[POWERPC] Fix switch_slb handling of 1T ESID values
[deliverable/linux.git] / arch / powerpc / kernel / time.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Common time routines among all ppc machines.
3 *
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8 *
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
14 *
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17 *
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time. (for iSeries, we calibrate the timebase
21 * against the Titan chip's clock.)
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
25 *
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
1da177e4
LT
35#include <linux/errno.h>
36#include <linux/module.h>
37#include <linux/sched.h>
38#include <linux/kernel.h>
39#include <linux/param.h>
40#include <linux/string.h>
41#include <linux/mm.h>
42#include <linux/interrupt.h>
43#include <linux/timex.h>
44#include <linux/kernel_stat.h>
1da177e4
LT
45#include <linux/time.h>
46#include <linux/init.h>
47#include <linux/profile.h>
48#include <linux/cpu.h>
49#include <linux/security.h>
f2783c15
PM
50#include <linux/percpu.h>
51#include <linux/rtc.h>
092b8f34 52#include <linux/jiffies.h>
c6622f63 53#include <linux/posix-timers.h>
7d12e780 54#include <linux/irq.h>
1da177e4 55
1da177e4
LT
56#include <asm/io.h>
57#include <asm/processor.h>
58#include <asm/nvram.h>
59#include <asm/cache.h>
60#include <asm/machdep.h>
1da177e4
LT
61#include <asm/uaccess.h>
62#include <asm/time.h>
1da177e4 63#include <asm/prom.h>
f2783c15
PM
64#include <asm/irq.h>
65#include <asm/div64.h>
2249ca9d 66#include <asm/smp.h>
a7f290da 67#include <asm/vdso_datapage.h>
1ababe11 68#include <asm/firmware.h>
f2783c15 69#ifdef CONFIG_PPC_ISERIES
8875ccfb 70#include <asm/iseries/it_lp_queue.h>
8021b8a7 71#include <asm/iseries/hv_call_xm.h>
f2783c15 72#endif
1da177e4 73
4a4cfe38
TB
74/* powerpc clocksource/clockevent code */
75
d831d0b8 76#include <linux/clockchips.h>
4a4cfe38
TB
77#include <linux/clocksource.h>
78
79static cycle_t rtc_read(void);
80static struct clocksource clocksource_rtc = {
81 .name = "rtc",
82 .rating = 400,
83 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
84 .mask = CLOCKSOURCE_MASK(64),
85 .shift = 22,
86 .mult = 0, /* To be filled in */
87 .read = rtc_read,
88};
89
90static cycle_t timebase_read(void);
91static struct clocksource clocksource_timebase = {
92 .name = "timebase",
93 .rating = 400,
94 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
95 .mask = CLOCKSOURCE_MASK(64),
96 .shift = 22,
97 .mult = 0, /* To be filled in */
98 .read = timebase_read,
99};
100
d831d0b8
TB
101#define DECREMENTER_MAX 0x7fffffff
102
103static int decrementer_set_next_event(unsigned long evt,
104 struct clock_event_device *dev);
105static void decrementer_set_mode(enum clock_event_mode mode,
106 struct clock_event_device *dev);
107
108static struct clock_event_device decrementer_clockevent = {
109 .name = "decrementer",
110 .rating = 200,
cdec12ae 111 .shift = 16,
d831d0b8
TB
112 .mult = 0, /* To be filled in */
113 .irq = 0,
114 .set_next_event = decrementer_set_next_event,
115 .set_mode = decrementer_set_mode,
116 .features = CLOCK_EVT_FEAT_ONESHOT,
117};
118
119static DEFINE_PER_CPU(struct clock_event_device, decrementers);
120void init_decrementer_clockevent(void);
d968014b 121static DEFINE_PER_CPU(u64, decrementer_next_tb);
d831d0b8 122
1da177e4 123#ifdef CONFIG_PPC_ISERIES
71712b45
TB
124static unsigned long __initdata iSeries_recal_titan;
125static signed long __initdata iSeries_recal_tb;
4a4cfe38
TB
126
127/* Forward declaration is only needed for iSereis compiles */
128void __init clocksource_init(void);
1da177e4
LT
129#endif
130
131#define XSEC_PER_SEC (1024*1024)
132
f2783c15
PM
133#ifdef CONFIG_PPC64
134#define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
135#else
136/* compute ((xsec << 12) * max) >> 32 */
137#define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
138#endif
139
1da177e4
LT
140unsigned long tb_ticks_per_jiffy;
141unsigned long tb_ticks_per_usec = 100; /* sane default */
142EXPORT_SYMBOL(tb_ticks_per_usec);
143unsigned long tb_ticks_per_sec;
2cf82c02 144EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
f2783c15
PM
145u64 tb_to_xs;
146unsigned tb_to_us;
092b8f34 147
19923c19 148#define TICKLEN_SCALE TICK_LENGTH_SHIFT
092b8f34
PM
149u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
150u64 ticklen_to_xs; /* 0.64 fraction */
151
152/* If last_tick_len corresponds to about 1/HZ seconds, then
153 last_tick_len << TICKLEN_SHIFT will be about 2^63. */
154#define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
155
1da177e4 156DEFINE_SPINLOCK(rtc_lock);
6ae3db11 157EXPORT_SYMBOL_GPL(rtc_lock);
1da177e4 158
fc9069fe
TB
159static u64 tb_to_ns_scale __read_mostly;
160static unsigned tb_to_ns_shift __read_mostly;
161static unsigned long boot_tb __read_mostly;
1da177e4
LT
162
163struct gettimeofday_struct do_gtod;
164
1da177e4 165extern struct timezone sys_tz;
f2783c15 166static long timezone_offset;
1da177e4 167
10f7e7c1 168unsigned long ppc_proc_freq;
1474855d 169EXPORT_SYMBOL(ppc_proc_freq);
10f7e7c1
AB
170unsigned long ppc_tb_freq;
171
eb36c288
PM
172static u64 tb_last_jiffy __cacheline_aligned_in_smp;
173static DEFINE_PER_CPU(u64, last_jiffy);
96c44507 174
c6622f63
PM
175#ifdef CONFIG_VIRT_CPU_ACCOUNTING
176/*
177 * Factors for converting from cputime_t (timebase ticks) to
178 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
179 * These are all stored as 0.64 fixed-point binary fractions.
180 */
181u64 __cputime_jiffies_factor;
2cf82c02 182EXPORT_SYMBOL(__cputime_jiffies_factor);
c6622f63 183u64 __cputime_msec_factor;
2cf82c02 184EXPORT_SYMBOL(__cputime_msec_factor);
c6622f63 185u64 __cputime_sec_factor;
2cf82c02 186EXPORT_SYMBOL(__cputime_sec_factor);
c6622f63 187u64 __cputime_clockt_factor;
2cf82c02 188EXPORT_SYMBOL(__cputime_clockt_factor);
c6622f63
PM
189
190static void calc_cputime_factors(void)
191{
192 struct div_result res;
193
194 div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
195 __cputime_jiffies_factor = res.result_low;
196 div128_by_32(1000, 0, tb_ticks_per_sec, &res);
197 __cputime_msec_factor = res.result_low;
198 div128_by_32(1, 0, tb_ticks_per_sec, &res);
199 __cputime_sec_factor = res.result_low;
200 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
201 __cputime_clockt_factor = res.result_low;
202}
203
204/*
205 * Read the PURR on systems that have it, otherwise the timebase.
206 */
207static u64 read_purr(void)
208{
209 if (cpu_has_feature(CPU_FTR_PURR))
210 return mfspr(SPRN_PURR);
211 return mftb();
212}
213
4603ac18
MN
214/*
215 * Read the SPURR on systems that have it, otherwise the purr
216 */
217static u64 read_spurr(u64 purr)
218{
219 if (cpu_has_feature(CPU_FTR_SPURR))
220 return mfspr(SPRN_SPURR);
221 return purr;
222}
223
c6622f63
PM
224/*
225 * Account time for a transition between system, hard irq
226 * or soft irq state.
227 */
228void account_system_vtime(struct task_struct *tsk)
229{
4603ac18 230 u64 now, nowscaled, delta, deltascaled;
c6622f63
PM
231 unsigned long flags;
232
233 local_irq_save(flags);
234 now = read_purr();
235 delta = now - get_paca()->startpurr;
236 get_paca()->startpurr = now;
4603ac18
MN
237 nowscaled = read_spurr(now);
238 deltascaled = nowscaled - get_paca()->startspurr;
239 get_paca()->startspurr = nowscaled;
c6622f63 240 if (!in_interrupt()) {
4603ac18
MN
241 /* deltascaled includes both user and system time.
242 * Hence scale it based on the purr ratio to estimate
243 * the system time */
244 deltascaled = deltascaled * get_paca()->system_time /
245 (get_paca()->system_time + get_paca()->user_time);
c6622f63
PM
246 delta += get_paca()->system_time;
247 get_paca()->system_time = 0;
248 }
249 account_system_time(tsk, 0, delta);
4603ac18
MN
250 get_paca()->purrdelta = delta;
251 account_system_time_scaled(tsk, deltascaled);
252 get_paca()->spurrdelta = deltascaled;
c6622f63
PM
253 local_irq_restore(flags);
254}
255
256/*
257 * Transfer the user and system times accumulated in the paca
258 * by the exception entry and exit code to the generic process
259 * user and system time records.
260 * Must be called with interrupts disabled.
261 */
262void account_process_vtime(struct task_struct *tsk)
263{
4603ac18 264 cputime_t utime, utimescaled;
c6622f63
PM
265
266 utime = get_paca()->user_time;
267 get_paca()->user_time = 0;
268 account_user_time(tsk, utime);
4603ac18
MN
269
270 /* Estimate the scaled utime by scaling the real utime based
271 * on the last spurr to purr ratio */
272 utimescaled = utime * get_paca()->spurrdelta / get_paca()->purrdelta;
273 get_paca()->spurrdelta = get_paca()->purrdelta = 0;
274 account_user_time_scaled(tsk, utimescaled);
c6622f63
PM
275}
276
277static void account_process_time(struct pt_regs *regs)
278{
279 int cpu = smp_processor_id();
280
281 account_process_vtime(current);
282 run_local_timers();
283 if (rcu_pending(cpu))
284 rcu_check_callbacks(cpu, user_mode(regs));
285 scheduler_tick();
286 run_posix_cpu_timers(current);
287}
288
c6622f63
PM
289/*
290 * Stuff for accounting stolen time.
291 */
292struct cpu_purr_data {
293 int initialized; /* thread is running */
c6622f63
PM
294 u64 tb; /* last TB value read */
295 u64 purr; /* last PURR value read */
4603ac18 296 u64 spurr; /* last SPURR value read */
c6622f63
PM
297};
298
df211c8a
NL
299/*
300 * Each entry in the cpu_purr_data array is manipulated only by its
301 * "owner" cpu -- usually in the timer interrupt but also occasionally
302 * in process context for cpu online. As long as cpus do not touch
303 * each others' cpu_purr_data, disabling local interrupts is
304 * sufficient to serialize accesses.
305 */
c6622f63
PM
306static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
307
308static void snapshot_tb_and_purr(void *data)
309{
df211c8a 310 unsigned long flags;
c6622f63
PM
311 struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
312
df211c8a 313 local_irq_save(flags);
c27da339 314 p->tb = get_tb_or_rtc();
cbcdb93d 315 p->purr = mfspr(SPRN_PURR);
c6622f63
PM
316 wmb();
317 p->initialized = 1;
df211c8a 318 local_irq_restore(flags);
c6622f63
PM
319}
320
321/*
322 * Called during boot when all cpus have come up.
323 */
324void snapshot_timebases(void)
325{
c6622f63
PM
326 if (!cpu_has_feature(CPU_FTR_PURR))
327 return;
c6622f63
PM
328 on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1);
329}
330
df211c8a
NL
331/*
332 * Must be called with interrupts disabled.
333 */
c6622f63
PM
334void calculate_steal_time(void)
335{
cbcdb93d 336 u64 tb, purr;
c6622f63 337 s64 stolen;
cbcdb93d 338 struct cpu_purr_data *pme;
c6622f63
PM
339
340 if (!cpu_has_feature(CPU_FTR_PURR))
341 return;
cbcdb93d 342 pme = &per_cpu(cpu_purr_data, smp_processor_id());
c6622f63
PM
343 if (!pme->initialized)
344 return; /* this can happen in early boot */
c6622f63 345 tb = mftb();
cbcdb93d
SR
346 purr = mfspr(SPRN_PURR);
347 stolen = (tb - pme->tb) - (purr - pme->purr);
348 if (stolen > 0)
c6622f63 349 account_steal_time(current, stolen);
c6622f63
PM
350 pme->tb = tb;
351 pme->purr = purr;
c6622f63
PM
352}
353
4cefebb1 354#ifdef CONFIG_PPC_SPLPAR
c6622f63
PM
355/*
356 * Must be called before the cpu is added to the online map when
357 * a cpu is being brought up at runtime.
358 */
359static void snapshot_purr(void)
360{
cbcdb93d 361 struct cpu_purr_data *pme;
c6622f63
PM
362 unsigned long flags;
363
364 if (!cpu_has_feature(CPU_FTR_PURR))
365 return;
df211c8a 366 local_irq_save(flags);
cbcdb93d 367 pme = &per_cpu(cpu_purr_data, smp_processor_id());
cbcdb93d
SR
368 pme->tb = mftb();
369 pme->purr = mfspr(SPRN_PURR);
c6622f63 370 pme->initialized = 1;
df211c8a 371 local_irq_restore(flags);
c6622f63
PM
372}
373
374#endif /* CONFIG_PPC_SPLPAR */
375
376#else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
377#define calc_cputime_factors()
378#define account_process_time(regs) update_process_times(user_mode(regs))
379#define calculate_steal_time() do { } while (0)
380#endif
381
382#if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
383#define snapshot_purr() do { } while (0)
384#endif
385
386/*
387 * Called when a cpu comes up after the system has finished booting,
388 * i.e. as a result of a hotplug cpu action.
389 */
390void snapshot_timebase(void)
391{
c27da339 392 __get_cpu_var(last_jiffy) = get_tb_or_rtc();
c6622f63
PM
393 snapshot_purr();
394}
395
6defa38b
PM
396void __delay(unsigned long loops)
397{
398 unsigned long start;
399 int diff;
400
401 if (__USE_RTC()) {
402 start = get_rtcl();
403 do {
404 /* the RTCL register wraps at 1000000000 */
405 diff = get_rtcl() - start;
406 if (diff < 0)
407 diff += 1000000000;
408 } while (diff < loops);
409 } else {
410 start = get_tbl();
411 while (get_tbl() - start < loops)
412 HMT_low();
413 HMT_medium();
414 }
415}
416EXPORT_SYMBOL(__delay);
417
418void udelay(unsigned long usecs)
419{
420 __delay(tb_ticks_per_usec * usecs);
421}
422EXPORT_SYMBOL(udelay);
423
1da177e4 424
1da177e4 425/*
f2783c15
PM
426 * There are two copies of tb_to_xs and stamp_xsec so that no
427 * lock is needed to access and use these values in
428 * do_gettimeofday. We alternate the copies and as long as a
429 * reasonable time elapses between changes, there will never
430 * be inconsistent values. ntpd has a minimum of one minute
431 * between updates.
1da177e4 432 */
f2783c15 433static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
5d14a18d 434 u64 new_tb_to_xs)
1da177e4 435{
1da177e4 436 unsigned temp_idx;
f2783c15 437 struct gettimeofday_vars *temp_varp;
1da177e4
LT
438
439 temp_idx = (do_gtod.var_idx == 0);
440 temp_varp = &do_gtod.vars[temp_idx];
441
f2783c15
PM
442 temp_varp->tb_to_xs = new_tb_to_xs;
443 temp_varp->tb_orig_stamp = new_tb_stamp;
1da177e4 444 temp_varp->stamp_xsec = new_stamp_xsec;
0d8d4d42 445 smp_mb();
1da177e4
LT
446 do_gtod.varp = temp_varp;
447 do_gtod.var_idx = temp_idx;
448
f2783c15
PM
449 /*
450 * tb_update_count is used to allow the userspace gettimeofday code
451 * to assure itself that it sees a consistent view of the tb_to_xs and
452 * stamp_xsec variables. It reads the tb_update_count, then reads
453 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
454 * the two values of tb_update_count match and are even then the
455 * tb_to_xs and stamp_xsec values are consistent. If not, then it
456 * loops back and reads them again until this criteria is met.
0a45d449
PM
457 * We expect the caller to have done the first increment of
458 * vdso_data->tb_update_count already.
f2783c15 459 */
a7f290da
BH
460 vdso_data->tb_orig_stamp = new_tb_stamp;
461 vdso_data->stamp_xsec = new_stamp_xsec;
462 vdso_data->tb_to_xs = new_tb_to_xs;
463 vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
464 vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
0d8d4d42 465 smp_wmb();
a7f290da 466 ++(vdso_data->tb_update_count);
f2783c15
PM
467}
468
1da177e4
LT
469#ifdef CONFIG_SMP
470unsigned long profile_pc(struct pt_regs *regs)
471{
472 unsigned long pc = instruction_pointer(regs);
473
474 if (in_lock_functions(pc))
475 return regs->link;
476
477 return pc;
478}
479EXPORT_SYMBOL(profile_pc);
480#endif
481
482#ifdef CONFIG_PPC_ISERIES
483
484/*
485 * This function recalibrates the timebase based on the 49-bit time-of-day
486 * value in the Titan chip. The Titan is much more accurate than the value
487 * returned by the service processor for the timebase frequency.
488 */
489
71712b45 490static int __init iSeries_tb_recal(void)
1da177e4
LT
491{
492 struct div_result divres;
493 unsigned long titan, tb;
71712b45
TB
494
495 /* Make sure we only run on iSeries */
496 if (!firmware_has_feature(FW_FEATURE_ISERIES))
497 return -ENODEV;
498
1da177e4
LT
499 tb = get_tb();
500 titan = HvCallXm_loadTod();
501 if ( iSeries_recal_titan ) {
502 unsigned long tb_ticks = tb - iSeries_recal_tb;
503 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
504 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
505 unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
506 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
507 char sign = '+';
508 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
509 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
510
511 if ( tick_diff < 0 ) {
512 tick_diff = -tick_diff;
513 sign = '-';
514 }
515 if ( tick_diff ) {
516 if ( tick_diff < tb_ticks_per_jiffy/25 ) {
517 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
518 new_tb_ticks_per_jiffy, sign, tick_diff );
519 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
520 tb_ticks_per_sec = new_tb_ticks_per_sec;
c6622f63 521 calc_cputime_factors();
1da177e4
LT
522 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
523 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
524 tb_to_xs = divres.result_low;
525 do_gtod.varp->tb_to_xs = tb_to_xs;
a7f290da
BH
526 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
527 vdso_data->tb_to_xs = tb_to_xs;
1da177e4
LT
528 }
529 else {
530 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
531 " new tb_ticks_per_jiffy = %lu\n"
532 " old tb_ticks_per_jiffy = %lu\n",
533 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
534 }
535 }
536 }
537 iSeries_recal_titan = titan;
538 iSeries_recal_tb = tb;
71712b45 539
4a4cfe38
TB
540 /* Called here as now we know accurate values for the timebase */
541 clocksource_init();
71712b45 542 return 0;
1da177e4 543}
71712b45
TB
544late_initcall(iSeries_tb_recal);
545
546/* Called from platform early init */
547void __init iSeries_time_init_early(void)
548{
549 iSeries_recal_tb = get_tb();
550 iSeries_recal_titan = HvCallXm_loadTod();
551}
552#endif /* CONFIG_PPC_ISERIES */
1da177e4
LT
553
554/*
555 * For iSeries shared processors, we have to let the hypervisor
556 * set the hardware decrementer. We set a virtual decrementer
557 * in the lppaca and call the hypervisor if the virtual
558 * decrementer is less than the current value in the hardware
559 * decrementer. (almost always the new decrementer value will
560 * be greater than the current hardware decementer so the hypervisor
561 * call will not be needed)
562 */
563
1da177e4
LT
564/*
565 * timer_interrupt - gets called when the decrementer overflows,
566 * with interrupts disabled.
567 */
c7aeffc4 568void timer_interrupt(struct pt_regs * regs)
1da177e4 569{
7d12e780 570 struct pt_regs *old_regs;
f2783c15 571 int cpu = smp_processor_id();
d831d0b8 572 struct clock_event_device *evt = &per_cpu(decrementers, cpu);
d968014b 573 u64 now;
d831d0b8
TB
574
575 /* Ensure a positive value is written to the decrementer, or else
576 * some CPUs will continuue to take decrementer exceptions */
577 set_dec(DECREMENTER_MAX);
f2783c15
PM
578
579#ifdef CONFIG_PPC32
580 if (atomic_read(&ppc_n_lost_interrupts) != 0)
581 do_IRQ(regs);
582#endif
1da177e4 583
d968014b
PM
584 now = get_tb_or_rtc();
585 if (now < per_cpu(decrementer_next_tb, cpu)) {
586 /* not time for this event yet */
587 now = per_cpu(decrementer_next_tb, cpu) - now;
588 if (now <= DECREMENTER_MAX)
589 set_dec((unsigned int)now - 1);
590 return;
591 }
7d12e780 592 old_regs = set_irq_regs(regs);
1da177e4
LT
593 irq_enter();
594
c6622f63 595 calculate_steal_time();
1da177e4 596
f2783c15 597#ifdef CONFIG_PPC_ISERIES
501b6d29
SR
598 if (firmware_has_feature(FW_FEATURE_ISERIES))
599 get_lppaca()->int_dword.fields.decr_int = 0;
f2783c15
PM
600#endif
601
d831d0b8
TB
602 /*
603 * We cannot disable the decrementer, so in the period
604 * between this cpu's being marked offline in cpu_online_map
605 * and calling stop-self, it is taking timer interrupts.
606 * Avoid calling into the scheduler rebalancing code if this
607 * is the case.
608 */
609 if (!cpu_is_offline(cpu))
610 account_process_time(regs);
f2783c15 611
d831d0b8
TB
612 if (evt->event_handler)
613 evt->event_handler(evt);
614 else
615 evt->set_next_event(DECREMENTER_MAX, evt);
1da177e4
LT
616
617#ifdef CONFIG_PPC_ISERIES
501b6d29 618 if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
35a84c2f 619 process_hvlpevents();
1da177e4
LT
620#endif
621
f2783c15 622#ifdef CONFIG_PPC64
8d15a3e5 623 /* collect purr register values often, for accurate calculations */
1ababe11 624 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1da177e4
LT
625 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
626 cu->current_tb = mfspr(SPRN_PURR);
627 }
f2783c15 628#endif
1da177e4
LT
629
630 irq_exit();
7d12e780 631 set_irq_regs(old_regs);
1da177e4
LT
632}
633
f2783c15
PM
634void wakeup_decrementer(void)
635{
092b8f34 636 unsigned long ticks;
f2783c15 637
f2783c15 638 /*
092b8f34
PM
639 * The timebase gets saved on sleep and restored on wakeup,
640 * so all we need to do is to reset the decrementer.
f2783c15 641 */
092b8f34
PM
642 ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
643 if (ticks < tb_ticks_per_jiffy)
644 ticks = tb_ticks_per_jiffy - ticks;
645 else
646 ticks = 1;
647 set_dec(ticks);
f2783c15
PM
648}
649
a5b518ed 650#ifdef CONFIG_SMP
f2783c15
PM
651void __init smp_space_timers(unsigned int max_cpus)
652{
653 int i;
eb36c288 654 u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
f2783c15 655
cbe62e2b
PM
656 /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
657 previous_tb -= tb_ticks_per_jiffy;
e147ec8f 658
0e551954 659 for_each_possible_cpu(i) {
c6622f63
PM
660 if (i == boot_cpuid)
661 continue;
e147ec8f 662 per_cpu(last_jiffy, i) = previous_tb;
f2783c15
PM
663 }
664}
665#endif
666
1da177e4
LT
667/*
668 * Scheduler clock - returns current time in nanosec units.
669 *
670 * Note: mulhdu(a, b) (multiply high double unsigned) returns
671 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
672 * are 64-bit unsigned numbers.
673 */
674unsigned long long sched_clock(void)
675{
96c44507
PM
676 if (__USE_RTC())
677 return get_rtc();
fc9069fe 678 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
1da177e4
LT
679}
680
0bb474a4 681static int __init get_freq(char *name, int cells, unsigned long *val)
10f7e7c1
AB
682{
683 struct device_node *cpu;
a7f67bdf 684 const unsigned int *fp;
0bb474a4 685 int found = 0;
10f7e7c1 686
0bb474a4 687 /* The cpu node should have timebase and clock frequency properties */
10f7e7c1
AB
688 cpu = of_find_node_by_type(NULL, "cpu");
689
d8a8188d 690 if (cpu) {
e2eb6392 691 fp = of_get_property(cpu, name, NULL);
d8a8188d 692 if (fp) {
0bb474a4 693 found = 1;
a4dc7ff0 694 *val = of_read_ulong(fp, cells);
10f7e7c1 695 }
0bb474a4
AB
696
697 of_node_put(cpu);
10f7e7c1 698 }
0bb474a4
AB
699
700 return found;
701}
702
703void __init generic_calibrate_decr(void)
704{
705 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
706
707 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
708 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
709
10f7e7c1
AB
710 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
711 "(not found)\n");
0bb474a4 712 }
10f7e7c1 713
0bb474a4
AB
714 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
715
716 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
717 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
718
719 printk(KERN_ERR "WARNING: Estimating processor frequency "
720 "(not found)\n");
10f7e7c1 721 }
0bb474a4 722
aab69292 723#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
0fd6f717
KG
724 /* Set the time base to zero */
725 mtspr(SPRN_TBWL, 0);
726 mtspr(SPRN_TBWU, 0);
727
728 /* Clear any pending timer interrupts */
729 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
730
731 /* Enable decrementer interrupt */
732 mtspr(SPRN_TCR, TCR_DIE);
733#endif
10f7e7c1 734}
10f7e7c1 735
aa3be5f3 736int update_persistent_clock(struct timespec now)
f2783c15
PM
737{
738 struct rtc_time tm;
739
aa3be5f3
TB
740 if (!ppc_md.set_rtc_time)
741 return 0;
742
743 to_tm(now.tv_sec + 1 + timezone_offset, &tm);
744 tm.tm_year -= 1900;
745 tm.tm_mon -= 1;
746
747 return ppc_md.set_rtc_time(&tm);
748}
749
750unsigned long read_persistent_clock(void)
751{
752 struct rtc_time tm;
753 static int first = 1;
754
755 /* XXX this is a litle fragile but will work okay in the short term */
756 if (first) {
757 first = 0;
758 if (ppc_md.time_init)
759 timezone_offset = ppc_md.time_init();
760
761 /* get_boot_time() isn't guaranteed to be safe to call late */
762 if (ppc_md.get_boot_time)
763 return ppc_md.get_boot_time() -timezone_offset;
764 }
f2783c15
PM
765 if (!ppc_md.get_rtc_time)
766 return 0;
767 ppc_md.get_rtc_time(&tm);
768 return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
769 tm.tm_hour, tm.tm_min, tm.tm_sec);
770}
771
4a4cfe38
TB
772/* clocksource code */
773static cycle_t rtc_read(void)
774{
775 return (cycle_t)get_rtc();
776}
777
778static cycle_t timebase_read(void)
779{
780 return (cycle_t)get_tb();
781}
782
783void update_vsyscall(struct timespec *wall_time, struct clocksource *clock)
784{
785 u64 t2x, stamp_xsec;
786
787 if (clock != &clocksource_timebase)
788 return;
789
790 /* Make userspace gettimeofday spin until we're done. */
791 ++vdso_data->tb_update_count;
792 smp_mb();
793
794 /* XXX this assumes clock->shift == 22 */
795 /* 4611686018 ~= 2^(20+64-22) / 1e9 */
796 t2x = (u64) clock->mult * 4611686018ULL;
797 stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
798 do_div(stamp_xsec, 1000000000);
799 stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
800 update_gtod(clock->cycle_last, stamp_xsec, t2x);
801}
802
803void update_vsyscall_tz(void)
804{
805 /* Make userspace gettimeofday spin until we're done. */
806 ++vdso_data->tb_update_count;
807 smp_mb();
808 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
809 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
810 smp_mb();
811 ++vdso_data->tb_update_count;
812}
813
814void __init clocksource_init(void)
815{
816 struct clocksource *clock;
817
818 if (__USE_RTC())
819 clock = &clocksource_rtc;
820 else
821 clock = &clocksource_timebase;
822
823 clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
824
825 if (clocksource_register(clock)) {
826 printk(KERN_ERR "clocksource: %s is already registered\n",
827 clock->name);
828 return;
829 }
830
831 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
832 clock->name, clock->mult, clock->shift);
833}
834
d831d0b8
TB
835static int decrementer_set_next_event(unsigned long evt,
836 struct clock_event_device *dev)
837{
d968014b
PM
838 __get_cpu_var(decrementer_next_tb) = get_tb_or_rtc() + evt;
839 /* The decrementer interrupts on the 0 -> -1 transition */
840 if (evt)
841 --evt;
d831d0b8
TB
842 set_dec(evt);
843 return 0;
844}
845
846static void decrementer_set_mode(enum clock_event_mode mode,
847 struct clock_event_device *dev)
848{
849 if (mode != CLOCK_EVT_MODE_ONESHOT)
850 decrementer_set_next_event(DECREMENTER_MAX, dev);
851}
852
853static void register_decrementer_clockevent(int cpu)
854{
855 struct clock_event_device *dec = &per_cpu(decrementers, cpu);
856
857 *dec = decrementer_clockevent;
858 dec->cpumask = cpumask_of_cpu(cpu);
859
1281c8be 860 printk(KERN_INFO "clockevent: %s mult[%lx] shift[%d] cpu[%d]\n",
d831d0b8
TB
861 dec->name, dec->mult, dec->shift, cpu);
862
863 clockevents_register_device(dec);
864}
865
866void init_decrementer_clockevent(void)
867{
868 int cpu = smp_processor_id();
869
870 decrementer_clockevent.mult = div_sc(ppc_tb_freq, NSEC_PER_SEC,
871 decrementer_clockevent.shift);
872 decrementer_clockevent.max_delta_ns =
873 clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
874 decrementer_clockevent.min_delta_ns = 1000;
875
876 register_decrementer_clockevent(cpu);
877}
878
879void secondary_cpu_time_init(void)
880{
881 /* FIME: Should make unrelatred change to move snapshot_timebase
882 * call here ! */
883 register_decrementer_clockevent(smp_processor_id());
884}
885
f2783c15 886/* This function is only called on the boot processor */
1da177e4
LT
887void __init time_init(void)
888{
1da177e4 889 unsigned long flags;
1da177e4 890 struct div_result res;
092b8f34 891 u64 scale, x;
f2783c15
PM
892 unsigned shift;
893
96c44507
PM
894 if (__USE_RTC()) {
895 /* 601 processor: dec counts down by 128 every 128ns */
896 ppc_tb_freq = 1000000000;
eb36c288 897 tb_last_jiffy = get_rtcl();
96c44507
PM
898 } else {
899 /* Normal PowerPC with timebase register */
900 ppc_md.calibrate_decr();
224ad80a 901 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
96c44507 902 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
224ad80a 903 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
96c44507 904 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
eb36c288 905 tb_last_jiffy = get_tb();
96c44507 906 }
374e99d4
PM
907
908 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
092b8f34 909 tb_ticks_per_sec = ppc_tb_freq;
374e99d4
PM
910 tb_ticks_per_usec = ppc_tb_freq / 1000000;
911 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
c6622f63 912 calc_cputime_factors();
092b8f34
PM
913
914 /*
915 * Calculate the length of each tick in ns. It will not be
916 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
917 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
918 * rounded up.
919 */
920 x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
921 do_div(x, ppc_tb_freq);
922 tick_nsec = x;
923 last_tick_len = x << TICKLEN_SCALE;
924
925 /*
926 * Compute ticklen_to_xs, which is a factor which gets multiplied
927 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
928 * It is computed as:
929 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
930 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
0a45d449
PM
931 * which turns out to be N = 51 - SHIFT_HZ.
932 * This gives the result as a 0.64 fixed-point fraction.
933 * That value is reduced by an offset amounting to 1 xsec per
934 * 2^31 timebase ticks to avoid problems with time going backwards
935 * by 1 xsec when we do timer_recalc_offset due to losing the
936 * fractional xsec. That offset is equal to ppc_tb_freq/2^51
937 * since there are 2^20 xsec in a second.
092b8f34 938 */
0a45d449
PM
939 div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
940 tb_ticks_per_jiffy << SHIFT_HZ, &res);
092b8f34
PM
941 div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
942 ticklen_to_xs = res.result_low;
943
944 /* Compute tb_to_xs from tick_nsec */
945 tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
374e99d4 946
1da177e4
LT
947 /*
948 * Compute scale factor for sched_clock.
949 * The calibrate_decr() function has set tb_ticks_per_sec,
950 * which is the timebase frequency.
951 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
952 * the 128-bit result as a 64.64 fixed-point number.
953 * We then shift that number right until it is less than 1.0,
954 * giving us the scale factor and shift count to use in
955 * sched_clock().
956 */
957 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
958 scale = res.result_low;
959 for (shift = 0; res.result_high != 0; ++shift) {
960 scale = (scale >> 1) | (res.result_high << 63);
961 res.result_high >>= 1;
962 }
963 tb_to_ns_scale = scale;
964 tb_to_ns_shift = shift;
fc9069fe 965 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
c27da339 966 boot_tb = get_tb_or_rtc();
1da177e4 967
1da177e4 968 write_seqlock_irqsave(&xtime_lock, flags);
092b8f34
PM
969
970 /* If platform provided a timezone (pmac), we correct the time */
971 if (timezone_offset) {
972 sys_tz.tz_minuteswest = -timezone_offset / 60;
973 sys_tz.tz_dsttime = 0;
092b8f34
PM
974 }
975
1da177e4
LT
976 do_gtod.varp = &do_gtod.vars[0];
977 do_gtod.var_idx = 0;
96c44507 978 do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
eb36c288 979 __get_cpu_var(last_jiffy) = tb_last_jiffy;
f2783c15 980 do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
1da177e4
LT
981 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
982 do_gtod.varp->tb_to_xs = tb_to_xs;
983 do_gtod.tb_to_us = tb_to_us;
a7f290da
BH
984
985 vdso_data->tb_orig_stamp = tb_last_jiffy;
986 vdso_data->tb_update_count = 0;
987 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
092b8f34 988 vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
a7f290da 989 vdso_data->tb_to_xs = tb_to_xs;
1da177e4
LT
990
991 time_freq = 0;
992
1da177e4
LT
993 write_sequnlock_irqrestore(&xtime_lock, flags);
994
4a4cfe38
TB
995 /* Register the clocksource, if we're not running on iSeries */
996 if (!firmware_has_feature(FW_FEATURE_ISERIES))
997 clocksource_init();
998
d831d0b8 999 init_decrementer_clockevent();
1da177e4
LT
1000}
1001
1da177e4 1002
1da177e4
LT
1003#define FEBRUARY 2
1004#define STARTOFTIME 1970
1005#define SECDAY 86400L
1006#define SECYR (SECDAY * 365)
f2783c15
PM
1007#define leapyear(year) ((year) % 4 == 0 && \
1008 ((year) % 100 != 0 || (year) % 400 == 0))
1da177e4
LT
1009#define days_in_year(a) (leapyear(a) ? 366 : 365)
1010#define days_in_month(a) (month_days[(a) - 1])
1011
1012static int month_days[12] = {
1013 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1014};
1015
1016/*
1017 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1018 */
1019void GregorianDay(struct rtc_time * tm)
1020{
1021 int leapsToDate;
1022 int lastYear;
1023 int day;
1024 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1025
f2783c15 1026 lastYear = tm->tm_year - 1;
1da177e4
LT
1027
1028 /*
1029 * Number of leap corrections to apply up to end of last year
1030 */
f2783c15 1031 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1da177e4
LT
1032
1033 /*
1034 * This year is a leap year if it is divisible by 4 except when it is
1035 * divisible by 100 unless it is divisible by 400
1036 *
f2783c15 1037 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1da177e4 1038 */
f2783c15 1039 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1da177e4
LT
1040
1041 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1042 tm->tm_mday;
1043
f2783c15 1044 tm->tm_wday = day % 7;
1da177e4
LT
1045}
1046
1047void to_tm(int tim, struct rtc_time * tm)
1048{
1049 register int i;
1050 register long hms, day;
1051
1052 day = tim / SECDAY;
1053 hms = tim % SECDAY;
1054
1055 /* Hours, minutes, seconds are easy */
1056 tm->tm_hour = hms / 3600;
1057 tm->tm_min = (hms % 3600) / 60;
1058 tm->tm_sec = (hms % 3600) % 60;
1059
1060 /* Number of years in days */
1061 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1062 day -= days_in_year(i);
1063 tm->tm_year = i;
1064
1065 /* Number of months in days left */
1066 if (leapyear(tm->tm_year))
1067 days_in_month(FEBRUARY) = 29;
1068 for (i = 1; day >= days_in_month(i); i++)
1069 day -= days_in_month(i);
1070 days_in_month(FEBRUARY) = 28;
1071 tm->tm_mon = i;
1072
1073 /* Days are what is left over (+1) from all that. */
1074 tm->tm_mday = day + 1;
1075
1076 /*
1077 * Determine the day of week
1078 */
1079 GregorianDay(tm);
1080}
1081
1082/* Auxiliary function to compute scaling factors */
1083/* Actually the choice of a timebase running at 1/4 the of the bus
1084 * frequency giving resolution of a few tens of nanoseconds is quite nice.
1085 * It makes this computation very precise (27-28 bits typically) which
1086 * is optimistic considering the stability of most processor clock
1087 * oscillators and the precision with which the timebase frequency
1088 * is measured but does not harm.
1089 */
f2783c15
PM
1090unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1091{
1da177e4
LT
1092 unsigned mlt=0, tmp, err;
1093 /* No concern for performance, it's done once: use a stupid
1094 * but safe and compact method to find the multiplier.
1095 */
1096
1097 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
f2783c15
PM
1098 if (mulhwu(inscale, mlt|tmp) < outscale)
1099 mlt |= tmp;
1da177e4
LT
1100 }
1101
1102 /* We might still be off by 1 for the best approximation.
1103 * A side effect of this is that if outscale is too large
1104 * the returned value will be zero.
1105 * Many corner cases have been checked and seem to work,
1106 * some might have been forgotten in the test however.
1107 */
1108
f2783c15
PM
1109 err = inscale * (mlt+1);
1110 if (err <= inscale/2)
1111 mlt++;
1da177e4 1112 return mlt;
f2783c15 1113}
1da177e4
LT
1114
1115/*
1116 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1117 * result.
1118 */
f2783c15
PM
1119void div128_by_32(u64 dividend_high, u64 dividend_low,
1120 unsigned divisor, struct div_result *dr)
1da177e4 1121{
f2783c15
PM
1122 unsigned long a, b, c, d;
1123 unsigned long w, x, y, z;
1124 u64 ra, rb, rc;
1da177e4
LT
1125
1126 a = dividend_high >> 32;
1127 b = dividend_high & 0xffffffff;
1128 c = dividend_low >> 32;
1129 d = dividend_low & 0xffffffff;
1130
f2783c15
PM
1131 w = a / divisor;
1132 ra = ((u64)(a - (w * divisor)) << 32) + b;
1133
f2783c15
PM
1134 rb = ((u64) do_div(ra, divisor) << 32) + c;
1135 x = ra;
1da177e4 1136
f2783c15
PM
1137 rc = ((u64) do_div(rb, divisor) << 32) + d;
1138 y = rb;
1139
1140 do_div(rc, divisor);
1141 z = rc;
1da177e4 1142
f2783c15
PM
1143 dr->result_high = ((u64)w << 32) + x;
1144 dr->result_low = ((u64)y << 32) + z;
1da177e4
LT
1145
1146}
This page took 0.30872 seconds and 5 git commands to generate.