merge filename and modify references to iseries/it_lp_naca.h
[deliverable/linux.git] / arch / powerpc / platforms / iseries / mf.c
CommitLineData
1da177e4 1/*
c8b84976
SR
2 * Copyright (C) 2001 Troy D. Armstrong IBM Corporation
3 * Copyright (C) 2004-2005 Stephen Rothwell IBM Corporation
4 *
5 * This modules exists as an interface between a Linux secondary partition
6 * running on an iSeries and the primary partition's Virtual Service
7 * Processor (VSP) object. The VSP has final authority over powering on/off
8 * all partitions in the iSeries. It also provides miscellaneous low-level
9 * machine facility type operations.
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 */
1da177e4
LT
26
27#include <linux/types.h>
28#include <linux/errno.h>
29#include <linux/kernel.h>
30#include <linux/init.h>
31#include <linux/completion.h>
32#include <linux/delay.h>
33#include <linux/dma-mapping.h>
34#include <linux/bcd.h>
143a1dec 35#include <linux/rtc.h>
1da177e4
LT
36
37#include <asm/time.h>
38#include <asm/uaccess.h>
d0e8e291 39#include <asm/paca.h>
426c1a11 40#include <asm/abs_addr.h>
1da177e4
LT
41#include <asm/iSeries/vio.h>
42#include <asm/iSeries/mf.h>
15b17189 43#include <asm/iseries/hv_lp_config.h>
d0e8e291 44#include <asm/iSeries/ItLpQueue.h>
1da177e4 45
c8b84976
SR
46#include "setup.h"
47
48extern int piranha_simulator;
49
1da177e4
LT
50/*
51 * This is the structure layout for the Machine Facilites LPAR event
52 * flows.
53 */
54struct vsp_cmd_data {
55 u64 token;
56 u16 cmd;
57 HvLpIndex lp_index;
58 u8 result_code;
59 u32 reserved;
60 union {
61 u64 state; /* GetStateOut */
62 u64 ipl_type; /* GetIplTypeOut, Function02SelectIplTypeIn */
63 u64 ipl_mode; /* GetIplModeOut, Function02SelectIplModeIn */
64 u64 page[4]; /* GetSrcHistoryIn */
65 u64 flag; /* GetAutoIplWhenPrimaryIplsOut,
66 SetAutoIplWhenPrimaryIplsIn,
67 WhiteButtonPowerOffIn,
68 Function08FastPowerOffIn,
69 IsSpcnRackPowerIncompleteOut */
70 struct {
71 u64 token;
72 u64 address_type;
73 u64 side;
74 u32 length;
75 u32 offset;
76 } kern; /* SetKernelImageIn, GetKernelImageIn,
77 SetKernelCmdLineIn, GetKernelCmdLineIn */
78 u32 length_out; /* GetKernelImageOut, GetKernelCmdLineOut */
79 u8 reserved[80];
80 } sub_data;
81};
82
83struct vsp_rsp_data {
84 struct completion com;
85 struct vsp_cmd_data *response;
86};
87
88struct alloc_data {
89 u16 size;
90 u16 type;
91 u32 count;
92 u16 reserved1;
93 u8 reserved2;
94 HvLpIndex target_lp;
95};
96
97struct ce_msg_data;
98
99typedef void (*ce_msg_comp_hdlr)(void *token, struct ce_msg_data *vsp_cmd_rsp);
100
101struct ce_msg_comp_data {
102 ce_msg_comp_hdlr handler;
103 void *token;
104};
105
106struct ce_msg_data {
107 u8 ce_msg[12];
108 char reserved[4];
109 struct ce_msg_comp_data *completion;
110};
111
112struct io_mf_lp_event {
113 struct HvLpEvent hp_lp_event;
114 u16 subtype_result_code;
115 u16 reserved1;
116 u32 reserved2;
117 union {
118 struct alloc_data alloc;
119 struct ce_msg_data ce_msg;
120 struct vsp_cmd_data vsp_cmd;
121 } data;
122};
123
124#define subtype_data(a, b, c, d) \
125 (((a) << 24) + ((b) << 16) + ((c) << 8) + (d))
126
127/*
128 * All outgoing event traffic is kept on a FIFO queue. The first
129 * pointer points to the one that is outstanding, and all new
130 * requests get stuck on the end. Also, we keep a certain number of
131 * preallocated pending events so that we can operate very early in
132 * the boot up sequence (before kmalloc is ready).
133 */
134struct pending_event {
135 struct pending_event *next;
136 struct io_mf_lp_event event;
137 MFCompleteHandler hdlr;
138 char dma_data[72];
139 unsigned dma_data_length;
140 unsigned remote_address;
141};
142static spinlock_t pending_event_spinlock;
143static struct pending_event *pending_event_head;
144static struct pending_event *pending_event_tail;
145static struct pending_event *pending_event_avail;
146static struct pending_event pending_event_prealloc[16];
147
148/*
149 * Put a pending event onto the available queue, so it can get reused.
150 * Attention! You must have the pending_event_spinlock before calling!
151 */
152static void free_pending_event(struct pending_event *ev)
153{
154 if (ev != NULL) {
155 ev->next = pending_event_avail;
156 pending_event_avail = ev;
157 }
158}
159
160/*
161 * Enqueue the outbound event onto the stack. If the queue was
162 * empty to begin with, we must also issue it via the Hypervisor
163 * interface. There is a section of code below that will touch
164 * the first stack pointer without the protection of the pending_event_spinlock.
165 * This is OK, because we know that nobody else will be modifying
166 * the first pointer when we do this.
167 */
168static int signal_event(struct pending_event *ev)
169{
170 int rc = 0;
171 unsigned long flags;
172 int go = 1;
173 struct pending_event *ev1;
174 HvLpEvent_Rc hv_rc;
175
176 /* enqueue the event */
177 if (ev != NULL) {
178 ev->next = NULL;
179 spin_lock_irqsave(&pending_event_spinlock, flags);
180 if (pending_event_head == NULL)
181 pending_event_head = ev;
182 else {
183 go = 0;
184 pending_event_tail->next = ev;
185 }
186 pending_event_tail = ev;
187 spin_unlock_irqrestore(&pending_event_spinlock, flags);
188 }
189
190 /* send the event */
191 while (go) {
192 go = 0;
193
194 /* any DMA data to send beforehand? */
195 if (pending_event_head->dma_data_length > 0)
196 HvCallEvent_dmaToSp(pending_event_head->dma_data,
197 pending_event_head->remote_address,
198 pending_event_head->dma_data_length,
199 HvLpDma_Direction_LocalToRemote);
200
201 hv_rc = HvCallEvent_signalLpEvent(
202 &pending_event_head->event.hp_lp_event);
203 if (hv_rc != HvLpEvent_Rc_Good) {
204 printk(KERN_ERR "mf.c: HvCallEvent_signalLpEvent() "
205 "failed with %d\n", (int)hv_rc);
206
207 spin_lock_irqsave(&pending_event_spinlock, flags);
208 ev1 = pending_event_head;
209 pending_event_head = pending_event_head->next;
210 if (pending_event_head != NULL)
211 go = 1;
212 spin_unlock_irqrestore(&pending_event_spinlock, flags);
213
214 if (ev1 == ev)
215 rc = -EIO;
216 else if (ev1->hdlr != NULL)
217 (*ev1->hdlr)((void *)ev1->event.hp_lp_event.xCorrelationToken, -EIO);
218
219 spin_lock_irqsave(&pending_event_spinlock, flags);
220 free_pending_event(ev1);
221 spin_unlock_irqrestore(&pending_event_spinlock, flags);
222 }
223 }
224
225 return rc;
226}
227
228/*
229 * Allocate a new pending_event structure, and initialize it.
230 */
231static struct pending_event *new_pending_event(void)
232{
233 struct pending_event *ev = NULL;
234 HvLpIndex primary_lp = HvLpConfig_getPrimaryLpIndex();
235 unsigned long flags;
236 struct HvLpEvent *hev;
237
238 spin_lock_irqsave(&pending_event_spinlock, flags);
239 if (pending_event_avail != NULL) {
240 ev = pending_event_avail;
241 pending_event_avail = pending_event_avail->next;
242 }
243 spin_unlock_irqrestore(&pending_event_spinlock, flags);
244 if (ev == NULL) {
245 ev = kmalloc(sizeof(struct pending_event), GFP_ATOMIC);
246 if (ev == NULL) {
247 printk(KERN_ERR "mf.c: unable to kmalloc %ld bytes\n",
248 sizeof(struct pending_event));
249 return NULL;
250 }
251 }
252 memset(ev, 0, sizeof(struct pending_event));
253 hev = &ev->event.hp_lp_event;
254 hev->xFlags.xValid = 1;
255 hev->xFlags.xAckType = HvLpEvent_AckType_ImmediateAck;
256 hev->xFlags.xAckInd = HvLpEvent_AckInd_DoAck;
257 hev->xFlags.xFunction = HvLpEvent_Function_Int;
258 hev->xType = HvLpEvent_Type_MachineFac;
259 hev->xSourceLp = HvLpConfig_getLpIndex();
260 hev->xTargetLp = primary_lp;
261 hev->xSizeMinus1 = sizeof(ev->event) - 1;
262 hev->xRc = HvLpEvent_Rc_Good;
263 hev->xSourceInstanceId = HvCallEvent_getSourceLpInstanceId(primary_lp,
264 HvLpEvent_Type_MachineFac);
265 hev->xTargetInstanceId = HvCallEvent_getTargetLpInstanceId(primary_lp,
266 HvLpEvent_Type_MachineFac);
267
268 return ev;
269}
270
271static int signal_vsp_instruction(struct vsp_cmd_data *vsp_cmd)
272{
273 struct pending_event *ev = new_pending_event();
274 int rc;
275 struct vsp_rsp_data response;
276
277 if (ev == NULL)
278 return -ENOMEM;
279
280 init_completion(&response.com);
281 response.response = vsp_cmd;
282 ev->event.hp_lp_event.xSubtype = 6;
283 ev->event.hp_lp_event.x.xSubtypeData =
284 subtype_data('M', 'F', 'V', 'I');
285 ev->event.data.vsp_cmd.token = (u64)&response;
286 ev->event.data.vsp_cmd.cmd = vsp_cmd->cmd;
287 ev->event.data.vsp_cmd.lp_index = HvLpConfig_getLpIndex();
288 ev->event.data.vsp_cmd.result_code = 0xFF;
289 ev->event.data.vsp_cmd.reserved = 0;
290 memcpy(&(ev->event.data.vsp_cmd.sub_data),
291 &(vsp_cmd->sub_data), sizeof(vsp_cmd->sub_data));
292 mb();
293
294 rc = signal_event(ev);
295 if (rc == 0)
296 wait_for_completion(&response.com);
297 return rc;
298}
299
300
301/*
302 * Send a 12-byte CE message to the primary partition VSP object
303 */
304static int signal_ce_msg(char *ce_msg, struct ce_msg_comp_data *completion)
305{
306 struct pending_event *ev = new_pending_event();
307
308 if (ev == NULL)
309 return -ENOMEM;
310
311 ev->event.hp_lp_event.xSubtype = 0;
312 ev->event.hp_lp_event.x.xSubtypeData =
313 subtype_data('M', 'F', 'C', 'E');
314 memcpy(ev->event.data.ce_msg.ce_msg, ce_msg, 12);
315 ev->event.data.ce_msg.completion = completion;
316 return signal_event(ev);
317}
318
319/*
320 * Send a 12-byte CE message (with no data) to the primary partition VSP object
321 */
322static int signal_ce_msg_simple(u8 ce_op, struct ce_msg_comp_data *completion)
323{
324 u8 ce_msg[12];
325
326 memset(ce_msg, 0, sizeof(ce_msg));
327 ce_msg[3] = ce_op;
328 return signal_ce_msg(ce_msg, completion);
329}
330
331/*
332 * Send a 12-byte CE message and DMA data to the primary partition VSP object
333 */
334static int dma_and_signal_ce_msg(char *ce_msg,
335 struct ce_msg_comp_data *completion, void *dma_data,
336 unsigned dma_data_length, unsigned remote_address)
337{
338 struct pending_event *ev = new_pending_event();
339
340 if (ev == NULL)
341 return -ENOMEM;
342
343 ev->event.hp_lp_event.xSubtype = 0;
344 ev->event.hp_lp_event.x.xSubtypeData =
345 subtype_data('M', 'F', 'C', 'E');
346 memcpy(ev->event.data.ce_msg.ce_msg, ce_msg, 12);
347 ev->event.data.ce_msg.completion = completion;
348 memcpy(ev->dma_data, dma_data, dma_data_length);
349 ev->dma_data_length = dma_data_length;
350 ev->remote_address = remote_address;
351 return signal_event(ev);
352}
353
354/*
355 * Initiate a nice (hopefully) shutdown of Linux. We simply are
356 * going to try and send the init process a SIGINT signal. If
357 * this fails (why?), we'll simply force it off in a not-so-nice
358 * manner.
359 */
360static int shutdown(void)
361{
362 int rc = kill_proc(1, SIGINT, 1);
363
364 if (rc) {
365 printk(KERN_ALERT "mf.c: SIGINT to init failed (%d), "
366 "hard shutdown commencing\n", rc);
367 mf_power_off();
368 } else
369 printk(KERN_INFO "mf.c: init has been successfully notified "
370 "to proceed with shutdown\n");
371 return rc;
372}
373
374/*
375 * The primary partition VSP object is sending us a new
376 * event flow. Handle it...
377 */
378static void handle_int(struct io_mf_lp_event *event)
379{
380 struct ce_msg_data *ce_msg_data;
381 struct ce_msg_data *pce_msg_data;
382 unsigned long flags;
383 struct pending_event *pev;
384
385 /* ack the interrupt */
386 event->hp_lp_event.xRc = HvLpEvent_Rc_Good;
387 HvCallEvent_ackLpEvent(&event->hp_lp_event);
388
389 /* process interrupt */
390 switch (event->hp_lp_event.xSubtype) {
391 case 0: /* CE message */
392 ce_msg_data = &event->data.ce_msg;
393 switch (ce_msg_data->ce_msg[3]) {
394 case 0x5B: /* power control notification */
395 if ((ce_msg_data->ce_msg[5] & 0x20) != 0) {
396 printk(KERN_INFO "mf.c: Commencing partition shutdown\n");
397 if (shutdown() == 0)
398 signal_ce_msg_simple(0xDB, NULL);
399 }
400 break;
401 case 0xC0: /* get time */
402 spin_lock_irqsave(&pending_event_spinlock, flags);
403 pev = pending_event_head;
404 if (pev != NULL)
405 pending_event_head = pending_event_head->next;
406 spin_unlock_irqrestore(&pending_event_spinlock, flags);
407 if (pev == NULL)
408 break;
409 pce_msg_data = &pev->event.data.ce_msg;
410 if (pce_msg_data->ce_msg[3] != 0x40)
411 break;
412 if (pce_msg_data->completion != NULL) {
413 ce_msg_comp_hdlr handler =
414 pce_msg_data->completion->handler;
415 void *token = pce_msg_data->completion->token;
416
417 if (handler != NULL)
418 (*handler)(token, ce_msg_data);
419 }
420 spin_lock_irqsave(&pending_event_spinlock, flags);
421 free_pending_event(pev);
422 spin_unlock_irqrestore(&pending_event_spinlock, flags);
423 /* send next waiting event */
424 if (pending_event_head != NULL)
425 signal_event(NULL);
426 break;
427 }
428 break;
429 case 1: /* IT sys shutdown */
430 printk(KERN_INFO "mf.c: Commencing system shutdown\n");
431 shutdown();
432 break;
433 }
434}
435
436/*
437 * The primary partition VSP object is acknowledging the receipt
438 * of a flow we sent to them. If there are other flows queued
439 * up, we must send another one now...
440 */
441static void handle_ack(struct io_mf_lp_event *event)
442{
443 unsigned long flags;
444 struct pending_event *two = NULL;
445 unsigned long free_it = 0;
446 struct ce_msg_data *ce_msg_data;
447 struct ce_msg_data *pce_msg_data;
448 struct vsp_rsp_data *rsp;
449
450 /* handle current event */
451 if (pending_event_head == NULL) {
452 printk(KERN_ERR "mf.c: stack empty for receiving ack\n");
453 return;
454 }
455
456 switch (event->hp_lp_event.xSubtype) {
457 case 0: /* CE msg */
458 ce_msg_data = &event->data.ce_msg;
459 if (ce_msg_data->ce_msg[3] != 0x40) {
460 free_it = 1;
461 break;
462 }
463 if (ce_msg_data->ce_msg[2] == 0)
464 break;
465 free_it = 1;
466 pce_msg_data = &pending_event_head->event.data.ce_msg;
467 if (pce_msg_data->completion != NULL) {
468 ce_msg_comp_hdlr handler =
469 pce_msg_data->completion->handler;
470 void *token = pce_msg_data->completion->token;
471
472 if (handler != NULL)
473 (*handler)(token, ce_msg_data);
474 }
475 break;
476 case 4: /* allocate */
477 case 5: /* deallocate */
478 if (pending_event_head->hdlr != NULL)
479 (*pending_event_head->hdlr)((void *)event->hp_lp_event.xCorrelationToken, event->data.alloc.count);
480 free_it = 1;
481 break;
482 case 6:
483 free_it = 1;
484 rsp = (struct vsp_rsp_data *)event->data.vsp_cmd.token;
485 if (rsp == NULL) {
486 printk(KERN_ERR "mf.c: no rsp\n");
487 break;
488 }
489 if (rsp->response != NULL)
490 memcpy(rsp->response, &event->data.vsp_cmd,
491 sizeof(event->data.vsp_cmd));
492 complete(&rsp->com);
493 break;
494 }
495
496 /* remove from queue */
497 spin_lock_irqsave(&pending_event_spinlock, flags);
498 if ((pending_event_head != NULL) && (free_it == 1)) {
499 struct pending_event *oldHead = pending_event_head;
500
501 pending_event_head = pending_event_head->next;
502 two = pending_event_head;
503 free_pending_event(oldHead);
504 }
505 spin_unlock_irqrestore(&pending_event_spinlock, flags);
506
507 /* send next waiting event */
508 if (two != NULL)
509 signal_event(NULL);
510}
511
512/*
513 * This is the generic event handler we are registering with
514 * the Hypervisor. Ensure the flows are for us, and then
515 * parse it enough to know if it is an interrupt or an
516 * acknowledge.
517 */
518static void hv_handler(struct HvLpEvent *event, struct pt_regs *regs)
519{
520 if ((event != NULL) && (event->xType == HvLpEvent_Type_MachineFac)) {
521 switch(event->xFlags.xFunction) {
522 case HvLpEvent_Function_Ack:
523 handle_ack((struct io_mf_lp_event *)event);
524 break;
525 case HvLpEvent_Function_Int:
526 handle_int((struct io_mf_lp_event *)event);
527 break;
528 default:
529 printk(KERN_ERR "mf.c: non ack/int event received\n");
530 break;
531 }
532 } else
533 printk(KERN_ERR "mf.c: alien event received\n");
534}
535
536/*
537 * Global kernel interface to allocate and seed events into the
538 * Hypervisor.
539 */
540void mf_allocate_lp_events(HvLpIndex target_lp, HvLpEvent_Type type,
541 unsigned size, unsigned count, MFCompleteHandler hdlr,
542 void *user_token)
543{
544 struct pending_event *ev = new_pending_event();
545 int rc;
546
547 if (ev == NULL) {
548 rc = -ENOMEM;
549 } else {
550 ev->event.hp_lp_event.xSubtype = 4;
551 ev->event.hp_lp_event.xCorrelationToken = (u64)user_token;
552 ev->event.hp_lp_event.x.xSubtypeData =
553 subtype_data('M', 'F', 'M', 'A');
554 ev->event.data.alloc.target_lp = target_lp;
555 ev->event.data.alloc.type = type;
556 ev->event.data.alloc.size = size;
557 ev->event.data.alloc.count = count;
558 ev->hdlr = hdlr;
559 rc = signal_event(ev);
560 }
561 if ((rc != 0) && (hdlr != NULL))
562 (*hdlr)(user_token, rc);
563}
564EXPORT_SYMBOL(mf_allocate_lp_events);
565
566/*
567 * Global kernel interface to unseed and deallocate events already in
568 * Hypervisor.
569 */
570void mf_deallocate_lp_events(HvLpIndex target_lp, HvLpEvent_Type type,
571 unsigned count, MFCompleteHandler hdlr, void *user_token)
572{
573 struct pending_event *ev = new_pending_event();
574 int rc;
575
576 if (ev == NULL)
577 rc = -ENOMEM;
578 else {
579 ev->event.hp_lp_event.xSubtype = 5;
580 ev->event.hp_lp_event.xCorrelationToken = (u64)user_token;
581 ev->event.hp_lp_event.x.xSubtypeData =
582 subtype_data('M', 'F', 'M', 'D');
583 ev->event.data.alloc.target_lp = target_lp;
584 ev->event.data.alloc.type = type;
585 ev->event.data.alloc.count = count;
586 ev->hdlr = hdlr;
587 rc = signal_event(ev);
588 }
589 if ((rc != 0) && (hdlr != NULL))
590 (*hdlr)(user_token, rc);
591}
592EXPORT_SYMBOL(mf_deallocate_lp_events);
593
594/*
595 * Global kernel interface to tell the VSP object in the primary
596 * partition to power this partition off.
597 */
598void mf_power_off(void)
599{
600 printk(KERN_INFO "mf.c: Down it goes...\n");
601 signal_ce_msg_simple(0x4d, NULL);
602 for (;;)
603 ;
604}
605
606/*
607 * Global kernel interface to tell the VSP object in the primary
608 * partition to reboot this partition.
609 */
610void mf_reboot(void)
611{
612 printk(KERN_INFO "mf.c: Preparing to bounce...\n");
613 signal_ce_msg_simple(0x4e, NULL);
614 for (;;)
615 ;
616}
617
618/*
619 * Display a single word SRC onto the VSP control panel.
620 */
621void mf_display_src(u32 word)
622{
623 u8 ce[12];
624
625 memset(ce, 0, sizeof(ce));
626 ce[3] = 0x4a;
627 ce[7] = 0x01;
628 ce[8] = word >> 24;
629 ce[9] = word >> 16;
630 ce[10] = word >> 8;
631 ce[11] = word;
632 signal_ce_msg(ce, NULL);
633}
634
635/*
636 * Display a single word SRC of the form "PROGXXXX" on the VSP control panel.
637 */
638void mf_display_progress(u16 value)
639{
640 u8 ce[12];
641 u8 src[72];
642
643 memcpy(ce, "\x00\x00\x04\x4A\x00\x00\x00\x48\x00\x00\x00\x00", 12);
644 memcpy(src, "\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00"
645 "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
646 "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
647 "\x00\x00\x00\x00PROGxxxx ",
648 72);
649 src[6] = value >> 8;
650 src[7] = value & 255;
651 src[44] = "0123456789ABCDEF"[(value >> 12) & 15];
652 src[45] = "0123456789ABCDEF"[(value >> 8) & 15];
653 src[46] = "0123456789ABCDEF"[(value >> 4) & 15];
654 src[47] = "0123456789ABCDEF"[value & 15];
655 dma_and_signal_ce_msg(ce, NULL, src, sizeof(src), 9 * 64 * 1024);
656}
657
658/*
659 * Clear the VSP control panel. Used to "erase" an SRC that was
660 * previously displayed.
661 */
662void mf_clear_src(void)
663{
664 signal_ce_msg_simple(0x4b, NULL);
665}
666
667/*
668 * Initialization code here.
669 */
670void mf_init(void)
671{
672 int i;
673
674 /* initialize */
675 spin_lock_init(&pending_event_spinlock);
676 for (i = 0;
677 i < sizeof(pending_event_prealloc) / sizeof(*pending_event_prealloc);
678 ++i)
679 free_pending_event(&pending_event_prealloc[i]);
680 HvLpEvent_registerHandler(HvLpEvent_Type_MachineFac, &hv_handler);
681
682 /* virtual continue ack */
683 signal_ce_msg_simple(0x57, NULL);
684
685 /* initialization complete */
686 printk(KERN_NOTICE "mf.c: iSeries Linux LPAR Machine Facilities "
687 "initialized\n");
688}
689
690struct rtc_time_data {
691 struct completion com;
692 struct ce_msg_data ce_msg;
693 int rc;
694};
695
696static void get_rtc_time_complete(void *token, struct ce_msg_data *ce_msg)
697{
698 struct rtc_time_data *rtc = token;
699
700 memcpy(&rtc->ce_msg, ce_msg, sizeof(rtc->ce_msg));
701 rtc->rc = 0;
702 complete(&rtc->com);
703}
704
d0e8e291 705static int rtc_set_tm(int rc, u8 *ce_msg, struct rtc_time *tm)
1da177e4 706{
1da177e4
LT
707 tm->tm_wday = 0;
708 tm->tm_yday = 0;
709 tm->tm_isdst = 0;
d0e8e291 710 if (rc) {
1da177e4
LT
711 tm->tm_sec = 0;
712 tm->tm_min = 0;
713 tm->tm_hour = 0;
714 tm->tm_mday = 15;
715 tm->tm_mon = 5;
716 tm->tm_year = 52;
d0e8e291 717 return rc;
1da177e4
LT
718 }
719
d0e8e291
SR
720 if ((ce_msg[2] == 0xa9) ||
721 (ce_msg[2] == 0xaf)) {
1da177e4
LT
722 /* TOD clock is not set */
723 tm->tm_sec = 1;
724 tm->tm_min = 1;
725 tm->tm_hour = 1;
726 tm->tm_mday = 10;
727 tm->tm_mon = 8;
728 tm->tm_year = 71;
729 mf_set_rtc(tm);
730 }
731 {
1da177e4
LT
732 u8 year = ce_msg[5];
733 u8 sec = ce_msg[6];
734 u8 min = ce_msg[7];
735 u8 hour = ce_msg[8];
736 u8 day = ce_msg[10];
737 u8 mon = ce_msg[11];
738
739 BCD_TO_BIN(sec);
740 BCD_TO_BIN(min);
741 BCD_TO_BIN(hour);
742 BCD_TO_BIN(day);
743 BCD_TO_BIN(mon);
744 BCD_TO_BIN(year);
745
746 if (year <= 69)
747 year += 100;
748
749 tm->tm_sec = sec;
750 tm->tm_min = min;
751 tm->tm_hour = hour;
752 tm->tm_mday = day;
753 tm->tm_mon = mon;
754 tm->tm_year = year;
755 }
756
757 return 0;
758}
d0e8e291
SR
759
760int mf_get_rtc(struct rtc_time *tm)
761{
762 struct ce_msg_comp_data ce_complete;
763 struct rtc_time_data rtc_data;
764 int rc;
765
766 memset(&ce_complete, 0, sizeof(ce_complete));
767 memset(&rtc_data, 0, sizeof(rtc_data));
768 init_completion(&rtc_data.com);
769 ce_complete.handler = &get_rtc_time_complete;
770 ce_complete.token = &rtc_data;
771 rc = signal_ce_msg_simple(0x40, &ce_complete);
772 if (rc)
773 return rc;
774 wait_for_completion(&rtc_data.com);
775 return rtc_set_tm(rtc_data.rc, rtc_data.ce_msg.ce_msg, tm);
776}
777
778struct boot_rtc_time_data {
779 int busy;
780 struct ce_msg_data ce_msg;
781 int rc;
782};
783
784static void get_boot_rtc_time_complete(void *token, struct ce_msg_data *ce_msg)
785{
786 struct boot_rtc_time_data *rtc = token;
787
788 memcpy(&rtc->ce_msg, ce_msg, sizeof(rtc->ce_msg));
789 rtc->rc = 0;
790 rtc->busy = 0;
791}
792
793int mf_get_boot_rtc(struct rtc_time *tm)
794{
795 struct ce_msg_comp_data ce_complete;
796 struct boot_rtc_time_data rtc_data;
797 int rc;
798
799 memset(&ce_complete, 0, sizeof(ce_complete));
800 memset(&rtc_data, 0, sizeof(rtc_data));
801 rtc_data.busy = 1;
802 ce_complete.handler = &get_boot_rtc_time_complete;
803 ce_complete.token = &rtc_data;
804 rc = signal_ce_msg_simple(0x40, &ce_complete);
805 if (rc)
806 return rc;
807 /* We need to poll here as we are not yet taking interrupts */
808 while (rtc_data.busy) {
937b31b1 809 if (hvlpevent_is_pending())
74889802 810 process_hvlpevents(NULL);
d0e8e291
SR
811 }
812 return rtc_set_tm(rtc_data.rc, rtc_data.ce_msg.ce_msg, tm);
813}
1da177e4
LT
814
815int mf_set_rtc(struct rtc_time *tm)
816{
817 char ce_time[12];
818 u8 day, mon, hour, min, sec, y1, y2;
819 unsigned year;
820
821 year = 1900 + tm->tm_year;
822 y1 = year / 100;
823 y2 = year % 100;
824
825 sec = tm->tm_sec;
826 min = tm->tm_min;
827 hour = tm->tm_hour;
828 day = tm->tm_mday;
829 mon = tm->tm_mon + 1;
830
831 BIN_TO_BCD(sec);
832 BIN_TO_BCD(min);
833 BIN_TO_BCD(hour);
834 BIN_TO_BCD(mon);
835 BIN_TO_BCD(day);
836 BIN_TO_BCD(y1);
837 BIN_TO_BCD(y2);
838
839 memset(ce_time, 0, sizeof(ce_time));
840 ce_time[3] = 0x41;
841 ce_time[4] = y1;
842 ce_time[5] = y2;
843 ce_time[6] = sec;
844 ce_time[7] = min;
845 ce_time[8] = hour;
846 ce_time[10] = day;
847 ce_time[11] = mon;
848
849 return signal_ce_msg(ce_time, NULL);
850}
851
852#ifdef CONFIG_PROC_FS
853
854static int proc_mf_dump_cmdline(char *page, char **start, off_t off,
855 int count, int *eof, void *data)
856{
857 int len;
858 char *p;
859 struct vsp_cmd_data vsp_cmd;
860 int rc;
861 dma_addr_t dma_addr;
862
863 /* The HV appears to return no more than 256 bytes of command line */
864 if (off >= 256)
865 return 0;
866 if ((off + count) > 256)
867 count = 256 - off;
868
869 dma_addr = dma_map_single(iSeries_vio_dev, page, off + count,
870 DMA_FROM_DEVICE);
871 if (dma_mapping_error(dma_addr))
872 return -ENOMEM;
873 memset(page, 0, off + count);
874 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
875 vsp_cmd.cmd = 33;
876 vsp_cmd.sub_data.kern.token = dma_addr;
877 vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
878 vsp_cmd.sub_data.kern.side = (u64)data;
879 vsp_cmd.sub_data.kern.length = off + count;
880 mb();
881 rc = signal_vsp_instruction(&vsp_cmd);
882 dma_unmap_single(iSeries_vio_dev, dma_addr, off + count,
883 DMA_FROM_DEVICE);
884 if (rc)
885 return rc;
886 if (vsp_cmd.result_code != 0)
887 return -ENOMEM;
888 p = page;
889 len = 0;
890 while (len < (off + count)) {
891 if ((*p == '\0') || (*p == '\n')) {
892 if (*p == '\0')
893 *p = '\n';
894 p++;
895 len++;
896 *eof = 1;
897 break;
898 }
899 p++;
900 len++;
901 }
902
903 if (len < off) {
904 *eof = 1;
905 len = 0;
906 }
907 return len;
908}
909
910#if 0
911static int mf_getVmlinuxChunk(char *buffer, int *size, int offset, u64 side)
912{
913 struct vsp_cmd_data vsp_cmd;
914 int rc;
915 int len = *size;
916 dma_addr_t dma_addr;
917
918 dma_addr = dma_map_single(iSeries_vio_dev, buffer, len,
919 DMA_FROM_DEVICE);
920 memset(buffer, 0, len);
921 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
922 vsp_cmd.cmd = 32;
923 vsp_cmd.sub_data.kern.token = dma_addr;
924 vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
925 vsp_cmd.sub_data.kern.side = side;
926 vsp_cmd.sub_data.kern.offset = offset;
927 vsp_cmd.sub_data.kern.length = len;
928 mb();
929 rc = signal_vsp_instruction(&vsp_cmd);
930 if (rc == 0) {
931 if (vsp_cmd.result_code == 0)
932 *size = vsp_cmd.sub_data.length_out;
933 else
934 rc = -ENOMEM;
935 }
936
937 dma_unmap_single(iSeries_vio_dev, dma_addr, len, DMA_FROM_DEVICE);
938
939 return rc;
940}
941
942static int proc_mf_dump_vmlinux(char *page, char **start, off_t off,
943 int count, int *eof, void *data)
944{
945 int sizeToGet = count;
946
947 if (!capable(CAP_SYS_ADMIN))
948 return -EACCES;
949
950 if (mf_getVmlinuxChunk(page, &sizeToGet, off, (u64)data) == 0) {
951 if (sizeToGet != 0) {
952 *start = page + off;
953 return sizeToGet;
954 }
955 *eof = 1;
956 return 0;
957 }
958 *eof = 1;
959 return 0;
960}
961#endif
962
963static int proc_mf_dump_side(char *page, char **start, off_t off,
964 int count, int *eof, void *data)
965{
966 int len;
967 char mf_current_side = ' ';
968 struct vsp_cmd_data vsp_cmd;
969
970 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
971 vsp_cmd.cmd = 2;
972 vsp_cmd.sub_data.ipl_type = 0;
973 mb();
974
975 if (signal_vsp_instruction(&vsp_cmd) == 0) {
976 if (vsp_cmd.result_code == 0) {
977 switch (vsp_cmd.sub_data.ipl_type) {
978 case 0: mf_current_side = 'A';
979 break;
980 case 1: mf_current_side = 'B';
981 break;
982 case 2: mf_current_side = 'C';
983 break;
984 default: mf_current_side = 'D';
985 break;
986 }
987 }
988 }
989
990 len = sprintf(page, "%c\n", mf_current_side);
991
992 if (len <= (off + count))
993 *eof = 1;
994 *start = page + off;
995 len -= off;
996 if (len > count)
997 len = count;
998 if (len < 0)
999 len = 0;
1000 return len;
1001}
1002
1003static int proc_mf_change_side(struct file *file, const char __user *buffer,
1004 unsigned long count, void *data)
1005{
1006 char side;
1007 u64 newSide;
1008 struct vsp_cmd_data vsp_cmd;
1009
1010 if (!capable(CAP_SYS_ADMIN))
1011 return -EACCES;
1012
1013 if (count == 0)
1014 return 0;
1015
1016 if (get_user(side, buffer))
1017 return -EFAULT;
1018
1019 switch (side) {
1020 case 'A': newSide = 0;
1021 break;
1022 case 'B': newSide = 1;
1023 break;
1024 case 'C': newSide = 2;
1025 break;
1026 case 'D': newSide = 3;
1027 break;
1028 default:
1029 printk(KERN_ERR "mf_proc.c: proc_mf_change_side: invalid side\n");
1030 return -EINVAL;
1031 }
1032
1033 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1034 vsp_cmd.sub_data.ipl_type = newSide;
1035 vsp_cmd.cmd = 10;
1036
1037 (void)signal_vsp_instruction(&vsp_cmd);
1038
1039 return count;
1040}
1041
1042#if 0
1043static void mf_getSrcHistory(char *buffer, int size)
1044{
1045 struct IplTypeReturnStuff return_stuff;
1046 struct pending_event *ev = new_pending_event();
1047 int rc = 0;
1048 char *pages[4];
1049
1050 pages[0] = kmalloc(4096, GFP_ATOMIC);
1051 pages[1] = kmalloc(4096, GFP_ATOMIC);
1052 pages[2] = kmalloc(4096, GFP_ATOMIC);
1053 pages[3] = kmalloc(4096, GFP_ATOMIC);
1054 if ((ev == NULL) || (pages[0] == NULL) || (pages[1] == NULL)
1055 || (pages[2] == NULL) || (pages[3] == NULL))
1056 return -ENOMEM;
1057
1058 return_stuff.xType = 0;
1059 return_stuff.xRc = 0;
1060 return_stuff.xDone = 0;
1061 ev->event.hp_lp_event.xSubtype = 6;
1062 ev->event.hp_lp_event.x.xSubtypeData =
1063 subtype_data('M', 'F', 'V', 'I');
1064 ev->event.data.vsp_cmd.xEvent = &return_stuff;
1065 ev->event.data.vsp_cmd.cmd = 4;
1066 ev->event.data.vsp_cmd.lp_index = HvLpConfig_getLpIndex();
1067 ev->event.data.vsp_cmd.result_code = 0xFF;
1068 ev->event.data.vsp_cmd.reserved = 0;
426c1a11
SR
1069 ev->event.data.vsp_cmd.sub_data.page[0] = iseries_hv_addr(pages[0]);
1070 ev->event.data.vsp_cmd.sub_data.page[1] = iseries_hv_addr(pages[1]);
1071 ev->event.data.vsp_cmd.sub_data.page[2] = iseries_hv_addr(pages[2]);
1072 ev->event.data.vsp_cmd.sub_data.page[3] = iseries_hv_addr(pages[3]);
1da177e4
LT
1073 mb();
1074 if (signal_event(ev) != 0)
1075 return;
1076
1077 while (return_stuff.xDone != 1)
1078 udelay(10);
1079 if (return_stuff.xRc == 0)
1080 memcpy(buffer, pages[0], size);
1081 kfree(pages[0]);
1082 kfree(pages[1]);
1083 kfree(pages[2]);
1084 kfree(pages[3]);
1085}
1086#endif
1087
1088static int proc_mf_dump_src(char *page, char **start, off_t off,
1089 int count, int *eof, void *data)
1090{
1091#if 0
1092 int len;
1093
1094 mf_getSrcHistory(page, count);
1095 len = count;
1096 len -= off;
1097 if (len < count) {
1098 *eof = 1;
1099 if (len <= 0)
1100 return 0;
1101 } else
1102 len = count;
1103 *start = page + off;
1104 return len;
1105#else
1106 return 0;
1107#endif
1108}
1109
1110static int proc_mf_change_src(struct file *file, const char __user *buffer,
1111 unsigned long count, void *data)
1112{
1113 char stkbuf[10];
1114
1115 if (!capable(CAP_SYS_ADMIN))
1116 return -EACCES;
1117
1118 if ((count < 4) && (count != 1)) {
1119 printk(KERN_ERR "mf_proc: invalid src\n");
1120 return -EINVAL;
1121 }
1122
1123 if (count > (sizeof(stkbuf) - 1))
1124 count = sizeof(stkbuf) - 1;
1125 if (copy_from_user(stkbuf, buffer, count))
1126 return -EFAULT;
1127
1128 if ((count == 1) && (*stkbuf == '\0'))
1129 mf_clear_src();
1130 else
1131 mf_display_src(*(u32 *)stkbuf);
1132
1133 return count;
1134}
1135
1136static int proc_mf_change_cmdline(struct file *file, const char __user *buffer,
1137 unsigned long count, void *data)
1138{
1139 struct vsp_cmd_data vsp_cmd;
1140 dma_addr_t dma_addr;
1141 char *page;
1142 int ret = -EACCES;
1143
1144 if (!capable(CAP_SYS_ADMIN))
1145 goto out;
1146
1147 dma_addr = 0;
1148 page = dma_alloc_coherent(iSeries_vio_dev, count, &dma_addr,
1149 GFP_ATOMIC);
1150 ret = -ENOMEM;
1151 if (page == NULL)
1152 goto out;
1153
1154 ret = -EFAULT;
1155 if (copy_from_user(page, buffer, count))
1156 goto out_free;
1157
1158 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1159 vsp_cmd.cmd = 31;
1160 vsp_cmd.sub_data.kern.token = dma_addr;
1161 vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
1162 vsp_cmd.sub_data.kern.side = (u64)data;
1163 vsp_cmd.sub_data.kern.length = count;
1164 mb();
1165 (void)signal_vsp_instruction(&vsp_cmd);
1166 ret = count;
1167
1168out_free:
1169 dma_free_coherent(iSeries_vio_dev, count, page, dma_addr);
1170out:
1171 return ret;
1172}
1173
1174static ssize_t proc_mf_change_vmlinux(struct file *file,
1175 const char __user *buf,
1176 size_t count, loff_t *ppos)
1177{
1178 struct proc_dir_entry *dp = PDE(file->f_dentry->d_inode);
1179 ssize_t rc;
1180 dma_addr_t dma_addr;
1181 char *page;
1182 struct vsp_cmd_data vsp_cmd;
1183
1184 rc = -EACCES;
1185 if (!capable(CAP_SYS_ADMIN))
1186 goto out;
1187
1188 dma_addr = 0;
1189 page = dma_alloc_coherent(iSeries_vio_dev, count, &dma_addr,
1190 GFP_ATOMIC);
1191 rc = -ENOMEM;
1192 if (page == NULL) {
1193 printk(KERN_ERR "mf.c: couldn't allocate memory to set vmlinux chunk\n");
1194 goto out;
1195 }
1196 rc = -EFAULT;
1197 if (copy_from_user(page, buf, count))
1198 goto out_free;
1199
1200 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1201 vsp_cmd.cmd = 30;
1202 vsp_cmd.sub_data.kern.token = dma_addr;
1203 vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
1204 vsp_cmd.sub_data.kern.side = (u64)dp->data;
1205 vsp_cmd.sub_data.kern.offset = *ppos;
1206 vsp_cmd.sub_data.kern.length = count;
1207 mb();
1208 rc = signal_vsp_instruction(&vsp_cmd);
1209 if (rc)
1210 goto out_free;
1211 rc = -ENOMEM;
1212 if (vsp_cmd.result_code != 0)
1213 goto out_free;
1214
1215 *ppos += count;
1216 rc = count;
1217out_free:
1218 dma_free_coherent(iSeries_vio_dev, count, page, dma_addr);
1219out:
1220 return rc;
1221}
1222
1223static struct file_operations proc_vmlinux_operations = {
1224 .write = proc_mf_change_vmlinux,
1225};
1226
1227static int __init mf_proc_init(void)
1228{
1229 struct proc_dir_entry *mf_proc_root;
1230 struct proc_dir_entry *ent;
1231 struct proc_dir_entry *mf;
1232 char name[2];
1233 int i;
1234
1235 mf_proc_root = proc_mkdir("iSeries/mf", NULL);
1236 if (!mf_proc_root)
1237 return 1;
1238
1239 name[1] = '\0';
1240 for (i = 0; i < 4; i++) {
1241 name[0] = 'A' + i;
1242 mf = proc_mkdir(name, mf_proc_root);
1243 if (!mf)
1244 return 1;
1245
1246 ent = create_proc_entry("cmdline", S_IFREG|S_IRUSR|S_IWUSR, mf);
1247 if (!ent)
1248 return 1;
1249 ent->nlink = 1;
1250 ent->data = (void *)(long)i;
1251 ent->read_proc = proc_mf_dump_cmdline;
1252 ent->write_proc = proc_mf_change_cmdline;
1253
1254 if (i == 3) /* no vmlinux entry for 'D' */
1255 continue;
1256
1257 ent = create_proc_entry("vmlinux", S_IFREG|S_IWUSR, mf);
1258 if (!ent)
1259 return 1;
1260 ent->nlink = 1;
1261 ent->data = (void *)(long)i;
1262 ent->proc_fops = &proc_vmlinux_operations;
1263 }
1264
1265 ent = create_proc_entry("side", S_IFREG|S_IRUSR|S_IWUSR, mf_proc_root);
1266 if (!ent)
1267 return 1;
1268 ent->nlink = 1;
1269 ent->data = (void *)0;
1270 ent->read_proc = proc_mf_dump_side;
1271 ent->write_proc = proc_mf_change_side;
1272
1273 ent = create_proc_entry("src", S_IFREG|S_IRUSR|S_IWUSR, mf_proc_root);
1274 if (!ent)
1275 return 1;
1276 ent->nlink = 1;
1277 ent->data = (void *)0;
1278 ent->read_proc = proc_mf_dump_src;
1279 ent->write_proc = proc_mf_change_src;
1280
1281 return 0;
1282}
1283
1284__initcall(mf_proc_init);
1285
1286#endif /* CONFIG_PROC_FS */
c8b84976
SR
1287
1288/*
1289 * Get the RTC from the virtual service processor
1290 * This requires flowing LpEvents to the primary partition
1291 */
1292void iSeries_get_rtc_time(struct rtc_time *rtc_tm)
1293{
1294 if (piranha_simulator)
1295 return;
1296
1297 mf_get_rtc(rtc_tm);
1298 rtc_tm->tm_mon--;
1299}
1300
1301/*
1302 * Set the RTC in the virtual service processor
1303 * This requires flowing LpEvents to the primary partition
1304 */
1305int iSeries_set_rtc_time(struct rtc_time *tm)
1306{
1307 mf_set_rtc(tm);
1308 return 0;
1309}
1310
143a1dec 1311unsigned long iSeries_get_boot_time(void)
c8b84976 1312{
143a1dec
PM
1313 struct rtc_time tm;
1314
c8b84976 1315 if (piranha_simulator)
143a1dec 1316 return 0;
c8b84976 1317
143a1dec
PM
1318 mf_get_boot_rtc(&tm);
1319 return mktime(tm.tm_year + 1900, tm.tm_mon, tm.tm_mday,
1320 tm.tm_hour, tm.tm_min, tm.tm_sec);
c8b84976 1321}
This page took 0.729911 seconds and 5 git commands to generate.