powerpc: Cleanup xtime usage
[deliverable/linux.git] / arch / powerpc / kernel / time.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Common time routines among all ppc machines.
3 *
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8 *
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
14 *
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17 *
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time. (for iSeries, we calibrate the timebase
21 * against the Titan chip's clock.)
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
25 *
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
1da177e4
LT
35#include <linux/errno.h>
36#include <linux/module.h>
37#include <linux/sched.h>
38#include <linux/kernel.h>
39#include <linux/param.h>
40#include <linux/string.h>
41#include <linux/mm.h>
42#include <linux/interrupt.h>
43#include <linux/timex.h>
44#include <linux/kernel_stat.h>
1da177e4
LT
45#include <linux/time.h>
46#include <linux/init.h>
47#include <linux/profile.h>
48#include <linux/cpu.h>
49#include <linux/security.h>
f2783c15
PM
50#include <linux/percpu.h>
51#include <linux/rtc.h>
092b8f34 52#include <linux/jiffies.h>
c6622f63 53#include <linux/posix-timers.h>
7d12e780 54#include <linux/irq.h>
177996e6 55#include <linux/delay.h>
cdd6c482 56#include <linux/perf_event.h>
6795b85c 57#include <asm/trace.h>
1da177e4 58
1da177e4
LT
59#include <asm/io.h>
60#include <asm/processor.h>
61#include <asm/nvram.h>
62#include <asm/cache.h>
63#include <asm/machdep.h>
1da177e4
LT
64#include <asm/uaccess.h>
65#include <asm/time.h>
1da177e4 66#include <asm/prom.h>
f2783c15
PM
67#include <asm/irq.h>
68#include <asm/div64.h>
2249ca9d 69#include <asm/smp.h>
a7f290da 70#include <asm/vdso_datapage.h>
1ababe11 71#include <asm/firmware.h>
06b8e878 72#include <asm/cputime.h>
f2783c15 73#ifdef CONFIG_PPC_ISERIES
8875ccfb 74#include <asm/iseries/it_lp_queue.h>
8021b8a7 75#include <asm/iseries/hv_call_xm.h>
f2783c15 76#endif
1da177e4 77
4a4cfe38
TB
78/* powerpc clocksource/clockevent code */
79
d831d0b8 80#include <linux/clockchips.h>
4a4cfe38
TB
81#include <linux/clocksource.h>
82
8e19608e 83static cycle_t rtc_read(struct clocksource *);
4a4cfe38
TB
84static struct clocksource clocksource_rtc = {
85 .name = "rtc",
86 .rating = 400,
87 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
88 .mask = CLOCKSOURCE_MASK(64),
89 .shift = 22,
90 .mult = 0, /* To be filled in */
91 .read = rtc_read,
92};
93
8e19608e 94static cycle_t timebase_read(struct clocksource *);
4a4cfe38
TB
95static struct clocksource clocksource_timebase = {
96 .name = "timebase",
97 .rating = 400,
98 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
99 .mask = CLOCKSOURCE_MASK(64),
100 .shift = 22,
101 .mult = 0, /* To be filled in */
102 .read = timebase_read,
103};
104
d831d0b8
TB
105#define DECREMENTER_MAX 0x7fffffff
106
107static int decrementer_set_next_event(unsigned long evt,
108 struct clock_event_device *dev);
109static void decrementer_set_mode(enum clock_event_mode mode,
110 struct clock_event_device *dev);
111
112static struct clock_event_device decrementer_clockevent = {
113 .name = "decrementer",
114 .rating = 200,
8d165db1 115 .shift = 0, /* To be filled in */
d831d0b8
TB
116 .mult = 0, /* To be filled in */
117 .irq = 0,
118 .set_next_event = decrementer_set_next_event,
119 .set_mode = decrementer_set_mode,
120 .features = CLOCK_EVT_FEAT_ONESHOT,
121};
122
6e6b44e8
MM
123struct decrementer_clock {
124 struct clock_event_device event;
125 u64 next_tb;
126};
127
128static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
d831d0b8 129
1da177e4 130#ifdef CONFIG_PPC_ISERIES
71712b45
TB
131static unsigned long __initdata iSeries_recal_titan;
132static signed long __initdata iSeries_recal_tb;
4a4cfe38
TB
133
134/* Forward declaration is only needed for iSereis compiles */
1c21a293 135static void __init clocksource_init(void);
1da177e4
LT
136#endif
137
138#define XSEC_PER_SEC (1024*1024)
139
f2783c15
PM
140#ifdef CONFIG_PPC64
141#define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
142#else
143/* compute ((xsec << 12) * max) >> 32 */
144#define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
145#endif
146
1da177e4
LT
147unsigned long tb_ticks_per_jiffy;
148unsigned long tb_ticks_per_usec = 100; /* sane default */
149EXPORT_SYMBOL(tb_ticks_per_usec);
150unsigned long tb_ticks_per_sec;
2cf82c02 151EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
f2783c15
PM
152u64 tb_to_xs;
153unsigned tb_to_us;
092b8f34 154
7fc5c784 155#define TICKLEN_SCALE NTP_SCALE_SHIFT
1c21a293
ME
156static u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
157static u64 ticklen_to_xs; /* 0.64 fraction */
092b8f34
PM
158
159/* If last_tick_len corresponds to about 1/HZ seconds, then
160 last_tick_len << TICKLEN_SHIFT will be about 2^63. */
161#define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
162
1da177e4 163DEFINE_SPINLOCK(rtc_lock);
6ae3db11 164EXPORT_SYMBOL_GPL(rtc_lock);
1da177e4 165
fc9069fe
TB
166static u64 tb_to_ns_scale __read_mostly;
167static unsigned tb_to_ns_shift __read_mostly;
168static unsigned long boot_tb __read_mostly;
1da177e4 169
1da177e4 170extern struct timezone sys_tz;
f2783c15 171static long timezone_offset;
1da177e4 172
10f7e7c1 173unsigned long ppc_proc_freq;
1474855d 174EXPORT_SYMBOL(ppc_proc_freq);
10f7e7c1
AB
175unsigned long ppc_tb_freq;
176
eb36c288
PM
177static u64 tb_last_jiffy __cacheline_aligned_in_smp;
178static DEFINE_PER_CPU(u64, last_jiffy);
96c44507 179
c6622f63
PM
180#ifdef CONFIG_VIRT_CPU_ACCOUNTING
181/*
182 * Factors for converting from cputime_t (timebase ticks) to
183 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
184 * These are all stored as 0.64 fixed-point binary fractions.
185 */
186u64 __cputime_jiffies_factor;
2cf82c02 187EXPORT_SYMBOL(__cputime_jiffies_factor);
c6622f63 188u64 __cputime_msec_factor;
2cf82c02 189EXPORT_SYMBOL(__cputime_msec_factor);
c6622f63 190u64 __cputime_sec_factor;
2cf82c02 191EXPORT_SYMBOL(__cputime_sec_factor);
c6622f63 192u64 __cputime_clockt_factor;
2cf82c02 193EXPORT_SYMBOL(__cputime_clockt_factor);
06b8e878
MN
194DEFINE_PER_CPU(unsigned long, cputime_last_delta);
195DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
c6622f63 196
a42548a1
SG
197cputime_t cputime_one_jiffy;
198
c6622f63
PM
199static void calc_cputime_factors(void)
200{
201 struct div_result res;
202
203 div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
204 __cputime_jiffies_factor = res.result_low;
205 div128_by_32(1000, 0, tb_ticks_per_sec, &res);
206 __cputime_msec_factor = res.result_low;
207 div128_by_32(1, 0, tb_ticks_per_sec, &res);
208 __cputime_sec_factor = res.result_low;
209 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
210 __cputime_clockt_factor = res.result_low;
211}
212
213/*
214 * Read the PURR on systems that have it, otherwise the timebase.
215 */
216static u64 read_purr(void)
217{
218 if (cpu_has_feature(CPU_FTR_PURR))
219 return mfspr(SPRN_PURR);
220 return mftb();
221}
222
4603ac18
MN
223/*
224 * Read the SPURR on systems that have it, otherwise the purr
225 */
226static u64 read_spurr(u64 purr)
227{
53024fe2
MM
228 /*
229 * cpus without PURR won't have a SPURR
230 * We already know the former when we use this, so tell gcc
231 */
232 if (cpu_has_feature(CPU_FTR_PURR) && cpu_has_feature(CPU_FTR_SPURR))
4603ac18
MN
233 return mfspr(SPRN_SPURR);
234 return purr;
235}
236
c6622f63
PM
237/*
238 * Account time for a transition between system, hard irq
239 * or soft irq state.
240 */
241void account_system_vtime(struct task_struct *tsk)
242{
53024fe2 243 u64 now, nowscaled, delta, deltascaled, sys_time;
c6622f63
PM
244 unsigned long flags;
245
246 local_irq_save(flags);
247 now = read_purr();
4603ac18 248 nowscaled = read_spurr(now);
53024fe2 249 delta = now - get_paca()->startpurr;
4603ac18 250 deltascaled = nowscaled - get_paca()->startspurr;
53024fe2 251 get_paca()->startpurr = now;
4603ac18 252 get_paca()->startspurr = nowscaled;
c6622f63 253 if (!in_interrupt()) {
4603ac18
MN
254 /* deltascaled includes both user and system time.
255 * Hence scale it based on the purr ratio to estimate
256 * the system time */
53024fe2 257 sys_time = get_paca()->system_time;
2b46b567 258 if (get_paca()->user_time)
53024fe2
MM
259 deltascaled = deltascaled * sys_time /
260 (sys_time + get_paca()->user_time);
261 delta += sys_time;
c6622f63
PM
262 get_paca()->system_time = 0;
263 }
79741dd3
MS
264 if (in_irq() || idle_task(smp_processor_id()) != tsk)
265 account_system_time(tsk, 0, delta, deltascaled);
266 else
267 account_idle_time(delta);
61c03ddb
AB
268 __get_cpu_var(cputime_last_delta) = delta;
269 __get_cpu_var(cputime_scaled_last_delta) = deltascaled;
c6622f63
PM
270 local_irq_restore(flags);
271}
4ab79aa8 272EXPORT_SYMBOL_GPL(account_system_vtime);
c6622f63
PM
273
274/*
275 * Transfer the user and system times accumulated in the paca
276 * by the exception entry and exit code to the generic process
277 * user and system time records.
278 * Must be called with interrupts disabled.
279 */
fa13a5a1 280void account_process_tick(struct task_struct *tsk, int user_tick)
c6622f63 281{
4603ac18 282 cputime_t utime, utimescaled;
c6622f63
PM
283
284 utime = get_paca()->user_time;
285 get_paca()->user_time = 0;
06b8e878 286 utimescaled = cputime_to_scaled(utime);
457533a7 287 account_user_time(tsk, utime, utimescaled);
c6622f63
PM
288}
289
c6622f63
PM
290/*
291 * Stuff for accounting stolen time.
292 */
293struct cpu_purr_data {
294 int initialized; /* thread is running */
c6622f63
PM
295 u64 tb; /* last TB value read */
296 u64 purr; /* last PURR value read */
4603ac18 297 u64 spurr; /* last SPURR value read */
c6622f63
PM
298};
299
df211c8a
NL
300/*
301 * Each entry in the cpu_purr_data array is manipulated only by its
302 * "owner" cpu -- usually in the timer interrupt but also occasionally
303 * in process context for cpu online. As long as cpus do not touch
304 * each others' cpu_purr_data, disabling local interrupts is
305 * sufficient to serialize accesses.
306 */
c6622f63
PM
307static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
308
309static void snapshot_tb_and_purr(void *data)
310{
df211c8a 311 unsigned long flags;
c6622f63
PM
312 struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
313
df211c8a 314 local_irq_save(flags);
c27da339 315 p->tb = get_tb_or_rtc();
cbcdb93d 316 p->purr = mfspr(SPRN_PURR);
c6622f63
PM
317 wmb();
318 p->initialized = 1;
df211c8a 319 local_irq_restore(flags);
c6622f63
PM
320}
321
322/*
323 * Called during boot when all cpus have come up.
324 */
325void snapshot_timebases(void)
326{
c6622f63
PM
327 if (!cpu_has_feature(CPU_FTR_PURR))
328 return;
15c8b6c1 329 on_each_cpu(snapshot_tb_and_purr, NULL, 1);
c6622f63
PM
330}
331
df211c8a
NL
332/*
333 * Must be called with interrupts disabled.
334 */
c6622f63
PM
335void calculate_steal_time(void)
336{
cbcdb93d 337 u64 tb, purr;
c6622f63 338 s64 stolen;
cbcdb93d 339 struct cpu_purr_data *pme;
c6622f63 340
8b5621f1 341 pme = &__get_cpu_var(cpu_purr_data);
c6622f63 342 if (!pme->initialized)
db3801a8 343 return; /* !CPU_FTR_PURR or early in early boot */
c6622f63 344 tb = mftb();
cbcdb93d
SR
345 purr = mfspr(SPRN_PURR);
346 stolen = (tb - pme->tb) - (purr - pme->purr);
79741dd3
MS
347 if (stolen > 0) {
348 if (idle_task(smp_processor_id()) != current)
349 account_steal_time(stolen);
350 else
351 account_idle_time(stolen);
352 }
c6622f63
PM
353 pme->tb = tb;
354 pme->purr = purr;
c6622f63
PM
355}
356
4cefebb1 357#ifdef CONFIG_PPC_SPLPAR
c6622f63
PM
358/*
359 * Must be called before the cpu is added to the online map when
360 * a cpu is being brought up at runtime.
361 */
362static void snapshot_purr(void)
363{
cbcdb93d 364 struct cpu_purr_data *pme;
c6622f63
PM
365 unsigned long flags;
366
367 if (!cpu_has_feature(CPU_FTR_PURR))
368 return;
df211c8a 369 local_irq_save(flags);
8b5621f1 370 pme = &__get_cpu_var(cpu_purr_data);
cbcdb93d
SR
371 pme->tb = mftb();
372 pme->purr = mfspr(SPRN_PURR);
c6622f63 373 pme->initialized = 1;
df211c8a 374 local_irq_restore(flags);
c6622f63
PM
375}
376
377#endif /* CONFIG_PPC_SPLPAR */
378
379#else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
380#define calc_cputime_factors()
c6622f63
PM
381#define calculate_steal_time() do { } while (0)
382#endif
383
384#if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
385#define snapshot_purr() do { } while (0)
386#endif
387
388/*
389 * Called when a cpu comes up after the system has finished booting,
390 * i.e. as a result of a hotplug cpu action.
391 */
392void snapshot_timebase(void)
393{
c27da339 394 __get_cpu_var(last_jiffy) = get_tb_or_rtc();
c6622f63
PM
395 snapshot_purr();
396}
397
6defa38b
PM
398void __delay(unsigned long loops)
399{
400 unsigned long start;
401 int diff;
402
403 if (__USE_RTC()) {
404 start = get_rtcl();
405 do {
406 /* the RTCL register wraps at 1000000000 */
407 diff = get_rtcl() - start;
408 if (diff < 0)
409 diff += 1000000000;
410 } while (diff < loops);
411 } else {
412 start = get_tbl();
413 while (get_tbl() - start < loops)
414 HMT_low();
415 HMT_medium();
416 }
417}
418EXPORT_SYMBOL(__delay);
419
420void udelay(unsigned long usecs)
421{
422 __delay(tb_ticks_per_usec * usecs);
423}
424EXPORT_SYMBOL(udelay);
425
1da177e4
LT
426#ifdef CONFIG_SMP
427unsigned long profile_pc(struct pt_regs *regs)
428{
429 unsigned long pc = instruction_pointer(regs);
430
431 if (in_lock_functions(pc))
432 return regs->link;
433
434 return pc;
435}
436EXPORT_SYMBOL(profile_pc);
437#endif
438
439#ifdef CONFIG_PPC_ISERIES
440
441/*
442 * This function recalibrates the timebase based on the 49-bit time-of-day
443 * value in the Titan chip. The Titan is much more accurate than the value
444 * returned by the service processor for the timebase frequency.
445 */
446
71712b45 447static int __init iSeries_tb_recal(void)
1da177e4
LT
448{
449 struct div_result divres;
450 unsigned long titan, tb;
71712b45
TB
451
452 /* Make sure we only run on iSeries */
453 if (!firmware_has_feature(FW_FEATURE_ISERIES))
454 return -ENODEV;
455
1da177e4
LT
456 tb = get_tb();
457 titan = HvCallXm_loadTod();
458 if ( iSeries_recal_titan ) {
459 unsigned long tb_ticks = tb - iSeries_recal_tb;
460 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
461 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
14ea58ad
JL
462 unsigned long new_tb_ticks_per_jiffy =
463 DIV_ROUND_CLOSEST(new_tb_ticks_per_sec, HZ);
1da177e4
LT
464 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
465 char sign = '+';
466 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
467 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
468
469 if ( tick_diff < 0 ) {
470 tick_diff = -tick_diff;
471 sign = '-';
472 }
473 if ( tick_diff ) {
474 if ( tick_diff < tb_ticks_per_jiffy/25 ) {
475 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
476 new_tb_ticks_per_jiffy, sign, tick_diff );
477 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
478 tb_ticks_per_sec = new_tb_ticks_per_sec;
c6622f63 479 calc_cputime_factors();
1da177e4 480 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
1da177e4 481 tb_to_xs = divres.result_low;
a7f290da
BH
482 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
483 vdso_data->tb_to_xs = tb_to_xs;
a42548a1 484 setup_cputime_one_jiffy();
1da177e4
LT
485 }
486 else {
487 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
488 " new tb_ticks_per_jiffy = %lu\n"
489 " old tb_ticks_per_jiffy = %lu\n",
490 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
491 }
492 }
493 }
494 iSeries_recal_titan = titan;
495 iSeries_recal_tb = tb;
71712b45 496
4a4cfe38
TB
497 /* Called here as now we know accurate values for the timebase */
498 clocksource_init();
71712b45 499 return 0;
1da177e4 500}
71712b45
TB
501late_initcall(iSeries_tb_recal);
502
503/* Called from platform early init */
504void __init iSeries_time_init_early(void)
505{
506 iSeries_recal_tb = get_tb();
507 iSeries_recal_titan = HvCallXm_loadTod();
508}
509#endif /* CONFIG_PPC_ISERIES */
1da177e4 510
0fe1ac48 511#ifdef CONFIG_PERF_EVENTS
105988c0 512
0fe1ac48
PM
513/*
514 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
515 */
516#ifdef CONFIG_PPC64
517static inline unsigned long test_perf_event_pending(void)
105988c0 518{
0fe1ac48
PM
519 unsigned long x;
520
521 asm volatile("lbz %0,%1(13)"
522 : "=r" (x)
523 : "i" (offsetof(struct paca_struct, perf_event_pending)));
524 return x;
525}
526
527static inline void set_perf_event_pending_flag(void)
528{
529 asm volatile("stb %0,%1(13)" : :
530 "r" (1),
531 "i" (offsetof(struct paca_struct, perf_event_pending)));
532}
533
534static inline void clear_perf_event_pending(void)
535{
536 asm volatile("stb %0,%1(13)" : :
537 "r" (0),
538 "i" (offsetof(struct paca_struct, perf_event_pending)));
105988c0
PM
539}
540
0fe1ac48
PM
541#else /* 32-bit */
542
543DEFINE_PER_CPU(u8, perf_event_pending);
544
545#define set_perf_event_pending_flag() __get_cpu_var(perf_event_pending) = 1
cdd6c482
IM
546#define test_perf_event_pending() __get_cpu_var(perf_event_pending)
547#define clear_perf_event_pending() __get_cpu_var(perf_event_pending) = 0
105988c0 548
0fe1ac48
PM
549#endif /* 32 vs 64 bit */
550
551void set_perf_event_pending(void)
552{
553 preempt_disable();
554 set_perf_event_pending_flag();
555 set_dec(1);
556 preempt_enable();
557}
558
559#else /* CONFIG_PERF_EVENTS */
105988c0 560
cdd6c482
IM
561#define test_perf_event_pending() 0
562#define clear_perf_event_pending()
105988c0 563
0fe1ac48 564#endif /* CONFIG_PERF_EVENTS */
105988c0 565
1da177e4
LT
566/*
567 * For iSeries shared processors, we have to let the hypervisor
568 * set the hardware decrementer. We set a virtual decrementer
569 * in the lppaca and call the hypervisor if the virtual
570 * decrementer is less than the current value in the hardware
571 * decrementer. (almost always the new decrementer value will
572 * be greater than the current hardware decementer so the hypervisor
573 * call will not be needed)
574 */
575
1da177e4
LT
576/*
577 * timer_interrupt - gets called when the decrementer overflows,
578 * with interrupts disabled.
579 */
c7aeffc4 580void timer_interrupt(struct pt_regs * regs)
1da177e4 581{
7d12e780 582 struct pt_regs *old_regs;
6e6b44e8
MM
583 struct decrementer_clock *decrementer = &__get_cpu_var(decrementers);
584 struct clock_event_device *evt = &decrementer->event;
d968014b 585 u64 now;
d831d0b8 586
6795b85c
AB
587 trace_timer_interrupt_entry(regs);
588
89713ed1
AB
589 __get_cpu_var(irq_stat).timer_irqs++;
590
d831d0b8
TB
591 /* Ensure a positive value is written to the decrementer, or else
592 * some CPUs will continuue to take decrementer exceptions */
593 set_dec(DECREMENTER_MAX);
f2783c15
PM
594
595#ifdef CONFIG_PPC32
596 if (atomic_read(&ppc_n_lost_interrupts) != 0)
597 do_IRQ(regs);
598#endif
1da177e4 599
d968014b 600 now = get_tb_or_rtc();
6e6b44e8 601 if (now < decrementer->next_tb) {
d968014b 602 /* not time for this event yet */
6e6b44e8 603 now = decrementer->next_tb - now;
d968014b 604 if (now <= DECREMENTER_MAX)
43875cc0 605 set_dec((int)now);
6795b85c 606 trace_timer_interrupt_exit(regs);
d968014b
PM
607 return;
608 }
7d12e780 609 old_regs = set_irq_regs(regs);
1da177e4
LT
610 irq_enter();
611
c6622f63 612 calculate_steal_time();
1da177e4 613
0fe1ac48
PM
614 if (test_perf_event_pending()) {
615 clear_perf_event_pending();
616 perf_event_do_pending();
617 }
618
f2783c15 619#ifdef CONFIG_PPC_ISERIES
501b6d29
SR
620 if (firmware_has_feature(FW_FEATURE_ISERIES))
621 get_lppaca()->int_dword.fields.decr_int = 0;
f2783c15
PM
622#endif
623
d831d0b8
TB
624 if (evt->event_handler)
625 evt->event_handler(evt);
1da177e4
LT
626
627#ifdef CONFIG_PPC_ISERIES
501b6d29 628 if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
35a84c2f 629 process_hvlpevents();
1da177e4
LT
630#endif
631
f2783c15 632#ifdef CONFIG_PPC64
8d15a3e5 633 /* collect purr register values often, for accurate calculations */
1ababe11 634 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1da177e4
LT
635 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
636 cu->current_tb = mfspr(SPRN_PURR);
637 }
f2783c15 638#endif
1da177e4
LT
639
640 irq_exit();
7d12e780 641 set_irq_regs(old_regs);
6795b85c
AB
642
643 trace_timer_interrupt_exit(regs);
1da177e4
LT
644}
645
f2783c15
PM
646void wakeup_decrementer(void)
647{
092b8f34 648 unsigned long ticks;
f2783c15 649
f2783c15 650 /*
092b8f34
PM
651 * The timebase gets saved on sleep and restored on wakeup,
652 * so all we need to do is to reset the decrementer.
f2783c15 653 */
092b8f34
PM
654 ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
655 if (ticks < tb_ticks_per_jiffy)
656 ticks = tb_ticks_per_jiffy - ticks;
657 else
658 ticks = 1;
659 set_dec(ticks);
f2783c15
PM
660}
661
7ac5dde9
SW
662#ifdef CONFIG_SUSPEND
663void generic_suspend_disable_irqs(void)
664{
665 preempt_disable();
666
667 /* Disable the decrementer, so that it doesn't interfere
668 * with suspending.
669 */
670
671 set_dec(0x7fffffff);
672 local_irq_disable();
673 set_dec(0x7fffffff);
674}
675
676void generic_suspend_enable_irqs(void)
677{
678 wakeup_decrementer();
679
680 local_irq_enable();
681 preempt_enable();
682}
683
684/* Overrides the weak version in kernel/power/main.c */
685void arch_suspend_disable_irqs(void)
686{
687 if (ppc_md.suspend_disable_irqs)
688 ppc_md.suspend_disable_irqs();
689 generic_suspend_disable_irqs();
690}
691
692/* Overrides the weak version in kernel/power/main.c */
693void arch_suspend_enable_irqs(void)
694{
695 generic_suspend_enable_irqs();
696 if (ppc_md.suspend_enable_irqs)
697 ppc_md.suspend_enable_irqs();
698}
699#endif
700
a5b518ed 701#ifdef CONFIG_SMP
f2783c15
PM
702void __init smp_space_timers(unsigned int max_cpus)
703{
704 int i;
eb36c288 705 u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
f2783c15 706
cbe62e2b
PM
707 /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
708 previous_tb -= tb_ticks_per_jiffy;
e147ec8f 709
0e551954 710 for_each_possible_cpu(i) {
c6622f63
PM
711 if (i == boot_cpuid)
712 continue;
e147ec8f 713 per_cpu(last_jiffy, i) = previous_tb;
f2783c15
PM
714 }
715}
716#endif
717
1da177e4
LT
718/*
719 * Scheduler clock - returns current time in nanosec units.
720 *
721 * Note: mulhdu(a, b) (multiply high double unsigned) returns
722 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
723 * are 64-bit unsigned numbers.
724 */
725unsigned long long sched_clock(void)
726{
96c44507
PM
727 if (__USE_RTC())
728 return get_rtc();
fc9069fe 729 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
1da177e4
LT
730}
731
0bb474a4 732static int __init get_freq(char *name, int cells, unsigned long *val)
10f7e7c1
AB
733{
734 struct device_node *cpu;
a7f67bdf 735 const unsigned int *fp;
0bb474a4 736 int found = 0;
10f7e7c1 737
0bb474a4 738 /* The cpu node should have timebase and clock frequency properties */
10f7e7c1
AB
739 cpu = of_find_node_by_type(NULL, "cpu");
740
d8a8188d 741 if (cpu) {
e2eb6392 742 fp = of_get_property(cpu, name, NULL);
d8a8188d 743 if (fp) {
0bb474a4 744 found = 1;
a4dc7ff0 745 *val = of_read_ulong(fp, cells);
10f7e7c1 746 }
0bb474a4
AB
747
748 of_node_put(cpu);
10f7e7c1 749 }
0bb474a4
AB
750
751 return found;
752}
753
77c0a700
BH
754/* should become __cpuinit when secondary_cpu_time_init also is */
755void start_cpu_decrementer(void)
756{
757#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
758 /* Clear any pending timer interrupts */
759 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
760
761 /* Enable decrementer interrupt */
762 mtspr(SPRN_TCR, TCR_DIE);
763#endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
764}
765
0bb474a4
AB
766void __init generic_calibrate_decr(void)
767{
768 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
769
770 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
771 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
772
10f7e7c1
AB
773 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
774 "(not found)\n");
0bb474a4 775 }
10f7e7c1 776
0bb474a4
AB
777 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
778
779 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
780 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
781
782 printk(KERN_ERR "WARNING: Estimating processor frequency "
783 "(not found)\n");
10f7e7c1 784 }
10f7e7c1 785}
10f7e7c1 786
aa3be5f3 787int update_persistent_clock(struct timespec now)
f2783c15
PM
788{
789 struct rtc_time tm;
790
aa3be5f3
TB
791 if (!ppc_md.set_rtc_time)
792 return 0;
793
794 to_tm(now.tv_sec + 1 + timezone_offset, &tm);
795 tm.tm_year -= 1900;
796 tm.tm_mon -= 1;
797
798 return ppc_md.set_rtc_time(&tm);
799}
800
978d7eb3 801static void __read_persistent_clock(struct timespec *ts)
aa3be5f3
TB
802{
803 struct rtc_time tm;
804 static int first = 1;
805
d90246cd 806 ts->tv_nsec = 0;
aa3be5f3
TB
807 /* XXX this is a litle fragile but will work okay in the short term */
808 if (first) {
809 first = 0;
810 if (ppc_md.time_init)
811 timezone_offset = ppc_md.time_init();
812
813 /* get_boot_time() isn't guaranteed to be safe to call late */
d90246cd
MS
814 if (ppc_md.get_boot_time) {
815 ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
816 return;
817 }
818 }
819 if (!ppc_md.get_rtc_time) {
820 ts->tv_sec = 0;
821 return;
aa3be5f3 822 }
f2783c15 823 ppc_md.get_rtc_time(&tm);
978d7eb3 824
d4f587c6
MS
825 ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
826 tm.tm_hour, tm.tm_min, tm.tm_sec);
f2783c15
PM
827}
828
978d7eb3
BH
829void read_persistent_clock(struct timespec *ts)
830{
831 __read_persistent_clock(ts);
832
833 /* Sanitize it in case real time clock is set below EPOCH */
834 if (ts->tv_sec < 0) {
835 ts->tv_sec = 0;
836 ts->tv_nsec = 0;
837 }
838
839}
840
4a4cfe38 841/* clocksource code */
8e19608e 842static cycle_t rtc_read(struct clocksource *cs)
4a4cfe38
TB
843{
844 return (cycle_t)get_rtc();
845}
846
8e19608e 847static cycle_t timebase_read(struct clocksource *cs)
4a4cfe38
TB
848{
849 return (cycle_t)get_tb();
850}
851
0696b711
LM
852void update_vsyscall(struct timespec *wall_time, struct clocksource *clock,
853 u32 mult)
4a4cfe38 854{
b0797b60 855 u64 new_tb_to_xs, new_stamp_xsec;
4a4cfe38
TB
856
857 if (clock != &clocksource_timebase)
858 return;
859
860 /* Make userspace gettimeofday spin until we're done. */
861 ++vdso_data->tb_update_count;
862 smp_mb();
863
864 /* XXX this assumes clock->shift == 22 */
865 /* 4611686018 ~= 2^(20+64-22) / 1e9 */
b0797b60 866 new_tb_to_xs = (u64) mult * 4611686018ULL;
06d518e3 867 new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
b0797b60 868 do_div(new_stamp_xsec, 1000000000);
06d518e3 869 new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
b0797b60
JS
870
871 /*
872 * tb_update_count is used to allow the userspace gettimeofday code
873 * to assure itself that it sees a consistent view of the tb_to_xs and
874 * stamp_xsec variables. It reads the tb_update_count, then reads
875 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
876 * the two values of tb_update_count match and are even then the
877 * tb_to_xs and stamp_xsec values are consistent. If not, then it
878 * loops back and reads them again until this criteria is met.
879 * We expect the caller to have done the first increment of
880 * vdso_data->tb_update_count already.
881 */
882 vdso_data->tb_orig_stamp = clock->cycle_last;
883 vdso_data->stamp_xsec = new_stamp_xsec;
884 vdso_data->tb_to_xs = new_tb_to_xs;
885 vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
886 vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
06d518e3 887 vdso_data->stamp_xtime = *wall_time;
b0797b60
JS
888 smp_wmb();
889 ++(vdso_data->tb_update_count);
4a4cfe38
TB
890}
891
892void update_vsyscall_tz(void)
893{
894 /* Make userspace gettimeofday spin until we're done. */
895 ++vdso_data->tb_update_count;
896 smp_mb();
897 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
898 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
899 smp_mb();
900 ++vdso_data->tb_update_count;
901}
902
1c21a293 903static void __init clocksource_init(void)
4a4cfe38
TB
904{
905 struct clocksource *clock;
906
907 if (__USE_RTC())
908 clock = &clocksource_rtc;
909 else
910 clock = &clocksource_timebase;
911
912 clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
913
914 if (clocksource_register(clock)) {
915 printk(KERN_ERR "clocksource: %s is already registered\n",
916 clock->name);
917 return;
918 }
919
920 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
921 clock->name, clock->mult, clock->shift);
922}
923
d831d0b8
TB
924static int decrementer_set_next_event(unsigned long evt,
925 struct clock_event_device *dev)
926{
6e6b44e8 927 __get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
d831d0b8
TB
928 set_dec(evt);
929 return 0;
930}
931
932static void decrementer_set_mode(enum clock_event_mode mode,
933 struct clock_event_device *dev)
934{
935 if (mode != CLOCK_EVT_MODE_ONESHOT)
936 decrementer_set_next_event(DECREMENTER_MAX, dev);
937}
938
3e7b4843
SR
939static inline uint64_t div_sc64(unsigned long ticks, unsigned long nsec,
940 int shift)
941{
942 uint64_t tmp = ((uint64_t)ticks) << shift;
943
944 do_div(tmp, nsec);
945 return tmp;
946}
947
8d165db1
AB
948static void __init setup_clockevent_multiplier(unsigned long hz)
949{
950 u64 mult, shift = 32;
951
952 while (1) {
3e7b4843 953 mult = div_sc64(hz, NSEC_PER_SEC, shift);
8d165db1
AB
954 if (mult && (mult >> 32UL) == 0UL)
955 break;
956
957 shift--;
958 }
959
960 decrementer_clockevent.shift = shift;
961 decrementer_clockevent.mult = mult;
962}
963
d831d0b8
TB
964static void register_decrementer_clockevent(int cpu)
965{
6e6b44e8 966 struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
d831d0b8
TB
967
968 *dec = decrementer_clockevent;
320ab2b0 969 dec->cpumask = cpumask_of(cpu);
d831d0b8 970
b919ee82
AB
971 printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
972 dec->name, dec->mult, dec->shift, cpu);
d831d0b8
TB
973
974 clockevents_register_device(dec);
975}
976
c481887f 977static void __init init_decrementer_clockevent(void)
d831d0b8
TB
978{
979 int cpu = smp_processor_id();
980
8d165db1 981 setup_clockevent_multiplier(ppc_tb_freq);
d831d0b8
TB
982 decrementer_clockevent.max_delta_ns =
983 clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
43875cc0
PM
984 decrementer_clockevent.min_delta_ns =
985 clockevent_delta2ns(2, &decrementer_clockevent);
d831d0b8
TB
986
987 register_decrementer_clockevent(cpu);
988}
989
990void secondary_cpu_time_init(void)
991{
77c0a700
BH
992 /* Start the decrementer on CPUs that have manual control
993 * such as BookE
994 */
995 start_cpu_decrementer();
996
d831d0b8
TB
997 /* FIME: Should make unrelatred change to move snapshot_timebase
998 * call here ! */
999 register_decrementer_clockevent(smp_processor_id());
1000}
1001
f2783c15 1002/* This function is only called on the boot processor */
1da177e4
LT
1003void __init time_init(void)
1004{
1da177e4 1005 unsigned long flags;
1da177e4 1006 struct div_result res;
092b8f34 1007 u64 scale, x;
f2783c15
PM
1008 unsigned shift;
1009
96c44507
PM
1010 if (__USE_RTC()) {
1011 /* 601 processor: dec counts down by 128 every 128ns */
1012 ppc_tb_freq = 1000000000;
eb36c288 1013 tb_last_jiffy = get_rtcl();
96c44507
PM
1014 } else {
1015 /* Normal PowerPC with timebase register */
1016 ppc_md.calibrate_decr();
224ad80a 1017 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
96c44507 1018 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
224ad80a 1019 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
96c44507 1020 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
eb36c288 1021 tb_last_jiffy = get_tb();
96c44507 1022 }
374e99d4
PM
1023
1024 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
092b8f34 1025 tb_ticks_per_sec = ppc_tb_freq;
374e99d4
PM
1026 tb_ticks_per_usec = ppc_tb_freq / 1000000;
1027 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
c6622f63 1028 calc_cputime_factors();
a42548a1 1029 setup_cputime_one_jiffy();
092b8f34
PM
1030
1031 /*
1032 * Calculate the length of each tick in ns. It will not be
1033 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
1034 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
1035 * rounded up.
1036 */
1037 x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
1038 do_div(x, ppc_tb_freq);
1039 tick_nsec = x;
1040 last_tick_len = x << TICKLEN_SCALE;
1041
1042 /*
1043 * Compute ticklen_to_xs, which is a factor which gets multiplied
1044 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
1045 * It is computed as:
1046 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
1047 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
0a45d449
PM
1048 * which turns out to be N = 51 - SHIFT_HZ.
1049 * This gives the result as a 0.64 fixed-point fraction.
1050 * That value is reduced by an offset amounting to 1 xsec per
1051 * 2^31 timebase ticks to avoid problems with time going backwards
1052 * by 1 xsec when we do timer_recalc_offset due to losing the
1053 * fractional xsec. That offset is equal to ppc_tb_freq/2^51
1054 * since there are 2^20 xsec in a second.
092b8f34 1055 */
0a45d449
PM
1056 div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
1057 tb_ticks_per_jiffy << SHIFT_HZ, &res);
092b8f34
PM
1058 div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
1059 ticklen_to_xs = res.result_low;
1060
1061 /* Compute tb_to_xs from tick_nsec */
1062 tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
374e99d4 1063
1da177e4
LT
1064 /*
1065 * Compute scale factor for sched_clock.
1066 * The calibrate_decr() function has set tb_ticks_per_sec,
1067 * which is the timebase frequency.
1068 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
1069 * the 128-bit result as a 64.64 fixed-point number.
1070 * We then shift that number right until it is less than 1.0,
1071 * giving us the scale factor and shift count to use in
1072 * sched_clock().
1073 */
1074 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
1075 scale = res.result_low;
1076 for (shift = 0; res.result_high != 0; ++shift) {
1077 scale = (scale >> 1) | (res.result_high << 63);
1078 res.result_high >>= 1;
1079 }
1080 tb_to_ns_scale = scale;
1081 tb_to_ns_shift = shift;
fc9069fe 1082 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
c27da339 1083 boot_tb = get_tb_or_rtc();
1da177e4 1084
1da177e4 1085 write_seqlock_irqsave(&xtime_lock, flags);
092b8f34
PM
1086
1087 /* If platform provided a timezone (pmac), we correct the time */
1088 if (timezone_offset) {
1089 sys_tz.tz_minuteswest = -timezone_offset / 60;
1090 sys_tz.tz_dsttime = 0;
092b8f34
PM
1091 }
1092
a7f290da
BH
1093 vdso_data->tb_orig_stamp = tb_last_jiffy;
1094 vdso_data->tb_update_count = 0;
1095 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
06d518e3 1096 vdso_data->stamp_xsec = (u64) get_seconds() * XSEC_PER_SEC;
a7f290da 1097 vdso_data->tb_to_xs = tb_to_xs;
1da177e4 1098
1da177e4
LT
1099 write_sequnlock_irqrestore(&xtime_lock, flags);
1100
77c0a700
BH
1101 /* Start the decrementer on CPUs that have manual control
1102 * such as BookE
1103 */
1104 start_cpu_decrementer();
1105
4a4cfe38
TB
1106 /* Register the clocksource, if we're not running on iSeries */
1107 if (!firmware_has_feature(FW_FEATURE_ISERIES))
1108 clocksource_init();
1109
d831d0b8 1110 init_decrementer_clockevent();
1da177e4
LT
1111}
1112
1da177e4 1113
1da177e4
LT
1114#define FEBRUARY 2
1115#define STARTOFTIME 1970
1116#define SECDAY 86400L
1117#define SECYR (SECDAY * 365)
f2783c15
PM
1118#define leapyear(year) ((year) % 4 == 0 && \
1119 ((year) % 100 != 0 || (year) % 400 == 0))
1da177e4
LT
1120#define days_in_year(a) (leapyear(a) ? 366 : 365)
1121#define days_in_month(a) (month_days[(a) - 1])
1122
1123static int month_days[12] = {
1124 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1125};
1126
1127/*
1128 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1129 */
1130void GregorianDay(struct rtc_time * tm)
1131{
1132 int leapsToDate;
1133 int lastYear;
1134 int day;
1135 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1136
f2783c15 1137 lastYear = tm->tm_year - 1;
1da177e4
LT
1138
1139 /*
1140 * Number of leap corrections to apply up to end of last year
1141 */
f2783c15 1142 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1da177e4
LT
1143
1144 /*
1145 * This year is a leap year if it is divisible by 4 except when it is
1146 * divisible by 100 unless it is divisible by 400
1147 *
f2783c15 1148 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1da177e4 1149 */
f2783c15 1150 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1da177e4
LT
1151
1152 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1153 tm->tm_mday;
1154
f2783c15 1155 tm->tm_wday = day % 7;
1da177e4
LT
1156}
1157
1158void to_tm(int tim, struct rtc_time * tm)
1159{
1160 register int i;
1161 register long hms, day;
1162
1163 day = tim / SECDAY;
1164 hms = tim % SECDAY;
1165
1166 /* Hours, minutes, seconds are easy */
1167 tm->tm_hour = hms / 3600;
1168 tm->tm_min = (hms % 3600) / 60;
1169 tm->tm_sec = (hms % 3600) % 60;
1170
1171 /* Number of years in days */
1172 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1173 day -= days_in_year(i);
1174 tm->tm_year = i;
1175
1176 /* Number of months in days left */
1177 if (leapyear(tm->tm_year))
1178 days_in_month(FEBRUARY) = 29;
1179 for (i = 1; day >= days_in_month(i); i++)
1180 day -= days_in_month(i);
1181 days_in_month(FEBRUARY) = 28;
1182 tm->tm_mon = i;
1183
1184 /* Days are what is left over (+1) from all that. */
1185 tm->tm_mday = day + 1;
1186
1187 /*
1188 * Determine the day of week
1189 */
1190 GregorianDay(tm);
1191}
1192
1193/* Auxiliary function to compute scaling factors */
1194/* Actually the choice of a timebase running at 1/4 the of the bus
1195 * frequency giving resolution of a few tens of nanoseconds is quite nice.
1196 * It makes this computation very precise (27-28 bits typically) which
1197 * is optimistic considering the stability of most processor clock
1198 * oscillators and the precision with which the timebase frequency
1199 * is measured but does not harm.
1200 */
f2783c15
PM
1201unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1202{
1da177e4
LT
1203 unsigned mlt=0, tmp, err;
1204 /* No concern for performance, it's done once: use a stupid
1205 * but safe and compact method to find the multiplier.
1206 */
1207
1208 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
f2783c15
PM
1209 if (mulhwu(inscale, mlt|tmp) < outscale)
1210 mlt |= tmp;
1da177e4
LT
1211 }
1212
1213 /* We might still be off by 1 for the best approximation.
1214 * A side effect of this is that if outscale is too large
1215 * the returned value will be zero.
1216 * Many corner cases have been checked and seem to work,
1217 * some might have been forgotten in the test however.
1218 */
1219
f2783c15
PM
1220 err = inscale * (mlt+1);
1221 if (err <= inscale/2)
1222 mlt++;
1da177e4 1223 return mlt;
f2783c15 1224}
1da177e4
LT
1225
1226/*
1227 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1228 * result.
1229 */
f2783c15
PM
1230void div128_by_32(u64 dividend_high, u64 dividend_low,
1231 unsigned divisor, struct div_result *dr)
1da177e4 1232{
f2783c15
PM
1233 unsigned long a, b, c, d;
1234 unsigned long w, x, y, z;
1235 u64 ra, rb, rc;
1da177e4
LT
1236
1237 a = dividend_high >> 32;
1238 b = dividend_high & 0xffffffff;
1239 c = dividend_low >> 32;
1240 d = dividend_low & 0xffffffff;
1241
f2783c15
PM
1242 w = a / divisor;
1243 ra = ((u64)(a - (w * divisor)) << 32) + b;
1244
f2783c15
PM
1245 rb = ((u64) do_div(ra, divisor) << 32) + c;
1246 x = ra;
1da177e4 1247
f2783c15
PM
1248 rc = ((u64) do_div(rb, divisor) << 32) + d;
1249 y = rb;
1250
1251 do_div(rc, divisor);
1252 z = rc;
1da177e4 1253
f2783c15
PM
1254 dr->result_high = ((u64)w << 32) + x;
1255 dr->result_low = ((u64)y << 32) + z;
1da177e4
LT
1256
1257}
bcd68a70 1258
177996e6
BH
1259/* We don't need to calibrate delay, we use the CPU timebase for that */
1260void calibrate_delay(void)
1261{
1262 /* Some generic code (such as spinlock debug) use loops_per_jiffy
1263 * as the number of __delay(1) in a jiffy, so make it so
1264 */
1265 loops_per_jiffy = tb_ticks_per_jiffy;
1266}
1267
bcd68a70
GU
1268static int __init rtc_init(void)
1269{
1270 struct platform_device *pdev;
1271
1272 if (!ppc_md.get_rtc_time)
1273 return -ENODEV;
1274
1275 pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
1276 if (IS_ERR(pdev))
1277 return PTR_ERR(pdev);
1278
1279 return 0;
1280}
1281
1282module_init(rtc_init);
This page took 0.583915 seconds and 5 git commands to generate.