[PATCH] Hugepage consolidation
[deliverable/linux.git] / arch / ppc64 / mm / hugetlbpage.c
CommitLineData
1da177e4
LT
1/*
2 * PPC64 (POWER4) Huge TLB Page Support for Kernel.
3 *
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
5 *
6 * Based on the IA-32 version:
7 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
8 */
9
10#include <linux/init.h>
11#include <linux/fs.h>
12#include <linux/mm.h>
13#include <linux/hugetlb.h>
14#include <linux/pagemap.h>
15#include <linux/smp_lock.h>
16#include <linux/slab.h>
17#include <linux/err.h>
18#include <linux/sysctl.h>
19#include <asm/mman.h>
20#include <asm/pgalloc.h>
21#include <asm/tlb.h>
22#include <asm/tlbflush.h>
23#include <asm/mmu_context.h>
24#include <asm/machdep.h>
25#include <asm/cputable.h>
26#include <asm/tlb.h>
27
28#include <linux/sysctl.h>
29
30#define HUGEPGDIR_SHIFT (HPAGE_SHIFT + PAGE_SHIFT - 3)
31#define HUGEPGDIR_SIZE (1UL << HUGEPGDIR_SHIFT)
32#define HUGEPGDIR_MASK (~(HUGEPGDIR_SIZE-1))
33
34#define HUGEPTE_INDEX_SIZE 9
35#define HUGEPGD_INDEX_SIZE 10
36
37#define PTRS_PER_HUGEPTE (1 << HUGEPTE_INDEX_SIZE)
38#define PTRS_PER_HUGEPGD (1 << HUGEPGD_INDEX_SIZE)
39
40static inline int hugepgd_index(unsigned long addr)
41{
42 return (addr & ~REGION_MASK) >> HUGEPGDIR_SHIFT;
43}
44
58366af5 45static pud_t *hugepgd_offset(struct mm_struct *mm, unsigned long addr)
1da177e4
LT
46{
47 int index;
48
49 if (! mm->context.huge_pgdir)
50 return NULL;
51
52
53 index = hugepgd_index(addr);
54 BUG_ON(index >= PTRS_PER_HUGEPGD);
58366af5 55 return (pud_t *)(mm->context.huge_pgdir + index);
1da177e4
LT
56}
57
58366af5 58static inline pte_t *hugepte_offset(pud_t *dir, unsigned long addr)
1da177e4
LT
59{
60 int index;
61
58366af5 62 if (pud_none(*dir))
1da177e4
LT
63 return NULL;
64
65 index = (addr >> HPAGE_SHIFT) % PTRS_PER_HUGEPTE;
58366af5 66 return (pte_t *)pud_page(*dir) + index;
1da177e4
LT
67}
68
58366af5 69static pud_t *hugepgd_alloc(struct mm_struct *mm, unsigned long addr)
1da177e4
LT
70{
71 BUG_ON(! in_hugepage_area(mm->context, addr));
72
73 if (! mm->context.huge_pgdir) {
74 pgd_t *new;
75 spin_unlock(&mm->page_table_lock);
76 /* Don't use pgd_alloc(), because we want __GFP_REPEAT */
77 new = kmem_cache_alloc(zero_cache, GFP_KERNEL | __GFP_REPEAT);
78 BUG_ON(memcmp(new, empty_zero_page, PAGE_SIZE));
79 spin_lock(&mm->page_table_lock);
80
81 /*
82 * Because we dropped the lock, we should re-check the
83 * entry, as somebody else could have populated it..
84 */
85 if (mm->context.huge_pgdir)
86 pgd_free(new);
87 else
88 mm->context.huge_pgdir = new;
89 }
90 return hugepgd_offset(mm, addr);
91}
92
58366af5 93static pte_t *hugepte_alloc(struct mm_struct *mm, pud_t *dir, unsigned long addr)
1da177e4 94{
58366af5 95 if (! pud_present(*dir)) {
1da177e4
LT
96 pte_t *new;
97
98 spin_unlock(&mm->page_table_lock);
99 new = kmem_cache_alloc(zero_cache, GFP_KERNEL | __GFP_REPEAT);
100 BUG_ON(memcmp(new, empty_zero_page, PAGE_SIZE));
101 spin_lock(&mm->page_table_lock);
102 /*
103 * Because we dropped the lock, we should re-check the
104 * entry, as somebody else could have populated it..
105 */
58366af5 106 if (pud_present(*dir)) {
1da177e4
LT
107 if (new)
108 kmem_cache_free(zero_cache, new);
109 } else {
110 struct page *ptepage;
111
112 if (! new)
113 return NULL;
114 ptepage = virt_to_page(new);
115 ptepage->mapping = (void *) mm;
116 ptepage->index = addr & HUGEPGDIR_MASK;
58366af5 117 pud_populate(mm, dir, new);
1da177e4
LT
118 }
119 }
120
121 return hugepte_offset(dir, addr);
122}
123
63551ae0 124pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
1da177e4 125{
58366af5 126 pud_t *pud;
1da177e4
LT
127
128 BUG_ON(! in_hugepage_area(mm->context, addr));
129
58366af5
BH
130 pud = hugepgd_offset(mm, addr);
131 if (! pud)
1da177e4
LT
132 return NULL;
133
58366af5 134 return hugepte_offset(pud, addr);
1da177e4
LT
135}
136
63551ae0 137pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr)
1da177e4 138{
58366af5 139 pud_t *pud;
1da177e4
LT
140
141 BUG_ON(! in_hugepage_area(mm->context, addr));
142
58366af5
BH
143 pud = hugepgd_alloc(mm, addr);
144 if (! pud)
1da177e4
LT
145 return NULL;
146
58366af5 147 return hugepte_alloc(mm, pud, addr);
1da177e4
LT
148}
149
1da177e4
LT
150/*
151 * This function checks for proper alignment of input addr and len parameters.
152 */
153int is_aligned_hugepage_range(unsigned long addr, unsigned long len)
154{
155 if (len & ~HPAGE_MASK)
156 return -EINVAL;
157 if (addr & ~HPAGE_MASK)
158 return -EINVAL;
159 if (! (within_hugepage_low_range(addr, len)
160 || within_hugepage_high_range(addr, len)) )
161 return -EINVAL;
162 return 0;
163}
164
165static void flush_segments(void *parm)
166{
167 u16 segs = (unsigned long) parm;
168 unsigned long i;
169
170 asm volatile("isync" : : : "memory");
171
172 for (i = 0; i < 16; i++) {
173 if (! (segs & (1U << i)))
174 continue;
175 asm volatile("slbie %0" : : "r" (i << SID_SHIFT));
176 }
177
178 asm volatile("isync" : : : "memory");
179}
180
181static int prepare_low_seg_for_htlb(struct mm_struct *mm, unsigned long seg)
182{
183 unsigned long start = seg << SID_SHIFT;
184 unsigned long end = (seg+1) << SID_SHIFT;
185 struct vm_area_struct *vma;
1da177e4
LT
186
187 BUG_ON(seg >= 16);
188
189 /* Check no VMAs are in the region */
190 vma = find_vma(mm, start);
191 if (vma && (vma->vm_start < end))
192 return -EBUSY;
193
1da177e4
LT
194 return 0;
195}
196
197static int open_low_hpage_segs(struct mm_struct *mm, u16 newsegs)
198{
199 unsigned long i;
200
201 newsegs &= ~(mm->context.htlb_segs);
202 if (! newsegs)
203 return 0; /* The segments we want are already open */
204
205 for (i = 0; i < 16; i++)
206 if ((1 << i) & newsegs)
207 if (prepare_low_seg_for_htlb(mm, i) != 0)
208 return -EBUSY;
209
210 mm->context.htlb_segs |= newsegs;
211
212 /* update the paca copy of the context struct */
213 get_paca()->context = mm->context;
214
215 /* the context change must make it to memory before the flush,
216 * so that further SLB misses do the right thing. */
217 mb();
218 on_each_cpu(flush_segments, (void *)(unsigned long)newsegs, 0, 1);
219
220 return 0;
221}
222
223int prepare_hugepage_range(unsigned long addr, unsigned long len)
224{
225 if (within_hugepage_high_range(addr, len))
226 return 0;
227 else if ((addr < 0x100000000UL) && ((addr+len) < 0x100000000UL)) {
228 int err;
229 /* Yes, we need both tests, in case addr+len overflows
230 * 64-bit arithmetic */
231 err = open_low_hpage_segs(current->mm,
232 LOW_ESID_MASK(addr, len));
233 if (err)
234 printk(KERN_DEBUG "prepare_hugepage_range(%lx, %lx)"
235 " failed (segs: 0x%04hx)\n", addr, len,
236 LOW_ESID_MASK(addr, len));
237 return err;
238 }
239
240 return -EINVAL;
241}
242
1da177e4
LT
243struct page *
244follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
245{
246 pte_t *ptep;
247 struct page *page;
248
249 if (! in_hugepage_area(mm->context, address))
250 return ERR_PTR(-EINVAL);
251
252 ptep = huge_pte_offset(mm, address);
253 page = pte_page(*ptep);
254 if (page)
255 page += (address % HPAGE_SIZE) / PAGE_SIZE;
256
257 return page;
258}
259
260int pmd_huge(pmd_t pmd)
261{
262 return 0;
263}
264
265struct page *
266follow_huge_pmd(struct mm_struct *mm, unsigned long address,
267 pmd_t *pmd, int write)
268{
269 BUG();
270 return NULL;
271}
272
1da177e4
LT
273/* Because we have an exclusive hugepage region which lies within the
274 * normal user address space, we have to take special measures to make
275 * non-huge mmap()s evade the hugepage reserved regions. */
276unsigned long arch_get_unmapped_area(struct file *filp, unsigned long addr,
277 unsigned long len, unsigned long pgoff,
278 unsigned long flags)
279{
280 struct mm_struct *mm = current->mm;
281 struct vm_area_struct *vma;
282 unsigned long start_addr;
283
284 if (len > TASK_SIZE)
285 return -ENOMEM;
286
287 if (addr) {
288 addr = PAGE_ALIGN(addr);
289 vma = find_vma(mm, addr);
290 if (((TASK_SIZE - len) >= addr)
291 && (!vma || (addr+len) <= vma->vm_start)
292 && !is_hugepage_only_range(mm, addr,len))
293 return addr;
294 }
295 start_addr = addr = mm->free_area_cache;
296
297full_search:
298 vma = find_vma(mm, addr);
299 while (TASK_SIZE - len >= addr) {
300 BUG_ON(vma && (addr >= vma->vm_end));
301
302 if (touches_hugepage_low_range(mm, addr, len)) {
303 addr = ALIGN(addr+1, 1<<SID_SHIFT);
304 vma = find_vma(mm, addr);
305 continue;
306 }
307 if (touches_hugepage_high_range(addr, len)) {
308 addr = TASK_HPAGE_END;
309 vma = find_vma(mm, addr);
310 continue;
311 }
312 if (!vma || addr + len <= vma->vm_start) {
313 /*
314 * Remember the place where we stopped the search:
315 */
316 mm->free_area_cache = addr + len;
317 return addr;
318 }
319 addr = vma->vm_end;
320 vma = vma->vm_next;
321 }
322
323 /* Make sure we didn't miss any holes */
324 if (start_addr != TASK_UNMAPPED_BASE) {
325 start_addr = addr = TASK_UNMAPPED_BASE;
326 goto full_search;
327 }
328 return -ENOMEM;
329}
330
331/*
332 * This mmap-allocator allocates new areas top-down from below the
333 * stack's low limit (the base):
334 *
335 * Because we have an exclusive hugepage region which lies within the
336 * normal user address space, we have to take special measures to make
337 * non-huge mmap()s evade the hugepage reserved regions.
338 */
339unsigned long
340arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
341 const unsigned long len, const unsigned long pgoff,
342 const unsigned long flags)
343{
344 struct vm_area_struct *vma, *prev_vma;
345 struct mm_struct *mm = current->mm;
346 unsigned long base = mm->mmap_base, addr = addr0;
347 int first_time = 1;
348
349 /* requested length too big for entire address space */
350 if (len > TASK_SIZE)
351 return -ENOMEM;
352
353 /* dont allow allocations above current base */
354 if (mm->free_area_cache > base)
355 mm->free_area_cache = base;
356
357 /* requesting a specific address */
358 if (addr) {
359 addr = PAGE_ALIGN(addr);
360 vma = find_vma(mm, addr);
361 if (TASK_SIZE - len >= addr &&
362 (!vma || addr + len <= vma->vm_start)
363 && !is_hugepage_only_range(mm, addr,len))
364 return addr;
365 }
366
367try_again:
368 /* make sure it can fit in the remaining address space */
369 if (mm->free_area_cache < len)
370 goto fail;
371
372 /* either no address requested or cant fit in requested address hole */
373 addr = (mm->free_area_cache - len) & PAGE_MASK;
374 do {
375hugepage_recheck:
376 if (touches_hugepage_low_range(mm, addr, len)) {
377 addr = (addr & ((~0) << SID_SHIFT)) - len;
378 goto hugepage_recheck;
379 } else if (touches_hugepage_high_range(addr, len)) {
380 addr = TASK_HPAGE_BASE - len;
381 }
382
383 /*
384 * Lookup failure means no vma is above this address,
385 * i.e. return with success:
386 */
387 if (!(vma = find_vma_prev(mm, addr, &prev_vma)))
388 return addr;
389
390 /*
391 * new region fits between prev_vma->vm_end and
392 * vma->vm_start, use it:
393 */
394 if (addr+len <= vma->vm_start &&
395 (!prev_vma || (addr >= prev_vma->vm_end)))
396 /* remember the address as a hint for next time */
397 return (mm->free_area_cache = addr);
398 else
399 /* pull free_area_cache down to the first hole */
400 if (mm->free_area_cache == vma->vm_end)
401 mm->free_area_cache = vma->vm_start;
402
403 /* try just below the current vma->vm_start */
404 addr = vma->vm_start-len;
405 } while (len <= vma->vm_start);
406
407fail:
408 /*
409 * if hint left us with no space for the requested
410 * mapping then try again:
411 */
412 if (first_time) {
413 mm->free_area_cache = base;
414 first_time = 0;
415 goto try_again;
416 }
417 /*
418 * A failed mmap() very likely causes application failure,
419 * so fall back to the bottom-up function here. This scenario
420 * can happen with large stack limits and large mmap()
421 * allocations.
422 */
423 mm->free_area_cache = TASK_UNMAPPED_BASE;
424 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
425 /*
426 * Restore the topdown base:
427 */
428 mm->free_area_cache = base;
429
430 return addr;
431}
432
433static unsigned long htlb_get_low_area(unsigned long len, u16 segmask)
434{
435 unsigned long addr = 0;
436 struct vm_area_struct *vma;
437
438 vma = find_vma(current->mm, addr);
439 while (addr + len <= 0x100000000UL) {
440 BUG_ON(vma && (addr >= vma->vm_end)); /* invariant */
441
442 if (! __within_hugepage_low_range(addr, len, segmask)) {
443 addr = ALIGN(addr+1, 1<<SID_SHIFT);
444 vma = find_vma(current->mm, addr);
445 continue;
446 }
447
448 if (!vma || (addr + len) <= vma->vm_start)
449 return addr;
450 addr = ALIGN(vma->vm_end, HPAGE_SIZE);
451 /* Depending on segmask this might not be a confirmed
452 * hugepage region, so the ALIGN could have skipped
453 * some VMAs */
454 vma = find_vma(current->mm, addr);
455 }
456
457 return -ENOMEM;
458}
459
460static unsigned long htlb_get_high_area(unsigned long len)
461{
462 unsigned long addr = TASK_HPAGE_BASE;
463 struct vm_area_struct *vma;
464
465 vma = find_vma(current->mm, addr);
466 for (vma = find_vma(current->mm, addr);
467 addr + len <= TASK_HPAGE_END;
468 vma = vma->vm_next) {
469 BUG_ON(vma && (addr >= vma->vm_end)); /* invariant */
470 BUG_ON(! within_hugepage_high_range(addr, len));
471
472 if (!vma || (addr + len) <= vma->vm_start)
473 return addr;
474 addr = ALIGN(vma->vm_end, HPAGE_SIZE);
475 /* Because we're in a hugepage region, this alignment
476 * should not skip us over any VMAs */
477 }
478
479 return -ENOMEM;
480}
481
482unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
483 unsigned long len, unsigned long pgoff,
484 unsigned long flags)
485{
486 if (len & ~HPAGE_MASK)
487 return -EINVAL;
488
489 if (!cpu_has_feature(CPU_FTR_16M_PAGE))
490 return -EINVAL;
491
492 if (test_thread_flag(TIF_32BIT)) {
493 int lastshift = 0;
494 u16 segmask, cursegs = current->mm->context.htlb_segs;
495
496 /* First see if we can do the mapping in the existing
497 * low hpage segments */
498 addr = htlb_get_low_area(len, cursegs);
499 if (addr != -ENOMEM)
500 return addr;
501
502 for (segmask = LOW_ESID_MASK(0x100000000UL-len, len);
503 ! lastshift; segmask >>=1) {
504 if (segmask & 1)
505 lastshift = 1;
506
507 addr = htlb_get_low_area(len, cursegs | segmask);
508 if ((addr != -ENOMEM)
509 && open_low_hpage_segs(current->mm, segmask) == 0)
510 return addr;
511 }
512 printk(KERN_DEBUG "hugetlb_get_unmapped_area() unable to open"
513 " enough segments\n");
514 return -ENOMEM;
515 } else {
516 return htlb_get_high_area(len);
517 }
518}
519
520void hugetlb_mm_free_pgd(struct mm_struct *mm)
521{
522 int i;
523 pgd_t *pgdir;
524
525 spin_lock(&mm->page_table_lock);
526
527 pgdir = mm->context.huge_pgdir;
528 if (! pgdir)
529 goto out;
530
531 mm->context.huge_pgdir = NULL;
532
533 /* cleanup any hugepte pages leftover */
534 for (i = 0; i < PTRS_PER_HUGEPGD; i++) {
58366af5 535 pud_t *pud = (pud_t *)(pgdir + i);
1da177e4 536
58366af5
BH
537 if (! pud_none(*pud)) {
538 pte_t *pte = (pte_t *)pud_page(*pud);
1da177e4
LT
539 struct page *ptepage = virt_to_page(pte);
540
541 ptepage->mapping = NULL;
542
543 BUG_ON(memcmp(pte, empty_zero_page, PAGE_SIZE));
544 kmem_cache_free(zero_cache, pte);
545 }
58366af5 546 pud_clear(pud);
1da177e4
LT
547 }
548
549 BUG_ON(memcmp(pgdir, empty_zero_page, PAGE_SIZE));
550 kmem_cache_free(zero_cache, pgdir);
551
552 out:
553 spin_unlock(&mm->page_table_lock);
554}
555
556int hash_huge_page(struct mm_struct *mm, unsigned long access,
557 unsigned long ea, unsigned long vsid, int local)
558{
559 pte_t *ptep;
560 unsigned long va, vpn;
561 pte_t old_pte, new_pte;
562 unsigned long hpteflags, prpn;
563 long slot;
564 int err = 1;
565
566 spin_lock(&mm->page_table_lock);
567
568 ptep = huge_pte_offset(mm, ea);
569
570 /* Search the Linux page table for a match with va */
571 va = (vsid << 28) | (ea & 0x0fffffff);
572 vpn = va >> HPAGE_SHIFT;
573
574 /*
575 * If no pte found or not present, send the problem up to
576 * do_page_fault
577 */
578 if (unlikely(!ptep || pte_none(*ptep)))
579 goto out;
580
581/* BUG_ON(pte_bad(*ptep)); */
582
583 /*
584 * Check the user's access rights to the page. If access should be
585 * prevented then send the problem up to do_page_fault.
586 */
587 if (unlikely(access & ~pte_val(*ptep)))
588 goto out;
589 /*
590 * At this point, we have a pte (old_pte) which can be used to build
591 * or update an HPTE. There are 2 cases:
592 *
593 * 1. There is a valid (present) pte with no associated HPTE (this is
594 * the most common case)
595 * 2. There is a valid (present) pte with an associated HPTE. The
596 * current values of the pp bits in the HPTE prevent access
597 * because we are doing software DIRTY bit management and the
598 * page is currently not DIRTY.
599 */
600
601
602 old_pte = *ptep;
603 new_pte = old_pte;
604
605 hpteflags = 0x2 | (! (pte_val(new_pte) & _PAGE_RW));
606 /* _PAGE_EXEC -> HW_NO_EXEC since it's inverted */
607 hpteflags |= ((pte_val(new_pte) & _PAGE_EXEC) ? 0 : HW_NO_EXEC);
608
609 /* Check if pte already has an hpte (case 2) */
610 if (unlikely(pte_val(old_pte) & _PAGE_HASHPTE)) {
611 /* There MIGHT be an HPTE for this pte */
612 unsigned long hash, slot;
613
614 hash = hpt_hash(vpn, 1);
615 if (pte_val(old_pte) & _PAGE_SECONDARY)
616 hash = ~hash;
617 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
618 slot += (pte_val(old_pte) & _PAGE_GROUP_IX) >> 12;
619
620 if (ppc_md.hpte_updatepp(slot, hpteflags, va, 1, local) == -1)
621 pte_val(old_pte) &= ~_PAGE_HPTEFLAGS;
622 }
623
624 if (likely(!(pte_val(old_pte) & _PAGE_HASHPTE))) {
625 unsigned long hash = hpt_hash(vpn, 1);
626 unsigned long hpte_group;
627
628 prpn = pte_pfn(old_pte);
629
630repeat:
631 hpte_group = ((hash & htab_hash_mask) *
632 HPTES_PER_GROUP) & ~0x7UL;
633
634 /* Update the linux pte with the HPTE slot */
635 pte_val(new_pte) &= ~_PAGE_HPTEFLAGS;
636 pte_val(new_pte) |= _PAGE_HASHPTE;
637
638 /* Add in WIMG bits */
639 /* XXX We should store these in the pte */
640 hpteflags |= _PAGE_COHERENT;
641
642 slot = ppc_md.hpte_insert(hpte_group, va, prpn, 0,
643 hpteflags, 0, 1);
644
645 /* Primary is full, try the secondary */
646 if (unlikely(slot == -1)) {
647 pte_val(new_pte) |= _PAGE_SECONDARY;
648 hpte_group = ((~hash & htab_hash_mask) *
649 HPTES_PER_GROUP) & ~0x7UL;
650 slot = ppc_md.hpte_insert(hpte_group, va, prpn,
651 1, hpteflags, 0, 1);
652 if (slot == -1) {
653 if (mftb() & 0x1)
654 hpte_group = ((hash & htab_hash_mask) * HPTES_PER_GROUP) & ~0x7UL;
655
656 ppc_md.hpte_remove(hpte_group);
657 goto repeat;
658 }
659 }
660
661 if (unlikely(slot == -2))
662 panic("hash_huge_page: pte_insert failed\n");
663
664 pte_val(new_pte) |= (slot<<12) & _PAGE_GROUP_IX;
665
666 /*
667 * No need to use ldarx/stdcx here because all who
668 * might be updating the pte will hold the
669 * page_table_lock
670 */
671 *ptep = new_pte;
672 }
673
674 err = 0;
675
676 out:
677 spin_unlock(&mm->page_table_lock);
678
679 return err;
680}
This page took 0.065794 seconds and 5 git commands to generate.