memblock, mem_hotplug: introduce MEMBLOCK_HOTPLUG flag to mark hotpluggable regions
[deliverable/linux.git] / arch / powerpc / mm / numa.c
CommitLineData
1da177e4
LT
1/*
2 * pSeries NUMA support
3 *
4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11#include <linux/threads.h>
12#include <linux/bootmem.h>
13#include <linux/init.h>
14#include <linux/mm.h>
15#include <linux/mmzone.h>
4b16f8e2 16#include <linux/export.h>
1da177e4
LT
17#include <linux/nodemask.h>
18#include <linux/cpu.h>
19#include <linux/notifier.h>
95f72d1e 20#include <linux/memblock.h>
6df1646e 21#include <linux/of.h>
06eccea6 22#include <linux/pfn.h>
9eff1a38
JL
23#include <linux/cpuset.h>
24#include <linux/node.h>
30c05350 25#include <linux/stop_machine.h>
e04fa612
NF
26#include <linux/proc_fs.h>
27#include <linux/seq_file.h>
28#include <linux/uaccess.h>
191a7120 29#include <linux/slab.h>
3be7db6a 30#include <asm/cputhreads.h>
45fb6cea 31#include <asm/sparsemem.h>
d9b2b2a2 32#include <asm/prom.h>
2249ca9d 33#include <asm/smp.h>
9eff1a38
JL
34#include <asm/firmware.h>
35#include <asm/paca.h>
39bf990e 36#include <asm/hvcall.h>
ae3a197e 37#include <asm/setup.h>
176bbf14 38#include <asm/vdso.h>
1da177e4
LT
39
40static int numa_enabled = 1;
41
1daa6d08
BS
42static char *cmdline __initdata;
43
1da177e4
LT
44static int numa_debug;
45#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
46
45fb6cea 47int numa_cpu_lookup_table[NR_CPUS];
25863de0 48cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
1da177e4 49struct pglist_data *node_data[MAX_NUMNODES];
45fb6cea
AB
50
51EXPORT_SYMBOL(numa_cpu_lookup_table);
25863de0 52EXPORT_SYMBOL(node_to_cpumask_map);
45fb6cea
AB
53EXPORT_SYMBOL(node_data);
54
1da177e4 55static int min_common_depth;
237a0989 56static int n_mem_addr_cells, n_mem_size_cells;
41eab6f8
AB
57static int form1_affinity;
58
59#define MAX_DISTANCE_REF_POINTS 4
60static int distance_ref_points_depth;
b08a2a12 61static const __be32 *distance_ref_points;
41eab6f8 62static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
1da177e4 63
25863de0
AB
64/*
65 * Allocate node_to_cpumask_map based on number of available nodes
66 * Requires node_possible_map to be valid.
67 *
9512938b 68 * Note: cpumask_of_node() is not valid until after this is done.
25863de0
AB
69 */
70static void __init setup_node_to_cpumask_map(void)
71{
f9d531b8 72 unsigned int node;
25863de0
AB
73
74 /* setup nr_node_ids if not done yet */
f9d531b8
CS
75 if (nr_node_ids == MAX_NUMNODES)
76 setup_nr_node_ids();
25863de0
AB
77
78 /* allocate the map */
79 for (node = 0; node < nr_node_ids; node++)
80 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
81
82 /* cpumask_of_node() will now work */
83 dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
84}
85
55671f3c 86static int __init fake_numa_create_new_node(unsigned long end_pfn,
1daa6d08
BS
87 unsigned int *nid)
88{
89 unsigned long long mem;
90 char *p = cmdline;
91 static unsigned int fake_nid;
92 static unsigned long long curr_boundary;
93
94 /*
95 * Modify node id, iff we started creating NUMA nodes
96 * We want to continue from where we left of the last time
97 */
98 if (fake_nid)
99 *nid = fake_nid;
100 /*
101 * In case there are no more arguments to parse, the
102 * node_id should be the same as the last fake node id
103 * (we've handled this above).
104 */
105 if (!p)
106 return 0;
107
108 mem = memparse(p, &p);
109 if (!mem)
110 return 0;
111
112 if (mem < curr_boundary)
113 return 0;
114
115 curr_boundary = mem;
116
117 if ((end_pfn << PAGE_SHIFT) > mem) {
118 /*
119 * Skip commas and spaces
120 */
121 while (*p == ',' || *p == ' ' || *p == '\t')
122 p++;
123
124 cmdline = p;
125 fake_nid++;
126 *nid = fake_nid;
127 dbg("created new fake_node with id %d\n", fake_nid);
128 return 1;
129 }
130 return 0;
131}
132
8f64e1f2 133/*
5dfe8660 134 * get_node_active_region - Return active region containing pfn
e8170372 135 * Active range returned is empty if none found.
5dfe8660
TH
136 * @pfn: The page to return the region for
137 * @node_ar: Returned set to the active region containing @pfn
8f64e1f2 138 */
5dfe8660
TH
139static void __init get_node_active_region(unsigned long pfn,
140 struct node_active_region *node_ar)
8f64e1f2 141{
5dfe8660
TH
142 unsigned long start_pfn, end_pfn;
143 int i, nid;
144
145 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
146 if (pfn >= start_pfn && pfn < end_pfn) {
147 node_ar->nid = nid;
148 node_ar->start_pfn = start_pfn;
149 node_ar->end_pfn = end_pfn;
150 break;
151 }
152 }
8f64e1f2
JT
153}
154
39bf990e 155static void map_cpu_to_node(int cpu, int node)
1da177e4
LT
156{
157 numa_cpu_lookup_table[cpu] = node;
45fb6cea 158
bf4b85b0
NL
159 dbg("adding cpu %d to node %d\n", cpu, node);
160
25863de0
AB
161 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
162 cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
1da177e4
LT
163}
164
39bf990e 165#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
1da177e4
LT
166static void unmap_cpu_from_node(unsigned long cpu)
167{
168 int node = numa_cpu_lookup_table[cpu];
169
170 dbg("removing cpu %lu from node %d\n", cpu, node);
171
25863de0 172 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
429f4d8d 173 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
1da177e4
LT
174 } else {
175 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
176 cpu, node);
177 }
178}
39bf990e 179#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
1da177e4 180
1da177e4 181/* must hold reference to node during call */
b08a2a12 182static const __be32 *of_get_associativity(struct device_node *dev)
1da177e4 183{
e2eb6392 184 return of_get_property(dev, "ibm,associativity", NULL);
1da177e4
LT
185}
186
cf00085d
C
187/*
188 * Returns the property linux,drconf-usable-memory if
189 * it exists (the property exists only in kexec/kdump kernels,
190 * added by kexec-tools)
191 */
b08a2a12 192static const __be32 *of_get_usable_memory(struct device_node *memory)
cf00085d 193{
b08a2a12 194 const __be32 *prop;
cf00085d
C
195 u32 len;
196 prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
197 if (!prop || len < sizeof(unsigned int))
ec32dd66 198 return NULL;
cf00085d
C
199 return prop;
200}
201
41eab6f8
AB
202int __node_distance(int a, int b)
203{
204 int i;
205 int distance = LOCAL_DISTANCE;
206
207 if (!form1_affinity)
7122beee 208 return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
41eab6f8
AB
209
210 for (i = 0; i < distance_ref_points_depth; i++) {
211 if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
212 break;
213
214 /* Double the distance for each NUMA level */
215 distance *= 2;
216 }
217
218 return distance;
219}
220
221static void initialize_distance_lookup_table(int nid,
b08a2a12 222 const __be32 *associativity)
41eab6f8
AB
223{
224 int i;
225
226 if (!form1_affinity)
227 return;
228
229 for (i = 0; i < distance_ref_points_depth; i++) {
b08a2a12
AP
230 const __be32 *entry;
231
232 entry = &associativity[be32_to_cpu(distance_ref_points[i])];
233 distance_lookup_table[nid][i] = of_read_number(entry, 1);
41eab6f8
AB
234 }
235}
236
482ec7c4
NL
237/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
238 * info is found.
239 */
b08a2a12 240static int associativity_to_nid(const __be32 *associativity)
1da177e4 241{
482ec7c4 242 int nid = -1;
1da177e4
LT
243
244 if (min_common_depth == -1)
482ec7c4 245 goto out;
1da177e4 246
b08a2a12
AP
247 if (of_read_number(associativity, 1) >= min_common_depth)
248 nid = of_read_number(&associativity[min_common_depth], 1);
bc16a759
NL
249
250 /* POWER4 LPAR uses 0xffff as invalid node */
482ec7c4
NL
251 if (nid == 0xffff || nid >= MAX_NUMNODES)
252 nid = -1;
41eab6f8 253
b08a2a12
AP
254 if (nid > 0 &&
255 of_read_number(associativity, 1) >= distance_ref_points_depth)
9eff1a38 256 initialize_distance_lookup_table(nid, associativity);
41eab6f8 257
482ec7c4 258out:
cf950b7a 259 return nid;
1da177e4
LT
260}
261
9eff1a38
JL
262/* Returns the nid associated with the given device tree node,
263 * or -1 if not found.
264 */
265static int of_node_to_nid_single(struct device_node *device)
266{
267 int nid = -1;
b08a2a12 268 const __be32 *tmp;
9eff1a38
JL
269
270 tmp = of_get_associativity(device);
271 if (tmp)
272 nid = associativity_to_nid(tmp);
273 return nid;
274}
275
953039c8
JK
276/* Walk the device tree upwards, looking for an associativity id */
277int of_node_to_nid(struct device_node *device)
278{
279 struct device_node *tmp;
280 int nid = -1;
281
282 of_node_get(device);
283 while (device) {
284 nid = of_node_to_nid_single(device);
285 if (nid != -1)
286 break;
287
288 tmp = device;
289 device = of_get_parent(tmp);
290 of_node_put(tmp);
291 }
292 of_node_put(device);
293
294 return nid;
295}
296EXPORT_SYMBOL_GPL(of_node_to_nid);
297
1da177e4
LT
298static int __init find_min_common_depth(void)
299{
41eab6f8 300 int depth;
e70606eb 301 struct device_node *root;
1da177e4 302
1c8ee733
DS
303 if (firmware_has_feature(FW_FEATURE_OPAL))
304 root = of_find_node_by_path("/ibm,opal");
305 else
306 root = of_find_node_by_path("/rtas");
e70606eb
ME
307 if (!root)
308 root = of_find_node_by_path("/");
1da177e4
LT
309
310 /*
41eab6f8
AB
311 * This property is a set of 32-bit integers, each representing
312 * an index into the ibm,associativity nodes.
313 *
314 * With form 0 affinity the first integer is for an SMP configuration
315 * (should be all 0's) and the second is for a normal NUMA
316 * configuration. We have only one level of NUMA.
317 *
318 * With form 1 affinity the first integer is the most significant
319 * NUMA boundary and the following are progressively less significant
320 * boundaries. There can be more than one level of NUMA.
1da177e4 321 */
e70606eb 322 distance_ref_points = of_get_property(root,
41eab6f8
AB
323 "ibm,associativity-reference-points",
324 &distance_ref_points_depth);
325
326 if (!distance_ref_points) {
327 dbg("NUMA: ibm,associativity-reference-points not found.\n");
328 goto err;
329 }
330
331 distance_ref_points_depth /= sizeof(int);
1da177e4 332
8002b0c5
NF
333 if (firmware_has_feature(FW_FEATURE_OPAL) ||
334 firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
335 dbg("Using form 1 affinity\n");
1c8ee733 336 form1_affinity = 1;
4b83c330
AB
337 }
338
41eab6f8 339 if (form1_affinity) {
b08a2a12 340 depth = of_read_number(distance_ref_points, 1);
1da177e4 341 } else {
41eab6f8
AB
342 if (distance_ref_points_depth < 2) {
343 printk(KERN_WARNING "NUMA: "
344 "short ibm,associativity-reference-points\n");
345 goto err;
346 }
347
b08a2a12 348 depth = of_read_number(&distance_ref_points[1], 1);
1da177e4 349 }
1da177e4 350
41eab6f8
AB
351 /*
352 * Warn and cap if the hardware supports more than
353 * MAX_DISTANCE_REF_POINTS domains.
354 */
355 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
356 printk(KERN_WARNING "NUMA: distance array capped at "
357 "%d entries\n", MAX_DISTANCE_REF_POINTS);
358 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
359 }
360
e70606eb 361 of_node_put(root);
1da177e4 362 return depth;
41eab6f8
AB
363
364err:
e70606eb 365 of_node_put(root);
41eab6f8 366 return -1;
1da177e4
LT
367}
368
84c9fdd1 369static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
1da177e4
LT
370{
371 struct device_node *memory = NULL;
1da177e4
LT
372
373 memory = of_find_node_by_type(memory, "memory");
54c23310 374 if (!memory)
84c9fdd1 375 panic("numa.c: No memory nodes found!");
54c23310 376
a8bda5dd 377 *n_addr_cells = of_n_addr_cells(memory);
9213feea 378 *n_size_cells = of_n_size_cells(memory);
84c9fdd1 379 of_node_put(memory);
1da177e4
LT
380}
381
b08a2a12 382static unsigned long read_n_cells(int n, const __be32 **buf)
1da177e4
LT
383{
384 unsigned long result = 0;
385
386 while (n--) {
b08a2a12 387 result = (result << 32) | of_read_number(*buf, 1);
1da177e4
LT
388 (*buf)++;
389 }
390 return result;
391}
392
8342681d 393/*
95f72d1e 394 * Read the next memblock list entry from the ibm,dynamic-memory property
8342681d
NF
395 * and return the information in the provided of_drconf_cell structure.
396 */
b08a2a12 397static void read_drconf_cell(struct of_drconf_cell *drmem, const __be32 **cellp)
8342681d 398{
b08a2a12 399 const __be32 *cp;
8342681d
NF
400
401 drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
402
403 cp = *cellp;
b08a2a12
AP
404 drmem->drc_index = of_read_number(cp, 1);
405 drmem->reserved = of_read_number(&cp[1], 1);
406 drmem->aa_index = of_read_number(&cp[2], 1);
407 drmem->flags = of_read_number(&cp[3], 1);
8342681d
NF
408
409 *cellp = cp + 4;
410}
411
412/*
25985edc 413 * Retrieve and validate the ibm,dynamic-memory property of the device tree.
8342681d 414 *
95f72d1e
YL
415 * The layout of the ibm,dynamic-memory property is a number N of memblock
416 * list entries followed by N memblock list entries. Each memblock list entry
25985edc 417 * contains information as laid out in the of_drconf_cell struct above.
8342681d 418 */
b08a2a12 419static int of_get_drconf_memory(struct device_node *memory, const __be32 **dm)
8342681d 420{
b08a2a12 421 const __be32 *prop;
8342681d
NF
422 u32 len, entries;
423
424 prop = of_get_property(memory, "ibm,dynamic-memory", &len);
425 if (!prop || len < sizeof(unsigned int))
426 return 0;
427
b08a2a12 428 entries = of_read_number(prop++, 1);
8342681d
NF
429
430 /* Now that we know the number of entries, revalidate the size
431 * of the property read in to ensure we have everything
432 */
433 if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
434 return 0;
435
436 *dm = prop;
437 return entries;
438}
439
440/*
25985edc 441 * Retrieve and validate the ibm,lmb-size property for drconf memory
8342681d
NF
442 * from the device tree.
443 */
3fdfd990 444static u64 of_get_lmb_size(struct device_node *memory)
8342681d 445{
b08a2a12 446 const __be32 *prop;
8342681d
NF
447 u32 len;
448
3fdfd990 449 prop = of_get_property(memory, "ibm,lmb-size", &len);
8342681d
NF
450 if (!prop || len < sizeof(unsigned int))
451 return 0;
452
453 return read_n_cells(n_mem_size_cells, &prop);
454}
455
456struct assoc_arrays {
457 u32 n_arrays;
458 u32 array_sz;
b08a2a12 459 const __be32 *arrays;
8342681d
NF
460};
461
462/*
25985edc 463 * Retrieve and validate the list of associativity arrays for drconf
8342681d
NF
464 * memory from the ibm,associativity-lookup-arrays property of the
465 * device tree..
466 *
467 * The layout of the ibm,associativity-lookup-arrays property is a number N
468 * indicating the number of associativity arrays, followed by a number M
469 * indicating the size of each associativity array, followed by a list
470 * of N associativity arrays.
471 */
472static int of_get_assoc_arrays(struct device_node *memory,
473 struct assoc_arrays *aa)
474{
b08a2a12 475 const __be32 *prop;
8342681d
NF
476 u32 len;
477
478 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
479 if (!prop || len < 2 * sizeof(unsigned int))
480 return -1;
481
b08a2a12
AP
482 aa->n_arrays = of_read_number(prop++, 1);
483 aa->array_sz = of_read_number(prop++, 1);
8342681d 484
42b2aa86 485 /* Now that we know the number of arrays and size of each array,
8342681d
NF
486 * revalidate the size of the property read in.
487 */
488 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
489 return -1;
490
491 aa->arrays = prop;
492 return 0;
493}
494
495/*
496 * This is like of_node_to_nid_single() for memory represented in the
497 * ibm,dynamic-reconfiguration-memory node.
498 */
499static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
500 struct assoc_arrays *aa)
501{
502 int default_nid = 0;
503 int nid = default_nid;
504 int index;
505
506 if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
507 !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
508 drmem->aa_index < aa->n_arrays) {
509 index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
b08a2a12 510 nid = of_read_number(&aa->arrays[index], 1);
8342681d
NF
511
512 if (nid == 0xffff || nid >= MAX_NUMNODES)
513 nid = default_nid;
514 }
515
516 return nid;
517}
518
1da177e4
LT
519/*
520 * Figure out to which domain a cpu belongs and stick it there.
521 * Return the id of the domain used.
522 */
061d19f2 523static int numa_setup_cpu(unsigned long lcpu)
1da177e4 524{
cf950b7a 525 int nid = 0;
8b16cd23 526 struct device_node *cpu = of_get_cpu_node(lcpu, NULL);
1da177e4
LT
527
528 if (!cpu) {
529 WARN_ON(1);
530 goto out;
531 }
532
953039c8 533 nid = of_node_to_nid_single(cpu);
1da177e4 534
482ec7c4 535 if (nid < 0 || !node_online(nid))
72c33688 536 nid = first_online_node;
1da177e4 537out:
cf950b7a 538 map_cpu_to_node(lcpu, nid);
1da177e4
LT
539
540 of_node_put(cpu);
541
cf950b7a 542 return nid;
1da177e4
LT
543}
544
061d19f2 545static int cpu_numa_callback(struct notifier_block *nfb, unsigned long action,
1da177e4
LT
546 void *hcpu)
547{
548 unsigned long lcpu = (unsigned long)hcpu;
549 int ret = NOTIFY_DONE;
550
551 switch (action) {
552 case CPU_UP_PREPARE:
8bb78442 553 case CPU_UP_PREPARE_FROZEN:
2b261227 554 numa_setup_cpu(lcpu);
1da177e4
LT
555 ret = NOTIFY_OK;
556 break;
557#ifdef CONFIG_HOTPLUG_CPU
558 case CPU_DEAD:
8bb78442 559 case CPU_DEAD_FROZEN:
1da177e4 560 case CPU_UP_CANCELED:
8bb78442 561 case CPU_UP_CANCELED_FROZEN:
1da177e4
LT
562 unmap_cpu_from_node(lcpu);
563 break;
564 ret = NOTIFY_OK;
565#endif
566 }
567 return ret;
568}
569
570/*
571 * Check and possibly modify a memory region to enforce the memory limit.
572 *
573 * Returns the size the region should have to enforce the memory limit.
574 * This will either be the original value of size, a truncated value,
575 * or zero. If the returned value of size is 0 the region should be
25985edc 576 * discarded as it lies wholly above the memory limit.
1da177e4 577 */
45fb6cea
AB
578static unsigned long __init numa_enforce_memory_limit(unsigned long start,
579 unsigned long size)
1da177e4
LT
580{
581 /*
95f72d1e 582 * We use memblock_end_of_DRAM() in here instead of memory_limit because
1da177e4 583 * we've already adjusted it for the limit and it takes care of
fe55249d
MM
584 * having memory holes below the limit. Also, in the case of
585 * iommu_is_off, memory_limit is not set but is implicitly enforced.
1da177e4 586 */
1da177e4 587
95f72d1e 588 if (start + size <= memblock_end_of_DRAM())
1da177e4
LT
589 return size;
590
95f72d1e 591 if (start >= memblock_end_of_DRAM())
1da177e4
LT
592 return 0;
593
95f72d1e 594 return memblock_end_of_DRAM() - start;
1da177e4
LT
595}
596
cf00085d
C
597/*
598 * Reads the counter for a given entry in
599 * linux,drconf-usable-memory property
600 */
b08a2a12 601static inline int __init read_usm_ranges(const __be32 **usm)
cf00085d
C
602{
603 /*
3fdfd990 604 * For each lmb in ibm,dynamic-memory a corresponding
cf00085d
C
605 * entry in linux,drconf-usable-memory property contains
606 * a counter followed by that many (base, size) duple.
607 * read the counter from linux,drconf-usable-memory
608 */
609 return read_n_cells(n_mem_size_cells, usm);
610}
611
0204568a
PM
612/*
613 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
614 * node. This assumes n_mem_{addr,size}_cells have been set.
615 */
616static void __init parse_drconf_memory(struct device_node *memory)
617{
b08a2a12 618 const __be32 *uninitialized_var(dm), *usm;
cf00085d 619 unsigned int n, rc, ranges, is_kexec_kdump = 0;
3fdfd990 620 unsigned long lmb_size, base, size, sz;
8342681d 621 int nid;
aa709f3b 622 struct assoc_arrays aa = { .arrays = NULL };
8342681d
NF
623
624 n = of_get_drconf_memory(memory, &dm);
625 if (!n)
0204568a
PM
626 return;
627
3fdfd990
BH
628 lmb_size = of_get_lmb_size(memory);
629 if (!lmb_size)
8342681d
NF
630 return;
631
632 rc = of_get_assoc_arrays(memory, &aa);
633 if (rc)
0204568a
PM
634 return;
635
cf00085d
C
636 /* check if this is a kexec/kdump kernel */
637 usm = of_get_usable_memory(memory);
638 if (usm != NULL)
639 is_kexec_kdump = 1;
640
0204568a 641 for (; n != 0; --n) {
8342681d
NF
642 struct of_drconf_cell drmem;
643
644 read_drconf_cell(&drmem, &dm);
645
646 /* skip this block if the reserved bit is set in flags (0x80)
647 or if the block is not assigned to this partition (0x8) */
648 if ((drmem.flags & DRCONF_MEM_RESERVED)
649 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
0204568a 650 continue;
1daa6d08 651
cf00085d 652 base = drmem.base_addr;
3fdfd990 653 size = lmb_size;
cf00085d 654 ranges = 1;
8342681d 655
cf00085d
C
656 if (is_kexec_kdump) {
657 ranges = read_usm_ranges(&usm);
658 if (!ranges) /* there are no (base, size) duple */
659 continue;
660 }
661 do {
662 if (is_kexec_kdump) {
663 base = read_n_cells(n_mem_addr_cells, &usm);
664 size = read_n_cells(n_mem_size_cells, &usm);
665 }
666 nid = of_drconf_to_nid_single(&drmem, &aa);
667 fake_numa_create_new_node(
668 ((base + size) >> PAGE_SHIFT),
8342681d 669 &nid);
cf00085d
C
670 node_set_online(nid);
671 sz = numa_enforce_memory_limit(base, size);
672 if (sz)
1d7cfe18 673 memblock_set_node(base, sz, nid);
cf00085d 674 } while (--ranges);
0204568a
PM
675 }
676}
677
1da177e4
LT
678static int __init parse_numa_properties(void)
679{
94db7c5e 680 struct device_node *memory;
482ec7c4 681 int default_nid = 0;
1da177e4
LT
682 unsigned long i;
683
684 if (numa_enabled == 0) {
685 printk(KERN_WARNING "NUMA disabled by user\n");
686 return -1;
687 }
688
1da177e4
LT
689 min_common_depth = find_min_common_depth();
690
1da177e4
LT
691 if (min_common_depth < 0)
692 return min_common_depth;
693
bf4b85b0
NL
694 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
695
1da177e4 696 /*
482ec7c4
NL
697 * Even though we connect cpus to numa domains later in SMP
698 * init, we need to know the node ids now. This is because
699 * each node to be onlined must have NODE_DATA etc backing it.
1da177e4 700 */
482ec7c4 701 for_each_present_cpu(i) {
dfbe93a2 702 struct device_node *cpu;
cf950b7a 703 int nid;
1da177e4 704
8b16cd23 705 cpu = of_get_cpu_node(i, NULL);
482ec7c4 706 BUG_ON(!cpu);
953039c8 707 nid = of_node_to_nid_single(cpu);
482ec7c4 708 of_node_put(cpu);
1da177e4 709
482ec7c4
NL
710 /*
711 * Don't fall back to default_nid yet -- we will plug
712 * cpus into nodes once the memory scan has discovered
713 * the topology.
714 */
715 if (nid < 0)
716 continue;
717 node_set_online(nid);
1da177e4
LT
718 }
719
237a0989 720 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
94db7c5e
AB
721
722 for_each_node_by_type(memory, "memory") {
1da177e4
LT
723 unsigned long start;
724 unsigned long size;
cf950b7a 725 int nid;
1da177e4 726 int ranges;
b08a2a12 727 const __be32 *memcell_buf;
1da177e4
LT
728 unsigned int len;
729
e2eb6392 730 memcell_buf = of_get_property(memory,
ba759485
ME
731 "linux,usable-memory", &len);
732 if (!memcell_buf || len <= 0)
e2eb6392 733 memcell_buf = of_get_property(memory, "reg", &len);
1da177e4
LT
734 if (!memcell_buf || len <= 0)
735 continue;
736
cc5d0189
BH
737 /* ranges in cell */
738 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1da177e4
LT
739new_range:
740 /* these are order-sensitive, and modify the buffer pointer */
237a0989
MK
741 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
742 size = read_n_cells(n_mem_size_cells, &memcell_buf);
1da177e4 743
482ec7c4
NL
744 /*
745 * Assumption: either all memory nodes or none will
746 * have associativity properties. If none, then
747 * everything goes to default_nid.
748 */
953039c8 749 nid = of_node_to_nid_single(memory);
482ec7c4
NL
750 if (nid < 0)
751 nid = default_nid;
1daa6d08
BS
752
753 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
482ec7c4 754 node_set_online(nid);
1da177e4 755
45fb6cea 756 if (!(size = numa_enforce_memory_limit(start, size))) {
1da177e4
LT
757 if (--ranges)
758 goto new_range;
759 else
760 continue;
761 }
762
1d7cfe18 763 memblock_set_node(start, size, nid);
1da177e4
LT
764
765 if (--ranges)
766 goto new_range;
767 }
768
0204568a 769 /*
dfbe93a2
AB
770 * Now do the same thing for each MEMBLOCK listed in the
771 * ibm,dynamic-memory property in the
772 * ibm,dynamic-reconfiguration-memory node.
0204568a
PM
773 */
774 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
775 if (memory)
776 parse_drconf_memory(memory);
777
1da177e4
LT
778 return 0;
779}
780
781static void __init setup_nonnuma(void)
782{
95f72d1e
YL
783 unsigned long top_of_ram = memblock_end_of_DRAM();
784 unsigned long total_ram = memblock_phys_mem_size();
c67c3cb4 785 unsigned long start_pfn, end_pfn;
28be7072
BH
786 unsigned int nid = 0;
787 struct memblock_region *reg;
1da177e4 788
e110b281 789 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1da177e4 790 top_of_ram, total_ram);
e110b281 791 printk(KERN_DEBUG "Memory hole size: %ldMB\n",
1da177e4
LT
792 (top_of_ram - total_ram) >> 20);
793
28be7072 794 for_each_memblock(memory, reg) {
c7fc2de0
YL
795 start_pfn = memblock_region_memory_base_pfn(reg);
796 end_pfn = memblock_region_memory_end_pfn(reg);
1daa6d08
BS
797
798 fake_numa_create_new_node(end_pfn, &nid);
1d7cfe18
TH
799 memblock_set_node(PFN_PHYS(start_pfn),
800 PFN_PHYS(end_pfn - start_pfn), nid);
1daa6d08 801 node_set_online(nid);
c67c3cb4 802 }
1da177e4
LT
803}
804
4b703a23
AB
805void __init dump_numa_cpu_topology(void)
806{
807 unsigned int node;
808 unsigned int cpu, count;
809
810 if (min_common_depth == -1 || !numa_enabled)
811 return;
812
813 for_each_online_node(node) {
e110b281 814 printk(KERN_DEBUG "Node %d CPUs:", node);
4b703a23
AB
815
816 count = 0;
817 /*
818 * If we used a CPU iterator here we would miss printing
819 * the holes in the cpumap.
820 */
25863de0
AB
821 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
822 if (cpumask_test_cpu(cpu,
823 node_to_cpumask_map[node])) {
4b703a23
AB
824 if (count == 0)
825 printk(" %u", cpu);
826 ++count;
827 } else {
828 if (count > 1)
829 printk("-%u", cpu - 1);
830 count = 0;
831 }
832 }
833
834 if (count > 1)
25863de0 835 printk("-%u", nr_cpu_ids - 1);
4b703a23
AB
836 printk("\n");
837 }
838}
839
840static void __init dump_numa_memory_topology(void)
1da177e4
LT
841{
842 unsigned int node;
843 unsigned int count;
844
845 if (min_common_depth == -1 || !numa_enabled)
846 return;
847
848 for_each_online_node(node) {
849 unsigned long i;
850
e110b281 851 printk(KERN_DEBUG "Node %d Memory:", node);
1da177e4
LT
852
853 count = 0;
854
95f72d1e 855 for (i = 0; i < memblock_end_of_DRAM();
45fb6cea
AB
856 i += (1 << SECTION_SIZE_BITS)) {
857 if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
1da177e4
LT
858 if (count == 0)
859 printk(" 0x%lx", i);
860 ++count;
861 } else {
862 if (count > 0)
863 printk("-0x%lx", i);
864 count = 0;
865 }
866 }
867
868 if (count > 0)
869 printk("-0x%lx", i);
870 printk("\n");
871 }
1da177e4
LT
872}
873
874/*
95f72d1e 875 * Allocate some memory, satisfying the memblock or bootmem allocator where
1da177e4
LT
876 * required. nid is the preferred node and end is the physical address of
877 * the highest address in the node.
878 *
0be210fd 879 * Returns the virtual address of the memory.
1da177e4 880 */
893473df 881static void __init *careful_zallocation(int nid, unsigned long size,
45fb6cea
AB
882 unsigned long align,
883 unsigned long end_pfn)
1da177e4 884{
0be210fd 885 void *ret;
45fb6cea 886 int new_nid;
0be210fd
DH
887 unsigned long ret_paddr;
888
95f72d1e 889 ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT);
1da177e4
LT
890
891 /* retry over all memory */
0be210fd 892 if (!ret_paddr)
95f72d1e 893 ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM());
1da177e4 894
0be210fd 895 if (!ret_paddr)
5d21ea2b 896 panic("numa.c: cannot allocate %lu bytes for node %d",
1da177e4
LT
897 size, nid);
898
0be210fd
DH
899 ret = __va(ret_paddr);
900
1da177e4 901 /*
c555e520 902 * We initialize the nodes in numeric order: 0, 1, 2...
95f72d1e 903 * and hand over control from the MEMBLOCK allocator to the
c555e520
DH
904 * bootmem allocator. If this function is called for
905 * node 5, then we know that all nodes <5 are using the
95f72d1e 906 * bootmem allocator instead of the MEMBLOCK allocator.
c555e520
DH
907 *
908 * So, check the nid from which this allocation came
909 * and double check to see if we need to use bootmem
95f72d1e 910 * instead of the MEMBLOCK. We don't free the MEMBLOCK memory
c555e520 911 * since it would be useless.
1da177e4 912 */
0be210fd 913 new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT);
45fb6cea 914 if (new_nid < nid) {
0be210fd 915 ret = __alloc_bootmem_node(NODE_DATA(new_nid),
1da177e4
LT
916 size, align, 0);
917
0be210fd 918 dbg("alloc_bootmem %p %lx\n", ret, size);
1da177e4
LT
919 }
920
893473df 921 memset(ret, 0, size);
0be210fd 922 return ret;
1da177e4
LT
923}
924
061d19f2 925static struct notifier_block ppc64_numa_nb = {
74b85f37
CS
926 .notifier_call = cpu_numa_callback,
927 .priority = 1 /* Must run before sched domains notifier. */
928};
929
28e86bdb 930static void __init mark_reserved_regions_for_nid(int nid)
4a618669
DH
931{
932 struct pglist_data *node = NODE_DATA(nid);
28be7072 933 struct memblock_region *reg;
4a618669 934
28be7072
BH
935 for_each_memblock(reserved, reg) {
936 unsigned long physbase = reg->base;
937 unsigned long size = reg->size;
4a618669 938 unsigned long start_pfn = physbase >> PAGE_SHIFT;
06eccea6 939 unsigned long end_pfn = PFN_UP(physbase + size);
4a618669 940 struct node_active_region node_ar;
6408068e 941 unsigned long node_end_pfn = pgdat_end_pfn(node);
4a618669
DH
942
943 /*
95f72d1e 944 * Check to make sure that this memblock.reserved area is
4a618669
DH
945 * within the bounds of the node that we care about.
946 * Checking the nid of the start and end points is not
947 * sufficient because the reserved area could span the
948 * entire node.
949 */
950 if (end_pfn <= node->node_start_pfn ||
951 start_pfn >= node_end_pfn)
952 continue;
953
954 get_node_active_region(start_pfn, &node_ar);
955 while (start_pfn < end_pfn &&
956 node_ar.start_pfn < node_ar.end_pfn) {
957 unsigned long reserve_size = size;
958 /*
959 * if reserved region extends past active region
960 * then trim size to active region
961 */
962 if (end_pfn > node_ar.end_pfn)
963 reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
06eccea6 964 - physbase;
a4c74ddd
DH
965 /*
966 * Only worry about *this* node, others may not
967 * yet have valid NODE_DATA().
968 */
969 if (node_ar.nid == nid) {
970 dbg("reserve_bootmem %lx %lx nid=%d\n",
971 physbase, reserve_size, node_ar.nid);
972 reserve_bootmem_node(NODE_DATA(node_ar.nid),
973 physbase, reserve_size,
974 BOOTMEM_DEFAULT);
975 }
4a618669
DH
976 /*
977 * if reserved region is contained in the active region
978 * then done.
979 */
980 if (end_pfn <= node_ar.end_pfn)
981 break;
982
983 /*
984 * reserved region extends past the active region
985 * get next active region that contains this
986 * reserved region
987 */
988 start_pfn = node_ar.end_pfn;
989 physbase = start_pfn << PAGE_SHIFT;
990 size = size - reserve_size;
991 get_node_active_region(start_pfn, &node_ar);
992 }
993 }
994}
995
996
1da177e4
LT
997void __init do_init_bootmem(void)
998{
999 int nid;
1da177e4
LT
1000
1001 min_low_pfn = 0;
95f72d1e 1002 max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1da177e4
LT
1003 max_pfn = max_low_pfn;
1004
1005 if (parse_numa_properties())
1006 setup_nonnuma();
1007 else
4b703a23 1008 dump_numa_memory_topology();
1da177e4 1009
1da177e4 1010 for_each_online_node(nid) {
c67c3cb4 1011 unsigned long start_pfn, end_pfn;
0be210fd 1012 void *bootmem_vaddr;
1da177e4
LT
1013 unsigned long bootmap_pages;
1014
c67c3cb4 1015 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1da177e4 1016
4a618669
DH
1017 /*
1018 * Allocate the node structure node local if possible
1019 *
1020 * Be careful moving this around, as it relies on all
1021 * previous nodes' bootmem to be initialized and have
1022 * all reserved areas marked.
1023 */
893473df 1024 NODE_DATA(nid) = careful_zallocation(nid,
1da177e4 1025 sizeof(struct pglist_data),
45fb6cea 1026 SMP_CACHE_BYTES, end_pfn);
1da177e4
LT
1027
1028 dbg("node %d\n", nid);
1029 dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
1030
b61bfa3c 1031 NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
45fb6cea
AB
1032 NODE_DATA(nid)->node_start_pfn = start_pfn;
1033 NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
1da177e4
LT
1034
1035 if (NODE_DATA(nid)->node_spanned_pages == 0)
1036 continue;
1037
45fb6cea
AB
1038 dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
1039 dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
1da177e4 1040
45fb6cea 1041 bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
893473df 1042 bootmem_vaddr = careful_zallocation(nid,
45fb6cea
AB
1043 bootmap_pages << PAGE_SHIFT,
1044 PAGE_SIZE, end_pfn);
1da177e4 1045
0be210fd 1046 dbg("bootmap_vaddr = %p\n", bootmem_vaddr);
1da177e4 1047
0be210fd
DH
1048 init_bootmem_node(NODE_DATA(nid),
1049 __pa(bootmem_vaddr) >> PAGE_SHIFT,
45fb6cea 1050 start_pfn, end_pfn);
1da177e4 1051
c67c3cb4 1052 free_bootmem_with_active_regions(nid, end_pfn);
4a618669
DH
1053 /*
1054 * Be very careful about moving this around. Future
893473df 1055 * calls to careful_zallocation() depend on this getting
4a618669
DH
1056 * done correctly.
1057 */
1058 mark_reserved_regions_for_nid(nid);
8f64e1f2 1059 sparse_memory_present_with_active_regions(nid);
4a618669 1060 }
d3f6204a
BH
1061
1062 init_bootmem_done = 1;
25863de0
AB
1063
1064 /*
1065 * Now bootmem is initialised we can create the node to cpumask
1066 * lookup tables and setup the cpu callback to populate them.
1067 */
1068 setup_node_to_cpumask_map();
1069
1070 register_cpu_notifier(&ppc64_numa_nb);
1071 cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
1072 (void *)(unsigned long)boot_cpuid);
1da177e4
LT
1073}
1074
1075void __init paging_init(void)
1076{
6391af17
MG
1077 unsigned long max_zone_pfns[MAX_NR_ZONES];
1078 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
95f72d1e 1079 max_zone_pfns[ZONE_DMA] = memblock_end_of_DRAM() >> PAGE_SHIFT;
c67c3cb4 1080 free_area_init_nodes(max_zone_pfns);
1da177e4
LT
1081}
1082
1083static int __init early_numa(char *p)
1084{
1085 if (!p)
1086 return 0;
1087
1088 if (strstr(p, "off"))
1089 numa_enabled = 0;
1090
1091 if (strstr(p, "debug"))
1092 numa_debug = 1;
1093
1daa6d08
BS
1094 p = strstr(p, "fake=");
1095 if (p)
1096 cmdline = p + strlen("fake=");
1097
1da177e4
LT
1098 return 0;
1099}
1100early_param("numa", early_numa);
237a0989
MK
1101
1102#ifdef CONFIG_MEMORY_HOTPLUG
0db9360a 1103/*
0f16ef7f
NF
1104 * Find the node associated with a hot added memory section for
1105 * memory represented in the device tree by the property
1106 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
0db9360a
NF
1107 */
1108static int hot_add_drconf_scn_to_nid(struct device_node *memory,
1109 unsigned long scn_addr)
1110{
b08a2a12 1111 const __be32 *dm;
0f16ef7f 1112 unsigned int drconf_cell_cnt, rc;
3fdfd990 1113 unsigned long lmb_size;
0db9360a 1114 struct assoc_arrays aa;
0f16ef7f 1115 int nid = -1;
0db9360a 1116
0f16ef7f
NF
1117 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1118 if (!drconf_cell_cnt)
1119 return -1;
0db9360a 1120
3fdfd990
BH
1121 lmb_size = of_get_lmb_size(memory);
1122 if (!lmb_size)
0f16ef7f 1123 return -1;
0db9360a
NF
1124
1125 rc = of_get_assoc_arrays(memory, &aa);
1126 if (rc)
0f16ef7f 1127 return -1;
0db9360a 1128
0f16ef7f 1129 for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
0db9360a
NF
1130 struct of_drconf_cell drmem;
1131
1132 read_drconf_cell(&drmem, &dm);
1133
1134 /* skip this block if it is reserved or not assigned to
1135 * this partition */
1136 if ((drmem.flags & DRCONF_MEM_RESERVED)
1137 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
1138 continue;
1139
0f16ef7f 1140 if ((scn_addr < drmem.base_addr)
3fdfd990 1141 || (scn_addr >= (drmem.base_addr + lmb_size)))
0f16ef7f
NF
1142 continue;
1143
0db9360a 1144 nid = of_drconf_to_nid_single(&drmem, &aa);
0f16ef7f
NF
1145 break;
1146 }
1147
1148 return nid;
1149}
1150
1151/*
1152 * Find the node associated with a hot added memory section for memory
1153 * represented in the device tree as a node (i.e. memory@XXXX) for
95f72d1e 1154 * each memblock.
0f16ef7f 1155 */
ec32dd66 1156static int hot_add_node_scn_to_nid(unsigned long scn_addr)
0f16ef7f 1157{
94db7c5e 1158 struct device_node *memory;
0f16ef7f
NF
1159 int nid = -1;
1160
94db7c5e 1161 for_each_node_by_type(memory, "memory") {
0f16ef7f
NF
1162 unsigned long start, size;
1163 int ranges;
b08a2a12 1164 const __be32 *memcell_buf;
0f16ef7f
NF
1165 unsigned int len;
1166
1167 memcell_buf = of_get_property(memory, "reg", &len);
1168 if (!memcell_buf || len <= 0)
1169 continue;
1170
1171 /* ranges in cell */
1172 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1173
1174 while (ranges--) {
1175 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1176 size = read_n_cells(n_mem_size_cells, &memcell_buf);
1177
1178 if ((scn_addr < start) || (scn_addr >= (start + size)))
1179 continue;
1180
1181 nid = of_node_to_nid_single(memory);
1182 break;
1183 }
0db9360a 1184
0f16ef7f
NF
1185 if (nid >= 0)
1186 break;
0db9360a
NF
1187 }
1188
60831842
AB
1189 of_node_put(memory);
1190
0f16ef7f 1191 return nid;
0db9360a
NF
1192}
1193
237a0989
MK
1194/*
1195 * Find the node associated with a hot added memory section. Section
95f72d1e
YL
1196 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that
1197 * sections are fully contained within a single MEMBLOCK.
237a0989
MK
1198 */
1199int hot_add_scn_to_nid(unsigned long scn_addr)
1200{
1201 struct device_node *memory = NULL;
0f16ef7f 1202 int nid, found = 0;
237a0989
MK
1203
1204 if (!numa_enabled || (min_common_depth < 0))
72c33688 1205 return first_online_node;
0db9360a
NF
1206
1207 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1208 if (memory) {
1209 nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
1210 of_node_put(memory);
0f16ef7f
NF
1211 } else {
1212 nid = hot_add_node_scn_to_nid(scn_addr);
0db9360a 1213 }
237a0989 1214
0f16ef7f 1215 if (nid < 0 || !node_online(nid))
72c33688 1216 nid = first_online_node;
237a0989 1217
0f16ef7f
NF
1218 if (NODE_DATA(nid)->node_spanned_pages)
1219 return nid;
237a0989 1220
0f16ef7f
NF
1221 for_each_online_node(nid) {
1222 if (NODE_DATA(nid)->node_spanned_pages) {
1223 found = 1;
1224 break;
237a0989 1225 }
237a0989 1226 }
0f16ef7f
NF
1227
1228 BUG_ON(!found);
1229 return nid;
237a0989 1230}
0f16ef7f 1231
cd34206e
NA
1232static u64 hot_add_drconf_memory_max(void)
1233{
1234 struct device_node *memory = NULL;
1235 unsigned int drconf_cell_cnt = 0;
1236 u64 lmb_size = 0;
ec32dd66 1237 const __be32 *dm = NULL;
cd34206e
NA
1238
1239 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1240 if (memory) {
1241 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1242 lmb_size = of_get_lmb_size(memory);
1243 of_node_put(memory);
1244 }
1245 return lmb_size * drconf_cell_cnt;
1246}
1247
1248/*
1249 * memory_hotplug_max - return max address of memory that may be added
1250 *
1251 * This is currently only used on systems that support drconfig memory
1252 * hotplug.
1253 */
1254u64 memory_hotplug_max(void)
1255{
1256 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1257}
237a0989 1258#endif /* CONFIG_MEMORY_HOTPLUG */
9eff1a38 1259
bd03403a 1260/* Virtual Processor Home Node (VPHN) support */
39bf990e 1261#ifdef CONFIG_PPC_SPLPAR
30c05350
NF
1262struct topology_update_data {
1263 struct topology_update_data *next;
1264 unsigned int cpu;
1265 int old_nid;
1266 int new_nid;
1267};
1268
5de16699 1269static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
9eff1a38
JL
1270static cpumask_t cpu_associativity_changes_mask;
1271static int vphn_enabled;
5d88aa85
JL
1272static int prrn_enabled;
1273static void reset_topology_timer(void);
9eff1a38
JL
1274
1275/*
1276 * Store the current values of the associativity change counters in the
1277 * hypervisor.
1278 */
1279static void setup_cpu_associativity_change_counters(void)
1280{
cd9d6cc7 1281 int cpu;
9eff1a38 1282
5de16699
AB
1283 /* The VPHN feature supports a maximum of 8 reference points */
1284 BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
1285
9eff1a38 1286 for_each_possible_cpu(cpu) {
cd9d6cc7 1287 int i;
9eff1a38
JL
1288 u8 *counts = vphn_cpu_change_counts[cpu];
1289 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1290
5de16699 1291 for (i = 0; i < distance_ref_points_depth; i++)
9eff1a38 1292 counts[i] = hypervisor_counts[i];
9eff1a38
JL
1293 }
1294}
1295
1296/*
1297 * The hypervisor maintains a set of 8 associativity change counters in
1298 * the VPA of each cpu that correspond to the associativity levels in the
1299 * ibm,associativity-reference-points property. When an associativity
1300 * level changes, the corresponding counter is incremented.
1301 *
1302 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1303 * node associativity levels have changed.
1304 *
1305 * Returns the number of cpus with unhandled associativity changes.
1306 */
1307static int update_cpu_associativity_changes_mask(void)
1308{
5d88aa85 1309 int cpu;
9eff1a38
JL
1310 cpumask_t *changes = &cpu_associativity_changes_mask;
1311
9eff1a38
JL
1312 for_each_possible_cpu(cpu) {
1313 int i, changed = 0;
1314 u8 *counts = vphn_cpu_change_counts[cpu];
1315 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1316
5de16699 1317 for (i = 0; i < distance_ref_points_depth; i++) {
d69043e8 1318 if (hypervisor_counts[i] != counts[i]) {
9eff1a38
JL
1319 counts[i] = hypervisor_counts[i];
1320 changed = 1;
1321 }
1322 }
1323 if (changed) {
3be7db6a
RJ
1324 cpumask_or(changes, changes, cpu_sibling_mask(cpu));
1325 cpu = cpu_last_thread_sibling(cpu);
9eff1a38
JL
1326 }
1327 }
1328
5d88aa85 1329 return cpumask_weight(changes);
9eff1a38
JL
1330}
1331
c0e5e46f
AB
1332/*
1333 * 6 64-bit registers unpacked into 12 32-bit associativity values. To form
1334 * the complete property we have to add the length in the first cell.
1335 */
1336#define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1)
9eff1a38
JL
1337
1338/*
1339 * Convert the associativity domain numbers returned from the hypervisor
1340 * to the sequence they would appear in the ibm,associativity property.
1341 */
b08a2a12 1342static int vphn_unpack_associativity(const long *packed, __be32 *unpacked)
9eff1a38 1343{
cd9d6cc7 1344 int i, nr_assoc_doms = 0;
b08a2a12 1345 const __be16 *field = (const __be16 *) packed;
9eff1a38
JL
1346
1347#define VPHN_FIELD_UNUSED (0xffff)
1348#define VPHN_FIELD_MSB (0x8000)
1349#define VPHN_FIELD_MASK (~VPHN_FIELD_MSB)
1350
c0e5e46f 1351 for (i = 1; i < VPHN_ASSOC_BUFSIZE; i++) {
b08a2a12 1352 if (be16_to_cpup(field) == VPHN_FIELD_UNUSED) {
9eff1a38
JL
1353 /* All significant fields processed, and remaining
1354 * fields contain the reserved value of all 1's.
1355 * Just store them.
1356 */
b08a2a12 1357 unpacked[i] = *((__be32 *)field);
9eff1a38 1358 field += 2;
b08a2a12 1359 } else if (be16_to_cpup(field) & VPHN_FIELD_MSB) {
9eff1a38 1360 /* Data is in the lower 15 bits of this field */
b08a2a12
AP
1361 unpacked[i] = cpu_to_be32(
1362 be16_to_cpup(field) & VPHN_FIELD_MASK);
9eff1a38
JL
1363 field++;
1364 nr_assoc_doms++;
7639adaa 1365 } else {
9eff1a38
JL
1366 /* Data is in the lower 15 bits of this field
1367 * concatenated with the next 16 bit field
1368 */
b08a2a12 1369 unpacked[i] = *((__be32 *)field);
9eff1a38
JL
1370 field += 2;
1371 nr_assoc_doms++;
1372 }
1373 }
1374
c0e5e46f 1375 /* The first cell contains the length of the property */
b08a2a12 1376 unpacked[0] = cpu_to_be32(nr_assoc_doms);
c0e5e46f 1377
9eff1a38
JL
1378 return nr_assoc_doms;
1379}
1380
1381/*
1382 * Retrieve the new associativity information for a virtual processor's
1383 * home node.
1384 */
b08a2a12 1385static long hcall_vphn(unsigned long cpu, __be32 *associativity)
9eff1a38 1386{
cd9d6cc7 1387 long rc;
9eff1a38
JL
1388 long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
1389 u64 flags = 1;
1390 int hwcpu = get_hard_smp_processor_id(cpu);
1391
1392 rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
1393 vphn_unpack_associativity(retbuf, associativity);
1394
1395 return rc;
1396}
1397
1398static long vphn_get_associativity(unsigned long cpu,
b08a2a12 1399 __be32 *associativity)
9eff1a38 1400{
cd9d6cc7 1401 long rc;
9eff1a38
JL
1402
1403 rc = hcall_vphn(cpu, associativity);
1404
1405 switch (rc) {
1406 case H_FUNCTION:
1407 printk(KERN_INFO
1408 "VPHN is not supported. Disabling polling...\n");
1409 stop_topology_update();
1410 break;
1411 case H_HARDWARE:
1412 printk(KERN_ERR
1413 "hcall_vphn() experienced a hardware fault "
1414 "preventing VPHN. Disabling polling...\n");
1415 stop_topology_update();
1416 }
1417
1418 return rc;
1419}
1420
30c05350
NF
1421/*
1422 * Update the CPU maps and sysfs entries for a single CPU when its NUMA
1423 * characteristics change. This function doesn't perform any locking and is
1424 * only safe to call from stop_machine().
1425 */
1426static int update_cpu_topology(void *data)
1427{
1428 struct topology_update_data *update;
1429 unsigned long cpu;
1430
1431 if (!data)
1432 return -EINVAL;
1433
3be7db6a 1434 cpu = smp_processor_id();
30c05350
NF
1435
1436 for (update = data; update; update = update->next) {
1437 if (cpu != update->cpu)
1438 continue;
1439
30c05350
NF
1440 unmap_cpu_from_node(update->cpu);
1441 map_cpu_to_node(update->cpu, update->new_nid);
176bbf14 1442 vdso_getcpu_init();
30c05350
NF
1443 }
1444
1445 return 0;
1446}
1447
9eff1a38
JL
1448/*
1449 * Update the node maps and sysfs entries for each cpu whose home node
79c5fceb 1450 * has changed. Returns 1 when the topology has changed, and 0 otherwise.
9eff1a38
JL
1451 */
1452int arch_update_cpu_topology(void)
1453{
3be7db6a 1454 unsigned int cpu, sibling, changed = 0;
30c05350 1455 struct topology_update_data *updates, *ud;
b08a2a12 1456 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
176bbf14 1457 cpumask_t updated_cpus;
8a25a2fd 1458 struct device *dev;
3be7db6a 1459 int weight, new_nid, i = 0;
9eff1a38 1460
30c05350
NF
1461 weight = cpumask_weight(&cpu_associativity_changes_mask);
1462 if (!weight)
1463 return 0;
1464
1465 updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL);
1466 if (!updates)
1467 return 0;
9eff1a38 1468
176bbf14
JL
1469 cpumask_clear(&updated_cpus);
1470
5d88aa85 1471 for_each_cpu(cpu, &cpu_associativity_changes_mask) {
3be7db6a
RJ
1472 /*
1473 * If siblings aren't flagged for changes, updates list
1474 * will be too short. Skip on this update and set for next
1475 * update.
1476 */
1477 if (!cpumask_subset(cpu_sibling_mask(cpu),
1478 &cpu_associativity_changes_mask)) {
1479 pr_info("Sibling bits not set for associativity "
1480 "change, cpu%d\n", cpu);
1481 cpumask_or(&cpu_associativity_changes_mask,
1482 &cpu_associativity_changes_mask,
1483 cpu_sibling_mask(cpu));
1484 cpu = cpu_last_thread_sibling(cpu);
1485 continue;
1486 }
9eff1a38 1487
3be7db6a
RJ
1488 /* Use associativity from first thread for all siblings */
1489 vphn_get_associativity(cpu, associativity);
1490 new_nid = associativity_to_nid(associativity);
1491 if (new_nid < 0 || !node_online(new_nid))
1492 new_nid = first_online_node;
1493
1494 if (new_nid == numa_cpu_lookup_table[cpu]) {
1495 cpumask_andnot(&cpu_associativity_changes_mask,
1496 &cpu_associativity_changes_mask,
1497 cpu_sibling_mask(cpu));
1498 cpu = cpu_last_thread_sibling(cpu);
1499 continue;
1500 }
9eff1a38 1501
3be7db6a
RJ
1502 for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
1503 ud = &updates[i++];
1504 ud->cpu = sibling;
1505 ud->new_nid = new_nid;
1506 ud->old_nid = numa_cpu_lookup_table[sibling];
1507 cpumask_set_cpu(sibling, &updated_cpus);
1508 if (i < weight)
1509 ud->next = &updates[i];
1510 }
1511 cpu = cpu_last_thread_sibling(cpu);
30c05350
NF
1512 }
1513
176bbf14 1514 stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
30c05350
NF
1515
1516 for (ud = &updates[0]; ud; ud = ud->next) {
dd023217
NF
1517 unregister_cpu_under_node(ud->cpu, ud->old_nid);
1518 register_cpu_under_node(ud->cpu, ud->new_nid);
1519
30c05350 1520 dev = get_cpu_device(ud->cpu);
8a25a2fd
KS
1521 if (dev)
1522 kobject_uevent(&dev->kobj, KOBJ_CHANGE);
30c05350 1523 cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
79c5fceb 1524 changed = 1;
9eff1a38
JL
1525 }
1526
30c05350 1527 kfree(updates);
79c5fceb 1528 return changed;
9eff1a38
JL
1529}
1530
1531static void topology_work_fn(struct work_struct *work)
1532{
1533 rebuild_sched_domains();
1534}
1535static DECLARE_WORK(topology_work, topology_work_fn);
1536
ec32dd66 1537static void topology_schedule_update(void)
9eff1a38
JL
1538{
1539 schedule_work(&topology_work);
1540}
1541
1542static void topology_timer_fn(unsigned long ignored)
1543{
5d88aa85 1544 if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
9eff1a38 1545 topology_schedule_update();
5d88aa85
JL
1546 else if (vphn_enabled) {
1547 if (update_cpu_associativity_changes_mask() > 0)
1548 topology_schedule_update();
1549 reset_topology_timer();
1550 }
9eff1a38
JL
1551}
1552static struct timer_list topology_timer =
1553 TIMER_INITIALIZER(topology_timer_fn, 0, 0);
1554
5d88aa85 1555static void reset_topology_timer(void)
9eff1a38
JL
1556{
1557 topology_timer.data = 0;
1558 topology_timer.expires = jiffies + 60 * HZ;
5d88aa85 1559 mod_timer(&topology_timer, topology_timer.expires);
9eff1a38
JL
1560}
1561
601abdc3
NF
1562#ifdef CONFIG_SMP
1563
5d88aa85
JL
1564static void stage_topology_update(int core_id)
1565{
1566 cpumask_or(&cpu_associativity_changes_mask,
1567 &cpu_associativity_changes_mask, cpu_sibling_mask(core_id));
1568 reset_topology_timer();
1569}
1570
1571static int dt_update_callback(struct notifier_block *nb,
1572 unsigned long action, void *data)
1573{
1574 struct of_prop_reconfig *update;
1575 int rc = NOTIFY_DONE;
1576
1577 switch (action) {
5d88aa85
JL
1578 case OF_RECONFIG_UPDATE_PROPERTY:
1579 update = (struct of_prop_reconfig *)data;
30c05350
NF
1580 if (!of_prop_cmp(update->dn->type, "cpu") &&
1581 !of_prop_cmp(update->prop->name, "ibm,associativity")) {
5d88aa85
JL
1582 u32 core_id;
1583 of_property_read_u32(update->dn, "reg", &core_id);
1584 stage_topology_update(core_id);
1585 rc = NOTIFY_OK;
1586 }
1587 break;
1588 }
1589
1590 return rc;
9eff1a38
JL
1591}
1592
5d88aa85
JL
1593static struct notifier_block dt_update_nb = {
1594 .notifier_call = dt_update_callback,
1595};
1596
601abdc3
NF
1597#endif
1598
9eff1a38 1599/*
5d88aa85 1600 * Start polling for associativity changes.
9eff1a38
JL
1601 */
1602int start_topology_update(void)
1603{
1604 int rc = 0;
1605
5d88aa85
JL
1606 if (firmware_has_feature(FW_FEATURE_PRRN)) {
1607 if (!prrn_enabled) {
1608 prrn_enabled = 1;
1609 vphn_enabled = 0;
601abdc3 1610#ifdef CONFIG_SMP
5d88aa85 1611 rc = of_reconfig_notifier_register(&dt_update_nb);
601abdc3 1612#endif
5d88aa85 1613 }
b7abef04 1614 } else if (firmware_has_feature(FW_FEATURE_VPHN) &&
f13c13a0 1615 lppaca_shared_proc(get_lppaca())) {
5d88aa85
JL
1616 if (!vphn_enabled) {
1617 prrn_enabled = 0;
1618 vphn_enabled = 1;
1619 setup_cpu_associativity_change_counters();
1620 init_timer_deferrable(&topology_timer);
1621 reset_topology_timer();
1622 }
9eff1a38
JL
1623 }
1624
1625 return rc;
1626}
9eff1a38
JL
1627
1628/*
1629 * Disable polling for VPHN associativity changes.
1630 */
1631int stop_topology_update(void)
1632{
5d88aa85
JL
1633 int rc = 0;
1634
1635 if (prrn_enabled) {
1636 prrn_enabled = 0;
601abdc3 1637#ifdef CONFIG_SMP
5d88aa85 1638 rc = of_reconfig_notifier_unregister(&dt_update_nb);
601abdc3 1639#endif
5d88aa85
JL
1640 } else if (vphn_enabled) {
1641 vphn_enabled = 0;
1642 rc = del_timer_sync(&topology_timer);
1643 }
1644
1645 return rc;
9eff1a38 1646}
e04fa612
NF
1647
1648int prrn_is_enabled(void)
1649{
1650 return prrn_enabled;
1651}
1652
1653static int topology_read(struct seq_file *file, void *v)
1654{
1655 if (vphn_enabled || prrn_enabled)
1656 seq_puts(file, "on\n");
1657 else
1658 seq_puts(file, "off\n");
1659
1660 return 0;
1661}
1662
1663static int topology_open(struct inode *inode, struct file *file)
1664{
1665 return single_open(file, topology_read, NULL);
1666}
1667
1668static ssize_t topology_write(struct file *file, const char __user *buf,
1669 size_t count, loff_t *off)
1670{
1671 char kbuf[4]; /* "on" or "off" plus null. */
1672 int read_len;
1673
1674 read_len = count < 3 ? count : 3;
1675 if (copy_from_user(kbuf, buf, read_len))
1676 return -EINVAL;
1677
1678 kbuf[read_len] = '\0';
1679
1680 if (!strncmp(kbuf, "on", 2))
1681 start_topology_update();
1682 else if (!strncmp(kbuf, "off", 3))
1683 stop_topology_update();
1684 else
1685 return -EINVAL;
1686
1687 return count;
1688}
1689
1690static const struct file_operations topology_ops = {
1691 .read = seq_read,
1692 .write = topology_write,
1693 .open = topology_open,
1694 .release = single_release
1695};
1696
1697static int topology_update_init(void)
1698{
1699 start_topology_update();
1700 proc_create("powerpc/topology_updates", 644, NULL, &topology_ops);
1701
1702 return 0;
9eff1a38 1703}
e04fa612 1704device_initcall(topology_update_init);
39bf990e 1705#endif /* CONFIG_PPC_SPLPAR */
This page took 0.812056 seconds and 5 git commands to generate.