Merge branch 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/aegl/linux-2.6
[deliverable/linux.git] / arch / powerpc / kernel / time.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Common time routines among all ppc machines.
3 *
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8 *
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
14 *
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17 *
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time. (for iSeries, we calibrate the timebase
21 * against the Titan chip's clock.)
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
25 *
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
1da177e4
LT
35#include <linux/errno.h>
36#include <linux/module.h>
37#include <linux/sched.h>
38#include <linux/kernel.h>
39#include <linux/param.h>
40#include <linux/string.h>
41#include <linux/mm.h>
42#include <linux/interrupt.h>
43#include <linux/timex.h>
44#include <linux/kernel_stat.h>
1da177e4
LT
45#include <linux/time.h>
46#include <linux/init.h>
47#include <linux/profile.h>
48#include <linux/cpu.h>
49#include <linux/security.h>
f2783c15
PM
50#include <linux/percpu.h>
51#include <linux/rtc.h>
092b8f34 52#include <linux/jiffies.h>
c6622f63 53#include <linux/posix-timers.h>
7d12e780 54#include <linux/irq.h>
177996e6 55#include <linux/delay.h>
e360adbe 56#include <linux/irq_work.h>
6795b85c 57#include <asm/trace.h>
1da177e4 58
1da177e4
LT
59#include <asm/io.h>
60#include <asm/processor.h>
61#include <asm/nvram.h>
62#include <asm/cache.h>
63#include <asm/machdep.h>
1da177e4
LT
64#include <asm/uaccess.h>
65#include <asm/time.h>
1da177e4 66#include <asm/prom.h>
f2783c15
PM
67#include <asm/irq.h>
68#include <asm/div64.h>
2249ca9d 69#include <asm/smp.h>
a7f290da 70#include <asm/vdso_datapage.h>
1ababe11 71#include <asm/firmware.h>
06b8e878 72#include <asm/cputime.h>
f2783c15 73#ifdef CONFIG_PPC_ISERIES
8875ccfb 74#include <asm/iseries/it_lp_queue.h>
8021b8a7 75#include <asm/iseries/hv_call_xm.h>
f2783c15 76#endif
1da177e4 77
4a4cfe38
TB
78/* powerpc clocksource/clockevent code */
79
d831d0b8 80#include <linux/clockchips.h>
4a4cfe38
TB
81#include <linux/clocksource.h>
82
8e19608e 83static cycle_t rtc_read(struct clocksource *);
4a4cfe38
TB
84static struct clocksource clocksource_rtc = {
85 .name = "rtc",
86 .rating = 400,
87 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
88 .mask = CLOCKSOURCE_MASK(64),
89 .shift = 22,
90 .mult = 0, /* To be filled in */
91 .read = rtc_read,
92};
93
8e19608e 94static cycle_t timebase_read(struct clocksource *);
4a4cfe38
TB
95static struct clocksource clocksource_timebase = {
96 .name = "timebase",
97 .rating = 400,
98 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
99 .mask = CLOCKSOURCE_MASK(64),
100 .shift = 22,
101 .mult = 0, /* To be filled in */
102 .read = timebase_read,
103};
104
d831d0b8
TB
105#define DECREMENTER_MAX 0x7fffffff
106
107static int decrementer_set_next_event(unsigned long evt,
108 struct clock_event_device *dev);
109static void decrementer_set_mode(enum clock_event_mode mode,
110 struct clock_event_device *dev);
111
112static struct clock_event_device decrementer_clockevent = {
113 .name = "decrementer",
114 .rating = 200,
8d165db1 115 .shift = 0, /* To be filled in */
d831d0b8
TB
116 .mult = 0, /* To be filled in */
117 .irq = 0,
118 .set_next_event = decrementer_set_next_event,
119 .set_mode = decrementer_set_mode,
120 .features = CLOCK_EVT_FEAT_ONESHOT,
121};
122
6e6b44e8
MM
123struct decrementer_clock {
124 struct clock_event_device event;
125 u64 next_tb;
126};
127
128static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
d831d0b8 129
1da177e4 130#ifdef CONFIG_PPC_ISERIES
71712b45
TB
131static unsigned long __initdata iSeries_recal_titan;
132static signed long __initdata iSeries_recal_tb;
4a4cfe38
TB
133
134/* Forward declaration is only needed for iSereis compiles */
1c21a293 135static void __init clocksource_init(void);
1da177e4
LT
136#endif
137
138#define XSEC_PER_SEC (1024*1024)
139
f2783c15
PM
140#ifdef CONFIG_PPC64
141#define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
142#else
143/* compute ((xsec << 12) * max) >> 32 */
144#define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
145#endif
146
1da177e4
LT
147unsigned long tb_ticks_per_jiffy;
148unsigned long tb_ticks_per_usec = 100; /* sane default */
149EXPORT_SYMBOL(tb_ticks_per_usec);
150unsigned long tb_ticks_per_sec;
2cf82c02 151EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
092b8f34 152
1da177e4 153DEFINE_SPINLOCK(rtc_lock);
6ae3db11 154EXPORT_SYMBOL_GPL(rtc_lock);
1da177e4 155
fc9069fe
TB
156static u64 tb_to_ns_scale __read_mostly;
157static unsigned tb_to_ns_shift __read_mostly;
364a1246 158static u64 boot_tb __read_mostly;
1da177e4 159
1da177e4 160extern struct timezone sys_tz;
f2783c15 161static long timezone_offset;
1da177e4 162
10f7e7c1 163unsigned long ppc_proc_freq;
55ec2fca 164EXPORT_SYMBOL_GPL(ppc_proc_freq);
10f7e7c1 165unsigned long ppc_tb_freq;
55ec2fca 166EXPORT_SYMBOL_GPL(ppc_tb_freq);
96c44507 167
c6622f63
PM
168#ifdef CONFIG_VIRT_CPU_ACCOUNTING
169/*
170 * Factors for converting from cputime_t (timebase ticks) to
171 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
172 * These are all stored as 0.64 fixed-point binary fractions.
173 */
174u64 __cputime_jiffies_factor;
2cf82c02 175EXPORT_SYMBOL(__cputime_jiffies_factor);
c6622f63 176u64 __cputime_msec_factor;
2cf82c02 177EXPORT_SYMBOL(__cputime_msec_factor);
c6622f63 178u64 __cputime_sec_factor;
2cf82c02 179EXPORT_SYMBOL(__cputime_sec_factor);
c6622f63 180u64 __cputime_clockt_factor;
2cf82c02 181EXPORT_SYMBOL(__cputime_clockt_factor);
06b8e878
MN
182DEFINE_PER_CPU(unsigned long, cputime_last_delta);
183DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
c6622f63 184
a42548a1
SG
185cputime_t cputime_one_jiffy;
186
872e439a
PM
187void (*dtl_consumer)(struct dtl_entry *, u64);
188
c6622f63
PM
189static void calc_cputime_factors(void)
190{
191 struct div_result res;
192
193 div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
194 __cputime_jiffies_factor = res.result_low;
195 div128_by_32(1000, 0, tb_ticks_per_sec, &res);
196 __cputime_msec_factor = res.result_low;
197 div128_by_32(1, 0, tb_ticks_per_sec, &res);
198 __cputime_sec_factor = res.result_low;
199 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
200 __cputime_clockt_factor = res.result_low;
201}
202
203/*
cf9efce0
PM
204 * Read the SPURR on systems that have it, otherwise the PURR,
205 * or if that doesn't exist return the timebase value passed in.
c6622f63 206 */
cf9efce0 207static u64 read_spurr(u64 tb)
c6622f63 208{
cf9efce0
PM
209 if (cpu_has_feature(CPU_FTR_SPURR))
210 return mfspr(SPRN_SPURR);
c6622f63
PM
211 if (cpu_has_feature(CPU_FTR_PURR))
212 return mfspr(SPRN_PURR);
cf9efce0 213 return tb;
c6622f63
PM
214}
215
cf9efce0
PM
216#ifdef CONFIG_PPC_SPLPAR
217
4603ac18 218/*
cf9efce0
PM
219 * Scan the dispatch trace log and count up the stolen time.
220 * Should be called with interrupts disabled.
4603ac18 221 */
cf9efce0 222static u64 scan_dispatch_log(u64 stop_tb)
4603ac18 223{
872e439a 224 u64 i = local_paca->dtl_ridx;
cf9efce0
PM
225 struct dtl_entry *dtl = local_paca->dtl_curr;
226 struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
227 struct lppaca *vpa = local_paca->lppaca_ptr;
228 u64 tb_delta;
229 u64 stolen = 0;
230 u64 dtb;
231
232 if (i == vpa->dtl_idx)
233 return 0;
234 while (i < vpa->dtl_idx) {
872e439a
PM
235 if (dtl_consumer)
236 dtl_consumer(dtl, i);
cf9efce0
PM
237 dtb = dtl->timebase;
238 tb_delta = dtl->enqueue_to_dispatch_time +
239 dtl->ready_to_enqueue_time;
240 barrier();
241 if (i + N_DISPATCH_LOG < vpa->dtl_idx) {
242 /* buffer has overflowed */
243 i = vpa->dtl_idx - N_DISPATCH_LOG;
244 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
245 continue;
246 }
247 if (dtb > stop_tb)
248 break;
249 stolen += tb_delta;
250 ++i;
251 ++dtl;
252 if (dtl == dtl_end)
253 dtl = local_paca->dispatch_log;
254 }
255 local_paca->dtl_ridx = i;
256 local_paca->dtl_curr = dtl;
257 return stolen;
4603ac18
MN
258}
259
cf9efce0
PM
260/*
261 * Accumulate stolen time by scanning the dispatch trace log.
262 * Called on entry from user mode.
263 */
264void accumulate_stolen_time(void)
265{
266 u64 sst, ust;
267
b18ae08d
TH
268 u8 save_soft_enabled = local_paca->soft_enabled;
269 u8 save_hard_enabled = local_paca->hard_enabled;
270
271 /* We are called early in the exception entry, before
272 * soft/hard_enabled are sync'ed to the expected state
273 * for the exception. We are hard disabled but the PACA
274 * needs to reflect that so various debug stuff doesn't
275 * complain
276 */
277 local_paca->soft_enabled = 0;
278 local_paca->hard_enabled = 0;
279
280 sst = scan_dispatch_log(local_paca->starttime_user);
281 ust = scan_dispatch_log(local_paca->starttime);
282 local_paca->system_time -= sst;
283 local_paca->user_time -= ust;
284 local_paca->stolen_time += ust + sst;
285
286 local_paca->soft_enabled = save_soft_enabled;
287 local_paca->hard_enabled = save_hard_enabled;
cf9efce0
PM
288}
289
290static inline u64 calculate_stolen_time(u64 stop_tb)
291{
292 u64 stolen = 0;
293
294 if (get_paca()->dtl_ridx != get_paca()->lppaca_ptr->dtl_idx) {
295 stolen = scan_dispatch_log(stop_tb);
296 get_paca()->system_time -= stolen;
297 }
298
299 stolen += get_paca()->stolen_time;
300 get_paca()->stolen_time = 0;
301 return stolen;
4603ac18
MN
302}
303
cf9efce0
PM
304#else /* CONFIG_PPC_SPLPAR */
305static inline u64 calculate_stolen_time(u64 stop_tb)
306{
307 return 0;
308}
309
310#endif /* CONFIG_PPC_SPLPAR */
311
c6622f63
PM
312/*
313 * Account time for a transition between system, hard irq
314 * or soft irq state.
315 */
316void account_system_vtime(struct task_struct *tsk)
317{
cf9efce0 318 u64 now, nowscaled, delta, deltascaled;
c6622f63 319 unsigned long flags;
cf9efce0 320 u64 stolen, udelta, sys_scaled, user_scaled;
c6622f63
PM
321
322 local_irq_save(flags);
cf9efce0 323 now = mftb();
4603ac18 324 nowscaled = read_spurr(now);
cf9efce0
PM
325 get_paca()->system_time += now - get_paca()->starttime;
326 get_paca()->starttime = now;
4603ac18
MN
327 deltascaled = nowscaled - get_paca()->startspurr;
328 get_paca()->startspurr = nowscaled;
cf9efce0
PM
329
330 stolen = calculate_stolen_time(now);
331
332 delta = get_paca()->system_time;
333 get_paca()->system_time = 0;
334 udelta = get_paca()->user_time - get_paca()->utime_sspurr;
335 get_paca()->utime_sspurr = get_paca()->user_time;
336
337 /*
338 * Because we don't read the SPURR on every kernel entry/exit,
339 * deltascaled includes both user and system SPURR ticks.
340 * Apportion these ticks to system SPURR ticks and user
341 * SPURR ticks in the same ratio as the system time (delta)
342 * and user time (udelta) values obtained from the timebase
343 * over the same interval. The system ticks get accounted here;
344 * the user ticks get saved up in paca->user_time_scaled to be
345 * used by account_process_tick.
346 */
347 sys_scaled = delta;
348 user_scaled = udelta;
349 if (deltascaled != delta + udelta) {
350 if (udelta) {
351 sys_scaled = deltascaled * delta / (delta + udelta);
352 user_scaled = deltascaled - sys_scaled;
353 } else {
354 sys_scaled = deltascaled;
355 }
356 }
357 get_paca()->user_time_scaled += user_scaled;
358
ad5d1c88 359 if (in_interrupt() || idle_task(smp_processor_id()) != tsk) {
cf9efce0
PM
360 account_system_time(tsk, 0, delta, sys_scaled);
361 if (stolen)
362 account_steal_time(stolen);
363 } else {
364 account_idle_time(delta + stolen);
c6622f63 365 }
c6622f63
PM
366 local_irq_restore(flags);
367}
4ab79aa8 368EXPORT_SYMBOL_GPL(account_system_vtime);
c6622f63
PM
369
370/*
371 * Transfer the user and system times accumulated in the paca
372 * by the exception entry and exit code to the generic process
373 * user and system time records.
374 * Must be called with interrupts disabled.
cf9efce0
PM
375 * Assumes that account_system_vtime() has been called recently
376 * (i.e. since the last entry from usermode) so that
377 * get_paca()->user_time_scaled is up to date.
c6622f63 378 */
fa13a5a1 379void account_process_tick(struct task_struct *tsk, int user_tick)
c6622f63 380{
4603ac18 381 cputime_t utime, utimescaled;
c6622f63
PM
382
383 utime = get_paca()->user_time;
cf9efce0 384 utimescaled = get_paca()->user_time_scaled;
c6622f63 385 get_paca()->user_time = 0;
cf9efce0
PM
386 get_paca()->user_time_scaled = 0;
387 get_paca()->utime_sspurr = 0;
457533a7 388 account_user_time(tsk, utime, utimescaled);
c6622f63
PM
389}
390
c6622f63
PM
391#else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
392#define calc_cputime_factors()
c6622f63
PM
393#endif
394
6defa38b
PM
395void __delay(unsigned long loops)
396{
397 unsigned long start;
398 int diff;
399
400 if (__USE_RTC()) {
401 start = get_rtcl();
402 do {
403 /* the RTCL register wraps at 1000000000 */
404 diff = get_rtcl() - start;
405 if (diff < 0)
406 diff += 1000000000;
407 } while (diff < loops);
408 } else {
409 start = get_tbl();
410 while (get_tbl() - start < loops)
411 HMT_low();
412 HMT_medium();
413 }
414}
415EXPORT_SYMBOL(__delay);
416
417void udelay(unsigned long usecs)
418{
419 __delay(tb_ticks_per_usec * usecs);
420}
421EXPORT_SYMBOL(udelay);
422
1da177e4
LT
423#ifdef CONFIG_SMP
424unsigned long profile_pc(struct pt_regs *regs)
425{
426 unsigned long pc = instruction_pointer(regs);
427
428 if (in_lock_functions(pc))
429 return regs->link;
430
431 return pc;
432}
433EXPORT_SYMBOL(profile_pc);
434#endif
435
436#ifdef CONFIG_PPC_ISERIES
437
438/*
439 * This function recalibrates the timebase based on the 49-bit time-of-day
440 * value in the Titan chip. The Titan is much more accurate than the value
441 * returned by the service processor for the timebase frequency.
442 */
443
71712b45 444static int __init iSeries_tb_recal(void)
1da177e4 445{
1da177e4 446 unsigned long titan, tb;
71712b45
TB
447
448 /* Make sure we only run on iSeries */
449 if (!firmware_has_feature(FW_FEATURE_ISERIES))
450 return -ENODEV;
451
1da177e4
LT
452 tb = get_tb();
453 titan = HvCallXm_loadTod();
454 if ( iSeries_recal_titan ) {
455 unsigned long tb_ticks = tb - iSeries_recal_tb;
456 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
457 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
14ea58ad
JL
458 unsigned long new_tb_ticks_per_jiffy =
459 DIV_ROUND_CLOSEST(new_tb_ticks_per_sec, HZ);
1da177e4
LT
460 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
461 char sign = '+';
462 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
463 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
464
465 if ( tick_diff < 0 ) {
466 tick_diff = -tick_diff;
467 sign = '-';
468 }
469 if ( tick_diff ) {
470 if ( tick_diff < tb_ticks_per_jiffy/25 ) {
471 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
472 new_tb_ticks_per_jiffy, sign, tick_diff );
473 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
474 tb_ticks_per_sec = new_tb_ticks_per_sec;
c6622f63 475 calc_cputime_factors();
a7f290da 476 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
a42548a1 477 setup_cputime_one_jiffy();
1da177e4
LT
478 }
479 else {
480 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
481 " new tb_ticks_per_jiffy = %lu\n"
482 " old tb_ticks_per_jiffy = %lu\n",
483 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
484 }
485 }
486 }
487 iSeries_recal_titan = titan;
488 iSeries_recal_tb = tb;
71712b45 489
4a4cfe38
TB
490 /* Called here as now we know accurate values for the timebase */
491 clocksource_init();
71712b45 492 return 0;
1da177e4 493}
71712b45
TB
494late_initcall(iSeries_tb_recal);
495
496/* Called from platform early init */
497void __init iSeries_time_init_early(void)
498{
499 iSeries_recal_tb = get_tb();
500 iSeries_recal_titan = HvCallXm_loadTod();
501}
502#endif /* CONFIG_PPC_ISERIES */
1da177e4 503
e360adbe 504#ifdef CONFIG_IRQ_WORK
105988c0 505
0fe1ac48
PM
506/*
507 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
508 */
509#ifdef CONFIG_PPC64
e360adbe 510static inline unsigned long test_irq_work_pending(void)
105988c0 511{
0fe1ac48
PM
512 unsigned long x;
513
514 asm volatile("lbz %0,%1(13)"
515 : "=r" (x)
e360adbe 516 : "i" (offsetof(struct paca_struct, irq_work_pending)));
0fe1ac48
PM
517 return x;
518}
519
e360adbe 520static inline void set_irq_work_pending_flag(void)
0fe1ac48
PM
521{
522 asm volatile("stb %0,%1(13)" : :
523 "r" (1),
e360adbe 524 "i" (offsetof(struct paca_struct, irq_work_pending)));
0fe1ac48
PM
525}
526
e360adbe 527static inline void clear_irq_work_pending(void)
0fe1ac48
PM
528{
529 asm volatile("stb %0,%1(13)" : :
530 "r" (0),
e360adbe 531 "i" (offsetof(struct paca_struct, irq_work_pending)));
105988c0
PM
532}
533
0fe1ac48
PM
534#else /* 32-bit */
535
e360adbe 536DEFINE_PER_CPU(u8, irq_work_pending);
0fe1ac48 537
e360adbe
PZ
538#define set_irq_work_pending_flag() __get_cpu_var(irq_work_pending) = 1
539#define test_irq_work_pending() __get_cpu_var(irq_work_pending)
540#define clear_irq_work_pending() __get_cpu_var(irq_work_pending) = 0
105988c0 541
0fe1ac48
PM
542#endif /* 32 vs 64 bit */
543
e360adbe 544void set_irq_work_pending(void)
0fe1ac48
PM
545{
546 preempt_disable();
e360adbe 547 set_irq_work_pending_flag();
0fe1ac48
PM
548 set_dec(1);
549 preempt_enable();
550}
551
e360adbe 552#else /* CONFIG_IRQ_WORK */
105988c0 553
e360adbe
PZ
554#define test_irq_work_pending() 0
555#define clear_irq_work_pending()
105988c0 556
e360adbe 557#endif /* CONFIG_IRQ_WORK */
105988c0 558
1da177e4
LT
559/*
560 * For iSeries shared processors, we have to let the hypervisor
561 * set the hardware decrementer. We set a virtual decrementer
562 * in the lppaca and call the hypervisor if the virtual
563 * decrementer is less than the current value in the hardware
564 * decrementer. (almost always the new decrementer value will
565 * be greater than the current hardware decementer so the hypervisor
566 * call will not be needed)
567 */
568
1da177e4
LT
569/*
570 * timer_interrupt - gets called when the decrementer overflows,
571 * with interrupts disabled.
572 */
c7aeffc4 573void timer_interrupt(struct pt_regs * regs)
1da177e4 574{
7d12e780 575 struct pt_regs *old_regs;
6e6b44e8
MM
576 struct decrementer_clock *decrementer = &__get_cpu_var(decrementers);
577 struct clock_event_device *evt = &decrementer->event;
d968014b 578 u64 now;
d831d0b8 579
6795b85c
AB
580 trace_timer_interrupt_entry(regs);
581
89713ed1
AB
582 __get_cpu_var(irq_stat).timer_irqs++;
583
d831d0b8
TB
584 /* Ensure a positive value is written to the decrementer, or else
585 * some CPUs will continuue to take decrementer exceptions */
586 set_dec(DECREMENTER_MAX);
f2783c15 587
b0d278b7 588#if defined(CONFIG_PPC32) && defined(CONFIG_PMAC)
f2783c15
PM
589 if (atomic_read(&ppc_n_lost_interrupts) != 0)
590 do_IRQ(regs);
591#endif
1da177e4 592
7d12e780 593 old_regs = set_irq_regs(regs);
1da177e4
LT
594 irq_enter();
595
e360adbe
PZ
596 if (test_irq_work_pending()) {
597 clear_irq_work_pending();
598 irq_work_run();
0fe1ac48
PM
599 }
600
f2783c15 601#ifdef CONFIG_PPC_ISERIES
501b6d29
SR
602 if (firmware_has_feature(FW_FEATURE_ISERIES))
603 get_lppaca()->int_dword.fields.decr_int = 0;
f2783c15
PM
604#endif
605
b0d278b7
PM
606 now = get_tb_or_rtc();
607 if (now >= decrementer->next_tb) {
608 decrementer->next_tb = ~(u64)0;
609 if (evt->event_handler)
610 evt->event_handler(evt);
611 } else {
612 now = decrementer->next_tb - now;
613 if (now <= DECREMENTER_MAX)
614 set_dec((int)now);
615 }
1da177e4
LT
616
617#ifdef CONFIG_PPC_ISERIES
501b6d29 618 if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
35a84c2f 619 process_hvlpevents();
1da177e4
LT
620#endif
621
f2783c15 622#ifdef CONFIG_PPC64
8d15a3e5 623 /* collect purr register values often, for accurate calculations */
1ababe11 624 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1da177e4
LT
625 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
626 cu->current_tb = mfspr(SPRN_PURR);
627 }
f2783c15 628#endif
1da177e4
LT
629
630 irq_exit();
7d12e780 631 set_irq_regs(old_regs);
6795b85c
AB
632
633 trace_timer_interrupt_exit(regs);
1da177e4
LT
634}
635
7ac5dde9 636#ifdef CONFIG_SUSPEND
d75d68cf 637static void generic_suspend_disable_irqs(void)
7ac5dde9 638{
7ac5dde9
SW
639 /* Disable the decrementer, so that it doesn't interfere
640 * with suspending.
641 */
642
643 set_dec(0x7fffffff);
644 local_irq_disable();
645 set_dec(0x7fffffff);
646}
647
d75d68cf 648static void generic_suspend_enable_irqs(void)
7ac5dde9 649{
7ac5dde9 650 local_irq_enable();
7ac5dde9
SW
651}
652
653/* Overrides the weak version in kernel/power/main.c */
654void arch_suspend_disable_irqs(void)
655{
656 if (ppc_md.suspend_disable_irqs)
657 ppc_md.suspend_disable_irqs();
658 generic_suspend_disable_irqs();
659}
660
661/* Overrides the weak version in kernel/power/main.c */
662void arch_suspend_enable_irqs(void)
663{
664 generic_suspend_enable_irqs();
665 if (ppc_md.suspend_enable_irqs)
666 ppc_md.suspend_enable_irqs();
667}
668#endif
669
1da177e4
LT
670/*
671 * Scheduler clock - returns current time in nanosec units.
672 *
673 * Note: mulhdu(a, b) (multiply high double unsigned) returns
674 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
675 * are 64-bit unsigned numbers.
676 */
677unsigned long long sched_clock(void)
678{
96c44507
PM
679 if (__USE_RTC())
680 return get_rtc();
fc9069fe 681 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
1da177e4
LT
682}
683
0bb474a4 684static int __init get_freq(char *name, int cells, unsigned long *val)
10f7e7c1
AB
685{
686 struct device_node *cpu;
a7f67bdf 687 const unsigned int *fp;
0bb474a4 688 int found = 0;
10f7e7c1 689
0bb474a4 690 /* The cpu node should have timebase and clock frequency properties */
10f7e7c1
AB
691 cpu = of_find_node_by_type(NULL, "cpu");
692
d8a8188d 693 if (cpu) {
e2eb6392 694 fp = of_get_property(cpu, name, NULL);
d8a8188d 695 if (fp) {
0bb474a4 696 found = 1;
a4dc7ff0 697 *val = of_read_ulong(fp, cells);
10f7e7c1 698 }
0bb474a4
AB
699
700 of_node_put(cpu);
10f7e7c1 701 }
0bb474a4
AB
702
703 return found;
704}
705
77c0a700
BH
706/* should become __cpuinit when secondary_cpu_time_init also is */
707void start_cpu_decrementer(void)
708{
709#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
710 /* Clear any pending timer interrupts */
711 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
712
713 /* Enable decrementer interrupt */
714 mtspr(SPRN_TCR, TCR_DIE);
715#endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
716}
717
0bb474a4
AB
718void __init generic_calibrate_decr(void)
719{
720 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
721
722 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
723 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
724
10f7e7c1
AB
725 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
726 "(not found)\n");
0bb474a4 727 }
10f7e7c1 728
0bb474a4
AB
729 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
730
731 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
732 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
733
734 printk(KERN_ERR "WARNING: Estimating processor frequency "
735 "(not found)\n");
10f7e7c1 736 }
10f7e7c1 737}
10f7e7c1 738
aa3be5f3 739int update_persistent_clock(struct timespec now)
f2783c15
PM
740{
741 struct rtc_time tm;
742
aa3be5f3
TB
743 if (!ppc_md.set_rtc_time)
744 return 0;
745
746 to_tm(now.tv_sec + 1 + timezone_offset, &tm);
747 tm.tm_year -= 1900;
748 tm.tm_mon -= 1;
749
750 return ppc_md.set_rtc_time(&tm);
751}
752
978d7eb3 753static void __read_persistent_clock(struct timespec *ts)
aa3be5f3
TB
754{
755 struct rtc_time tm;
756 static int first = 1;
757
d90246cd 758 ts->tv_nsec = 0;
aa3be5f3
TB
759 /* XXX this is a litle fragile but will work okay in the short term */
760 if (first) {
761 first = 0;
762 if (ppc_md.time_init)
763 timezone_offset = ppc_md.time_init();
764
765 /* get_boot_time() isn't guaranteed to be safe to call late */
d90246cd
MS
766 if (ppc_md.get_boot_time) {
767 ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
768 return;
769 }
770 }
771 if (!ppc_md.get_rtc_time) {
772 ts->tv_sec = 0;
773 return;
aa3be5f3 774 }
f2783c15 775 ppc_md.get_rtc_time(&tm);
978d7eb3 776
d4f587c6
MS
777 ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
778 tm.tm_hour, tm.tm_min, tm.tm_sec);
f2783c15
PM
779}
780
978d7eb3
BH
781void read_persistent_clock(struct timespec *ts)
782{
783 __read_persistent_clock(ts);
784
785 /* Sanitize it in case real time clock is set below EPOCH */
786 if (ts->tv_sec < 0) {
787 ts->tv_sec = 0;
788 ts->tv_nsec = 0;
789 }
790
791}
792
4a4cfe38 793/* clocksource code */
8e19608e 794static cycle_t rtc_read(struct clocksource *cs)
4a4cfe38
TB
795{
796 return (cycle_t)get_rtc();
797}
798
8e19608e 799static cycle_t timebase_read(struct clocksource *cs)
4a4cfe38
TB
800{
801 return (cycle_t)get_tb();
802}
803
7615856e
JS
804void update_vsyscall(struct timespec *wall_time, struct timespec *wtm,
805 struct clocksource *clock, u32 mult)
4a4cfe38 806{
b0797b60 807 u64 new_tb_to_xs, new_stamp_xsec;
47916be4 808 u32 frac_sec;
4a4cfe38
TB
809
810 if (clock != &clocksource_timebase)
811 return;
812
813 /* Make userspace gettimeofday spin until we're done. */
814 ++vdso_data->tb_update_count;
815 smp_mb();
816
817 /* XXX this assumes clock->shift == 22 */
818 /* 4611686018 ~= 2^(20+64-22) / 1e9 */
b0797b60 819 new_tb_to_xs = (u64) mult * 4611686018ULL;
06d518e3 820 new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
b0797b60 821 do_div(new_stamp_xsec, 1000000000);
06d518e3 822 new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
b0797b60 823
47916be4
TG
824 BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
825 /* this is tv_nsec / 1e9 as a 0.32 fraction */
826 frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
827
b0797b60
JS
828 /*
829 * tb_update_count is used to allow the userspace gettimeofday code
830 * to assure itself that it sees a consistent view of the tb_to_xs and
831 * stamp_xsec variables. It reads the tb_update_count, then reads
832 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
833 * the two values of tb_update_count match and are even then the
834 * tb_to_xs and stamp_xsec values are consistent. If not, then it
835 * loops back and reads them again until this criteria is met.
836 * We expect the caller to have done the first increment of
837 * vdso_data->tb_update_count already.
838 */
839 vdso_data->tb_orig_stamp = clock->cycle_last;
840 vdso_data->stamp_xsec = new_stamp_xsec;
841 vdso_data->tb_to_xs = new_tb_to_xs;
7615856e
JS
842 vdso_data->wtom_clock_sec = wtm->tv_sec;
843 vdso_data->wtom_clock_nsec = wtm->tv_nsec;
06d518e3 844 vdso_data->stamp_xtime = *wall_time;
0e469db8 845 vdso_data->stamp_sec_fraction = frac_sec;
b0797b60
JS
846 smp_wmb();
847 ++(vdso_data->tb_update_count);
4a4cfe38
TB
848}
849
850void update_vsyscall_tz(void)
851{
852 /* Make userspace gettimeofday spin until we're done. */
853 ++vdso_data->tb_update_count;
854 smp_mb();
855 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
856 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
857 smp_mb();
858 ++vdso_data->tb_update_count;
859}
860
1c21a293 861static void __init clocksource_init(void)
4a4cfe38
TB
862{
863 struct clocksource *clock;
864
865 if (__USE_RTC())
866 clock = &clocksource_rtc;
867 else
868 clock = &clocksource_timebase;
869
870 clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
871
872 if (clocksource_register(clock)) {
873 printk(KERN_ERR "clocksource: %s is already registered\n",
874 clock->name);
875 return;
876 }
877
878 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
879 clock->name, clock->mult, clock->shift);
880}
881
d831d0b8
TB
882static int decrementer_set_next_event(unsigned long evt,
883 struct clock_event_device *dev)
884{
6e6b44e8 885 __get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
d831d0b8
TB
886 set_dec(evt);
887 return 0;
888}
889
890static void decrementer_set_mode(enum clock_event_mode mode,
891 struct clock_event_device *dev)
892{
893 if (mode != CLOCK_EVT_MODE_ONESHOT)
894 decrementer_set_next_event(DECREMENTER_MAX, dev);
895}
896
3e7b4843
SR
897static inline uint64_t div_sc64(unsigned long ticks, unsigned long nsec,
898 int shift)
899{
900 uint64_t tmp = ((uint64_t)ticks) << shift;
901
902 do_div(tmp, nsec);
903 return tmp;
904}
905
8d165db1
AB
906static void __init setup_clockevent_multiplier(unsigned long hz)
907{
908 u64 mult, shift = 32;
909
910 while (1) {
3e7b4843 911 mult = div_sc64(hz, NSEC_PER_SEC, shift);
8d165db1
AB
912 if (mult && (mult >> 32UL) == 0UL)
913 break;
914
915 shift--;
916 }
917
918 decrementer_clockevent.shift = shift;
919 decrementer_clockevent.mult = mult;
920}
921
d831d0b8
TB
922static void register_decrementer_clockevent(int cpu)
923{
6e6b44e8 924 struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
d831d0b8
TB
925
926 *dec = decrementer_clockevent;
320ab2b0 927 dec->cpumask = cpumask_of(cpu);
d831d0b8 928
b919ee82
AB
929 printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
930 dec->name, dec->mult, dec->shift, cpu);
d831d0b8
TB
931
932 clockevents_register_device(dec);
933}
934
c481887f 935static void __init init_decrementer_clockevent(void)
d831d0b8
TB
936{
937 int cpu = smp_processor_id();
938
8d165db1 939 setup_clockevent_multiplier(ppc_tb_freq);
d831d0b8
TB
940 decrementer_clockevent.max_delta_ns =
941 clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
43875cc0
PM
942 decrementer_clockevent.min_delta_ns =
943 clockevent_delta2ns(2, &decrementer_clockevent);
d831d0b8
TB
944
945 register_decrementer_clockevent(cpu);
946}
947
948void secondary_cpu_time_init(void)
949{
77c0a700
BH
950 /* Start the decrementer on CPUs that have manual control
951 * such as BookE
952 */
953 start_cpu_decrementer();
954
d831d0b8
TB
955 /* FIME: Should make unrelatred change to move snapshot_timebase
956 * call here ! */
957 register_decrementer_clockevent(smp_processor_id());
958}
959
f2783c15 960/* This function is only called on the boot processor */
1da177e4
LT
961void __init time_init(void)
962{
1da177e4 963 struct div_result res;
d75d68cf 964 u64 scale;
f2783c15
PM
965 unsigned shift;
966
96c44507
PM
967 if (__USE_RTC()) {
968 /* 601 processor: dec counts down by 128 every 128ns */
969 ppc_tb_freq = 1000000000;
96c44507
PM
970 } else {
971 /* Normal PowerPC with timebase register */
972 ppc_md.calibrate_decr();
224ad80a 973 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
96c44507 974 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
224ad80a 975 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
96c44507 976 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
96c44507 977 }
374e99d4
PM
978
979 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
092b8f34 980 tb_ticks_per_sec = ppc_tb_freq;
374e99d4 981 tb_ticks_per_usec = ppc_tb_freq / 1000000;
c6622f63 982 calc_cputime_factors();
a42548a1 983 setup_cputime_one_jiffy();
092b8f34 984
1da177e4
LT
985 /*
986 * Compute scale factor for sched_clock.
987 * The calibrate_decr() function has set tb_ticks_per_sec,
988 * which is the timebase frequency.
989 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
990 * the 128-bit result as a 64.64 fixed-point number.
991 * We then shift that number right until it is less than 1.0,
992 * giving us the scale factor and shift count to use in
993 * sched_clock().
994 */
995 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
996 scale = res.result_low;
997 for (shift = 0; res.result_high != 0; ++shift) {
998 scale = (scale >> 1) | (res.result_high << 63);
999 res.result_high >>= 1;
1000 }
1001 tb_to_ns_scale = scale;
1002 tb_to_ns_shift = shift;
fc9069fe 1003 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
c27da339 1004 boot_tb = get_tb_or_rtc();
1da177e4 1005
092b8f34
PM
1006 /* If platform provided a timezone (pmac), we correct the time */
1007 if (timezone_offset) {
1008 sys_tz.tz_minuteswest = -timezone_offset / 60;
1009 sys_tz.tz_dsttime = 0;
092b8f34
PM
1010 }
1011
a7f290da
BH
1012 vdso_data->tb_update_count = 0;
1013 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1da177e4 1014
77c0a700
BH
1015 /* Start the decrementer on CPUs that have manual control
1016 * such as BookE
1017 */
1018 start_cpu_decrementer();
1019
4a4cfe38
TB
1020 /* Register the clocksource, if we're not running on iSeries */
1021 if (!firmware_has_feature(FW_FEATURE_ISERIES))
1022 clocksource_init();
1023
d831d0b8 1024 init_decrementer_clockevent();
1da177e4
LT
1025}
1026
1da177e4 1027
1da177e4
LT
1028#define FEBRUARY 2
1029#define STARTOFTIME 1970
1030#define SECDAY 86400L
1031#define SECYR (SECDAY * 365)
f2783c15
PM
1032#define leapyear(year) ((year) % 4 == 0 && \
1033 ((year) % 100 != 0 || (year) % 400 == 0))
1da177e4
LT
1034#define days_in_year(a) (leapyear(a) ? 366 : 365)
1035#define days_in_month(a) (month_days[(a) - 1])
1036
1037static int month_days[12] = {
1038 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1039};
1040
1041/*
1042 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1043 */
1044void GregorianDay(struct rtc_time * tm)
1045{
1046 int leapsToDate;
1047 int lastYear;
1048 int day;
1049 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1050
f2783c15 1051 lastYear = tm->tm_year - 1;
1da177e4
LT
1052
1053 /*
1054 * Number of leap corrections to apply up to end of last year
1055 */
f2783c15 1056 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1da177e4
LT
1057
1058 /*
1059 * This year is a leap year if it is divisible by 4 except when it is
1060 * divisible by 100 unless it is divisible by 400
1061 *
f2783c15 1062 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1da177e4 1063 */
f2783c15 1064 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1da177e4
LT
1065
1066 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1067 tm->tm_mday;
1068
f2783c15 1069 tm->tm_wday = day % 7;
1da177e4
LT
1070}
1071
1072void to_tm(int tim, struct rtc_time * tm)
1073{
1074 register int i;
1075 register long hms, day;
1076
1077 day = tim / SECDAY;
1078 hms = tim % SECDAY;
1079
1080 /* Hours, minutes, seconds are easy */
1081 tm->tm_hour = hms / 3600;
1082 tm->tm_min = (hms % 3600) / 60;
1083 tm->tm_sec = (hms % 3600) % 60;
1084
1085 /* Number of years in days */
1086 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1087 day -= days_in_year(i);
1088 tm->tm_year = i;
1089
1090 /* Number of months in days left */
1091 if (leapyear(tm->tm_year))
1092 days_in_month(FEBRUARY) = 29;
1093 for (i = 1; day >= days_in_month(i); i++)
1094 day -= days_in_month(i);
1095 days_in_month(FEBRUARY) = 28;
1096 tm->tm_mon = i;
1097
1098 /* Days are what is left over (+1) from all that. */
1099 tm->tm_mday = day + 1;
1100
1101 /*
1102 * Determine the day of week
1103 */
1104 GregorianDay(tm);
1105}
1106
1da177e4
LT
1107/*
1108 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1109 * result.
1110 */
f2783c15
PM
1111void div128_by_32(u64 dividend_high, u64 dividend_low,
1112 unsigned divisor, struct div_result *dr)
1da177e4 1113{
f2783c15
PM
1114 unsigned long a, b, c, d;
1115 unsigned long w, x, y, z;
1116 u64 ra, rb, rc;
1da177e4
LT
1117
1118 a = dividend_high >> 32;
1119 b = dividend_high & 0xffffffff;
1120 c = dividend_low >> 32;
1121 d = dividend_low & 0xffffffff;
1122
f2783c15
PM
1123 w = a / divisor;
1124 ra = ((u64)(a - (w * divisor)) << 32) + b;
1125
f2783c15
PM
1126 rb = ((u64) do_div(ra, divisor) << 32) + c;
1127 x = ra;
1da177e4 1128
f2783c15
PM
1129 rc = ((u64) do_div(rb, divisor) << 32) + d;
1130 y = rb;
1131
1132 do_div(rc, divisor);
1133 z = rc;
1da177e4 1134
f2783c15
PM
1135 dr->result_high = ((u64)w << 32) + x;
1136 dr->result_low = ((u64)y << 32) + z;
1da177e4
LT
1137
1138}
bcd68a70 1139
177996e6
BH
1140/* We don't need to calibrate delay, we use the CPU timebase for that */
1141void calibrate_delay(void)
1142{
1143 /* Some generic code (such as spinlock debug) use loops_per_jiffy
1144 * as the number of __delay(1) in a jiffy, so make it so
1145 */
1146 loops_per_jiffy = tb_ticks_per_jiffy;
1147}
1148
bcd68a70
GU
1149static int __init rtc_init(void)
1150{
1151 struct platform_device *pdev;
1152
1153 if (!ppc_md.get_rtc_time)
1154 return -ENODEV;
1155
1156 pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
1157 if (IS_ERR(pdev))
1158 return PTR_ERR(pdev);
1159
1160 return 0;
1161}
1162
1163module_init(rtc_init);
This page took 0.554727 seconds and 5 git commands to generate.