ppc64: Move init_boot_text call and conswitchp init into setup_arch
[deliverable/linux.git] / arch / powerpc / kernel / time.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Common time routines among all ppc machines.
3 *
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8 *
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
14 *
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17 *
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time. (for iSeries, we calibrate the timebase
21 * against the Titan chip's clock.)
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
25 *
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35#include <linux/config.h>
36#include <linux/errno.h>
37#include <linux/module.h>
38#include <linux/sched.h>
39#include <linux/kernel.h>
40#include <linux/param.h>
41#include <linux/string.h>
42#include <linux/mm.h>
43#include <linux/interrupt.h>
44#include <linux/timex.h>
45#include <linux/kernel_stat.h>
1da177e4
LT
46#include <linux/time.h>
47#include <linux/init.h>
48#include <linux/profile.h>
49#include <linux/cpu.h>
50#include <linux/security.h>
f2783c15
PM
51#include <linux/percpu.h>
52#include <linux/rtc.h>
1da177e4 53
1da177e4
LT
54#include <asm/io.h>
55#include <asm/processor.h>
56#include <asm/nvram.h>
57#include <asm/cache.h>
58#include <asm/machdep.h>
1da177e4
LT
59#include <asm/uaccess.h>
60#include <asm/time.h>
1da177e4 61#include <asm/prom.h>
f2783c15
PM
62#include <asm/irq.h>
63#include <asm/div64.h>
64#ifdef CONFIG_PPC64
1da177e4 65#include <asm/systemcfg.h>
1ababe11 66#include <asm/firmware.h>
f2783c15
PM
67#endif
68#ifdef CONFIG_PPC_ISERIES
69#include <asm/iSeries/ItLpQueue.h>
70#include <asm/iSeries/HvCallXm.h>
71#endif
1da177e4
LT
72
73u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
74
75EXPORT_SYMBOL(jiffies_64);
76
77/* keep track of when we need to update the rtc */
78time_t last_rtc_update;
79extern int piranha_simulator;
80#ifdef CONFIG_PPC_ISERIES
81unsigned long iSeries_recal_titan = 0;
82unsigned long iSeries_recal_tb = 0;
83static unsigned long first_settimeofday = 1;
84#endif
85
f2783c15
PM
86/* The decrementer counts down by 128 every 128ns on a 601. */
87#define DECREMENTER_COUNT_601 (1000000000 / HZ)
88
1da177e4
LT
89#define XSEC_PER_SEC (1024*1024)
90
f2783c15
PM
91#ifdef CONFIG_PPC64
92#define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
93#else
94/* compute ((xsec << 12) * max) >> 32 */
95#define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
96#endif
97
1da177e4
LT
98unsigned long tb_ticks_per_jiffy;
99unsigned long tb_ticks_per_usec = 100; /* sane default */
100EXPORT_SYMBOL(tb_ticks_per_usec);
101unsigned long tb_ticks_per_sec;
f2783c15
PM
102u64 tb_to_xs;
103unsigned tb_to_us;
1da177e4
LT
104unsigned long processor_freq;
105DEFINE_SPINLOCK(rtc_lock);
6ae3db11 106EXPORT_SYMBOL_GPL(rtc_lock);
1da177e4 107
f2783c15
PM
108u64 tb_to_ns_scale;
109unsigned tb_to_ns_shift;
1da177e4
LT
110
111struct gettimeofday_struct do_gtod;
112
113extern unsigned long wall_jiffies;
1da177e4
LT
114
115extern struct timezone sys_tz;
f2783c15 116static long timezone_offset;
1da177e4
LT
117
118void ppc_adjtimex(void);
119
120static unsigned adjusting_time = 0;
121
10f7e7c1
AB
122unsigned long ppc_proc_freq;
123unsigned long ppc_tb_freq;
124
f2783c15
PM
125#ifdef CONFIG_PPC32 /* XXX for now */
126#define boot_cpuid 0
127#endif
128
1da177e4
LT
129static __inline__ void timer_check_rtc(void)
130{
131 /*
132 * update the rtc when needed, this should be performed on the
133 * right fraction of a second. Half or full second ?
134 * Full second works on mk48t59 clocks, others need testing.
135 * Note that this update is basically only used through
136 * the adjtimex system calls. Setting the HW clock in
137 * any other way is a /dev/rtc and userland business.
138 * This is still wrong by -0.5/+1.5 jiffies because of the
139 * timer interrupt resolution and possible delay, but here we
140 * hit a quantization limit which can only be solved by higher
141 * resolution timers and decoupling time management from timer
142 * interrupts. This is also wrong on the clocks
143 * which require being written at the half second boundary.
144 * We should have an rtc call that only sets the minutes and
145 * seconds like on Intel to avoid problems with non UTC clocks.
146 */
b149ee22 147 if (ntp_synced() &&
f2783c15
PM
148 xtime.tv_sec - last_rtc_update >= 659 &&
149 abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ &&
150 jiffies - wall_jiffies == 1) {
151 struct rtc_time tm;
152 to_tm(xtime.tv_sec + 1 + timezone_offset, &tm);
153 tm.tm_year -= 1900;
154 tm.tm_mon -= 1;
155 if (ppc_md.set_rtc_time(&tm) == 0)
156 last_rtc_update = xtime.tv_sec + 1;
157 else
158 /* Try again one minute later */
159 last_rtc_update += 60;
1da177e4
LT
160 }
161}
162
163/*
164 * This version of gettimeofday has microsecond resolution.
165 */
f2783c15 166static inline void __do_gettimeofday(struct timeval *tv, u64 tb_val)
1da177e4 167{
f2783c15
PM
168 unsigned long sec, usec;
169 u64 tb_ticks, xsec;
170 struct gettimeofday_vars *temp_varp;
171 u64 temp_tb_to_xs, temp_stamp_xsec;
1da177e4
LT
172
173 /*
174 * These calculations are faster (gets rid of divides)
175 * if done in units of 1/2^20 rather than microseconds.
176 * The conversion to microseconds at the end is done
177 * without a divide (and in fact, without a multiply)
178 */
179 temp_varp = do_gtod.varp;
180 tb_ticks = tb_val - temp_varp->tb_orig_stamp;
181 temp_tb_to_xs = temp_varp->tb_to_xs;
182 temp_stamp_xsec = temp_varp->stamp_xsec;
f2783c15 183 xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs);
1da177e4 184 sec = xsec / XSEC_PER_SEC;
f2783c15
PM
185 usec = (unsigned long)xsec & (XSEC_PER_SEC - 1);
186 usec = SCALE_XSEC(usec, 1000000);
1da177e4
LT
187
188 tv->tv_sec = sec;
189 tv->tv_usec = usec;
190}
191
192void do_gettimeofday(struct timeval *tv)
193{
194 __do_gettimeofday(tv, get_tb());
195}
196
197EXPORT_SYMBOL(do_gettimeofday);
198
199/* Synchronize xtime with do_gettimeofday */
200
201static inline void timer_sync_xtime(unsigned long cur_tb)
202{
f2783c15
PM
203#ifdef CONFIG_PPC64
204 /* why do we do this? */
1da177e4
LT
205 struct timeval my_tv;
206
207 __do_gettimeofday(&my_tv, cur_tb);
208
209 if (xtime.tv_sec <= my_tv.tv_sec) {
210 xtime.tv_sec = my_tv.tv_sec;
211 xtime.tv_nsec = my_tv.tv_usec * 1000;
212 }
f2783c15 213#endif
1da177e4
LT
214}
215
216/*
f2783c15
PM
217 * There are two copies of tb_to_xs and stamp_xsec so that no
218 * lock is needed to access and use these values in
219 * do_gettimeofday. We alternate the copies and as long as a
220 * reasonable time elapses between changes, there will never
221 * be inconsistent values. ntpd has a minimum of one minute
222 * between updates.
1da177e4 223 */
f2783c15
PM
224static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
225 unsigned int new_tb_to_xs)
1da177e4 226{
1da177e4 227 unsigned temp_idx;
f2783c15 228 struct gettimeofday_vars *temp_varp;
1da177e4
LT
229
230 temp_idx = (do_gtod.var_idx == 0);
231 temp_varp = &do_gtod.vars[temp_idx];
232
f2783c15
PM
233 temp_varp->tb_to_xs = new_tb_to_xs;
234 temp_varp->tb_orig_stamp = new_tb_stamp;
1da177e4 235 temp_varp->stamp_xsec = new_stamp_xsec;
0d8d4d42 236 smp_mb();
1da177e4
LT
237 do_gtod.varp = temp_varp;
238 do_gtod.var_idx = temp_idx;
239
f2783c15
PM
240#ifdef CONFIG_PPC64
241 /*
242 * tb_update_count is used to allow the userspace gettimeofday code
243 * to assure itself that it sees a consistent view of the tb_to_xs and
244 * stamp_xsec variables. It reads the tb_update_count, then reads
245 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
246 * the two values of tb_update_count match and are even then the
247 * tb_to_xs and stamp_xsec values are consistent. If not, then it
248 * loops back and reads them again until this criteria is met.
249 */
1da177e4 250 ++(systemcfg->tb_update_count);
0d8d4d42 251 smp_wmb();
f2783c15 252 systemcfg->tb_orig_stamp = new_tb_stamp;
1da177e4 253 systemcfg->stamp_xsec = new_stamp_xsec;
f2783c15 254 systemcfg->tb_to_xs = new_tb_to_xs;
0d8d4d42 255 smp_wmb();
1da177e4 256 ++(systemcfg->tb_update_count);
f2783c15
PM
257#endif
258}
259
260/*
261 * When the timebase - tb_orig_stamp gets too big, we do a manipulation
262 * between tb_orig_stamp and stamp_xsec. The goal here is to keep the
263 * difference tb - tb_orig_stamp small enough to always fit inside a
264 * 32 bits number. This is a requirement of our fast 32 bits userland
265 * implementation in the vdso. If we "miss" a call to this function
266 * (interrupt latency, CPU locked in a spinlock, ...) and we end up
267 * with a too big difference, then the vdso will fallback to calling
268 * the syscall
269 */
270static __inline__ void timer_recalc_offset(u64 cur_tb)
271{
272 unsigned long offset;
273 u64 new_stamp_xsec;
274
275 offset = cur_tb - do_gtod.varp->tb_orig_stamp;
276 if ((offset & 0x80000000u) == 0)
277 return;
278 new_stamp_xsec = do_gtod.varp->stamp_xsec
279 + mulhdu(offset, do_gtod.varp->tb_to_xs);
280 update_gtod(cur_tb, new_stamp_xsec, do_gtod.varp->tb_to_xs);
1da177e4
LT
281}
282
283#ifdef CONFIG_SMP
284unsigned long profile_pc(struct pt_regs *regs)
285{
286 unsigned long pc = instruction_pointer(regs);
287
288 if (in_lock_functions(pc))
289 return regs->link;
290
291 return pc;
292}
293EXPORT_SYMBOL(profile_pc);
294#endif
295
296#ifdef CONFIG_PPC_ISERIES
297
298/*
299 * This function recalibrates the timebase based on the 49-bit time-of-day
300 * value in the Titan chip. The Titan is much more accurate than the value
301 * returned by the service processor for the timebase frequency.
302 */
303
304static void iSeries_tb_recal(void)
305{
306 struct div_result divres;
307 unsigned long titan, tb;
308 tb = get_tb();
309 titan = HvCallXm_loadTod();
310 if ( iSeries_recal_titan ) {
311 unsigned long tb_ticks = tb - iSeries_recal_tb;
312 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
313 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
314 unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
315 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
316 char sign = '+';
317 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
318 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
319
320 if ( tick_diff < 0 ) {
321 tick_diff = -tick_diff;
322 sign = '-';
323 }
324 if ( tick_diff ) {
325 if ( tick_diff < tb_ticks_per_jiffy/25 ) {
326 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
327 new_tb_ticks_per_jiffy, sign, tick_diff );
328 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
329 tb_ticks_per_sec = new_tb_ticks_per_sec;
330 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
331 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
332 tb_to_xs = divres.result_low;
333 do_gtod.varp->tb_to_xs = tb_to_xs;
334 systemcfg->tb_ticks_per_sec = tb_ticks_per_sec;
335 systemcfg->tb_to_xs = tb_to_xs;
336 }
337 else {
338 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
339 " new tb_ticks_per_jiffy = %lu\n"
340 " old tb_ticks_per_jiffy = %lu\n",
341 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
342 }
343 }
344 }
345 iSeries_recal_titan = titan;
346 iSeries_recal_tb = tb;
347}
348#endif
349
350/*
351 * For iSeries shared processors, we have to let the hypervisor
352 * set the hardware decrementer. We set a virtual decrementer
353 * in the lppaca and call the hypervisor if the virtual
354 * decrementer is less than the current value in the hardware
355 * decrementer. (almost always the new decrementer value will
356 * be greater than the current hardware decementer so the hypervisor
357 * call will not be needed)
358 */
359
f2783c15
PM
360u64 tb_last_stamp __cacheline_aligned_in_smp;
361
362/*
363 * Note that on ppc32 this only stores the bottom 32 bits of
364 * the timebase value, but that's enough to tell when a jiffy
365 * has passed.
366 */
367DEFINE_PER_CPU(unsigned long, last_jiffy);
1da177e4
LT
368
369/*
370 * timer_interrupt - gets called when the decrementer overflows,
371 * with interrupts disabled.
372 */
c7aeffc4 373void timer_interrupt(struct pt_regs * regs)
1da177e4
LT
374{
375 int next_dec;
f2783c15
PM
376 int cpu = smp_processor_id();
377 unsigned long ticks;
378
379#ifdef CONFIG_PPC32
380 if (atomic_read(&ppc_n_lost_interrupts) != 0)
381 do_IRQ(regs);
382#endif
1da177e4
LT
383
384 irq_enter();
385
1da177e4 386 profile_tick(CPU_PROFILING, regs);
1da177e4 387
f2783c15
PM
388#ifdef CONFIG_PPC_ISERIES
389 get_paca()->lppaca.int_dword.fields.decr_int = 0;
390#endif
391
392 while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu)))
393 >= tb_ticks_per_jiffy) {
394 /* Update last_jiffy */
395 per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy;
396 /* Handle RTCL overflow on 601 */
397 if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000)
398 per_cpu(last_jiffy, cpu) -= 1000000000;
1da177e4 399
1da177e4
LT
400 /*
401 * We cannot disable the decrementer, so in the period
402 * between this cpu's being marked offline in cpu_online_map
403 * and calling stop-self, it is taking timer interrupts.
404 * Avoid calling into the scheduler rebalancing code if this
405 * is the case.
406 */
407 if (!cpu_is_offline(cpu))
408 update_process_times(user_mode(regs));
f2783c15 409
1da177e4
LT
410 /*
411 * No need to check whether cpu is offline here; boot_cpuid
412 * should have been fixed up by now.
413 */
f2783c15
PM
414 if (cpu != boot_cpuid)
415 continue;
416
417 write_seqlock(&xtime_lock);
418 tb_last_stamp += tb_ticks_per_jiffy;
419 timer_recalc_offset(tb_last_stamp);
420 do_timer(regs);
421 timer_sync_xtime(tb_last_stamp);
422 timer_check_rtc();
423 write_sequnlock(&xtime_lock);
424 if (adjusting_time && (time_adjust == 0))
425 ppc_adjtimex();
1da177e4
LT
426 }
427
f2783c15 428 next_dec = tb_ticks_per_jiffy - ticks;
1da177e4
LT
429 set_dec(next_dec);
430
431#ifdef CONFIG_PPC_ISERIES
937b31b1 432 if (hvlpevent_is_pending())
74889802 433 process_hvlpevents(regs);
1da177e4
LT
434#endif
435
f2783c15 436#ifdef CONFIG_PPC64
8d15a3e5 437 /* collect purr register values often, for accurate calculations */
1ababe11 438 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1da177e4
LT
439 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
440 cu->current_tb = mfspr(SPRN_PURR);
441 }
f2783c15 442#endif
1da177e4
LT
443
444 irq_exit();
1da177e4
LT
445}
446
f2783c15
PM
447void wakeup_decrementer(void)
448{
449 int i;
450
451 set_dec(tb_ticks_per_jiffy);
452 /*
453 * We don't expect this to be called on a machine with a 601,
454 * so using get_tbl is fine.
455 */
456 tb_last_stamp = get_tb();
457 for_each_cpu(i)
458 per_cpu(last_jiffy, i) = tb_last_stamp;
459}
460
461#ifdef CONFIG_SMPxxx
462void __init smp_space_timers(unsigned int max_cpus)
463{
464 int i;
465 unsigned long offset = tb_ticks_per_jiffy / max_cpus;
466 unsigned long previous_tb = per_cpu(last_jiffy, boot_cpuid);
467
468 for_each_cpu(i) {
469 if (i != boot_cpuid) {
470 previous_tb += offset;
471 per_cpu(last_jiffy, i) = previous_tb;
472 }
473 }
474}
475#endif
476
1da177e4
LT
477/*
478 * Scheduler clock - returns current time in nanosec units.
479 *
480 * Note: mulhdu(a, b) (multiply high double unsigned) returns
481 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
482 * are 64-bit unsigned numbers.
483 */
484unsigned long long sched_clock(void)
485{
486 return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift;
487}
488
489int do_settimeofday(struct timespec *tv)
490{
491 time_t wtm_sec, new_sec = tv->tv_sec;
492 long wtm_nsec, new_nsec = tv->tv_nsec;
493 unsigned long flags;
1da177e4 494 long int tb_delta;
f2783c15 495 u64 new_xsec;
1da177e4
LT
496
497 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
498 return -EINVAL;
499
500 write_seqlock_irqsave(&xtime_lock, flags);
f2783c15
PM
501
502 /*
503 * Updating the RTC is not the job of this code. If the time is
504 * stepped under NTP, the RTC will be updated after STA_UNSYNC
505 * is cleared. Tools like clock/hwclock either copy the RTC
1da177e4
LT
506 * to the system time, in which case there is no point in writing
507 * to the RTC again, or write to the RTC but then they don't call
508 * settimeofday to perform this operation.
509 */
510#ifdef CONFIG_PPC_ISERIES
f2783c15 511 if (first_settimeofday) {
1da177e4
LT
512 iSeries_tb_recal();
513 first_settimeofday = 0;
514 }
515#endif
516 tb_delta = tb_ticks_since(tb_last_stamp);
517 tb_delta += (jiffies - wall_jiffies) * tb_ticks_per_jiffy;
518
f2783c15 519 new_nsec -= 1000 * mulhwu(tb_to_us, tb_delta);
1da177e4
LT
520
521 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
522 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);
523
524 set_normalized_timespec(&xtime, new_sec, new_nsec);
525 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
526
527 /* In case of a large backwards jump in time with NTP, we want the
528 * clock to be updated as soon as the PLL is again in lock.
529 */
530 last_rtc_update = new_sec - 658;
531
b149ee22 532 ntp_clear();
1da177e4 533
f2783c15
PM
534 new_xsec = (u64)new_nsec * XSEC_PER_SEC;
535 do_div(new_xsec, NSEC_PER_SEC);
536 new_xsec += (u64)new_sec * XSEC_PER_SEC;
537 update_gtod(tb_last_stamp, new_xsec, do_gtod.varp->tb_to_xs);
1da177e4 538
f2783c15 539#ifdef CONFIG_PPC64
1da177e4
LT
540 systemcfg->tz_minuteswest = sys_tz.tz_minuteswest;
541 systemcfg->tz_dsttime = sys_tz.tz_dsttime;
f2783c15 542#endif
1da177e4
LT
543
544 write_sequnlock_irqrestore(&xtime_lock, flags);
545 clock_was_set();
546 return 0;
547}
548
549EXPORT_SYMBOL(do_settimeofday);
550
95b29380 551#if defined(CONFIG_PPC_PSERIES) || defined(CONFIG_PPC_MAPLE) || defined(CONFIG_PPC_BPA) || defined(CONFIG_PPC_ISERIES)
10f7e7c1
AB
552void __init generic_calibrate_decr(void)
553{
554 struct device_node *cpu;
555 struct div_result divres;
556 unsigned int *fp;
557 int node_found;
558
559 /*
560 * The cpu node should have a timebase-frequency property
561 * to tell us the rate at which the decrementer counts.
562 */
563 cpu = of_find_node_by_type(NULL, "cpu");
564
565 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
566 node_found = 0;
567 if (cpu != 0) {
568 fp = (unsigned int *)get_property(cpu, "timebase-frequency",
569 NULL);
570 if (fp != 0) {
571 node_found = 1;
572 ppc_tb_freq = *fp;
573 }
574 }
575 if (!node_found)
576 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
577 "(not found)\n");
578
579 ppc_proc_freq = DEFAULT_PROC_FREQ;
580 node_found = 0;
581 if (cpu != 0) {
582 fp = (unsigned int *)get_property(cpu, "clock-frequency",
583 NULL);
584 if (fp != 0) {
585 node_found = 1;
586 ppc_proc_freq = *fp;
587 }
588 }
589 if (!node_found)
590 printk(KERN_ERR "WARNING: Estimating processor frequency "
591 "(not found)\n");
592
593 of_node_put(cpu);
594
595 printk(KERN_INFO "time_init: decrementer frequency = %lu.%.6lu MHz\n",
596 ppc_tb_freq/1000000, ppc_tb_freq%1000000);
597 printk(KERN_INFO "time_init: processor frequency = %lu.%.6lu MHz\n",
598 ppc_proc_freq/1000000, ppc_proc_freq%1000000);
599
600 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
601 tb_ticks_per_sec = tb_ticks_per_jiffy * HZ;
602 tb_ticks_per_usec = ppc_tb_freq / 1000000;
603 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
604 div128_by_32(1024*1024, 0, tb_ticks_per_sec, &divres);
605 tb_to_xs = divres.result_low;
10f7e7c1
AB
606}
607#endif
608
f2783c15
PM
609unsigned long get_boot_time(void)
610{
611 struct rtc_time tm;
612
613 if (ppc_md.get_boot_time)
614 return ppc_md.get_boot_time();
615 if (!ppc_md.get_rtc_time)
616 return 0;
617 ppc_md.get_rtc_time(&tm);
618 return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
619 tm.tm_hour, tm.tm_min, tm.tm_sec);
620}
621
622/* This function is only called on the boot processor */
1da177e4
LT
623void __init time_init(void)
624{
1da177e4 625 unsigned long flags;
f2783c15 626 unsigned long tm = 0;
1da177e4 627 struct div_result res;
f2783c15
PM
628 u64 scale;
629 unsigned shift;
630
631 if (ppc_md.time_init != NULL)
632 timezone_offset = ppc_md.time_init();
1da177e4
LT
633
634 ppc_md.calibrate_decr();
635
f2783c15
PM
636#ifdef CONFIG_PPC64
637 get_paca()->default_decr = tb_ticks_per_jiffy;
638#endif
639
1da177e4
LT
640 /*
641 * Compute scale factor for sched_clock.
642 * The calibrate_decr() function has set tb_ticks_per_sec,
643 * which is the timebase frequency.
644 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
645 * the 128-bit result as a 64.64 fixed-point number.
646 * We then shift that number right until it is less than 1.0,
647 * giving us the scale factor and shift count to use in
648 * sched_clock().
649 */
650 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
651 scale = res.result_low;
652 for (shift = 0; res.result_high != 0; ++shift) {
653 scale = (scale >> 1) | (res.result_high << 63);
654 res.result_high >>= 1;
655 }
656 tb_to_ns_scale = scale;
657 tb_to_ns_shift = shift;
658
659#ifdef CONFIG_PPC_ISERIES
660 if (!piranha_simulator)
661#endif
f2783c15 662 tm = get_boot_time();
1da177e4
LT
663
664 write_seqlock_irqsave(&xtime_lock, flags);
f2783c15
PM
665 xtime.tv_sec = tm;
666 xtime.tv_nsec = 0;
1da177e4
LT
667 tb_last_stamp = get_tb();
668 do_gtod.varp = &do_gtod.vars[0];
669 do_gtod.var_idx = 0;
670 do_gtod.varp->tb_orig_stamp = tb_last_stamp;
f2783c15
PM
671 __get_cpu_var(last_jiffy) = tb_last_stamp;
672 do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
1da177e4
LT
673 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
674 do_gtod.varp->tb_to_xs = tb_to_xs;
675 do_gtod.tb_to_us = tb_to_us;
f2783c15 676#ifdef CONFIG_PPC64
1da177e4
LT
677 systemcfg->tb_orig_stamp = tb_last_stamp;
678 systemcfg->tb_update_count = 0;
679 systemcfg->tb_ticks_per_sec = tb_ticks_per_sec;
680 systemcfg->stamp_xsec = xtime.tv_sec * XSEC_PER_SEC;
681 systemcfg->tb_to_xs = tb_to_xs;
f2783c15 682#endif
1da177e4
LT
683
684 time_freq = 0;
685
f2783c15
PM
686 /* If platform provided a timezone (pmac), we correct the time */
687 if (timezone_offset) {
688 sys_tz.tz_minuteswest = -timezone_offset / 60;
689 sys_tz.tz_dsttime = 0;
690 xtime.tv_sec -= timezone_offset;
691 }
692
1da177e4
LT
693 last_rtc_update = xtime.tv_sec;
694 set_normalized_timespec(&wall_to_monotonic,
695 -xtime.tv_sec, -xtime.tv_nsec);
696 write_sequnlock_irqrestore(&xtime_lock, flags);
697
698 /* Not exact, but the timer interrupt takes care of this */
699 set_dec(tb_ticks_per_jiffy);
700}
701
702/*
703 * After adjtimex is called, adjust the conversion of tb ticks
704 * to microseconds to keep do_gettimeofday synchronized
705 * with ntpd.
706 *
707 * Use the time_adjust, time_freq and time_offset computed by adjtimex to
708 * adjust the frequency.
709 */
710
711/* #define DEBUG_PPC_ADJTIMEX 1 */
712
713void ppc_adjtimex(void)
714{
f2783c15
PM
715#ifdef CONFIG_PPC64
716 unsigned long den, new_tb_ticks_per_sec, tb_ticks, old_xsec,
717 new_tb_to_xs, new_xsec, new_stamp_xsec;
1da177e4
LT
718 unsigned long tb_ticks_per_sec_delta;
719 long delta_freq, ltemp;
720 struct div_result divres;
721 unsigned long flags;
1da177e4
LT
722 long singleshot_ppm = 0;
723
f2783c15
PM
724 /*
725 * Compute parts per million frequency adjustment to
726 * accomplish the time adjustment implied by time_offset to be
727 * applied over the elapsed time indicated by time_constant.
728 * Use SHIFT_USEC to get it into the same units as
729 * time_freq.
730 */
1da177e4
LT
731 if ( time_offset < 0 ) {
732 ltemp = -time_offset;
733 ltemp <<= SHIFT_USEC - SHIFT_UPDATE;
734 ltemp >>= SHIFT_KG + time_constant;
735 ltemp = -ltemp;
f2783c15 736 } else {
1da177e4
LT
737 ltemp = time_offset;
738 ltemp <<= SHIFT_USEC - SHIFT_UPDATE;
739 ltemp >>= SHIFT_KG + time_constant;
740 }
741
742 /* If there is a single shot time adjustment in progress */
743 if ( time_adjust ) {
744#ifdef DEBUG_PPC_ADJTIMEX
745 printk("ppc_adjtimex: ");
746 if ( adjusting_time == 0 )
747 printk("starting ");
748 printk("single shot time_adjust = %ld\n", time_adjust);
749#endif
750
751 adjusting_time = 1;
752
f2783c15
PM
753 /*
754 * Compute parts per million frequency adjustment
755 * to match time_adjust
756 */
1da177e4
LT
757 singleshot_ppm = tickadj * HZ;
758 /*
759 * The adjustment should be tickadj*HZ to match the code in
760 * linux/kernel/timer.c, but experiments show that this is too
761 * large. 3/4 of tickadj*HZ seems about right
762 */
763 singleshot_ppm -= singleshot_ppm / 4;
f2783c15 764 /* Use SHIFT_USEC to get it into the same units as time_freq */
1da177e4
LT
765 singleshot_ppm <<= SHIFT_USEC;
766 if ( time_adjust < 0 )
767 singleshot_ppm = -singleshot_ppm;
768 }
769 else {
770#ifdef DEBUG_PPC_ADJTIMEX
771 if ( adjusting_time )
772 printk("ppc_adjtimex: ending single shot time_adjust\n");
773#endif
774 adjusting_time = 0;
775 }
776
777 /* Add up all of the frequency adjustments */
778 delta_freq = time_freq + ltemp + singleshot_ppm;
779
f2783c15
PM
780 /*
781 * Compute a new value for tb_ticks_per_sec based on
782 * the frequency adjustment
783 */
1da177e4
LT
784 den = 1000000 * (1 << (SHIFT_USEC - 8));
785 if ( delta_freq < 0 ) {
786 tb_ticks_per_sec_delta = ( tb_ticks_per_sec * ( (-delta_freq) >> (SHIFT_USEC - 8))) / den;
787 new_tb_ticks_per_sec = tb_ticks_per_sec + tb_ticks_per_sec_delta;
788 }
789 else {
790 tb_ticks_per_sec_delta = ( tb_ticks_per_sec * ( delta_freq >> (SHIFT_USEC - 8))) / den;
791 new_tb_ticks_per_sec = tb_ticks_per_sec - tb_ticks_per_sec_delta;
792 }
793
794#ifdef DEBUG_PPC_ADJTIMEX
795 printk("ppc_adjtimex: ltemp = %ld, time_freq = %ld, singleshot_ppm = %ld\n", ltemp, time_freq, singleshot_ppm);
796 printk("ppc_adjtimex: tb_ticks_per_sec - base = %ld new = %ld\n", tb_ticks_per_sec, new_tb_ticks_per_sec);
797#endif
f2783c15
PM
798
799 /*
800 * Compute a new value of tb_to_xs (used to convert tb to
801 * microseconds) and a new value of stamp_xsec which is the
802 * time (in 1/2^20 second units) corresponding to
803 * tb_orig_stamp. This new value of stamp_xsec compensates
804 * for the change in frequency (implied by the new tb_to_xs)
805 * which guarantees that the current time remains the same.
806 */
1da177e4
LT
807 write_seqlock_irqsave( &xtime_lock, flags );
808 tb_ticks = get_tb() - do_gtod.varp->tb_orig_stamp;
f2783c15 809 div128_by_32(1024*1024, 0, new_tb_ticks_per_sec, &divres);
1da177e4 810 new_tb_to_xs = divres.result_low;
f2783c15 811 new_xsec = mulhdu(tb_ticks, new_tb_to_xs);
1da177e4 812
f2783c15 813 old_xsec = mulhdu(tb_ticks, do_gtod.varp->tb_to_xs);
1da177e4
LT
814 new_stamp_xsec = do_gtod.varp->stamp_xsec + old_xsec - new_xsec;
815
f2783c15 816 update_gtod(do_gtod.varp->tb_orig_stamp, new_stamp_xsec, new_tb_to_xs);
1da177e4
LT
817
818 write_sequnlock_irqrestore( &xtime_lock, flags );
f2783c15 819#endif /* CONFIG_PPC64 */
1da177e4
LT
820}
821
822
1da177e4
LT
823#define FEBRUARY 2
824#define STARTOFTIME 1970
825#define SECDAY 86400L
826#define SECYR (SECDAY * 365)
f2783c15
PM
827#define leapyear(year) ((year) % 4 == 0 && \
828 ((year) % 100 != 0 || (year) % 400 == 0))
1da177e4
LT
829#define days_in_year(a) (leapyear(a) ? 366 : 365)
830#define days_in_month(a) (month_days[(a) - 1])
831
832static int month_days[12] = {
833 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
834};
835
836/*
837 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
838 */
839void GregorianDay(struct rtc_time * tm)
840{
841 int leapsToDate;
842 int lastYear;
843 int day;
844 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
845
f2783c15 846 lastYear = tm->tm_year - 1;
1da177e4
LT
847
848 /*
849 * Number of leap corrections to apply up to end of last year
850 */
f2783c15 851 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1da177e4
LT
852
853 /*
854 * This year is a leap year if it is divisible by 4 except when it is
855 * divisible by 100 unless it is divisible by 400
856 *
f2783c15 857 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1da177e4 858 */
f2783c15 859 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1da177e4
LT
860
861 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
862 tm->tm_mday;
863
f2783c15 864 tm->tm_wday = day % 7;
1da177e4
LT
865}
866
867void to_tm(int tim, struct rtc_time * tm)
868{
869 register int i;
870 register long hms, day;
871
872 day = tim / SECDAY;
873 hms = tim % SECDAY;
874
875 /* Hours, minutes, seconds are easy */
876 tm->tm_hour = hms / 3600;
877 tm->tm_min = (hms % 3600) / 60;
878 tm->tm_sec = (hms % 3600) % 60;
879
880 /* Number of years in days */
881 for (i = STARTOFTIME; day >= days_in_year(i); i++)
882 day -= days_in_year(i);
883 tm->tm_year = i;
884
885 /* Number of months in days left */
886 if (leapyear(tm->tm_year))
887 days_in_month(FEBRUARY) = 29;
888 for (i = 1; day >= days_in_month(i); i++)
889 day -= days_in_month(i);
890 days_in_month(FEBRUARY) = 28;
891 tm->tm_mon = i;
892
893 /* Days are what is left over (+1) from all that. */
894 tm->tm_mday = day + 1;
895
896 /*
897 * Determine the day of week
898 */
899 GregorianDay(tm);
900}
901
902/* Auxiliary function to compute scaling factors */
903/* Actually the choice of a timebase running at 1/4 the of the bus
904 * frequency giving resolution of a few tens of nanoseconds is quite nice.
905 * It makes this computation very precise (27-28 bits typically) which
906 * is optimistic considering the stability of most processor clock
907 * oscillators and the precision with which the timebase frequency
908 * is measured but does not harm.
909 */
f2783c15
PM
910unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
911{
1da177e4
LT
912 unsigned mlt=0, tmp, err;
913 /* No concern for performance, it's done once: use a stupid
914 * but safe and compact method to find the multiplier.
915 */
916
917 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
f2783c15
PM
918 if (mulhwu(inscale, mlt|tmp) < outscale)
919 mlt |= tmp;
1da177e4
LT
920 }
921
922 /* We might still be off by 1 for the best approximation.
923 * A side effect of this is that if outscale is too large
924 * the returned value will be zero.
925 * Many corner cases have been checked and seem to work,
926 * some might have been forgotten in the test however.
927 */
928
f2783c15
PM
929 err = inscale * (mlt+1);
930 if (err <= inscale/2)
931 mlt++;
1da177e4 932 return mlt;
f2783c15 933}
1da177e4
LT
934
935/*
936 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
937 * result.
938 */
f2783c15
PM
939void div128_by_32(u64 dividend_high, u64 dividend_low,
940 unsigned divisor, struct div_result *dr)
1da177e4 941{
f2783c15
PM
942 unsigned long a, b, c, d;
943 unsigned long w, x, y, z;
944 u64 ra, rb, rc;
1da177e4
LT
945
946 a = dividend_high >> 32;
947 b = dividend_high & 0xffffffff;
948 c = dividend_low >> 32;
949 d = dividend_low & 0xffffffff;
950
f2783c15
PM
951 w = a / divisor;
952 ra = ((u64)(a - (w * divisor)) << 32) + b;
953
954#ifdef CONFIG_PPC64
955 x = ra / divisor;
956 rb = ((ra - (x * divisor)) << 32) + c;
1da177e4 957
f2783c15
PM
958 y = rb / divisor;
959 rc = ((rb - (y * divisor)) << 32) + d;
1da177e4 960
f2783c15
PM
961 z = rc / divisor;
962#else
963 /* for 32-bit, use do_div from div64.h */
964 rb = ((u64) do_div(ra, divisor) << 32) + c;
965 x = ra;
1da177e4 966
f2783c15
PM
967 rc = ((u64) do_div(rb, divisor) << 32) + d;
968 y = rb;
969
970 do_div(rc, divisor);
971 z = rc;
972#endif
1da177e4 973
f2783c15
PM
974 dr->result_high = ((u64)w << 32) + x;
975 dr->result_low = ((u64)y << 32) + z;
1da177e4
LT
976
977}
978
This page took 0.122121 seconds and 5 git commands to generate.