powerpc/pseries: Fix partition migration hang under load
[deliverable/linux.git] / arch / powerpc / mm / numa.c
CommitLineData
1da177e4
LT
1/*
2 * pSeries NUMA support
3 *
4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11#include <linux/threads.h>
12#include <linux/bootmem.h>
13#include <linux/init.h>
14#include <linux/mm.h>
15#include <linux/mmzone.h>
16#include <linux/module.h>
17#include <linux/nodemask.h>
18#include <linux/cpu.h>
19#include <linux/notifier.h>
d9b2b2a2 20#include <linux/lmb.h>
6df1646e 21#include <linux/of.h>
06eccea6 22#include <linux/pfn.h>
45fb6cea 23#include <asm/sparsemem.h>
d9b2b2a2 24#include <asm/prom.h>
cf00a8d1 25#include <asm/system.h>
2249ca9d 26#include <asm/smp.h>
1da177e4
LT
27
28static int numa_enabled = 1;
29
1daa6d08
BS
30static char *cmdline __initdata;
31
1da177e4
LT
32static int numa_debug;
33#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
34
45fb6cea 35int numa_cpu_lookup_table[NR_CPUS];
1da177e4 36cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
1da177e4 37struct pglist_data *node_data[MAX_NUMNODES];
45fb6cea
AB
38
39EXPORT_SYMBOL(numa_cpu_lookup_table);
40EXPORT_SYMBOL(numa_cpumask_lookup_table);
41EXPORT_SYMBOL(node_data);
42
1da177e4 43static int min_common_depth;
237a0989 44static int n_mem_addr_cells, n_mem_size_cells;
1da177e4 45
1daa6d08
BS
46static int __cpuinit fake_numa_create_new_node(unsigned long end_pfn,
47 unsigned int *nid)
48{
49 unsigned long long mem;
50 char *p = cmdline;
51 static unsigned int fake_nid;
52 static unsigned long long curr_boundary;
53
54 /*
55 * Modify node id, iff we started creating NUMA nodes
56 * We want to continue from where we left of the last time
57 */
58 if (fake_nid)
59 *nid = fake_nid;
60 /*
61 * In case there are no more arguments to parse, the
62 * node_id should be the same as the last fake node id
63 * (we've handled this above).
64 */
65 if (!p)
66 return 0;
67
68 mem = memparse(p, &p);
69 if (!mem)
70 return 0;
71
72 if (mem < curr_boundary)
73 return 0;
74
75 curr_boundary = mem;
76
77 if ((end_pfn << PAGE_SHIFT) > mem) {
78 /*
79 * Skip commas and spaces
80 */
81 while (*p == ',' || *p == ' ' || *p == '\t')
82 p++;
83
84 cmdline = p;
85 fake_nid++;
86 *nid = fake_nid;
87 dbg("created new fake_node with id %d\n", fake_nid);
88 return 1;
89 }
90 return 0;
91}
92
8f64e1f2
JT
93/*
94 * get_active_region_work_fn - A helper function for get_node_active_region
95 * Returns datax set to the start_pfn and end_pfn if they contain
96 * the initial value of datax->start_pfn between them
97 * @start_pfn: start page(inclusive) of region to check
98 * @end_pfn: end page(exclusive) of region to check
99 * @datax: comes in with ->start_pfn set to value to search for and
100 * goes out with active range if it contains it
101 * Returns 1 if search value is in range else 0
102 */
103static int __init get_active_region_work_fn(unsigned long start_pfn,
104 unsigned long end_pfn, void *datax)
105{
106 struct node_active_region *data;
107 data = (struct node_active_region *)datax;
108
109 if (start_pfn <= data->start_pfn && end_pfn > data->start_pfn) {
110 data->start_pfn = start_pfn;
111 data->end_pfn = end_pfn;
112 return 1;
113 }
114 return 0;
115
116}
117
118/*
119 * get_node_active_region - Return active region containing start_pfn
e8170372 120 * Active range returned is empty if none found.
8f64e1f2
JT
121 * @start_pfn: The page to return the region for.
122 * @node_ar: Returned set to the active region containing start_pfn
123 */
124static void __init get_node_active_region(unsigned long start_pfn,
125 struct node_active_region *node_ar)
126{
127 int nid = early_pfn_to_nid(start_pfn);
128
129 node_ar->nid = nid;
130 node_ar->start_pfn = start_pfn;
e8170372 131 node_ar->end_pfn = start_pfn;
8f64e1f2
JT
132 work_with_active_regions(nid, get_active_region_work_fn, node_ar);
133}
134
2e5ce39d 135static void __cpuinit map_cpu_to_node(int cpu, int node)
1da177e4
LT
136{
137 numa_cpu_lookup_table[cpu] = node;
45fb6cea 138
bf4b85b0
NL
139 dbg("adding cpu %d to node %d\n", cpu, node);
140
45fb6cea 141 if (!(cpu_isset(cpu, numa_cpumask_lookup_table[node])))
1da177e4 142 cpu_set(cpu, numa_cpumask_lookup_table[node]);
1da177e4
LT
143}
144
145#ifdef CONFIG_HOTPLUG_CPU
146static void unmap_cpu_from_node(unsigned long cpu)
147{
148 int node = numa_cpu_lookup_table[cpu];
149
150 dbg("removing cpu %lu from node %d\n", cpu, node);
151
152 if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) {
153 cpu_clear(cpu, numa_cpumask_lookup_table[node]);
1da177e4
LT
154 } else {
155 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
156 cpu, node);
157 }
158}
159#endif /* CONFIG_HOTPLUG_CPU */
160
1da177e4 161/* must hold reference to node during call */
a7f67bdf 162static const int *of_get_associativity(struct device_node *dev)
1da177e4 163{
e2eb6392 164 return of_get_property(dev, "ibm,associativity", NULL);
1da177e4
LT
165}
166
cf00085d
C
167/*
168 * Returns the property linux,drconf-usable-memory if
169 * it exists (the property exists only in kexec/kdump kernels,
170 * added by kexec-tools)
171 */
172static const u32 *of_get_usable_memory(struct device_node *memory)
173{
174 const u32 *prop;
175 u32 len;
176 prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
177 if (!prop || len < sizeof(unsigned int))
178 return 0;
179 return prop;
180}
181
482ec7c4
NL
182/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
183 * info is found.
184 */
953039c8 185static int of_node_to_nid_single(struct device_node *device)
1da177e4 186{
482ec7c4 187 int nid = -1;
a7f67bdf 188 const unsigned int *tmp;
1da177e4
LT
189
190 if (min_common_depth == -1)
482ec7c4 191 goto out;
1da177e4
LT
192
193 tmp = of_get_associativity(device);
482ec7c4
NL
194 if (!tmp)
195 goto out;
196
197 if (tmp[0] >= min_common_depth)
cf950b7a 198 nid = tmp[min_common_depth];
bc16a759
NL
199
200 /* POWER4 LPAR uses 0xffff as invalid node */
482ec7c4
NL
201 if (nid == 0xffff || nid >= MAX_NUMNODES)
202 nid = -1;
203out:
cf950b7a 204 return nid;
1da177e4
LT
205}
206
953039c8
JK
207/* Walk the device tree upwards, looking for an associativity id */
208int of_node_to_nid(struct device_node *device)
209{
210 struct device_node *tmp;
211 int nid = -1;
212
213 of_node_get(device);
214 while (device) {
215 nid = of_node_to_nid_single(device);
216 if (nid != -1)
217 break;
218
219 tmp = device;
220 device = of_get_parent(tmp);
221 of_node_put(tmp);
222 }
223 of_node_put(device);
224
225 return nid;
226}
227EXPORT_SYMBOL_GPL(of_node_to_nid);
228
1da177e4
LT
229/*
230 * In theory, the "ibm,associativity" property may contain multiple
231 * associativity lists because a resource may be multiply connected
232 * into the machine. This resource then has different associativity
233 * characteristics relative to its multiple connections. We ignore
234 * this for now. We also assume that all cpu and memory sets have
235 * their distances represented at a common level. This won't be
1b3c3714 236 * true for hierarchical NUMA.
1da177e4
LT
237 *
238 * In any case the ibm,associativity-reference-points should give
239 * the correct depth for a normal NUMA system.
240 *
241 * - Dave Hansen <haveblue@us.ibm.com>
242 */
243static int __init find_min_common_depth(void)
244{
245 int depth;
a7f67bdf 246 const unsigned int *ref_points;
1da177e4
LT
247 struct device_node *rtas_root;
248 unsigned int len;
249
250 rtas_root = of_find_node_by_path("/rtas");
251
252 if (!rtas_root)
253 return -1;
254
255 /*
256 * this property is 2 32-bit integers, each representing a level of
257 * depth in the associativity nodes. The first is for an SMP
258 * configuration (should be all 0's) and the second is for a normal
259 * NUMA configuration.
260 */
e2eb6392 261 ref_points = of_get_property(rtas_root,
1da177e4
LT
262 "ibm,associativity-reference-points", &len);
263
20fcefe5 264 if ((len >= 2 * sizeof(unsigned int)) && ref_points) {
1da177e4
LT
265 depth = ref_points[1];
266 } else {
bf4b85b0 267 dbg("NUMA: ibm,associativity-reference-points not found.\n");
1da177e4
LT
268 depth = -1;
269 }
270 of_node_put(rtas_root);
271
272 return depth;
273}
274
84c9fdd1 275static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
1da177e4
LT
276{
277 struct device_node *memory = NULL;
1da177e4
LT
278
279 memory = of_find_node_by_type(memory, "memory");
54c23310 280 if (!memory)
84c9fdd1 281 panic("numa.c: No memory nodes found!");
54c23310 282
a8bda5dd 283 *n_addr_cells = of_n_addr_cells(memory);
9213feea 284 *n_size_cells = of_n_size_cells(memory);
84c9fdd1 285 of_node_put(memory);
1da177e4
LT
286}
287
a7f67bdf 288static unsigned long __devinit read_n_cells(int n, const unsigned int **buf)
1da177e4
LT
289{
290 unsigned long result = 0;
291
292 while (n--) {
293 result = (result << 32) | **buf;
294 (*buf)++;
295 }
296 return result;
297}
298
8342681d
NF
299struct of_drconf_cell {
300 u64 base_addr;
301 u32 drc_index;
302 u32 reserved;
303 u32 aa_index;
304 u32 flags;
305};
306
307#define DRCONF_MEM_ASSIGNED 0x00000008
308#define DRCONF_MEM_AI_INVALID 0x00000040
309#define DRCONF_MEM_RESERVED 0x00000080
310
311/*
312 * Read the next lmb list entry from the ibm,dynamic-memory property
313 * and return the information in the provided of_drconf_cell structure.
314 */
315static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp)
316{
317 const u32 *cp;
318
319 drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
320
321 cp = *cellp;
322 drmem->drc_index = cp[0];
323 drmem->reserved = cp[1];
324 drmem->aa_index = cp[2];
325 drmem->flags = cp[3];
326
327 *cellp = cp + 4;
328}
329
330/*
331 * Retreive and validate the ibm,dynamic-memory property of the device tree.
332 *
333 * The layout of the ibm,dynamic-memory property is a number N of lmb
334 * list entries followed by N lmb list entries. Each lmb list entry
335 * contains information as layed out in the of_drconf_cell struct above.
336 */
337static int of_get_drconf_memory(struct device_node *memory, const u32 **dm)
338{
339 const u32 *prop;
340 u32 len, entries;
341
342 prop = of_get_property(memory, "ibm,dynamic-memory", &len);
343 if (!prop || len < sizeof(unsigned int))
344 return 0;
345
346 entries = *prop++;
347
348 /* Now that we know the number of entries, revalidate the size
349 * of the property read in to ensure we have everything
350 */
351 if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
352 return 0;
353
354 *dm = prop;
355 return entries;
356}
357
358/*
359 * Retreive and validate the ibm,lmb-size property for drconf memory
360 * from the device tree.
361 */
362static u64 of_get_lmb_size(struct device_node *memory)
363{
364 const u32 *prop;
365 u32 len;
366
367 prop = of_get_property(memory, "ibm,lmb-size", &len);
368 if (!prop || len < sizeof(unsigned int))
369 return 0;
370
371 return read_n_cells(n_mem_size_cells, &prop);
372}
373
374struct assoc_arrays {
375 u32 n_arrays;
376 u32 array_sz;
377 const u32 *arrays;
378};
379
380/*
381 * Retreive and validate the list of associativity arrays for drconf
382 * memory from the ibm,associativity-lookup-arrays property of the
383 * device tree..
384 *
385 * The layout of the ibm,associativity-lookup-arrays property is a number N
386 * indicating the number of associativity arrays, followed by a number M
387 * indicating the size of each associativity array, followed by a list
388 * of N associativity arrays.
389 */
390static int of_get_assoc_arrays(struct device_node *memory,
391 struct assoc_arrays *aa)
392{
393 const u32 *prop;
394 u32 len;
395
396 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
397 if (!prop || len < 2 * sizeof(unsigned int))
398 return -1;
399
400 aa->n_arrays = *prop++;
401 aa->array_sz = *prop++;
402
403 /* Now that we know the number of arrrays and size of each array,
404 * revalidate the size of the property read in.
405 */
406 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
407 return -1;
408
409 aa->arrays = prop;
410 return 0;
411}
412
413/*
414 * This is like of_node_to_nid_single() for memory represented in the
415 * ibm,dynamic-reconfiguration-memory node.
416 */
417static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
418 struct assoc_arrays *aa)
419{
420 int default_nid = 0;
421 int nid = default_nid;
422 int index;
423
424 if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
425 !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
426 drmem->aa_index < aa->n_arrays) {
427 index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
428 nid = aa->arrays[index];
429
430 if (nid == 0xffff || nid >= MAX_NUMNODES)
431 nid = default_nid;
432 }
433
434 return nid;
435}
436
1da177e4
LT
437/*
438 * Figure out to which domain a cpu belongs and stick it there.
439 * Return the id of the domain used.
440 */
2e5ce39d 441static int __cpuinit numa_setup_cpu(unsigned long lcpu)
1da177e4 442{
cf950b7a 443 int nid = 0;
8b16cd23 444 struct device_node *cpu = of_get_cpu_node(lcpu, NULL);
1da177e4
LT
445
446 if (!cpu) {
447 WARN_ON(1);
448 goto out;
449 }
450
953039c8 451 nid = of_node_to_nid_single(cpu);
1da177e4 452
482ec7c4
NL
453 if (nid < 0 || !node_online(nid))
454 nid = any_online_node(NODE_MASK_ALL);
1da177e4 455out:
cf950b7a 456 map_cpu_to_node(lcpu, nid);
1da177e4
LT
457
458 of_node_put(cpu);
459
cf950b7a 460 return nid;
1da177e4
LT
461}
462
74b85f37 463static int __cpuinit cpu_numa_callback(struct notifier_block *nfb,
1da177e4
LT
464 unsigned long action,
465 void *hcpu)
466{
467 unsigned long lcpu = (unsigned long)hcpu;
468 int ret = NOTIFY_DONE;
469
470 switch (action) {
471 case CPU_UP_PREPARE:
8bb78442 472 case CPU_UP_PREPARE_FROZEN:
2b261227 473 numa_setup_cpu(lcpu);
1da177e4
LT
474 ret = NOTIFY_OK;
475 break;
476#ifdef CONFIG_HOTPLUG_CPU
477 case CPU_DEAD:
8bb78442 478 case CPU_DEAD_FROZEN:
1da177e4 479 case CPU_UP_CANCELED:
8bb78442 480 case CPU_UP_CANCELED_FROZEN:
1da177e4
LT
481 unmap_cpu_from_node(lcpu);
482 break;
483 ret = NOTIFY_OK;
484#endif
485 }
486 return ret;
487}
488
489/*
490 * Check and possibly modify a memory region to enforce the memory limit.
491 *
492 * Returns the size the region should have to enforce the memory limit.
493 * This will either be the original value of size, a truncated value,
494 * or zero. If the returned value of size is 0 the region should be
495 * discarded as it lies wholy above the memory limit.
496 */
45fb6cea
AB
497static unsigned long __init numa_enforce_memory_limit(unsigned long start,
498 unsigned long size)
1da177e4
LT
499{
500 /*
501 * We use lmb_end_of_DRAM() in here instead of memory_limit because
502 * we've already adjusted it for the limit and it takes care of
fe55249d
MM
503 * having memory holes below the limit. Also, in the case of
504 * iommu_is_off, memory_limit is not set but is implicitly enforced.
1da177e4 505 */
1da177e4 506
1da177e4
LT
507 if (start + size <= lmb_end_of_DRAM())
508 return size;
509
510 if (start >= lmb_end_of_DRAM())
511 return 0;
512
513 return lmb_end_of_DRAM() - start;
514}
515
cf00085d
C
516/*
517 * Reads the counter for a given entry in
518 * linux,drconf-usable-memory property
519 */
520static inline int __init read_usm_ranges(const u32 **usm)
521{
522 /*
523 * For each lmb in ibm,dynamic-memory a corresponding
524 * entry in linux,drconf-usable-memory property contains
525 * a counter followed by that many (base, size) duple.
526 * read the counter from linux,drconf-usable-memory
527 */
528 return read_n_cells(n_mem_size_cells, usm);
529}
530
0204568a
PM
531/*
532 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
533 * node. This assumes n_mem_{addr,size}_cells have been set.
534 */
535static void __init parse_drconf_memory(struct device_node *memory)
536{
cf00085d
C
537 const u32 *dm, *usm;
538 unsigned int n, rc, ranges, is_kexec_kdump = 0;
539 unsigned long lmb_size, base, size, sz;
8342681d
NF
540 int nid;
541 struct assoc_arrays aa;
542
543 n = of_get_drconf_memory(memory, &dm);
544 if (!n)
0204568a
PM
545 return;
546
8342681d
NF
547 lmb_size = of_get_lmb_size(memory);
548 if (!lmb_size)
549 return;
550
551 rc = of_get_assoc_arrays(memory, &aa);
552 if (rc)
0204568a
PM
553 return;
554
cf00085d
C
555 /* check if this is a kexec/kdump kernel */
556 usm = of_get_usable_memory(memory);
557 if (usm != NULL)
558 is_kexec_kdump = 1;
559
0204568a 560 for (; n != 0; --n) {
8342681d
NF
561 struct of_drconf_cell drmem;
562
563 read_drconf_cell(&drmem, &dm);
564
565 /* skip this block if the reserved bit is set in flags (0x80)
566 or if the block is not assigned to this partition (0x8) */
567 if ((drmem.flags & DRCONF_MEM_RESERVED)
568 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
0204568a 569 continue;
1daa6d08 570
cf00085d
C
571 base = drmem.base_addr;
572 size = lmb_size;
573 ranges = 1;
8342681d 574
cf00085d
C
575 if (is_kexec_kdump) {
576 ranges = read_usm_ranges(&usm);
577 if (!ranges) /* there are no (base, size) duple */
578 continue;
579 }
580 do {
581 if (is_kexec_kdump) {
582 base = read_n_cells(n_mem_addr_cells, &usm);
583 size = read_n_cells(n_mem_size_cells, &usm);
584 }
585 nid = of_drconf_to_nid_single(&drmem, &aa);
586 fake_numa_create_new_node(
587 ((base + size) >> PAGE_SHIFT),
8342681d 588 &nid);
cf00085d
C
589 node_set_online(nid);
590 sz = numa_enforce_memory_limit(base, size);
591 if (sz)
592 add_active_range(nid, base >> PAGE_SHIFT,
593 (base >> PAGE_SHIFT)
594 + (sz >> PAGE_SHIFT));
595 } while (--ranges);
0204568a
PM
596 }
597}
598
1da177e4
LT
599static int __init parse_numa_properties(void)
600{
601 struct device_node *cpu = NULL;
602 struct device_node *memory = NULL;
482ec7c4 603 int default_nid = 0;
1da177e4
LT
604 unsigned long i;
605
606 if (numa_enabled == 0) {
607 printk(KERN_WARNING "NUMA disabled by user\n");
608 return -1;
609 }
610
1da177e4
LT
611 min_common_depth = find_min_common_depth();
612
1da177e4
LT
613 if (min_common_depth < 0)
614 return min_common_depth;
615
bf4b85b0
NL
616 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
617
1da177e4 618 /*
482ec7c4
NL
619 * Even though we connect cpus to numa domains later in SMP
620 * init, we need to know the node ids now. This is because
621 * each node to be onlined must have NODE_DATA etc backing it.
1da177e4 622 */
482ec7c4 623 for_each_present_cpu(i) {
cf950b7a 624 int nid;
1da177e4 625
8b16cd23 626 cpu = of_get_cpu_node(i, NULL);
482ec7c4 627 BUG_ON(!cpu);
953039c8 628 nid = of_node_to_nid_single(cpu);
482ec7c4 629 of_node_put(cpu);
1da177e4 630
482ec7c4
NL
631 /*
632 * Don't fall back to default_nid yet -- we will plug
633 * cpus into nodes once the memory scan has discovered
634 * the topology.
635 */
636 if (nid < 0)
637 continue;
638 node_set_online(nid);
1da177e4
LT
639 }
640
237a0989 641 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
1da177e4
LT
642 memory = NULL;
643 while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
644 unsigned long start;
645 unsigned long size;
cf950b7a 646 int nid;
1da177e4 647 int ranges;
a7f67bdf 648 const unsigned int *memcell_buf;
1da177e4
LT
649 unsigned int len;
650
e2eb6392 651 memcell_buf = of_get_property(memory,
ba759485
ME
652 "linux,usable-memory", &len);
653 if (!memcell_buf || len <= 0)
e2eb6392 654 memcell_buf = of_get_property(memory, "reg", &len);
1da177e4
LT
655 if (!memcell_buf || len <= 0)
656 continue;
657
cc5d0189
BH
658 /* ranges in cell */
659 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1da177e4
LT
660new_range:
661 /* these are order-sensitive, and modify the buffer pointer */
237a0989
MK
662 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
663 size = read_n_cells(n_mem_size_cells, &memcell_buf);
1da177e4 664
482ec7c4
NL
665 /*
666 * Assumption: either all memory nodes or none will
667 * have associativity properties. If none, then
668 * everything goes to default_nid.
669 */
953039c8 670 nid = of_node_to_nid_single(memory);
482ec7c4
NL
671 if (nid < 0)
672 nid = default_nid;
1daa6d08
BS
673
674 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
482ec7c4 675 node_set_online(nid);
1da177e4 676
45fb6cea 677 if (!(size = numa_enforce_memory_limit(start, size))) {
1da177e4
LT
678 if (--ranges)
679 goto new_range;
680 else
681 continue;
682 }
683
c67c3cb4
MG
684 add_active_range(nid, start >> PAGE_SHIFT,
685 (start >> PAGE_SHIFT) + (size >> PAGE_SHIFT));
1da177e4
LT
686
687 if (--ranges)
688 goto new_range;
689 }
690
0204568a
PM
691 /*
692 * Now do the same thing for each LMB listed in the ibm,dynamic-memory
693 * property in the ibm,dynamic-reconfiguration-memory node.
694 */
695 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
696 if (memory)
697 parse_drconf_memory(memory);
698
1da177e4
LT
699 return 0;
700}
701
702static void __init setup_nonnuma(void)
703{
704 unsigned long top_of_ram = lmb_end_of_DRAM();
705 unsigned long total_ram = lmb_phys_mem_size();
c67c3cb4 706 unsigned long start_pfn, end_pfn;
1daa6d08 707 unsigned int i, nid = 0;
1da177e4 708
e110b281 709 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1da177e4 710 top_of_ram, total_ram);
e110b281 711 printk(KERN_DEBUG "Memory hole size: %ldMB\n",
1da177e4
LT
712 (top_of_ram - total_ram) >> 20);
713
c67c3cb4
MG
714 for (i = 0; i < lmb.memory.cnt; ++i) {
715 start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
716 end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
1daa6d08
BS
717
718 fake_numa_create_new_node(end_pfn, &nid);
719 add_active_range(nid, start_pfn, end_pfn);
720 node_set_online(nid);
c67c3cb4 721 }
1da177e4
LT
722}
723
4b703a23
AB
724void __init dump_numa_cpu_topology(void)
725{
726 unsigned int node;
727 unsigned int cpu, count;
728
729 if (min_common_depth == -1 || !numa_enabled)
730 return;
731
732 for_each_online_node(node) {
e110b281 733 printk(KERN_DEBUG "Node %d CPUs:", node);
4b703a23
AB
734
735 count = 0;
736 /*
737 * If we used a CPU iterator here we would miss printing
738 * the holes in the cpumap.
739 */
740 for (cpu = 0; cpu < NR_CPUS; cpu++) {
741 if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) {
742 if (count == 0)
743 printk(" %u", cpu);
744 ++count;
745 } else {
746 if (count > 1)
747 printk("-%u", cpu - 1);
748 count = 0;
749 }
750 }
751
752 if (count > 1)
753 printk("-%u", NR_CPUS - 1);
754 printk("\n");
755 }
756}
757
758static void __init dump_numa_memory_topology(void)
1da177e4
LT
759{
760 unsigned int node;
761 unsigned int count;
762
763 if (min_common_depth == -1 || !numa_enabled)
764 return;
765
766 for_each_online_node(node) {
767 unsigned long i;
768
e110b281 769 printk(KERN_DEBUG "Node %d Memory:", node);
1da177e4
LT
770
771 count = 0;
772
45fb6cea
AB
773 for (i = 0; i < lmb_end_of_DRAM();
774 i += (1 << SECTION_SIZE_BITS)) {
775 if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
1da177e4
LT
776 if (count == 0)
777 printk(" 0x%lx", i);
778 ++count;
779 } else {
780 if (count > 0)
781 printk("-0x%lx", i);
782 count = 0;
783 }
784 }
785
786 if (count > 0)
787 printk("-0x%lx", i);
788 printk("\n");
789 }
1da177e4
LT
790}
791
792/*
793 * Allocate some memory, satisfying the lmb or bootmem allocator where
794 * required. nid is the preferred node and end is the physical address of
795 * the highest address in the node.
796 *
0be210fd 797 * Returns the virtual address of the memory.
1da177e4 798 */
893473df 799static void __init *careful_zallocation(int nid, unsigned long size,
45fb6cea
AB
800 unsigned long align,
801 unsigned long end_pfn)
1da177e4 802{
0be210fd 803 void *ret;
45fb6cea 804 int new_nid;
0be210fd
DH
805 unsigned long ret_paddr;
806
807 ret_paddr = __lmb_alloc_base(size, align, end_pfn << PAGE_SHIFT);
1da177e4
LT
808
809 /* retry over all memory */
0be210fd
DH
810 if (!ret_paddr)
811 ret_paddr = __lmb_alloc_base(size, align, lmb_end_of_DRAM());
1da177e4 812
0be210fd 813 if (!ret_paddr)
5d21ea2b 814 panic("numa.c: cannot allocate %lu bytes for node %d",
1da177e4
LT
815 size, nid);
816
0be210fd
DH
817 ret = __va(ret_paddr);
818
1da177e4 819 /*
c555e520
DH
820 * We initialize the nodes in numeric order: 0, 1, 2...
821 * and hand over control from the LMB allocator to the
822 * bootmem allocator. If this function is called for
823 * node 5, then we know that all nodes <5 are using the
824 * bootmem allocator instead of the LMB allocator.
825 *
826 * So, check the nid from which this allocation came
827 * and double check to see if we need to use bootmem
828 * instead of the LMB. We don't free the LMB memory
829 * since it would be useless.
1da177e4 830 */
0be210fd 831 new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT);
45fb6cea 832 if (new_nid < nid) {
0be210fd 833 ret = __alloc_bootmem_node(NODE_DATA(new_nid),
1da177e4
LT
834 size, align, 0);
835
0be210fd 836 dbg("alloc_bootmem %p %lx\n", ret, size);
1da177e4
LT
837 }
838
893473df 839 memset(ret, 0, size);
0be210fd 840 return ret;
1da177e4
LT
841}
842
74b85f37
CS
843static struct notifier_block __cpuinitdata ppc64_numa_nb = {
844 .notifier_call = cpu_numa_callback,
845 .priority = 1 /* Must run before sched domains notifier. */
846};
847
4a618669
DH
848static void mark_reserved_regions_for_nid(int nid)
849{
850 struct pglist_data *node = NODE_DATA(nid);
851 int i;
852
853 for (i = 0; i < lmb.reserved.cnt; i++) {
854 unsigned long physbase = lmb.reserved.region[i].base;
855 unsigned long size = lmb.reserved.region[i].size;
856 unsigned long start_pfn = physbase >> PAGE_SHIFT;
06eccea6 857 unsigned long end_pfn = PFN_UP(physbase + size);
4a618669
DH
858 struct node_active_region node_ar;
859 unsigned long node_end_pfn = node->node_start_pfn +
860 node->node_spanned_pages;
861
862 /*
863 * Check to make sure that this lmb.reserved area is
864 * within the bounds of the node that we care about.
865 * Checking the nid of the start and end points is not
866 * sufficient because the reserved area could span the
867 * entire node.
868 */
869 if (end_pfn <= node->node_start_pfn ||
870 start_pfn >= node_end_pfn)
871 continue;
872
873 get_node_active_region(start_pfn, &node_ar);
874 while (start_pfn < end_pfn &&
875 node_ar.start_pfn < node_ar.end_pfn) {
876 unsigned long reserve_size = size;
877 /*
878 * if reserved region extends past active region
879 * then trim size to active region
880 */
881 if (end_pfn > node_ar.end_pfn)
882 reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
06eccea6 883 - physbase;
a4c74ddd
DH
884 /*
885 * Only worry about *this* node, others may not
886 * yet have valid NODE_DATA().
887 */
888 if (node_ar.nid == nid) {
889 dbg("reserve_bootmem %lx %lx nid=%d\n",
890 physbase, reserve_size, node_ar.nid);
891 reserve_bootmem_node(NODE_DATA(node_ar.nid),
892 physbase, reserve_size,
893 BOOTMEM_DEFAULT);
894 }
4a618669
DH
895 /*
896 * if reserved region is contained in the active region
897 * then done.
898 */
899 if (end_pfn <= node_ar.end_pfn)
900 break;
901
902 /*
903 * reserved region extends past the active region
904 * get next active region that contains this
905 * reserved region
906 */
907 start_pfn = node_ar.end_pfn;
908 physbase = start_pfn << PAGE_SHIFT;
909 size = size - reserve_size;
910 get_node_active_region(start_pfn, &node_ar);
911 }
912 }
913}
914
915
1da177e4
LT
916void __init do_init_bootmem(void)
917{
918 int nid;
1da177e4
LT
919
920 min_low_pfn = 0;
921 max_low_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
922 max_pfn = max_low_pfn;
923
924 if (parse_numa_properties())
925 setup_nonnuma();
926 else
4b703a23 927 dump_numa_memory_topology();
1da177e4
LT
928
929 register_cpu_notifier(&ppc64_numa_nb);
2b261227
NL
930 cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
931 (void *)(unsigned long)boot_cpuid);
1da177e4
LT
932
933 for_each_online_node(nid) {
c67c3cb4 934 unsigned long start_pfn, end_pfn;
0be210fd 935 void *bootmem_vaddr;
1da177e4
LT
936 unsigned long bootmap_pages;
937
c67c3cb4 938 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1da177e4 939
4a618669
DH
940 /*
941 * Allocate the node structure node local if possible
942 *
943 * Be careful moving this around, as it relies on all
944 * previous nodes' bootmem to be initialized and have
945 * all reserved areas marked.
946 */
893473df 947 NODE_DATA(nid) = careful_zallocation(nid,
1da177e4 948 sizeof(struct pglist_data),
45fb6cea 949 SMP_CACHE_BYTES, end_pfn);
1da177e4
LT
950
951 dbg("node %d\n", nid);
952 dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
953
b61bfa3c 954 NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
45fb6cea
AB
955 NODE_DATA(nid)->node_start_pfn = start_pfn;
956 NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
1da177e4
LT
957
958 if (NODE_DATA(nid)->node_spanned_pages == 0)
959 continue;
960
45fb6cea
AB
961 dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
962 dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
1da177e4 963
45fb6cea 964 bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
893473df 965 bootmem_vaddr = careful_zallocation(nid,
45fb6cea
AB
966 bootmap_pages << PAGE_SHIFT,
967 PAGE_SIZE, end_pfn);
1da177e4 968
0be210fd 969 dbg("bootmap_vaddr = %p\n", bootmem_vaddr);
1da177e4 970
0be210fd
DH
971 init_bootmem_node(NODE_DATA(nid),
972 __pa(bootmem_vaddr) >> PAGE_SHIFT,
45fb6cea 973 start_pfn, end_pfn);
1da177e4 974
c67c3cb4 975 free_bootmem_with_active_regions(nid, end_pfn);
4a618669
DH
976 /*
977 * Be very careful about moving this around. Future
893473df 978 * calls to careful_zallocation() depend on this getting
4a618669
DH
979 * done correctly.
980 */
981 mark_reserved_regions_for_nid(nid);
8f64e1f2 982 sparse_memory_present_with_active_regions(nid);
4a618669 983 }
1da177e4
LT
984}
985
986void __init paging_init(void)
987{
6391af17
MG
988 unsigned long max_zone_pfns[MAX_NR_ZONES];
989 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
990 max_zone_pfns[ZONE_DMA] = lmb_end_of_DRAM() >> PAGE_SHIFT;
c67c3cb4 991 free_area_init_nodes(max_zone_pfns);
1da177e4
LT
992}
993
994static int __init early_numa(char *p)
995{
996 if (!p)
997 return 0;
998
999 if (strstr(p, "off"))
1000 numa_enabled = 0;
1001
1002 if (strstr(p, "debug"))
1003 numa_debug = 1;
1004
1daa6d08
BS
1005 p = strstr(p, "fake=");
1006 if (p)
1007 cmdline = p + strlen("fake=");
1008
1da177e4
LT
1009 return 0;
1010}
1011early_param("numa", early_numa);
237a0989
MK
1012
1013#ifdef CONFIG_MEMORY_HOTPLUG
0db9360a
NF
1014/*
1015 * Validate the node associated with the memory section we are
1016 * trying to add.
1017 */
1018int valid_hot_add_scn(int *nid, unsigned long start, u32 lmb_size,
1019 unsigned long scn_addr)
1020{
1021 nodemask_t nodes;
1022
1023 if (*nid < 0 || !node_online(*nid))
1024 *nid = any_online_node(NODE_MASK_ALL);
1025
1026 if ((scn_addr >= start) && (scn_addr < (start + lmb_size))) {
1027 nodes_setall(nodes);
1028 while (NODE_DATA(*nid)->node_spanned_pages == 0) {
1029 node_clear(*nid, nodes);
1030 *nid = any_online_node(nodes);
1031 }
1032
1033 return 1;
1034 }
1035
1036 return 0;
1037}
1038
1039/*
1040 * Find the node associated with a hot added memory section represented
1041 * by the ibm,dynamic-reconfiguration-memory node.
1042 */
1043static int hot_add_drconf_scn_to_nid(struct device_node *memory,
1044 unsigned long scn_addr)
1045{
1046 const u32 *dm;
1047 unsigned int n, rc;
1048 unsigned long lmb_size;
1049 int default_nid = any_online_node(NODE_MASK_ALL);
1050 int nid;
1051 struct assoc_arrays aa;
1052
1053 n = of_get_drconf_memory(memory, &dm);
1054 if (!n)
1055 return default_nid;;
1056
1057 lmb_size = of_get_lmb_size(memory);
1058 if (!lmb_size)
1059 return default_nid;
1060
1061 rc = of_get_assoc_arrays(memory, &aa);
1062 if (rc)
1063 return default_nid;
1064
1065 for (; n != 0; --n) {
1066 struct of_drconf_cell drmem;
1067
1068 read_drconf_cell(&drmem, &dm);
1069
1070 /* skip this block if it is reserved or not assigned to
1071 * this partition */
1072 if ((drmem.flags & DRCONF_MEM_RESERVED)
1073 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
1074 continue;
1075
1076 nid = of_drconf_to_nid_single(&drmem, &aa);
1077
1078 if (valid_hot_add_scn(&nid, drmem.base_addr, lmb_size,
1079 scn_addr))
1080 return nid;
1081 }
1082
1083 BUG(); /* section address should be found above */
1084 return 0;
1085}
1086
237a0989
MK
1087/*
1088 * Find the node associated with a hot added memory section. Section
1089 * corresponds to a SPARSEMEM section, not an LMB. It is assumed that
1090 * sections are fully contained within a single LMB.
1091 */
1092int hot_add_scn_to_nid(unsigned long scn_addr)
1093{
1094 struct device_node *memory = NULL;
069007ae 1095 int nid;
237a0989
MK
1096
1097 if (!numa_enabled || (min_common_depth < 0))
0db9360a
NF
1098 return any_online_node(NODE_MASK_ALL);
1099
1100 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1101 if (memory) {
1102 nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
1103 of_node_put(memory);
1104 return nid;
1105 }
237a0989
MK
1106
1107 while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
1108 unsigned long start, size;
b226e462 1109 int ranges;
a7f67bdf 1110 const unsigned int *memcell_buf;
237a0989
MK
1111 unsigned int len;
1112
e2eb6392 1113 memcell_buf = of_get_property(memory, "reg", &len);
237a0989
MK
1114 if (!memcell_buf || len <= 0)
1115 continue;
1116
cc5d0189
BH
1117 /* ranges in cell */
1118 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
237a0989
MK
1119ha_new_range:
1120 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1121 size = read_n_cells(n_mem_size_cells, &memcell_buf);
953039c8 1122 nid = of_node_to_nid_single(memory);
237a0989 1123
0db9360a 1124 if (valid_hot_add_scn(&nid, start, size, scn_addr)) {
237a0989 1125 of_node_put(memory);
0db9360a 1126 return nid;
237a0989
MK
1127 }
1128
1129 if (--ranges) /* process all ranges in cell */
1130 goto ha_new_range;
1131 }
237a0989 1132 BUG(); /* section address should be found above */
069007ae 1133 return 0;
237a0989
MK
1134}
1135#endif /* CONFIG_MEMORY_HOTPLUG */
This page took 0.383545 seconds and 5 git commands to generate.