kvm: powerpc: book3s: pr: move PR related tracepoints to a separate header
[deliverable/linux.git] / arch / powerpc / kvm / e500_mmu_host.c
CommitLineData
b71c9e2f
AG
1/*
2 * Copyright (C) 2008-2013 Freescale Semiconductor, Inc. All rights reserved.
3 *
4 * Author: Yu Liu, yu.liu@freescale.com
5 * Scott Wood, scottwood@freescale.com
6 * Ashish Kalra, ashish.kalra@freescale.com
7 * Varun Sethi, varun.sethi@freescale.com
8 * Alexander Graf, agraf@suse.de
9 *
10 * Description:
11 * This file is based on arch/powerpc/kvm/44x_tlb.c,
12 * by Hollis Blanchard <hollisb@us.ibm.com>.
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License, version 2, as
16 * published by the Free Software Foundation.
17 */
18
19#include <linux/kernel.h>
20#include <linux/types.h>
21#include <linux/slab.h>
22#include <linux/string.h>
23#include <linux/kvm.h>
24#include <linux/kvm_host.h>
25#include <linux/highmem.h>
26#include <linux/log2.h>
27#include <linux/uaccess.h>
28#include <linux/sched.h>
29#include <linux/rwsem.h>
30#include <linux/vmalloc.h>
31#include <linux/hugetlb.h>
32#include <asm/kvm_ppc.h>
33
34#include "e500.h"
35#include "trace.h"
36#include "timing.h"
37#include "e500_mmu_host.h"
38
39#define to_htlb1_esel(esel) (host_tlb_params[1].entries - (esel) - 1)
40
41static struct kvmppc_e500_tlb_params host_tlb_params[E500_TLB_NUM];
42
43static inline unsigned int tlb1_max_shadow_size(void)
44{
45 /* reserve one entry for magic page */
46 return host_tlb_params[1].entries - tlbcam_index - 1;
47}
48
49static inline u32 e500_shadow_mas3_attrib(u32 mas3, int usermode)
50{
51 /* Mask off reserved bits. */
52 mas3 &= MAS3_ATTRIB_MASK;
53
54#ifndef CONFIG_KVM_BOOKE_HV
55 if (!usermode) {
56 /* Guest is in supervisor mode,
57 * so we need to translate guest
58 * supervisor permissions into user permissions. */
59 mas3 &= ~E500_TLB_USER_PERM_MASK;
60 mas3 |= (mas3 & E500_TLB_SUPER_PERM_MASK) << 1;
61 }
62 mas3 |= E500_TLB_SUPER_PERM_MASK;
63#endif
64 return mas3;
65}
66
67static inline u32 e500_shadow_mas2_attrib(u32 mas2, int usermode)
68{
69#ifdef CONFIG_SMP
70 return (mas2 & MAS2_ATTRIB_MASK) | MAS2_M;
71#else
72 return mas2 & MAS2_ATTRIB_MASK;
73#endif
74}
75
76/*
77 * writing shadow tlb entry to host TLB
78 */
79static inline void __write_host_tlbe(struct kvm_book3e_206_tlb_entry *stlbe,
80 uint32_t mas0)
81{
82 unsigned long flags;
83
84 local_irq_save(flags);
85 mtspr(SPRN_MAS0, mas0);
86 mtspr(SPRN_MAS1, stlbe->mas1);
87 mtspr(SPRN_MAS2, (unsigned long)stlbe->mas2);
88 mtspr(SPRN_MAS3, (u32)stlbe->mas7_3);
89 mtspr(SPRN_MAS7, (u32)(stlbe->mas7_3 >> 32));
90#ifdef CONFIG_KVM_BOOKE_HV
91 mtspr(SPRN_MAS8, stlbe->mas8);
92#endif
93 asm volatile("isync; tlbwe" : : : "memory");
94
95#ifdef CONFIG_KVM_BOOKE_HV
96 /* Must clear mas8 for other host tlbwe's */
97 mtspr(SPRN_MAS8, 0);
98 isync();
99#endif
100 local_irq_restore(flags);
101
102 trace_kvm_booke206_stlb_write(mas0, stlbe->mas8, stlbe->mas1,
103 stlbe->mas2, stlbe->mas7_3);
104}
105
106/*
107 * Acquire a mas0 with victim hint, as if we just took a TLB miss.
108 *
109 * We don't care about the address we're searching for, other than that it's
110 * in the right set and is not present in the TLB. Using a zero PID and a
111 * userspace address means we don't have to set and then restore MAS5, or
112 * calculate a proper MAS6 value.
113 */
114static u32 get_host_mas0(unsigned long eaddr)
115{
116 unsigned long flags;
117 u32 mas0;
118
119 local_irq_save(flags);
120 mtspr(SPRN_MAS6, 0);
121 asm volatile("tlbsx 0, %0" : : "b" (eaddr & ~CONFIG_PAGE_OFFSET));
122 mas0 = mfspr(SPRN_MAS0);
123 local_irq_restore(flags);
124
125 return mas0;
126}
127
128/* sesel is for tlb1 only */
129static inline void write_host_tlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
130 int tlbsel, int sesel, struct kvm_book3e_206_tlb_entry *stlbe)
131{
132 u32 mas0;
133
134 if (tlbsel == 0) {
135 mas0 = get_host_mas0(stlbe->mas2);
136 __write_host_tlbe(stlbe, mas0);
137 } else {
138 __write_host_tlbe(stlbe,
139 MAS0_TLBSEL(1) |
140 MAS0_ESEL(to_htlb1_esel(sesel)));
141 }
142}
143
144/* sesel is for tlb1 only */
145static void write_stlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
146 struct kvm_book3e_206_tlb_entry *gtlbe,
147 struct kvm_book3e_206_tlb_entry *stlbe,
148 int stlbsel, int sesel)
149{
150 int stid;
151
152 preempt_disable();
153 stid = kvmppc_e500_get_tlb_stid(&vcpu_e500->vcpu, gtlbe);
154
155 stlbe->mas1 |= MAS1_TID(stid);
156 write_host_tlbe(vcpu_e500, stlbsel, sesel, stlbe);
157 preempt_enable();
158}
159
160#ifdef CONFIG_KVM_E500V2
161/* XXX should be a hook in the gva2hpa translation */
162void kvmppc_map_magic(struct kvm_vcpu *vcpu)
163{
164 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
165 struct kvm_book3e_206_tlb_entry magic;
166 ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK;
167 unsigned int stid;
168 pfn_t pfn;
169
170 pfn = (pfn_t)virt_to_phys((void *)shared_page) >> PAGE_SHIFT;
171 get_page(pfn_to_page(pfn));
172
173 preempt_disable();
174 stid = kvmppc_e500_get_sid(vcpu_e500, 0, 0, 0, 0);
175
176 magic.mas1 = MAS1_VALID | MAS1_TS | MAS1_TID(stid) |
177 MAS1_TSIZE(BOOK3E_PAGESZ_4K);
178 magic.mas2 = vcpu->arch.magic_page_ea | MAS2_M;
179 magic.mas7_3 = ((u64)pfn << PAGE_SHIFT) |
180 MAS3_SW | MAS3_SR | MAS3_UW | MAS3_UR;
181 magic.mas8 = 0;
182
183 __write_host_tlbe(&magic, MAS0_TLBSEL(1) | MAS0_ESEL(tlbcam_index));
184 preempt_enable();
185}
186#endif
187
188void inval_gtlbe_on_host(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel,
189 int esel)
190{
191 struct kvm_book3e_206_tlb_entry *gtlbe =
192 get_entry(vcpu_e500, tlbsel, esel);
193 struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[tlbsel][esel].ref;
194
195 /* Don't bother with unmapped entries */
4d2be6f7
SW
196 if (!(ref->flags & E500_TLB_VALID)) {
197 WARN(ref->flags & (E500_TLB_BITMAP | E500_TLB_TLB0),
198 "%s: flags %x\n", __func__, ref->flags);
199 WARN_ON(tlbsel == 1 && vcpu_e500->g2h_tlb1_map[esel]);
200 }
b71c9e2f
AG
201
202 if (tlbsel == 1 && ref->flags & E500_TLB_BITMAP) {
203 u64 tmp = vcpu_e500->g2h_tlb1_map[esel];
204 int hw_tlb_indx;
205 unsigned long flags;
206
207 local_irq_save(flags);
208 while (tmp) {
209 hw_tlb_indx = __ilog2_u64(tmp & -tmp);
210 mtspr(SPRN_MAS0,
211 MAS0_TLBSEL(1) |
212 MAS0_ESEL(to_htlb1_esel(hw_tlb_indx)));
213 mtspr(SPRN_MAS1, 0);
214 asm volatile("tlbwe");
215 vcpu_e500->h2g_tlb1_rmap[hw_tlb_indx] = 0;
216 tmp &= tmp - 1;
217 }
218 mb();
219 vcpu_e500->g2h_tlb1_map[esel] = 0;
220 ref->flags &= ~(E500_TLB_BITMAP | E500_TLB_VALID);
221 local_irq_restore(flags);
c015c62b 222 }
b71c9e2f 223
c015c62b
AG
224 if (tlbsel == 1 && ref->flags & E500_TLB_TLB0) {
225 /*
226 * TLB1 entry is backed by 4k pages. This should happen
227 * rarely and is not worth optimizing. Invalidate everything.
228 */
229 kvmppc_e500_tlbil_all(vcpu_e500);
230 ref->flags &= ~(E500_TLB_TLB0 | E500_TLB_VALID);
b71c9e2f
AG
231 }
232
c015c62b
AG
233 /* Already invalidated in between */
234 if (!(ref->flags & E500_TLB_VALID))
235 return;
236
b71c9e2f
AG
237 /* Guest tlbe is backed by at most one host tlbe per shadow pid. */
238 kvmppc_e500_tlbil_one(vcpu_e500, gtlbe);
239
240 /* Mark the TLB as not backed by the host anymore */
241 ref->flags &= ~E500_TLB_VALID;
242}
243
244static inline int tlbe_is_writable(struct kvm_book3e_206_tlb_entry *tlbe)
245{
246 return tlbe->mas7_3 & (MAS3_SW|MAS3_UW);
247}
248
249static inline void kvmppc_e500_ref_setup(struct tlbe_ref *ref,
250 struct kvm_book3e_206_tlb_entry *gtlbe,
251 pfn_t pfn)
252{
253 ref->pfn = pfn;
4d2be6f7 254 ref->flags |= E500_TLB_VALID;
b71c9e2f 255
84e4d632
BB
256 /* Mark the page accessed */
257 kvm_set_pfn_accessed(pfn);
258
b71c9e2f
AG
259 if (tlbe_is_writable(gtlbe))
260 kvm_set_pfn_dirty(pfn);
261}
262
263static inline void kvmppc_e500_ref_release(struct tlbe_ref *ref)
264{
265 if (ref->flags & E500_TLB_VALID) {
4d2be6f7 266 /* FIXME: don't log bogus pfn for TLB1 */
b71c9e2f
AG
267 trace_kvm_booke206_ref_release(ref->pfn, ref->flags);
268 ref->flags = 0;
269 }
270}
271
483ba97c 272static void clear_tlb1_bitmap(struct kvmppc_vcpu_e500 *vcpu_e500)
b71c9e2f
AG
273{
274 if (vcpu_e500->g2h_tlb1_map)
275 memset(vcpu_e500->g2h_tlb1_map, 0,
276 sizeof(u64) * vcpu_e500->gtlb_params[1].entries);
277 if (vcpu_e500->h2g_tlb1_rmap)
278 memset(vcpu_e500->h2g_tlb1_rmap, 0,
279 sizeof(unsigned int) * host_tlb_params[1].entries);
280}
281
282static void clear_tlb_privs(struct kvmppc_vcpu_e500 *vcpu_e500)
283{
4d2be6f7 284 int tlbsel;
b71c9e2f
AG
285 int i;
286
4d2be6f7
SW
287 for (tlbsel = 0; tlbsel <= 1; tlbsel++) {
288 for (i = 0; i < vcpu_e500->gtlb_params[tlbsel].entries; i++) {
289 struct tlbe_ref *ref =
290 &vcpu_e500->gtlb_priv[tlbsel][i].ref;
291 kvmppc_e500_ref_release(ref);
292 }
b71c9e2f 293 }
b71c9e2f
AG
294}
295
296void kvmppc_core_flush_tlb(struct kvm_vcpu *vcpu)
297{
298 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
4d2be6f7
SW
299 kvmppc_e500_tlbil_all(vcpu_e500);
300 clear_tlb_privs(vcpu_e500);
b71c9e2f
AG
301 clear_tlb1_bitmap(vcpu_e500);
302}
303
304/* TID must be supplied by the caller */
305static void kvmppc_e500_setup_stlbe(
306 struct kvm_vcpu *vcpu,
307 struct kvm_book3e_206_tlb_entry *gtlbe,
308 int tsize, struct tlbe_ref *ref, u64 gvaddr,
309 struct kvm_book3e_206_tlb_entry *stlbe)
310{
311 pfn_t pfn = ref->pfn;
312 u32 pr = vcpu->arch.shared->msr & MSR_PR;
313
314 BUG_ON(!(ref->flags & E500_TLB_VALID));
315
316 /* Force IPROT=0 for all guest mappings. */
317 stlbe->mas1 = MAS1_TSIZE(tsize) | get_tlb_sts(gtlbe) | MAS1_VALID;
318 stlbe->mas2 = (gvaddr & MAS2_EPN) |
319 e500_shadow_mas2_attrib(gtlbe->mas2, pr);
320 stlbe->mas7_3 = ((u64)pfn << PAGE_SHIFT) |
321 e500_shadow_mas3_attrib(gtlbe->mas7_3, pr);
322
323#ifdef CONFIG_KVM_BOOKE_HV
324 stlbe->mas8 = MAS8_TGS | vcpu->kvm->arch.lpid;
325#endif
326}
327
328static inline int kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500,
329 u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
330 int tlbsel, struct kvm_book3e_206_tlb_entry *stlbe,
331 struct tlbe_ref *ref)
332{
333 struct kvm_memory_slot *slot;
334 unsigned long pfn = 0; /* silence GCC warning */
335 unsigned long hva;
336 int pfnmap = 0;
337 int tsize = BOOK3E_PAGESZ_4K;
338
339 /*
340 * Translate guest physical to true physical, acquiring
341 * a page reference if it is normal, non-reserved memory.
342 *
343 * gfn_to_memslot() must succeed because otherwise we wouldn't
344 * have gotten this far. Eventually we should just pass the slot
345 * pointer through from the first lookup.
346 */
347 slot = gfn_to_memslot(vcpu_e500->vcpu.kvm, gfn);
348 hva = gfn_to_hva_memslot(slot, gfn);
349
350 if (tlbsel == 1) {
351 struct vm_area_struct *vma;
352 down_read(&current->mm->mmap_sem);
353
354 vma = find_vma(current->mm, hva);
355 if (vma && hva >= vma->vm_start &&
356 (vma->vm_flags & VM_PFNMAP)) {
357 /*
358 * This VMA is a physically contiguous region (e.g.
359 * /dev/mem) that bypasses normal Linux page
360 * management. Find the overlap between the
361 * vma and the memslot.
362 */
363
364 unsigned long start, end;
365 unsigned long slot_start, slot_end;
366
367 pfnmap = 1;
368
369 start = vma->vm_pgoff;
370 end = start +
371 ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT);
372
373 pfn = start + ((hva - vma->vm_start) >> PAGE_SHIFT);
374
375 slot_start = pfn - (gfn - slot->base_gfn);
376 slot_end = slot_start + slot->npages;
377
378 if (start < slot_start)
379 start = slot_start;
380 if (end > slot_end)
381 end = slot_end;
382
383 tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
384 MAS1_TSIZE_SHIFT;
385
386 /*
387 * e500 doesn't implement the lowest tsize bit,
388 * or 1K pages.
389 */
390 tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
391
392 /*
393 * Now find the largest tsize (up to what the guest
394 * requested) that will cover gfn, stay within the
395 * range, and for which gfn and pfn are mutually
396 * aligned.
397 */
398
399 for (; tsize > BOOK3E_PAGESZ_4K; tsize -= 2) {
400 unsigned long gfn_start, gfn_end, tsize_pages;
401 tsize_pages = 1 << (tsize - 2);
402
403 gfn_start = gfn & ~(tsize_pages - 1);
404 gfn_end = gfn_start + tsize_pages;
405
406 if (gfn_start + pfn - gfn < start)
407 continue;
408 if (gfn_end + pfn - gfn > end)
409 continue;
410 if ((gfn & (tsize_pages - 1)) !=
411 (pfn & (tsize_pages - 1)))
412 continue;
413
414 gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
415 pfn &= ~(tsize_pages - 1);
416 break;
417 }
418 } else if (vma && hva >= vma->vm_start &&
419 (vma->vm_flags & VM_HUGETLB)) {
420 unsigned long psize = vma_kernel_pagesize(vma);
421
422 tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
423 MAS1_TSIZE_SHIFT;
424
425 /*
426 * Take the largest page size that satisfies both host
427 * and guest mapping
428 */
429 tsize = min(__ilog2(psize) - 10, tsize);
430
431 /*
432 * e500 doesn't implement the lowest tsize bit,
433 * or 1K pages.
434 */
435 tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
436 }
437
438 up_read(&current->mm->mmap_sem);
439 }
440
441 if (likely(!pfnmap)) {
442 unsigned long tsize_pages = 1 << (tsize + 10 - PAGE_SHIFT);
443 pfn = gfn_to_pfn_memslot(slot, gfn);
444 if (is_error_noslot_pfn(pfn)) {
445 printk(KERN_ERR "Couldn't get real page for gfn %lx!\n",
446 (long)gfn);
447 return -EINVAL;
448 }
449
450 /* Align guest and physical address to page map boundaries */
451 pfn &= ~(tsize_pages - 1);
452 gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
453 }
454
b71c9e2f
AG
455 kvmppc_e500_ref_setup(ref, gtlbe, pfn);
456
457 kvmppc_e500_setup_stlbe(&vcpu_e500->vcpu, gtlbe, tsize,
458 ref, gvaddr, stlbe);
459
460 /* Clear i-cache for new pages */
461 kvmppc_mmu_flush_icache(pfn);
462
463 /* Drop refcount on page, so that mmu notifiers can clear it */
464 kvm_release_pfn_clean(pfn);
465
466 return 0;
467}
468
469/* XXX only map the one-one case, for now use TLB0 */
470static int kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500 *vcpu_e500, int esel,
471 struct kvm_book3e_206_tlb_entry *stlbe)
472{
473 struct kvm_book3e_206_tlb_entry *gtlbe;
474 struct tlbe_ref *ref;
475 int stlbsel = 0;
476 int sesel = 0;
477 int r;
478
479 gtlbe = get_entry(vcpu_e500, 0, esel);
480 ref = &vcpu_e500->gtlb_priv[0][esel].ref;
481
482 r = kvmppc_e500_shadow_map(vcpu_e500, get_tlb_eaddr(gtlbe),
483 get_tlb_raddr(gtlbe) >> PAGE_SHIFT,
484 gtlbe, 0, stlbe, ref);
485 if (r)
486 return r;
487
488 write_stlbe(vcpu_e500, gtlbe, stlbe, stlbsel, sesel);
489
490 return 0;
491}
492
c015c62b
AG
493static int kvmppc_e500_tlb1_map_tlb1(struct kvmppc_vcpu_e500 *vcpu_e500,
494 struct tlbe_ref *ref,
495 int esel)
496{
497 unsigned int sesel = vcpu_e500->host_tlb1_nv++;
498
499 if (unlikely(vcpu_e500->host_tlb1_nv >= tlb1_max_shadow_size()))
500 vcpu_e500->host_tlb1_nv = 0;
501
c015c62b 502 if (vcpu_e500->h2g_tlb1_rmap[sesel]) {
6b2ba1a9 503 unsigned int idx = vcpu_e500->h2g_tlb1_rmap[sesel] - 1;
c015c62b
AG
504 vcpu_e500->g2h_tlb1_map[idx] &= ~(1ULL << sesel);
505 }
66a5fecd 506
66a5fecd
SW
507 vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_BITMAP;
508 vcpu_e500->g2h_tlb1_map[esel] |= (u64)1 << sesel;
6b2ba1a9 509 vcpu_e500->h2g_tlb1_rmap[sesel] = esel + 1;
4d2be6f7 510 WARN_ON(!(ref->flags & E500_TLB_VALID));
c015c62b
AG
511
512 return sesel;
513}
514
b71c9e2f
AG
515/* Caller must ensure that the specified guest TLB entry is safe to insert into
516 * the shadow TLB. */
c015c62b 517/* For both one-one and one-to-many */
b71c9e2f
AG
518static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 *vcpu_e500,
519 u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
520 struct kvm_book3e_206_tlb_entry *stlbe, int esel)
521{
4d2be6f7 522 struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[1][esel].ref;
c015c62b 523 int sesel;
b71c9e2f 524 int r;
b71c9e2f 525
b71c9e2f 526 r = kvmppc_e500_shadow_map(vcpu_e500, gvaddr, gfn, gtlbe, 1, stlbe,
4d2be6f7 527 ref);
b71c9e2f
AG
528 if (r)
529 return r;
530
c015c62b
AG
531 /* Use TLB0 when we can only map a page with 4k */
532 if (get_tlb_tsize(stlbe) == BOOK3E_PAGESZ_4K) {
533 vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_TLB0;
534 write_stlbe(vcpu_e500, gtlbe, stlbe, 0, 0);
535 return 0;
b71c9e2f 536 }
b71c9e2f 537
c015c62b 538 /* Otherwise map into TLB1 */
4d2be6f7 539 sesel = kvmppc_e500_tlb1_map_tlb1(vcpu_e500, ref, esel);
c015c62b 540 write_stlbe(vcpu_e500, gtlbe, stlbe, 1, sesel);
b71c9e2f
AG
541
542 return 0;
543}
544
545void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 eaddr, gpa_t gpaddr,
546 unsigned int index)
547{
548 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
549 struct tlbe_priv *priv;
550 struct kvm_book3e_206_tlb_entry *gtlbe, stlbe;
551 int tlbsel = tlbsel_of(index);
552 int esel = esel_of(index);
553
554 gtlbe = get_entry(vcpu_e500, tlbsel, esel);
555
556 switch (tlbsel) {
557 case 0:
558 priv = &vcpu_e500->gtlb_priv[tlbsel][esel];
559
4d2be6f7 560 /* Triggers after clear_tlb_privs or on initial mapping */
b71c9e2f
AG
561 if (!(priv->ref.flags & E500_TLB_VALID)) {
562 kvmppc_e500_tlb0_map(vcpu_e500, esel, &stlbe);
563 } else {
564 kvmppc_e500_setup_stlbe(vcpu, gtlbe, BOOK3E_PAGESZ_4K,
565 &priv->ref, eaddr, &stlbe);
566 write_stlbe(vcpu_e500, gtlbe, &stlbe, 0, 0);
567 }
568 break;
569
570 case 1: {
571 gfn_t gfn = gpaddr >> PAGE_SHIFT;
572 kvmppc_e500_tlb1_map(vcpu_e500, eaddr, gfn, gtlbe, &stlbe,
573 esel);
574 break;
575 }
576
577 default:
578 BUG();
579 break;
580 }
581}
582
583/************* MMU Notifiers *************/
584
585int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
586{
587 trace_kvm_unmap_hva(hva);
588
589 /*
590 * Flush all shadow tlb entries everywhere. This is slow, but
591 * we are 100% sure that we catch the to be unmapped page
592 */
593 kvm_flush_remote_tlbs(kvm);
594
595 return 0;
596}
597
598int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
599{
600 /* kvm_unmap_hva flushes everything anyways */
601 kvm_unmap_hva(kvm, start);
602
603 return 0;
604}
605
606int kvm_age_hva(struct kvm *kvm, unsigned long hva)
607{
608 /* XXX could be more clever ;) */
609 return 0;
610}
611
612int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
613{
614 /* XXX could be more clever ;) */
615 return 0;
616}
617
618void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
619{
620 /* The page will get remapped properly on its next fault */
621 kvm_unmap_hva(kvm, hva);
622}
623
624/*****************************************/
625
626int e500_mmu_host_init(struct kvmppc_vcpu_e500 *vcpu_e500)
627{
628 host_tlb_params[0].entries = mfspr(SPRN_TLB0CFG) & TLBnCFG_N_ENTRY;
629 host_tlb_params[1].entries = mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY;
630
631 /*
632 * This should never happen on real e500 hardware, but is
633 * architecturally possible -- e.g. in some weird nested
634 * virtualization case.
635 */
636 if (host_tlb_params[0].entries == 0 ||
637 host_tlb_params[1].entries == 0) {
638 pr_err("%s: need to know host tlb size\n", __func__);
639 return -ENODEV;
640 }
641
642 host_tlb_params[0].ways = (mfspr(SPRN_TLB0CFG) & TLBnCFG_ASSOC) >>
643 TLBnCFG_ASSOC_SHIFT;
644 host_tlb_params[1].ways = host_tlb_params[1].entries;
645
646 if (!is_power_of_2(host_tlb_params[0].entries) ||
647 !is_power_of_2(host_tlb_params[0].ways) ||
648 host_tlb_params[0].entries < host_tlb_params[0].ways ||
649 host_tlb_params[0].ways == 0) {
650 pr_err("%s: bad tlb0 host config: %u entries %u ways\n",
651 __func__, host_tlb_params[0].entries,
652 host_tlb_params[0].ways);
653 return -ENODEV;
654 }
655
656 host_tlb_params[0].sets =
657 host_tlb_params[0].entries / host_tlb_params[0].ways;
658 host_tlb_params[1].sets = 1;
659
b71c9e2f
AG
660 vcpu_e500->h2g_tlb1_rmap = kzalloc(sizeof(unsigned int) *
661 host_tlb_params[1].entries,
662 GFP_KERNEL);
663 if (!vcpu_e500->h2g_tlb1_rmap)
4d2be6f7 664 return -EINVAL;
b71c9e2f
AG
665
666 return 0;
b71c9e2f
AG
667}
668
669void e500_mmu_host_uninit(struct kvmppc_vcpu_e500 *vcpu_e500)
670{
671 kfree(vcpu_e500->h2g_tlb1_rmap);
b71c9e2f 672}
This page took 0.085125 seconds and 5 git commands to generate.