KVM: PPC: Fix Book3S_64 Host MMU debug output
[deliverable/linux.git] / arch / powerpc / kvm / book3s_64_mmu_host.c
CommitLineData
0d8dc681
AG
1/*
2 * Copyright (C) 2009 SUSE Linux Products GmbH. All rights reserved.
3 *
4 * Authors:
5 * Alexander Graf <agraf@suse.de>
6 * Kevin Wolf <mail@kevin-wolf.de>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License, version 2, as
10 * published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
20 */
21
22#include <linux/kvm_host.h>
23
24#include <asm/kvm_ppc.h>
25#include <asm/kvm_book3s.h>
26#include <asm/mmu-hash64.h>
27#include <asm/machdep.h>
28#include <asm/mmu_context.h>
29#include <asm/hw_irq.h>
30
31#define PTE_SIZE 12
32#define VSID_ALL 0
33
34/* #define DEBUG_MMU */
35/* #define DEBUG_SLB */
36
37#ifdef DEBUG_MMU
38#define dprintk_mmu(a, ...) printk(KERN_INFO a, __VA_ARGS__)
39#else
40#define dprintk_mmu(a, ...) do { } while(0)
41#endif
42
43#ifdef DEBUG_SLB
44#define dprintk_slb(a, ...) printk(KERN_INFO a, __VA_ARGS__)
45#else
46#define dprintk_slb(a, ...) do { } while(0)
47#endif
48
49static void invalidate_pte(struct hpte_cache *pte)
50{
5156f274
AG
51 dprintk_mmu("KVM: Flushing SPT: 0x%lx (0x%llx) -> 0x%llx\n",
52 pte->pte.eaddr, pte->pte.vpage, pte->host_va);
0d8dc681
AG
53
54 ppc_md.hpte_invalidate(pte->slot, pte->host_va,
55 MMU_PAGE_4K, MMU_SEGSIZE_256M,
56 false);
57 pte->host_va = 0;
33fd27c7
AG
58
59 if (pte->pte.may_write)
60 kvm_release_pfn_dirty(pte->pfn);
61 else
62 kvm_release_pfn_clean(pte->pfn);
0d8dc681
AG
63}
64
af7b4d10 65void kvmppc_mmu_pte_flush(struct kvm_vcpu *vcpu, ulong guest_ea, ulong ea_mask)
0d8dc681
AG
66{
67 int i;
68
5156f274 69 dprintk_mmu("KVM: Flushing %d Shadow PTEs: 0x%lx & 0x%lx\n",
0d8dc681
AG
70 vcpu->arch.hpte_cache_offset, guest_ea, ea_mask);
71 BUG_ON(vcpu->arch.hpte_cache_offset > HPTEG_CACHE_NUM);
72
73 guest_ea &= ea_mask;
74 for (i = 0; i < vcpu->arch.hpte_cache_offset; i++) {
75 struct hpte_cache *pte;
76
77 pte = &vcpu->arch.hpte_cache[i];
78 if (!pte->host_va)
79 continue;
80
81 if ((pte->pte.eaddr & ea_mask) == guest_ea) {
82 invalidate_pte(pte);
83 }
84 }
85
86 /* Doing a complete flush -> start from scratch */
87 if (!ea_mask)
88 vcpu->arch.hpte_cache_offset = 0;
89}
90
91void kvmppc_mmu_pte_vflush(struct kvm_vcpu *vcpu, u64 guest_vp, u64 vp_mask)
92{
93 int i;
94
95 dprintk_mmu("KVM: Flushing %d Shadow vPTEs: 0x%llx & 0x%llx\n",
96 vcpu->arch.hpte_cache_offset, guest_vp, vp_mask);
97 BUG_ON(vcpu->arch.hpte_cache_offset > HPTEG_CACHE_NUM);
98
99 guest_vp &= vp_mask;
100 for (i = 0; i < vcpu->arch.hpte_cache_offset; i++) {
101 struct hpte_cache *pte;
102
103 pte = &vcpu->arch.hpte_cache[i];
104 if (!pte->host_va)
105 continue;
106
107 if ((pte->pte.vpage & vp_mask) == guest_vp) {
108 invalidate_pte(pte);
109 }
110 }
111}
112
af7b4d10 113void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
0d8dc681
AG
114{
115 int i;
116
5156f274
AG
117 dprintk_mmu("KVM: Flushing %d Shadow pPTEs: 0x%lx & 0x%lx\n",
118 vcpu->arch.hpte_cache_offset, pa_start, pa_end);
0d8dc681
AG
119 BUG_ON(vcpu->arch.hpte_cache_offset > HPTEG_CACHE_NUM);
120
121 for (i = 0; i < vcpu->arch.hpte_cache_offset; i++) {
122 struct hpte_cache *pte;
123
124 pte = &vcpu->arch.hpte_cache[i];
125 if (!pte->host_va)
126 continue;
127
128 if ((pte->pte.raddr >= pa_start) &&
129 (pte->pte.raddr < pa_end)) {
130 invalidate_pte(pte);
131 }
132 }
133}
134
135struct kvmppc_pte *kvmppc_mmu_find_pte(struct kvm_vcpu *vcpu, u64 ea, bool data)
136{
137 int i;
138 u64 guest_vp;
139
140 guest_vp = vcpu->arch.mmu.ea_to_vp(vcpu, ea, false);
141 for (i=0; i<vcpu->arch.hpte_cache_offset; i++) {
142 struct hpte_cache *pte;
143
144 pte = &vcpu->arch.hpte_cache[i];
145 if (!pte->host_va)
146 continue;
147
148 if (pte->pte.vpage == guest_vp)
149 return &pte->pte;
150 }
151
152 return NULL;
153}
154
155static int kvmppc_mmu_hpte_cache_next(struct kvm_vcpu *vcpu)
156{
157 if (vcpu->arch.hpte_cache_offset == HPTEG_CACHE_NUM)
158 kvmppc_mmu_pte_flush(vcpu, 0, 0);
159
160 return vcpu->arch.hpte_cache_offset++;
161}
162
163/* We keep 512 gvsid->hvsid entries, mapping the guest ones to the array using
164 * a hash, so we don't waste cycles on looping */
165static u16 kvmppc_sid_hash(struct kvm_vcpu *vcpu, u64 gvsid)
166{
167 return (u16)(((gvsid >> (SID_MAP_BITS * 7)) & SID_MAP_MASK) ^
168 ((gvsid >> (SID_MAP_BITS * 6)) & SID_MAP_MASK) ^
169 ((gvsid >> (SID_MAP_BITS * 5)) & SID_MAP_MASK) ^
170 ((gvsid >> (SID_MAP_BITS * 4)) & SID_MAP_MASK) ^
171 ((gvsid >> (SID_MAP_BITS * 3)) & SID_MAP_MASK) ^
172 ((gvsid >> (SID_MAP_BITS * 2)) & SID_MAP_MASK) ^
173 ((gvsid >> (SID_MAP_BITS * 1)) & SID_MAP_MASK) ^
174 ((gvsid >> (SID_MAP_BITS * 0)) & SID_MAP_MASK));
175}
176
177
178static struct kvmppc_sid_map *find_sid_vsid(struct kvm_vcpu *vcpu, u64 gvsid)
179{
180 struct kvmppc_sid_map *map;
181 u16 sid_map_mask;
182
183 if (vcpu->arch.msr & MSR_PR)
184 gvsid |= VSID_PR;
185
186 sid_map_mask = kvmppc_sid_hash(vcpu, gvsid);
187 map = &to_book3s(vcpu)->sid_map[sid_map_mask];
188 if (map->guest_vsid == gvsid) {
5156f274 189 dprintk_slb("SLB: Searching: 0x%llx -> 0x%llx\n",
0d8dc681
AG
190 gvsid, map->host_vsid);
191 return map;
192 }
193
194 map = &to_book3s(vcpu)->sid_map[SID_MAP_MASK - sid_map_mask];
195 if (map->guest_vsid == gvsid) {
196 dprintk_slb("SLB: Searching 0x%llx -> 0x%llx\n",
197 gvsid, map->host_vsid);
198 return map;
199 }
200
5156f274
AG
201 dprintk_slb("SLB: Searching %d/%d: 0x%llx -> not found\n",
202 sid_map_mask, SID_MAP_MASK - sid_map_mask, gvsid);
0d8dc681
AG
203 return NULL;
204}
205
206int kvmppc_mmu_map_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *orig_pte)
207{
208 pfn_t hpaddr;
209 ulong hash, hpteg, va;
210 u64 vsid;
211 int ret;
212 int rflags = 0x192;
213 int vflags = 0;
214 int attempt = 0;
215 struct kvmppc_sid_map *map;
216
217 /* Get host physical address for gpa */
218 hpaddr = gfn_to_pfn(vcpu->kvm, orig_pte->raddr >> PAGE_SHIFT);
219 if (kvm_is_error_hva(hpaddr)) {
af7b4d10 220 printk(KERN_INFO "Couldn't get guest page for gfn %lx!\n", orig_pte->eaddr);
0d8dc681
AG
221 return -EINVAL;
222 }
223 hpaddr <<= PAGE_SHIFT;
224#if PAGE_SHIFT == 12
225#elif PAGE_SHIFT == 16
226 hpaddr |= orig_pte->raddr & 0xf000;
227#else
228#error Unknown page size
229#endif
230
231 /* and write the mapping ea -> hpa into the pt */
232 vcpu->arch.mmu.esid_to_vsid(vcpu, orig_pte->eaddr >> SID_SHIFT, &vsid);
233 map = find_sid_vsid(vcpu, vsid);
234 if (!map) {
ac214671
AG
235 ret = kvmppc_mmu_map_segment(vcpu, orig_pte->eaddr);
236 WARN_ON(ret < 0);
0d8dc681
AG
237 map = find_sid_vsid(vcpu, vsid);
238 }
ac214671
AG
239 if (!map) {
240 printk(KERN_ERR "KVM: Segment map for 0x%llx (0x%lx) failed\n",
241 vsid, orig_pte->eaddr);
242 WARN_ON(true);
243 return -EINVAL;
244 }
0d8dc681
AG
245
246 vsid = map->host_vsid;
247 va = hpt_va(orig_pte->eaddr, vsid, MMU_SEGSIZE_256M);
248
249 if (!orig_pte->may_write)
250 rflags |= HPTE_R_PP;
251 else
252 mark_page_dirty(vcpu->kvm, orig_pte->raddr >> PAGE_SHIFT);
253
254 if (!orig_pte->may_execute)
255 rflags |= HPTE_R_N;
256
257 hash = hpt_hash(va, PTE_SIZE, MMU_SEGSIZE_256M);
258
259map_again:
260 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
261
262 /* In case we tried normal mapping already, let's nuke old entries */
263 if (attempt > 1)
264 if (ppc_md.hpte_remove(hpteg) < 0)
265 return -1;
266
267 ret = ppc_md.hpte_insert(hpteg, va, hpaddr, rflags, vflags, MMU_PAGE_4K, MMU_SEGSIZE_256M);
268
269 if (ret < 0) {
270 /* If we couldn't map a primary PTE, try a secondary */
0d8dc681 271 hash = ~hash;
20a340ab 272 vflags ^= HPTE_V_SECONDARY;
0d8dc681 273 attempt++;
0d8dc681
AG
274 goto map_again;
275 } else {
276 int hpte_id = kvmppc_mmu_hpte_cache_next(vcpu);
277 struct hpte_cache *pte = &vcpu->arch.hpte_cache[hpte_id];
278
5156f274 279 dprintk_mmu("KVM: %c%c Map 0x%lx: [%lx] 0x%lx (0x%llx) -> %lx\n",
0d8dc681
AG
280 ((rflags & HPTE_R_PP) == 3) ? '-' : 'w',
281 (rflags & HPTE_R_N) ? '-' : 'x',
282 orig_pte->eaddr, hpteg, va, orig_pte->vpage, hpaddr);
283
a1eda280
AG
284 /* The ppc_md code may give us a secondary entry even though we
285 asked for a primary. Fix up. */
286 if ((ret & _PTEIDX_SECONDARY) && !(vflags & HPTE_V_SECONDARY)) {
287 hash = ~hash;
288 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
289 }
290
0d8dc681
AG
291 pte->slot = hpteg + (ret & 7);
292 pte->host_va = va;
293 pte->pte = *orig_pte;
294 pte->pfn = hpaddr >> PAGE_SHIFT;
295 }
296
297 return 0;
298}
299
300static struct kvmppc_sid_map *create_sid_map(struct kvm_vcpu *vcpu, u64 gvsid)
301{
302 struct kvmppc_sid_map *map;
303 struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
304 u16 sid_map_mask;
305 static int backwards_map = 0;
306
307 if (vcpu->arch.msr & MSR_PR)
308 gvsid |= VSID_PR;
309
310 /* We might get collisions that trap in preceding order, so let's
311 map them differently */
312
313 sid_map_mask = kvmppc_sid_hash(vcpu, gvsid);
314 if (backwards_map)
315 sid_map_mask = SID_MAP_MASK - sid_map_mask;
316
317 map = &to_book3s(vcpu)->sid_map[sid_map_mask];
318
319 /* Make sure we're taking the other map next time */
320 backwards_map = !backwards_map;
321
322 /* Uh-oh ... out of mappings. Let's flush! */
323 if (vcpu_book3s->vsid_next == vcpu_book3s->vsid_max) {
324 vcpu_book3s->vsid_next = vcpu_book3s->vsid_first;
325 memset(vcpu_book3s->sid_map, 0,
326 sizeof(struct kvmppc_sid_map) * SID_MAP_NUM);
327 kvmppc_mmu_pte_flush(vcpu, 0, 0);
328 kvmppc_mmu_flush_segments(vcpu);
329 }
330 map->host_vsid = vcpu_book3s->vsid_next++;
331
332 map->guest_vsid = gvsid;
333 map->valid = true;
334
5156f274
AG
335 dprintk_slb("SLB: New mapping at %d: 0x%llx -> 0x%llx\n",
336 sid_map_mask, gvsid, map->host_vsid);
337
0d8dc681
AG
338 return map;
339}
340
341static int kvmppc_mmu_next_segment(struct kvm_vcpu *vcpu, ulong esid)
342{
343 int i;
344 int max_slb_size = 64;
345 int found_inval = -1;
346 int r;
347
c7f38f46
AG
348 if (!to_svcpu(vcpu)->slb_max)
349 to_svcpu(vcpu)->slb_max = 1;
0d8dc681
AG
350
351 /* Are we overwriting? */
c7f38f46
AG
352 for (i = 1; i < to_svcpu(vcpu)->slb_max; i++) {
353 if (!(to_svcpu(vcpu)->slb[i].esid & SLB_ESID_V))
0d8dc681 354 found_inval = i;
c7f38f46 355 else if ((to_svcpu(vcpu)->slb[i].esid & ESID_MASK) == esid)
0d8dc681
AG
356 return i;
357 }
358
359 /* Found a spare entry that was invalidated before */
360 if (found_inval > 0)
361 return found_inval;
362
363 /* No spare invalid entry, so create one */
364
365 if (mmu_slb_size < 64)
366 max_slb_size = mmu_slb_size;
367
368 /* Overflowing -> purge */
c7f38f46 369 if ((to_svcpu(vcpu)->slb_max) == max_slb_size)
0d8dc681
AG
370 kvmppc_mmu_flush_segments(vcpu);
371
c7f38f46
AG
372 r = to_svcpu(vcpu)->slb_max;
373 to_svcpu(vcpu)->slb_max++;
0d8dc681
AG
374
375 return r;
376}
377
378int kvmppc_mmu_map_segment(struct kvm_vcpu *vcpu, ulong eaddr)
379{
380 u64 esid = eaddr >> SID_SHIFT;
381 u64 slb_esid = (eaddr & ESID_MASK) | SLB_ESID_V;
382 u64 slb_vsid = SLB_VSID_USER;
383 u64 gvsid;
384 int slb_index;
385 struct kvmppc_sid_map *map;
386
387 slb_index = kvmppc_mmu_next_segment(vcpu, eaddr & ESID_MASK);
388
389 if (vcpu->arch.mmu.esid_to_vsid(vcpu, esid, &gvsid)) {
390 /* Invalidate an entry */
c7f38f46 391 to_svcpu(vcpu)->slb[slb_index].esid = 0;
0d8dc681
AG
392 return -ENOENT;
393 }
394
395 map = find_sid_vsid(vcpu, gvsid);
396 if (!map)
397 map = create_sid_map(vcpu, gvsid);
398
399 map->guest_esid = esid;
400
401 slb_vsid |= (map->host_vsid << 12);
402 slb_vsid &= ~SLB_VSID_KP;
403 slb_esid |= slb_index;
404
c7f38f46
AG
405 to_svcpu(vcpu)->slb[slb_index].esid = slb_esid;
406 to_svcpu(vcpu)->slb[slb_index].vsid = slb_vsid;
0d8dc681
AG
407
408 dprintk_slb("slbmte %#llx, %#llx\n", slb_vsid, slb_esid);
409
410 return 0;
411}
412
413void kvmppc_mmu_flush_segments(struct kvm_vcpu *vcpu)
414{
c7f38f46
AG
415 to_svcpu(vcpu)->slb_max = 1;
416 to_svcpu(vcpu)->slb[0].esid = 0;
0d8dc681
AG
417}
418
419void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
420{
421 kvmppc_mmu_pte_flush(vcpu, 0, 0);
9cc5e953
AG
422 __destroy_context(to_book3s(vcpu)->context_id);
423}
424
425int kvmppc_mmu_init(struct kvm_vcpu *vcpu)
426{
427 struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
428 int err;
429
430 err = __init_new_context();
431 if (err < 0)
432 return -1;
433 vcpu3s->context_id = err;
434
435 vcpu3s->vsid_max = ((vcpu3s->context_id + 1) << USER_ESID_BITS) - 1;
436 vcpu3s->vsid_first = vcpu3s->context_id << USER_ESID_BITS;
437 vcpu3s->vsid_next = vcpu3s->vsid_first;
438
439 return 0;
0d8dc681 440}
This page took 0.0818990000000001 seconds and 5 git commands to generate.