &user_ppc_native_view,
2320 REGSET_GPR,
2321 0, sizeof(struct pt_regs),
f68d2048 2322 datavp);
c391cd00
RM
2323
2324 case PTRACE_GETFPREGS: /* Get the child FPU state (FPR0...31 + FPSCR) */
2325 return copy_regset_to_user(child, &user_ppc_native_view,
2326 REGSET_FPR,
2327 0, sizeof(elf_fpregset_t),
f68d2048 2328 datavp);
c391cd00
RM
2329
2330 case PTRACE_SETFPREGS: /* Set the child FPU state (FPR0...31 + FPSCR) */
2331 return copy_regset_from_user(child, &user_ppc_native_view,
2332 REGSET_FPR,
2333 0, sizeof(elf_fpregset_t),
f68d2048 2334 datavp);
e8a30302 2335
1da177e4
LT
2336#ifdef CONFIG_ALTIVEC
2337 case PTRACE_GETVRREGS:
c391cd00
RM
2338 return copy_regset_to_user(child, &user_ppc_native_view,
2339 REGSET_VMX,
2340 0, (33 * sizeof(vector128) +
2341 sizeof(u32)),
f68d2048 2342 datavp);
1da177e4
LT
2343
2344 case PTRACE_SETVRREGS:
c391cd00
RM
2345 return copy_regset_from_user(child, &user_ppc_native_view,
2346 REGSET_VMX,
2347 0, (33 * sizeof(vector128) +
2348 sizeof(u32)),
f68d2048 2349 datavp);
1da177e4 2350#endif
ce48b210
MN
2351#ifdef CONFIG_VSX
2352 case PTRACE_GETVSRREGS:
2353 return copy_regset_to_user(child, &user_ppc_native_view,
2354 REGSET_VSX,
1ac42ef8 2355 0, 32 * sizeof(double),
f68d2048 2356 datavp);
ce48b210
MN
2357
2358 case PTRACE_SETVSRREGS:
2359 return copy_regset_from_user(child, &user_ppc_native_view,
2360 REGSET_VSX,
1ac42ef8 2361 0, 32 * sizeof(double),
f68d2048 2362 datavp);
ce48b210 2363#endif
1da177e4
LT
2364#ifdef CONFIG_SPE
2365 case PTRACE_GETEVRREGS:
2366 /* Get the child spe register state. */
c391cd00
RM
2367 return copy_regset_to_user(child, &user_ppc_native_view,
2368 REGSET_SPE, 0, 35 * sizeof(u32),
f68d2048 2369 datavp);
1da177e4
LT
2370
2371 case PTRACE_SETEVRREGS:
2372 /* Set the child spe register state. */
c391cd00
RM
2373 return copy_regset_from_user(child, &user_ppc_native_view,
2374 REGSET_SPE, 0, 35 * sizeof(u32),
f68d2048 2375 datavp);
1da177e4
LT
2376#endif
2377
2378 default:
2379 ret = ptrace_request(child, request, addr, data);
2380 break;
2381 }
1da177e4
LT
2382 return ret;
2383}
2384
2449acc5
ME
2385#ifdef CONFIG_SECCOMP
2386static int do_seccomp(struct pt_regs *regs)
2387{
2388 if (!test_thread_flag(TIF_SECCOMP))
2389 return 0;
2390
2391 /*
2392 * The ABI we present to seccomp tracers is that r3 contains
2393 * the syscall return value and orig_gpr3 contains the first
2394 * syscall parameter. This is different to the ptrace ABI where
2395 * both r3 and orig_gpr3 contain the first syscall parameter.
2396 */
2397 regs->gpr[3] = -ENOSYS;
2398
2399 /*
2400 * We use the __ version here because we have already checked
2401 * TIF_SECCOMP. If this fails, there is nothing left to do, we
2402 * have already loaded -ENOSYS into r3, or seccomp has put
2403 * something else in r3 (via SECCOMP_RET_ERRNO/TRACE).
2404 */
2f275de5 2405 if (__secure_computing(NULL))
2449acc5
ME
2406 return -1;
2407
2408 /*
2409 * The syscall was allowed by seccomp, restore the register
1addc57e 2410 * state to what audit expects.
2449acc5
ME
2411 * Note that we use orig_gpr3, which means a seccomp tracer can
2412 * modify the first syscall parameter (in orig_gpr3) and also
2413 * allow the syscall to proceed.
2414 */
2415 regs->gpr[3] = regs->orig_gpr3;
2416
2417 return 0;
2418}
2419#else
2420static inline int do_seccomp(struct pt_regs *regs) { return 0; }
2421#endif /* CONFIG_SECCOMP */
2422
d3837414
ME
2423/**
2424 * do_syscall_trace_enter() - Do syscall tracing on kernel entry.
2425 * @regs: the pt_regs of the task to trace (current)
2426 *
2427 * Performs various types of tracing on syscall entry. This includes seccomp,
2428 * ptrace, syscall tracepoints and audit.
2429 *
2430 * The pt_regs are potentially visible to userspace via ptrace, so their
2431 * contents is ABI.
2432 *
2433 * One or more of the tracers may modify the contents of pt_regs, in particular
2434 * to modify arguments or even the syscall number itself.
2435 *
2436 * It's also possible that a tracer can choose to reject the system call. In
2437 * that case this function will return an illegal syscall number, and will put
2438 * an appropriate return value in regs->r3.
2439 *
2440 * Return: the (possibly changed) syscall number.
4f72c427
RM
2441 */
2442long do_syscall_trace_enter(struct pt_regs *regs)
1da177e4 2443{
22ecbe8d
LZ
2444 user_exit();
2445
1addc57e
KC
2446 /*
2447 * The tracer may decide to abort the syscall, if so tracehook
2448 * will return !0. Note that the tracer may also just change
2449 * regs->gpr[0] to an invalid syscall number, that is handled
2450 * below on the exit path.
2451 */
2452 if (test_thread_flag(TIF_SYSCALL_TRACE) &&
2453 tracehook_report_syscall_entry(regs))
2454 goto skip;
2455
2456 /* Run seccomp after ptrace; allow it to set gpr[3]. */
2449acc5
ME
2457 if (do_seccomp(regs))
2458 return -1;
e8a30302 2459
1addc57e
KC
2460 /* Avoid trace and audit when syscall is invalid. */
2461 if (regs->gpr[0] >= NR_syscalls)
2462 goto skip;
ea9c102c 2463
02424d89
IM
2464 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
2465 trace_sys_enter(regs, regs->gpr[0]);
2466
cfcd1705 2467#ifdef CONFIG_PPC64
b05d8447 2468 if (!is_32bit_task())
91397401 2469 audit_syscall_entry(regs->gpr[0], regs->gpr[3], regs->gpr[4],
b05d8447
EP
2470 regs->gpr[5], regs->gpr[6]);
2471 else
e8a30302 2472#endif
91397401 2473 audit_syscall_entry(regs->gpr[0],
b05d8447
EP
2474 regs->gpr[3] & 0xffffffff,
2475 regs->gpr[4] & 0xffffffff,
2476 regs->gpr[5] & 0xffffffff,
2477 regs->gpr[6] & 0xffffffff);
4f72c427 2478
d3837414
ME
2479 /* Return the possibly modified but valid syscall number */
2480 return regs->gpr[0];
1addc57e
KC
2481
2482skip:
2483 /*
2484 * If we are aborting explicitly, or if the syscall number is
2485 * now invalid, set the return value to -ENOSYS.
2486 */
2487 regs->gpr[3] = -ENOSYS;
2488 return -1;
ea9c102c
DW
2489}
2490
2491void do_syscall_trace_leave(struct pt_regs *regs)
2492{
4f72c427
RM
2493 int step;
2494
d7e7528b 2495 audit_syscall_exit(regs);
ea9c102c 2496
02424d89
IM
2497 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
2498 trace_sys_exit(regs, regs->result);
2499
4f72c427
RM
2500 step = test_thread_flag(TIF_SINGLESTEP);
2501 if (step || test_thread_flag(TIF_SYSCALL_TRACE))
2502 tracehook_report_syscall_exit(regs, step);
22ecbe8d
LZ
2503
2504 user_enter();
ea9c102c 2505}
This page took 0.869292 seconds and 5 git commands to generate.