PPC: net: bpf_jit_comp: add XOR instruction for BPF JIT
[deliverable/linux.git] / arch / powerpc / net / bpf_jit_comp.c
CommitLineData
0ca87f05
ME
1/* bpf_jit_comp.c: BPF JIT compiler for PPC64
2 *
3 * Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation
4 *
5 * Based on the x86 BPF compiler, by Eric Dumazet (eric.dumazet@gmail.com)
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12#include <linux/moduleloader.h>
13#include <asm/cacheflush.h>
14#include <linux/netdevice.h>
15#include <linux/filter.h>
16#include "bpf_jit.h"
17
18#ifndef __BIG_ENDIAN
19/* There are endianness assumptions herein. */
20#error "Little-endian PPC not supported in BPF compiler"
21#endif
22
23int bpf_jit_enable __read_mostly;
24
25
26static inline void bpf_flush_icache(void *start, void *end)
27{
28 smp_wmb();
29 flush_icache_range((unsigned long)start, (unsigned long)end);
30}
31
32static void bpf_jit_build_prologue(struct sk_filter *fp, u32 *image,
33 struct codegen_context *ctx)
34{
35 int i;
36 const struct sock_filter *filter = fp->insns;
37
38 if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
39 /* Make stackframe */
40 if (ctx->seen & SEEN_DATAREF) {
41 /* If we call any helpers (for loads), save LR */
c75df6f9 42 EMIT(PPC_INST_MFLR | __PPC_RT(R0));
0ca87f05
ME
43 PPC_STD(0, 1, 16);
44
45 /* Back up non-volatile regs. */
46 PPC_STD(r_D, 1, -(8*(32-r_D)));
47 PPC_STD(r_HL, 1, -(8*(32-r_HL)));
48 }
49 if (ctx->seen & SEEN_MEM) {
50 /*
51 * Conditionally save regs r15-r31 as some will be used
52 * for M[] data.
53 */
54 for (i = r_M; i < (r_M+16); i++) {
55 if (ctx->seen & (1 << (i-r_M)))
56 PPC_STD(i, 1, -(8*(32-i)));
57 }
58 }
c75df6f9 59 EMIT(PPC_INST_STDU | __PPC_RS(R1) | __PPC_RA(R1) |
0ca87f05
ME
60 (-BPF_PPC_STACKFRAME & 0xfffc));
61 }
62
63 if (ctx->seen & SEEN_DATAREF) {
64 /*
65 * If this filter needs to access skb data,
66 * prepare r_D and r_HL:
67 * r_HL = skb->len - skb->data_len
68 * r_D = skb->data
69 */
70 PPC_LWZ_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
71 data_len));
72 PPC_LWZ_OFFS(r_HL, r_skb, offsetof(struct sk_buff, len));
73 PPC_SUB(r_HL, r_HL, r_scratch1);
74 PPC_LD_OFFS(r_D, r_skb, offsetof(struct sk_buff, data));
75 }
76
77 if (ctx->seen & SEEN_XREG) {
78 /*
79 * TODO: Could also detect whether first instr. sets X and
80 * avoid this (as below, with A).
81 */
82 PPC_LI(r_X, 0);
83 }
84
85 switch (filter[0].code) {
86 case BPF_S_RET_K:
87 case BPF_S_LD_W_LEN:
88 case BPF_S_ANC_PROTOCOL:
89 case BPF_S_ANC_IFINDEX:
90 case BPF_S_ANC_MARK:
91 case BPF_S_ANC_RXHASH:
92 case BPF_S_ANC_CPU:
93 case BPF_S_ANC_QUEUE:
94 case BPF_S_LD_W_ABS:
95 case BPF_S_LD_H_ABS:
96 case BPF_S_LD_B_ABS:
97 /* first instruction sets A register (or is RET 'constant') */
98 break;
99 default:
100 /* make sure we dont leak kernel information to user */
101 PPC_LI(r_A, 0);
102 }
103}
104
105static void bpf_jit_build_epilogue(u32 *image, struct codegen_context *ctx)
106{
107 int i;
108
109 if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
110 PPC_ADDI(1, 1, BPF_PPC_STACKFRAME);
111 if (ctx->seen & SEEN_DATAREF) {
112 PPC_LD(0, 1, 16);
113 PPC_MTLR(0);
114 PPC_LD(r_D, 1, -(8*(32-r_D)));
115 PPC_LD(r_HL, 1, -(8*(32-r_HL)));
116 }
117 if (ctx->seen & SEEN_MEM) {
118 /* Restore any saved non-vol registers */
119 for (i = r_M; i < (r_M+16); i++) {
120 if (ctx->seen & (1 << (i-r_M)))
121 PPC_LD(i, 1, -(8*(32-i)));
122 }
123 }
124 }
125 /* The RETs have left a return value in R3. */
126
127 PPC_BLR();
128}
129
05be1824
JS
130#define CHOOSE_LOAD_FUNC(K, func) \
131 ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
132
0ca87f05
ME
133/* Assemble the body code between the prologue & epilogue. */
134static int bpf_jit_build_body(struct sk_filter *fp, u32 *image,
135 struct codegen_context *ctx,
136 unsigned int *addrs)
137{
138 const struct sock_filter *filter = fp->insns;
139 int flen = fp->len;
140 u8 *func;
141 unsigned int true_cond;
142 int i;
143
144 /* Start of epilogue code */
145 unsigned int exit_addr = addrs[flen];
146
147 for (i = 0; i < flen; i++) {
148 unsigned int K = filter[i].k;
149
150 /*
151 * addrs[] maps a BPF bytecode address into a real offset from
152 * the start of the body code.
153 */
154 addrs[i] = ctx->idx * 4;
155
156 switch (filter[i].code) {
157 /*** ALU ops ***/
158 case BPF_S_ALU_ADD_X: /* A += X; */
159 ctx->seen |= SEEN_XREG;
160 PPC_ADD(r_A, r_A, r_X);
161 break;
162 case BPF_S_ALU_ADD_K: /* A += K; */
163 if (!K)
164 break;
165 PPC_ADDI(r_A, r_A, IMM_L(K));
166 if (K >= 32768)
167 PPC_ADDIS(r_A, r_A, IMM_HA(K));
168 break;
169 case BPF_S_ALU_SUB_X: /* A -= X; */
170 ctx->seen |= SEEN_XREG;
171 PPC_SUB(r_A, r_A, r_X);
172 break;
173 case BPF_S_ALU_SUB_K: /* A -= K */
174 if (!K)
175 break;
176 PPC_ADDI(r_A, r_A, IMM_L(-K));
177 if (K >= 32768)
178 PPC_ADDIS(r_A, r_A, IMM_HA(-K));
179 break;
180 case BPF_S_ALU_MUL_X: /* A *= X; */
181 ctx->seen |= SEEN_XREG;
182 PPC_MUL(r_A, r_A, r_X);
183 break;
184 case BPF_S_ALU_MUL_K: /* A *= K */
185 if (K < 32768)
186 PPC_MULI(r_A, r_A, K);
187 else {
188 PPC_LI32(r_scratch1, K);
189 PPC_MUL(r_A, r_A, r_scratch1);
190 }
191 break;
192 case BPF_S_ALU_DIV_X: /* A /= X; */
193 ctx->seen |= SEEN_XREG;
194 PPC_CMPWI(r_X, 0);
195 if (ctx->pc_ret0 != -1) {
196 PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
197 } else {
198 /*
199 * Exit, returning 0; first pass hits here
200 * (longer worst-case code size).
201 */
202 PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
203 PPC_LI(r_ret, 0);
204 PPC_JMP(exit_addr);
205 }
206 PPC_DIVWU(r_A, r_A, r_X);
207 break;
208 case BPF_S_ALU_DIV_K: /* A = reciprocal_divide(A, K); */
209 PPC_LI32(r_scratch1, K);
210 /* Top 32 bits of 64bit result -> A */
211 PPC_MULHWU(r_A, r_A, r_scratch1);
212 break;
213 case BPF_S_ALU_AND_X:
214 ctx->seen |= SEEN_XREG;
215 PPC_AND(r_A, r_A, r_X);
216 break;
217 case BPF_S_ALU_AND_K:
218 if (!IMM_H(K))
219 PPC_ANDI(r_A, r_A, K);
220 else {
221 PPC_LI32(r_scratch1, K);
222 PPC_AND(r_A, r_A, r_scratch1);
223 }
224 break;
225 case BPF_S_ALU_OR_X:
226 ctx->seen |= SEEN_XREG;
227 PPC_OR(r_A, r_A, r_X);
228 break;
229 case BPF_S_ALU_OR_K:
230 if (IMM_L(K))
231 PPC_ORI(r_A, r_A, IMM_L(K));
232 if (K >= 65536)
233 PPC_ORIS(r_A, r_A, IMM_H(K));
234 break;
02871903
DB
235 case BPF_S_ANC_ALU_XOR_X:
236 case BPF_S_ALU_XOR_X: /* A ^= X */
237 ctx->seen |= SEEN_XREG;
238 PPC_XOR(r_A, r_A, r_X);
239 break;
240 case BPF_S_ALU_XOR_K: /* A ^= K */
241 if (IMM_L(K))
242 PPC_XORI(r_A, r_A, IMM_L(K));
243 if (K >= 65536)
244 PPC_XORIS(r_A, r_A, IMM_H(K));
245 break;
0ca87f05
ME
246 case BPF_S_ALU_LSH_X: /* A <<= X; */
247 ctx->seen |= SEEN_XREG;
248 PPC_SLW(r_A, r_A, r_X);
249 break;
250 case BPF_S_ALU_LSH_K:
251 if (K == 0)
252 break;
253 else
254 PPC_SLWI(r_A, r_A, K);
255 break;
256 case BPF_S_ALU_RSH_X: /* A >>= X; */
257 ctx->seen |= SEEN_XREG;
258 PPC_SRW(r_A, r_A, r_X);
259 break;
260 case BPF_S_ALU_RSH_K: /* A >>= K; */
261 if (K == 0)
262 break;
263 else
264 PPC_SRWI(r_A, r_A, K);
265 break;
266 case BPF_S_ALU_NEG:
267 PPC_NEG(r_A, r_A);
268 break;
269 case BPF_S_RET_K:
270 PPC_LI32(r_ret, K);
271 if (!K) {
272 if (ctx->pc_ret0 == -1)
273 ctx->pc_ret0 = i;
274 }
275 /*
276 * If this isn't the very last instruction, branch to
277 * the epilogue if we've stuff to clean up. Otherwise,
278 * if there's nothing to tidy, just return. If we /are/
279 * the last instruction, we're about to fall through to
280 * the epilogue to return.
281 */
282 if (i != flen - 1) {
283 /*
284 * Note: 'seen' is properly valid only on pass
285 * #2. Both parts of this conditional are the
286 * same instruction size though, meaning the
287 * first pass will still correctly determine the
288 * code size/addresses.
289 */
290 if (ctx->seen)
291 PPC_JMP(exit_addr);
292 else
293 PPC_BLR();
294 }
295 break;
296 case BPF_S_RET_A:
297 PPC_MR(r_ret, r_A);
298 if (i != flen - 1) {
299 if (ctx->seen)
300 PPC_JMP(exit_addr);
301 else
302 PPC_BLR();
303 }
304 break;
305 case BPF_S_MISC_TAX: /* X = A */
306 PPC_MR(r_X, r_A);
307 break;
308 case BPF_S_MISC_TXA: /* A = X */
309 ctx->seen |= SEEN_XREG;
310 PPC_MR(r_A, r_X);
311 break;
312
313 /*** Constant loads/M[] access ***/
314 case BPF_S_LD_IMM: /* A = K */
315 PPC_LI32(r_A, K);
316 break;
317 case BPF_S_LDX_IMM: /* X = K */
318 PPC_LI32(r_X, K);
319 break;
320 case BPF_S_LD_MEM: /* A = mem[K] */
321 PPC_MR(r_A, r_M + (K & 0xf));
322 ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
323 break;
324 case BPF_S_LDX_MEM: /* X = mem[K] */
325 PPC_MR(r_X, r_M + (K & 0xf));
326 ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
327 break;
328 case BPF_S_ST: /* mem[K] = A */
329 PPC_MR(r_M + (K & 0xf), r_A);
330 ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
331 break;
332 case BPF_S_STX: /* mem[K] = X */
333 PPC_MR(r_M + (K & 0xf), r_X);
334 ctx->seen |= SEEN_XREG | SEEN_MEM | (1<<(K & 0xf));
335 break;
336 case BPF_S_LD_W_LEN: /* A = skb->len; */
337 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
338 PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, len));
339 break;
340 case BPF_S_LDX_W_LEN: /* X = skb->len; */
341 PPC_LWZ_OFFS(r_X, r_skb, offsetof(struct sk_buff, len));
342 break;
343
344 /*** Ancillary info loads ***/
345
346 /* None of the BPF_S_ANC* codes appear to be passed by
347 * sk_chk_filter(). The interpreter and the x86 BPF
348 * compiler implement them so we do too -- they may be
349 * planted in future.
350 */
351 case BPF_S_ANC_PROTOCOL: /* A = ntohs(skb->protocol); */
352 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
353 protocol) != 2);
354 PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
355 protocol));
356 /* ntohs is a NOP with BE loads. */
357 break;
358 case BPF_S_ANC_IFINDEX:
359 PPC_LD_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
360 dev));
361 PPC_CMPDI(r_scratch1, 0);
362 if (ctx->pc_ret0 != -1) {
363 PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
364 } else {
365 /* Exit, returning 0; first pass hits here. */
366 PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
367 PPC_LI(r_ret, 0);
368 PPC_JMP(exit_addr);
369 }
370 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
371 ifindex) != 4);
372 PPC_LWZ_OFFS(r_A, r_scratch1,
373 offsetof(struct net_device, ifindex));
374 break;
375 case BPF_S_ANC_MARK:
376 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
377 PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
378 mark));
379 break;
380 case BPF_S_ANC_RXHASH:
381 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, rxhash) != 4);
382 PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
383 rxhash));
384 break;
385 case BPF_S_ANC_QUEUE:
386 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
387 queue_mapping) != 2);
388 PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
389 queue_mapping));
390 break;
391 case BPF_S_ANC_CPU:
392#ifdef CONFIG_SMP
393 /*
394 * PACA ptr is r13:
395 * raw_smp_processor_id() = local_paca->paca_index
396 */
397 BUILD_BUG_ON(FIELD_SIZEOF(struct paca_struct,
398 paca_index) != 2);
399 PPC_LHZ_OFFS(r_A, 13,
400 offsetof(struct paca_struct, paca_index));
401#else
402 PPC_LI(r_A, 0);
403#endif
404 break;
405
406 /*** Absolute loads from packet header/data ***/
407 case BPF_S_LD_W_ABS:
05be1824 408 func = CHOOSE_LOAD_FUNC(K, sk_load_word);
0ca87f05
ME
409 goto common_load;
410 case BPF_S_LD_H_ABS:
05be1824 411 func = CHOOSE_LOAD_FUNC(K, sk_load_half);
0ca87f05
ME
412 goto common_load;
413 case BPF_S_LD_B_ABS:
05be1824 414 func = CHOOSE_LOAD_FUNC(K, sk_load_byte);
0ca87f05 415 common_load:
05be1824 416 /* Load from [K]. */
0ca87f05 417 ctx->seen |= SEEN_DATAREF;
0ca87f05
ME
418 PPC_LI64(r_scratch1, func);
419 PPC_MTLR(r_scratch1);
420 PPC_LI32(r_addr, K);
421 PPC_BLRL();
422 /*
423 * Helper returns 'lt' condition on error, and an
424 * appropriate return value in r3
425 */
426 PPC_BCC(COND_LT, exit_addr);
427 break;
428
429 /*** Indirect loads from packet header/data ***/
430 case BPF_S_LD_W_IND:
431 func = sk_load_word;
432 goto common_load_ind;
433 case BPF_S_LD_H_IND:
434 func = sk_load_half;
435 goto common_load_ind;
436 case BPF_S_LD_B_IND:
437 func = sk_load_byte;
438 common_load_ind:
439 /*
440 * Load from [X + K]. Negative offsets are tested for
05be1824 441 * in the helper functions.
0ca87f05
ME
442 */
443 ctx->seen |= SEEN_DATAREF | SEEN_XREG;
444 PPC_LI64(r_scratch1, func);
445 PPC_MTLR(r_scratch1);
446 PPC_ADDI(r_addr, r_X, IMM_L(K));
447 if (K >= 32768)
448 PPC_ADDIS(r_addr, r_addr, IMM_HA(K));
449 PPC_BLRL();
450 /* If error, cr0.LT set */
451 PPC_BCC(COND_LT, exit_addr);
452 break;
453
454 case BPF_S_LDX_B_MSH:
05be1824 455 func = CHOOSE_LOAD_FUNC(K, sk_load_byte_msh);
0ca87f05
ME
456 goto common_load;
457 break;
458
459 /*** Jump and branches ***/
460 case BPF_S_JMP_JA:
461 if (K != 0)
462 PPC_JMP(addrs[i + 1 + K]);
463 break;
464
465 case BPF_S_JMP_JGT_K:
466 case BPF_S_JMP_JGT_X:
467 true_cond = COND_GT;
468 goto cond_branch;
469 case BPF_S_JMP_JGE_K:
470 case BPF_S_JMP_JGE_X:
471 true_cond = COND_GE;
472 goto cond_branch;
473 case BPF_S_JMP_JEQ_K:
474 case BPF_S_JMP_JEQ_X:
475 true_cond = COND_EQ;
476 goto cond_branch;
477 case BPF_S_JMP_JSET_K:
478 case BPF_S_JMP_JSET_X:
479 true_cond = COND_NE;
480 /* Fall through */
481 cond_branch:
482 /* same targets, can avoid doing the test :) */
483 if (filter[i].jt == filter[i].jf) {
484 if (filter[i].jt > 0)
485 PPC_JMP(addrs[i + 1 + filter[i].jt]);
486 break;
487 }
488
489 switch (filter[i].code) {
490 case BPF_S_JMP_JGT_X:
491 case BPF_S_JMP_JGE_X:
492 case BPF_S_JMP_JEQ_X:
493 ctx->seen |= SEEN_XREG;
494 PPC_CMPLW(r_A, r_X);
495 break;
496 case BPF_S_JMP_JSET_X:
497 ctx->seen |= SEEN_XREG;
498 PPC_AND_DOT(r_scratch1, r_A, r_X);
499 break;
500 case BPF_S_JMP_JEQ_K:
501 case BPF_S_JMP_JGT_K:
502 case BPF_S_JMP_JGE_K:
503 if (K < 32768)
504 PPC_CMPLWI(r_A, K);
505 else {
506 PPC_LI32(r_scratch1, K);
507 PPC_CMPLW(r_A, r_scratch1);
508 }
509 break;
510 case BPF_S_JMP_JSET_K:
511 if (K < 32768)
512 /* PPC_ANDI is /only/ dot-form */
513 PPC_ANDI(r_scratch1, r_A, K);
514 else {
515 PPC_LI32(r_scratch1, K);
516 PPC_AND_DOT(r_scratch1, r_A,
517 r_scratch1);
518 }
519 break;
520 }
521 /* Sometimes branches are constructed "backward", with
522 * the false path being the branch and true path being
523 * a fallthrough to the next instruction.
524 */
525 if (filter[i].jt == 0)
526 /* Swap the sense of the branch */
527 PPC_BCC(true_cond ^ COND_CMP_TRUE,
528 addrs[i + 1 + filter[i].jf]);
529 else {
530 PPC_BCC(true_cond, addrs[i + 1 + filter[i].jt]);
531 if (filter[i].jf != 0)
532 PPC_JMP(addrs[i + 1 + filter[i].jf]);
533 }
534 break;
535 default:
536 /* The filter contains something cruel & unusual.
537 * We don't handle it, but also there shouldn't be
538 * anything missing from our list.
539 */
540 if (printk_ratelimit())
541 pr_err("BPF filter opcode %04x (@%d) unsupported\n",
542 filter[i].code, i);
543 return -ENOTSUPP;
544 }
545
546 }
547 /* Set end-of-body-code address for exit. */
548 addrs[i] = ctx->idx * 4;
549
550 return 0;
551}
552
553void bpf_jit_compile(struct sk_filter *fp)
554{
555 unsigned int proglen;
556 unsigned int alloclen;
557 u32 *image = NULL;
558 u32 *code_base;
559 unsigned int *addrs;
560 struct codegen_context cgctx;
561 int pass;
562 int flen = fp->len;
563
564 if (!bpf_jit_enable)
565 return;
566
567 addrs = kzalloc((flen+1) * sizeof(*addrs), GFP_KERNEL);
568 if (addrs == NULL)
569 return;
570
571 /*
572 * There are multiple assembly passes as the generated code will change
573 * size as it settles down, figuring out the max branch offsets/exit
574 * paths required.
575 *
576 * The range of standard conditional branches is +/- 32Kbytes. Since
577 * BPF_MAXINSNS = 4096, we can only jump from (worst case) start to
578 * finish with 8 bytes/instruction. Not feasible, so long jumps are
579 * used, distinct from short branches.
580 *
581 * Current:
582 *
583 * For now, both branch types assemble to 2 words (short branches padded
584 * with a NOP); this is less efficient, but assembly will always complete
585 * after exactly 3 passes:
586 *
587 * First pass: No code buffer; Program is "faux-generated" -- no code
588 * emitted but maximum size of output determined (and addrs[] filled
589 * in). Also, we note whether we use M[], whether we use skb data, etc.
590 * All generation choices assumed to be 'worst-case', e.g. branches all
591 * far (2 instructions), return path code reduction not available, etc.
592 *
593 * Second pass: Code buffer allocated with size determined previously.
594 * Prologue generated to support features we have seen used. Exit paths
595 * determined and addrs[] is filled in again, as code may be slightly
596 * smaller as a result.
597 *
598 * Third pass: Code generated 'for real', and branch destinations
599 * determined from now-accurate addrs[] map.
600 *
601 * Ideal:
602 *
603 * If we optimise this, near branches will be shorter. On the
604 * first assembly pass, we should err on the side of caution and
605 * generate the biggest code. On subsequent passes, branches will be
606 * generated short or long and code size will reduce. With smaller
607 * code, more branches may fall into the short category, and code will
608 * reduce more.
609 *
610 * Finally, if we see one pass generate code the same size as the
611 * previous pass we have converged and should now generate code for
612 * real. Allocating at the end will also save the memory that would
613 * otherwise be wasted by the (small) current code shrinkage.
614 * Preferably, we should do a small number of passes (e.g. 5) and if we
615 * haven't converged by then, get impatient and force code to generate
616 * as-is, even if the odd branch would be left long. The chances of a
617 * long jump are tiny with all but the most enormous of BPF filter
618 * inputs, so we should usually converge on the third pass.
619 */
620
621 cgctx.idx = 0;
622 cgctx.seen = 0;
623 cgctx.pc_ret0 = -1;
624 /* Scouting faux-generate pass 0 */
625 if (bpf_jit_build_body(fp, 0, &cgctx, addrs))
626 /* We hit something illegal or unsupported. */
627 goto out;
628
629 /*
630 * Pretend to build prologue, given the features we've seen. This will
631 * update ctgtx.idx as it pretends to output instructions, then we can
632 * calculate total size from idx.
633 */
634 bpf_jit_build_prologue(fp, 0, &cgctx);
635 bpf_jit_build_epilogue(0, &cgctx);
636
637 proglen = cgctx.idx * 4;
638 alloclen = proglen + FUNCTION_DESCR_SIZE;
639 image = module_alloc(max_t(unsigned int, alloclen,
640 sizeof(struct work_struct)));
641 if (!image)
642 goto out;
643
644 code_base = image + (FUNCTION_DESCR_SIZE/4);
645
646 /* Code generation passes 1-2 */
647 for (pass = 1; pass < 3; pass++) {
648 /* Now build the prologue, body code & epilogue for real. */
649 cgctx.idx = 0;
650 bpf_jit_build_prologue(fp, code_base, &cgctx);
651 bpf_jit_build_body(fp, code_base, &cgctx, addrs);
652 bpf_jit_build_epilogue(code_base, &cgctx);
653
654 if (bpf_jit_enable > 1)
655 pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass,
656 proglen - (cgctx.idx * 4), cgctx.seen);
657 }
658
659 if (bpf_jit_enable > 1)
660 pr_info("flen=%d proglen=%u pass=%d image=%p\n",
661 flen, proglen, pass, image);
662
663 if (image) {
664 if (bpf_jit_enable > 1)
665 print_hex_dump(KERN_ERR, "JIT code: ",
666 DUMP_PREFIX_ADDRESS,
667 16, 1, code_base,
668 proglen, false);
669
670 bpf_flush_icache(code_base, code_base + (proglen/4));
671 /* Function descriptor nastiness: Address + TOC */
672 ((u64 *)image)[0] = (u64)code_base;
673 ((u64 *)image)[1] = local_paca->kernel_toc;
674 fp->bpf_func = (void *)image;
675 }
676out:
677 kfree(addrs);
678 return;
679}
680
681static void jit_free_defer(struct work_struct *arg)
682{
683 module_free(NULL, arg);
684}
685
686/* run from softirq, we must use a work_struct to call
687 * module_free() from process context
688 */
689void bpf_jit_free(struct sk_filter *fp)
690{
691 if (fp->bpf_func != sk_run_filter) {
692 struct work_struct *work = (struct work_struct *)fp->bpf_func;
693
694 INIT_WORK(work, jit_free_defer);
695 schedule_work(work);
696 }
697}
This page took 0.11386 seconds and 5 git commands to generate.