[S390] add generic atomic64 support for 31 bit
[deliverable/linux.git] / arch / s390 / include / asm / pgtable.h
CommitLineData
1da177e4
LT
1/*
2 * include/asm-s390/pgtable.h
3 *
4 * S390 version
5 * Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation
6 * Author(s): Hartmut Penner (hp@de.ibm.com)
7 * Ulrich Weigand (weigand@de.ibm.com)
8 * Martin Schwidefsky (schwidefsky@de.ibm.com)
9 *
10 * Derived from "include/asm-i386/pgtable.h"
11 */
12
13#ifndef _ASM_S390_PGTABLE_H
14#define _ASM_S390_PGTABLE_H
15
1da177e4
LT
16/*
17 * The Linux memory management assumes a three-level page table setup. For
18 * s390 31 bit we "fold" the mid level into the top-level page table, so
19 * that we physically have the same two-level page table as the s390 mmu
20 * expects in 31 bit mode. For s390 64 bit we use three of the five levels
21 * the hardware provides (region first and region second tables are not
22 * used).
23 *
24 * The "pgd_xxx()" functions are trivial for a folded two-level
25 * setup: the pgd is never bad, and a pmd always exists (as it's folded
26 * into the pgd entry)
27 *
28 * This file contains the functions and defines necessary to modify and use
29 * the S390 page table tree.
30 */
31#ifndef __ASSEMBLY__
9789db08 32#include <linux/sched.h>
2dcea57a 33#include <linux/mm_types.h>
5b7baf05 34#include <asm/bitops.h>
1da177e4
LT
35#include <asm/bug.h>
36#include <asm/processor.h>
1da177e4 37
1da177e4
LT
38extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
39extern void paging_init(void);
2b67fc46 40extern void vmem_map_init(void);
1da177e4
LT
41
42/*
43 * The S390 doesn't have any external MMU info: the kernel page
44 * tables contain all the necessary information.
45 */
46#define update_mmu_cache(vma, address, pte) do { } while (0)
47
48/*
49 * ZERO_PAGE is a global shared page that is always zero: used
50 * for zero-mapped memory areas etc..
51 */
52extern char empty_zero_page[PAGE_SIZE];
53#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
54#endif /* !__ASSEMBLY__ */
55
56/*
57 * PMD_SHIFT determines the size of the area a second-level page
58 * table can map
59 * PGDIR_SHIFT determines what a third-level page table entry can map
60 */
61#ifndef __s390x__
146e4b3c
MS
62# define PMD_SHIFT 20
63# define PUD_SHIFT 20
64# define PGDIR_SHIFT 20
1da177e4 65#else /* __s390x__ */
146e4b3c 66# define PMD_SHIFT 20
190a1d72 67# define PUD_SHIFT 31
5a216a20 68# define PGDIR_SHIFT 42
1da177e4
LT
69#endif /* __s390x__ */
70
71#define PMD_SIZE (1UL << PMD_SHIFT)
72#define PMD_MASK (~(PMD_SIZE-1))
190a1d72
MS
73#define PUD_SIZE (1UL << PUD_SHIFT)
74#define PUD_MASK (~(PUD_SIZE-1))
5a216a20
MS
75#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
76#define PGDIR_MASK (~(PGDIR_SIZE-1))
1da177e4
LT
77
78/*
79 * entries per page directory level: the S390 is two-level, so
80 * we don't really have any PMD directory physically.
81 * for S390 segment-table entries are combined to one PGD
82 * that leads to 1024 pte per pgd
83 */
146e4b3c 84#define PTRS_PER_PTE 256
1da177e4 85#ifndef __s390x__
146e4b3c 86#define PTRS_PER_PMD 1
5a216a20 87#define PTRS_PER_PUD 1
1da177e4 88#else /* __s390x__ */
146e4b3c 89#define PTRS_PER_PMD 2048
5a216a20 90#define PTRS_PER_PUD 2048
1da177e4 91#endif /* __s390x__ */
146e4b3c 92#define PTRS_PER_PGD 2048
1da177e4 93
d455a369
HD
94#define FIRST_USER_ADDRESS 0
95
1da177e4
LT
96#define pte_ERROR(e) \
97 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
98#define pmd_ERROR(e) \
99 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
190a1d72
MS
100#define pud_ERROR(e) \
101 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
1da177e4
LT
102#define pgd_ERROR(e) \
103 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
104
105#ifndef __ASSEMBLY__
106/*
5fd9c6e2
CB
107 * The vmalloc area will always be on the topmost area of the kernel
108 * mapping. We reserve 96MB (31bit) / 1GB (64bit) for vmalloc,
109 * which should be enough for any sane case.
110 * By putting vmalloc at the top, we maximise the gap between physical
111 * memory and vmalloc to catch misplaced memory accesses. As a side
112 * effect, this also makes sure that 64 bit module code cannot be used
113 * as system call address.
8b62bc96 114 */
239a6425
HC
115
116extern unsigned long VMALLOC_START;
117
1da177e4 118#ifndef __s390x__
239a6425 119#define VMALLOC_SIZE (96UL << 20)
5fd9c6e2 120#define VMALLOC_END 0x7e000000UL
0189103c 121#define VMEM_MAP_END 0x80000000UL
1da177e4 122#else /* __s390x__ */
239a6425 123#define VMALLOC_SIZE (1UL << 30)
5fd9c6e2 124#define VMALLOC_END 0x3e040000000UL
0189103c 125#define VMEM_MAP_END 0x40000000000UL
1da177e4
LT
126#endif /* __s390x__ */
127
0189103c
HC
128/*
129 * VMEM_MAX_PHYS is the highest physical address that can be added to the 1:1
130 * mapping. This needs to be calculated at compile time since the size of the
131 * VMEM_MAP is static but the size of struct page can change.
132 */
522d8dc0
MS
133#define VMEM_MAX_PAGES ((VMEM_MAP_END - VMALLOC_END) / sizeof(struct page))
134#define VMEM_MAX_PFN min(VMALLOC_START >> PAGE_SHIFT, VMEM_MAX_PAGES)
135#define VMEM_MAX_PHYS ((VMEM_MAX_PFN << PAGE_SHIFT) & ~((16 << 20) - 1))
17f34580 136#define vmemmap ((struct page *) VMALLOC_END)
5fd9c6e2 137
1da177e4
LT
138/*
139 * A 31 bit pagetable entry of S390 has following format:
140 * | PFRA | | OS |
141 * 0 0IP0
142 * 00000000001111111111222222222233
143 * 01234567890123456789012345678901
144 *
145 * I Page-Invalid Bit: Page is not available for address-translation
146 * P Page-Protection Bit: Store access not possible for page
147 *
148 * A 31 bit segmenttable entry of S390 has following format:
149 * | P-table origin | |PTL
150 * 0 IC
151 * 00000000001111111111222222222233
152 * 01234567890123456789012345678901
153 *
154 * I Segment-Invalid Bit: Segment is not available for address-translation
155 * C Common-Segment Bit: Segment is not private (PoP 3-30)
156 * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256)
157 *
158 * The 31 bit segmenttable origin of S390 has following format:
159 *
160 * |S-table origin | | STL |
161 * X **GPS
162 * 00000000001111111111222222222233
163 * 01234567890123456789012345678901
164 *
165 * X Space-Switch event:
166 * G Segment-Invalid Bit: *
167 * P Private-Space Bit: Segment is not private (PoP 3-30)
168 * S Storage-Alteration:
169 * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048)
170 *
171 * A 64 bit pagetable entry of S390 has following format:
172 * | PFRA |0IP0| OS |
173 * 0000000000111111111122222222223333333333444444444455555555556666
174 * 0123456789012345678901234567890123456789012345678901234567890123
175 *
176 * I Page-Invalid Bit: Page is not available for address-translation
177 * P Page-Protection Bit: Store access not possible for page
178 *
179 * A 64 bit segmenttable entry of S390 has following format:
180 * | P-table origin | TT
181 * 0000000000111111111122222222223333333333444444444455555555556666
182 * 0123456789012345678901234567890123456789012345678901234567890123
183 *
184 * I Segment-Invalid Bit: Segment is not available for address-translation
185 * C Common-Segment Bit: Segment is not private (PoP 3-30)
186 * P Page-Protection Bit: Store access not possible for page
187 * TT Type 00
188 *
189 * A 64 bit region table entry of S390 has following format:
190 * | S-table origin | TF TTTL
191 * 0000000000111111111122222222223333333333444444444455555555556666
192 * 0123456789012345678901234567890123456789012345678901234567890123
193 *
194 * I Segment-Invalid Bit: Segment is not available for address-translation
195 * TT Type 01
196 * TF
190a1d72 197 * TL Table length
1da177e4
LT
198 *
199 * The 64 bit regiontable origin of S390 has following format:
200 * | region table origon | DTTL
201 * 0000000000111111111122222222223333333333444444444455555555556666
202 * 0123456789012345678901234567890123456789012345678901234567890123
203 *
204 * X Space-Switch event:
205 * G Segment-Invalid Bit:
206 * P Private-Space Bit:
207 * S Storage-Alteration:
208 * R Real space
209 * TL Table-Length:
210 *
211 * A storage key has the following format:
212 * | ACC |F|R|C|0|
213 * 0 3 4 5 6 7
214 * ACC: access key
215 * F : fetch protection bit
216 * R : referenced bit
217 * C : changed bit
218 */
219
220/* Hardware bits in the page table entry */
83377484
MS
221#define _PAGE_RO 0x200 /* HW read-only bit */
222#define _PAGE_INVALID 0x400 /* HW invalid bit */
3610cce8
MS
223
224/* Software bits in the page table entry */
83377484
MS
225#define _PAGE_SWT 0x001 /* SW pte type bit t */
226#define _PAGE_SWX 0x002 /* SW pte type bit x */
a08cb629
NP
227#define _PAGE_SPECIAL 0x004 /* SW associated with special page */
228#define __HAVE_ARCH_PTE_SPECIAL
1da177e4 229
138c9021
NP
230/* Set of bits not changed in pte_modify */
231#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL)
232
83377484 233/* Six different types of pages. */
9282ed92
GS
234#define _PAGE_TYPE_EMPTY 0x400
235#define _PAGE_TYPE_NONE 0x401
83377484
MS
236#define _PAGE_TYPE_SWAP 0x403
237#define _PAGE_TYPE_FILE 0x601 /* bit 0x002 is used for offset !! */
9282ed92
GS
238#define _PAGE_TYPE_RO 0x200
239#define _PAGE_TYPE_RW 0x000
c1821c2e
GS
240#define _PAGE_TYPE_EX_RO 0x202
241#define _PAGE_TYPE_EX_RW 0x002
1da177e4 242
53492b1d
GS
243/*
244 * Only four types for huge pages, using the invalid bit and protection bit
245 * of a segment table entry.
246 */
247#define _HPAGE_TYPE_EMPTY 0x020 /* _SEGMENT_ENTRY_INV */
248#define _HPAGE_TYPE_NONE 0x220
249#define _HPAGE_TYPE_RO 0x200 /* _SEGMENT_ENTRY_RO */
250#define _HPAGE_TYPE_RW 0x000
251
83377484
MS
252/*
253 * PTE type bits are rather complicated. handle_pte_fault uses pte_present,
254 * pte_none and pte_file to find out the pte type WITHOUT holding the page
255 * table lock. ptep_clear_flush on the other hand uses ptep_clear_flush to
256 * invalidate a given pte. ipte sets the hw invalid bit and clears all tlbs
257 * for the page. The page table entry is set to _PAGE_TYPE_EMPTY afterwards.
258 * This change is done while holding the lock, but the intermediate step
259 * of a previously valid pte with the hw invalid bit set can be observed by
260 * handle_pte_fault. That makes it necessary that all valid pte types with
261 * the hw invalid bit set must be distinguishable from the four pte types
262 * empty, none, swap and file.
263 *
264 * irxt ipte irxt
265 * _PAGE_TYPE_EMPTY 1000 -> 1000
266 * _PAGE_TYPE_NONE 1001 -> 1001
267 * _PAGE_TYPE_SWAP 1011 -> 1011
268 * _PAGE_TYPE_FILE 11?1 -> 11?1
269 * _PAGE_TYPE_RO 0100 -> 1100
270 * _PAGE_TYPE_RW 0000 -> 1000
c1821c2e
GS
271 * _PAGE_TYPE_EX_RO 0110 -> 1110
272 * _PAGE_TYPE_EX_RW 0010 -> 1010
83377484 273 *
c1821c2e 274 * pte_none is true for bits combinations 1000, 1010, 1100, 1110
83377484
MS
275 * pte_present is true for bits combinations 0000, 0010, 0100, 0110, 1001
276 * pte_file is true for bits combinations 1101, 1111
c1821c2e 277 * swap pte is 1011 and 0001, 0011, 0101, 0111 are invalid.
83377484
MS
278 */
279
5b7baf05
CB
280/* Page status table bits for virtualization */
281#define RCP_PCL_BIT 55
282#define RCP_HR_BIT 54
283#define RCP_HC_BIT 53
284#define RCP_GR_BIT 50
285#define RCP_GC_BIT 49
286
15e86b0c
FF
287/* User dirty bit for KVM's migration feature */
288#define KVM_UD_BIT 47
289
1da177e4
LT
290#ifndef __s390x__
291
3610cce8
MS
292/* Bits in the segment table address-space-control-element */
293#define _ASCE_SPACE_SWITCH 0x80000000UL /* space switch event */
294#define _ASCE_ORIGIN_MASK 0x7ffff000UL /* segment table origin */
295#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
296#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
297#define _ASCE_TABLE_LENGTH 0x7f /* 128 x 64 entries = 8k */
1da177e4 298
3610cce8
MS
299/* Bits in the segment table entry */
300#define _SEGMENT_ENTRY_ORIGIN 0x7fffffc0UL /* page table origin */
301#define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
302#define _SEGMENT_ENTRY_COMMON 0x10 /* common segment bit */
303#define _SEGMENT_ENTRY_PTL 0x0f /* page table length */
1da177e4 304
3610cce8
MS
305#define _SEGMENT_ENTRY (_SEGMENT_ENTRY_PTL)
306#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
1da177e4
LT
307
308#else /* __s390x__ */
309
3610cce8
MS
310/* Bits in the segment/region table address-space-control-element */
311#define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
312#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
313#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
314#define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
315#define _ASCE_REAL_SPACE 0x20 /* real space control */
316#define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
317#define _ASCE_TYPE_REGION1 0x0c /* region first table type */
318#define _ASCE_TYPE_REGION2 0x08 /* region second table type */
319#define _ASCE_TYPE_REGION3 0x04 /* region third table type */
320#define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
321#define _ASCE_TABLE_LENGTH 0x03 /* region table length */
322
323/* Bits in the region table entry */
324#define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
325#define _REGION_ENTRY_INV 0x20 /* invalid region table entry */
326#define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
327#define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
328#define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
329#define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
330#define _REGION_ENTRY_LENGTH 0x03 /* region third length */
331
332#define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
333#define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INV)
334#define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
335#define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INV)
336#define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
337#define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INV)
338
1da177e4 339/* Bits in the segment table entry */
3610cce8
MS
340#define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
341#define _SEGMENT_ENTRY_RO 0x200 /* page protection bit */
342#define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
1da177e4 343
3610cce8
MS
344#define _SEGMENT_ENTRY (0)
345#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
346
53492b1d
GS
347#define _SEGMENT_ENTRY_LARGE 0x400 /* STE-format control, large page */
348#define _SEGMENT_ENTRY_CO 0x100 /* change-recording override */
349
3610cce8 350#endif /* __s390x__ */
1da177e4
LT
351
352/*
3610cce8
MS
353 * A user page table pointer has the space-switch-event bit, the
354 * private-space-control bit and the storage-alteration-event-control
355 * bit set. A kernel page table pointer doesn't need them.
1da177e4 356 */
3610cce8
MS
357#define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
358 _ASCE_ALT_EVENT)
1da177e4 359
3610cce8 360/* Bits int the storage key */
1da177e4
LT
361#define _PAGE_CHANGED 0x02 /* HW changed bit */
362#define _PAGE_REFERENCED 0x04 /* HW referenced bit */
363
1da177e4 364/*
9282ed92 365 * Page protection definitions.
1da177e4 366 */
9282ed92
GS
367#define PAGE_NONE __pgprot(_PAGE_TYPE_NONE)
368#define PAGE_RO __pgprot(_PAGE_TYPE_RO)
369#define PAGE_RW __pgprot(_PAGE_TYPE_RW)
c1821c2e
GS
370#define PAGE_EX_RO __pgprot(_PAGE_TYPE_EX_RO)
371#define PAGE_EX_RW __pgprot(_PAGE_TYPE_EX_RW)
9282ed92
GS
372
373#define PAGE_KERNEL PAGE_RW
374#define PAGE_COPY PAGE_RO
1da177e4
LT
375
376/*
c1821c2e
GS
377 * Dependent on the EXEC_PROTECT option s390 can do execute protection.
378 * Write permission always implies read permission. In theory with a
379 * primary/secondary page table execute only can be implemented but
380 * it would cost an additional bit in the pte to distinguish all the
381 * different pte types. To avoid that execute permission currently
382 * implies read permission as well.
1da177e4
LT
383 */
384 /*xwr*/
9282ed92
GS
385#define __P000 PAGE_NONE
386#define __P001 PAGE_RO
387#define __P010 PAGE_RO
388#define __P011 PAGE_RO
c1821c2e
GS
389#define __P100 PAGE_EX_RO
390#define __P101 PAGE_EX_RO
391#define __P110 PAGE_EX_RO
392#define __P111 PAGE_EX_RO
9282ed92
GS
393
394#define __S000 PAGE_NONE
395#define __S001 PAGE_RO
396#define __S010 PAGE_RW
397#define __S011 PAGE_RW
c1821c2e
GS
398#define __S100 PAGE_EX_RO
399#define __S101 PAGE_EX_RO
400#define __S110 PAGE_EX_RW
401#define __S111 PAGE_EX_RW
402
403#ifndef __s390x__
3610cce8 404# define PxD_SHADOW_SHIFT 1
c1821c2e 405#else /* __s390x__ */
3610cce8 406# define PxD_SHADOW_SHIFT 2
c1821c2e
GS
407#endif /* __s390x__ */
408
3610cce8 409static inline void *get_shadow_table(void *table)
c1821c2e 410{
3610cce8
MS
411 unsigned long addr, offset;
412 struct page *page;
413
414 addr = (unsigned long) table;
415 offset = addr & ((PAGE_SIZE << PxD_SHADOW_SHIFT) - 1);
416 page = virt_to_page((void *)(addr ^ offset));
417 return (void *)(addr_t)(page->index ? (page->index | offset) : 0UL);
c1821c2e 418}
1da177e4
LT
419
420/*
421 * Certain architectures need to do special things when PTEs
422 * within a page table are directly modified. Thus, the following
423 * hook is made available.
424 */
ba8a9229 425static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
146e4b3c 426 pte_t *ptep, pte_t entry)
1da177e4 427{
146e4b3c
MS
428 *ptep = entry;
429 if (mm->context.noexec) {
430 if (!(pte_val(entry) & _PAGE_INVALID) &&
431 (pte_val(entry) & _PAGE_SWX))
432 pte_val(entry) |= _PAGE_RO;
c1821c2e 433 else
146e4b3c
MS
434 pte_val(entry) = _PAGE_TYPE_EMPTY;
435 ptep[PTRS_PER_PTE] = entry;
c1821c2e 436 }
1da177e4 437}
1da177e4
LT
438
439/*
440 * pgd/pmd/pte query functions
441 */
442#ifndef __s390x__
443
4448aaf0
AB
444static inline int pgd_present(pgd_t pgd) { return 1; }
445static inline int pgd_none(pgd_t pgd) { return 0; }
446static inline int pgd_bad(pgd_t pgd) { return 0; }
1da177e4 447
190a1d72
MS
448static inline int pud_present(pud_t pud) { return 1; }
449static inline int pud_none(pud_t pud) { return 0; }
450static inline int pud_bad(pud_t pud) { return 0; }
451
1da177e4
LT
452#else /* __s390x__ */
453
5a216a20
MS
454static inline int pgd_present(pgd_t pgd)
455{
6252d702
MS
456 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
457 return 1;
5a216a20
MS
458 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
459}
460
461static inline int pgd_none(pgd_t pgd)
462{
6252d702
MS
463 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
464 return 0;
5a216a20
MS
465 return (pgd_val(pgd) & _REGION_ENTRY_INV) != 0UL;
466}
467
468static inline int pgd_bad(pgd_t pgd)
469{
6252d702
MS
470 /*
471 * With dynamic page table levels the pgd can be a region table
472 * entry or a segment table entry. Check for the bit that are
473 * invalid for either table entry.
474 */
5a216a20 475 unsigned long mask =
6252d702 476 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
5a216a20
MS
477 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
478 return (pgd_val(pgd) & mask) != 0;
479}
190a1d72
MS
480
481static inline int pud_present(pud_t pud)
1da177e4 482{
6252d702
MS
483 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
484 return 1;
0d017923 485 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
1da177e4
LT
486}
487
190a1d72 488static inline int pud_none(pud_t pud)
1da177e4 489{
6252d702
MS
490 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
491 return 0;
0d017923 492 return (pud_val(pud) & _REGION_ENTRY_INV) != 0UL;
1da177e4
LT
493}
494
190a1d72 495static inline int pud_bad(pud_t pud)
1da177e4 496{
6252d702
MS
497 /*
498 * With dynamic page table levels the pud can be a region table
499 * entry or a segment table entry. Check for the bit that are
500 * invalid for either table entry.
501 */
5a216a20 502 unsigned long mask =
6252d702 503 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
5a216a20
MS
504 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
505 return (pud_val(pud) & mask) != 0;
1da177e4
LT
506}
507
3610cce8
MS
508#endif /* __s390x__ */
509
4448aaf0 510static inline int pmd_present(pmd_t pmd)
1da177e4 511{
0d017923 512 return (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) != 0UL;
1da177e4
LT
513}
514
4448aaf0 515static inline int pmd_none(pmd_t pmd)
1da177e4 516{
0d017923 517 return (pmd_val(pmd) & _SEGMENT_ENTRY_INV) != 0UL;
1da177e4
LT
518}
519
4448aaf0 520static inline int pmd_bad(pmd_t pmd)
1da177e4 521{
3610cce8
MS
522 unsigned long mask = ~_SEGMENT_ENTRY_ORIGIN & ~_SEGMENT_ENTRY_INV;
523 return (pmd_val(pmd) & mask) != _SEGMENT_ENTRY;
1da177e4
LT
524}
525
4448aaf0 526static inline int pte_none(pte_t pte)
1da177e4 527{
83377484 528 return (pte_val(pte) & _PAGE_INVALID) && !(pte_val(pte) & _PAGE_SWT);
1da177e4
LT
529}
530
4448aaf0 531static inline int pte_present(pte_t pte)
1da177e4 532{
83377484
MS
533 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT | _PAGE_SWX;
534 return (pte_val(pte) & mask) == _PAGE_TYPE_NONE ||
535 (!(pte_val(pte) & _PAGE_INVALID) &&
536 !(pte_val(pte) & _PAGE_SWT));
1da177e4
LT
537}
538
4448aaf0 539static inline int pte_file(pte_t pte)
1da177e4 540{
83377484
MS
541 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT;
542 return (pte_val(pte) & mask) == _PAGE_TYPE_FILE;
1da177e4
LT
543}
544
7e675137
NP
545static inline int pte_special(pte_t pte)
546{
a08cb629 547 return (pte_val(pte) & _PAGE_SPECIAL);
7e675137
NP
548}
549
ba8a9229
MS
550#define __HAVE_ARCH_PTE_SAME
551#define pte_same(a,b) (pte_val(a) == pte_val(b))
1da177e4 552
5b7baf05
CB
553static inline void rcp_lock(pte_t *ptep)
554{
555#ifdef CONFIG_PGSTE
556 unsigned long *pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
557 preempt_disable();
558 while (test_and_set_bit(RCP_PCL_BIT, pgste))
559 ;
560#endif
561}
562
563static inline void rcp_unlock(pte_t *ptep)
564{
565#ifdef CONFIG_PGSTE
566 unsigned long *pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
567 clear_bit(RCP_PCL_BIT, pgste);
568 preempt_enable();
569#endif
570}
571
572/* forward declaration for SetPageUptodate in page-flags.h*/
573static inline void page_clear_dirty(struct page *page);
574#include <linux/page-flags.h>
575
576static inline void ptep_rcp_copy(pte_t *ptep)
577{
578#ifdef CONFIG_PGSTE
579 struct page *page = virt_to_page(pte_val(*ptep));
580 unsigned int skey;
581 unsigned long *pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
582
583 skey = page_get_storage_key(page_to_phys(page));
15e86b0c 584 if (skey & _PAGE_CHANGED) {
c71799c1 585 set_bit_simple(RCP_GC_BIT, pgste);
15e86b0c
FF
586 set_bit_simple(KVM_UD_BIT, pgste);
587 }
5b7baf05 588 if (skey & _PAGE_REFERENCED)
c71799c1 589 set_bit_simple(RCP_GR_BIT, pgste);
15e86b0c 590 if (test_and_clear_bit_simple(RCP_HC_BIT, pgste)) {
5b7baf05 591 SetPageDirty(page);
15e86b0c
FF
592 set_bit_simple(KVM_UD_BIT, pgste);
593 }
c71799c1 594 if (test_and_clear_bit_simple(RCP_HR_BIT, pgste))
5b7baf05
CB
595 SetPageReferenced(page);
596#endif
597}
598
1da177e4
LT
599/*
600 * query functions pte_write/pte_dirty/pte_young only work if
601 * pte_present() is true. Undefined behaviour if not..
602 */
4448aaf0 603static inline int pte_write(pte_t pte)
1da177e4
LT
604{
605 return (pte_val(pte) & _PAGE_RO) == 0;
606}
607
4448aaf0 608static inline int pte_dirty(pte_t pte)
1da177e4
LT
609{
610 /* A pte is neither clean nor dirty on s/390. The dirty bit
611 * is in the storage key. See page_test_and_clear_dirty for
612 * details.
613 */
614 return 0;
615}
616
4448aaf0 617static inline int pte_young(pte_t pte)
1da177e4
LT
618{
619 /* A pte is neither young nor old on s/390. The young bit
620 * is in the storage key. See page_test_and_clear_young for
621 * details.
622 */
623 return 0;
624}
625
1da177e4
LT
626/*
627 * pgd/pmd/pte modification functions
628 */
629
630#ifndef __s390x__
631
190a1d72
MS
632#define pgd_clear(pgd) do { } while (0)
633#define pud_clear(pud) do { } while (0)
1da177e4 634
1da177e4
LT
635#else /* __s390x__ */
636
5a216a20
MS
637static inline void pgd_clear_kernel(pgd_t * pgd)
638{
6252d702
MS
639 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
640 pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
5a216a20
MS
641}
642
643static inline void pgd_clear(pgd_t * pgd)
644{
645 pgd_t *shadow = get_shadow_table(pgd);
646
647 pgd_clear_kernel(pgd);
648 if (shadow)
649 pgd_clear_kernel(shadow);
650}
190a1d72
MS
651
652static inline void pud_clear_kernel(pud_t *pud)
1da177e4 653{
6252d702
MS
654 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
655 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
1da177e4
LT
656}
657
6252d702 658static inline void pud_clear(pud_t *pud)
c1821c2e 659{
190a1d72 660 pud_t *shadow = get_shadow_table(pud);
c1821c2e 661
190a1d72
MS
662 pud_clear_kernel(pud);
663 if (shadow)
664 pud_clear_kernel(shadow);
c1821c2e
GS
665}
666
146e4b3c
MS
667#endif /* __s390x__ */
668
c1821c2e 669static inline void pmd_clear_kernel(pmd_t * pmdp)
1da177e4 670{
3610cce8 671 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
1da177e4
LT
672}
673
146e4b3c 674static inline void pmd_clear(pmd_t *pmd)
c1821c2e 675{
146e4b3c 676 pmd_t *shadow = get_shadow_table(pmd);
c1821c2e 677
146e4b3c
MS
678 pmd_clear_kernel(pmd);
679 if (shadow)
680 pmd_clear_kernel(shadow);
c1821c2e
GS
681}
682
4448aaf0 683static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
1da177e4 684{
9282ed92 685 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
146e4b3c
MS
686 if (mm->context.noexec)
687 pte_val(ptep[PTRS_PER_PTE]) = _PAGE_TYPE_EMPTY;
1da177e4
LT
688}
689
690/*
691 * The following pte modification functions only work if
692 * pte_present() is true. Undefined behaviour if not..
693 */
4448aaf0 694static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
1da177e4 695{
138c9021 696 pte_val(pte) &= _PAGE_CHG_MASK;
1da177e4
LT
697 pte_val(pte) |= pgprot_val(newprot);
698 return pte;
699}
700
4448aaf0 701static inline pte_t pte_wrprotect(pte_t pte)
1da177e4 702{
9282ed92 703 /* Do not clobber _PAGE_TYPE_NONE pages! */
1da177e4
LT
704 if (!(pte_val(pte) & _PAGE_INVALID))
705 pte_val(pte) |= _PAGE_RO;
706 return pte;
707}
708
4448aaf0 709static inline pte_t pte_mkwrite(pte_t pte)
1da177e4
LT
710{
711 pte_val(pte) &= ~_PAGE_RO;
712 return pte;
713}
714
4448aaf0 715static inline pte_t pte_mkclean(pte_t pte)
1da177e4
LT
716{
717 /* The only user of pte_mkclean is the fork() code.
718 We must *not* clear the *physical* page dirty bit
719 just because fork() wants to clear the dirty bit in
720 *one* of the page's mappings. So we just do nothing. */
721 return pte;
722}
723
4448aaf0 724static inline pte_t pte_mkdirty(pte_t pte)
1da177e4
LT
725{
726 /* We do not explicitly set the dirty bit because the
727 * sske instruction is slow. It is faster to let the
728 * next instruction set the dirty bit.
729 */
730 return pte;
731}
732
4448aaf0 733static inline pte_t pte_mkold(pte_t pte)
1da177e4
LT
734{
735 /* S/390 doesn't keep its dirty/referenced bit in the pte.
736 * There is no point in clearing the real referenced bit.
737 */
738 return pte;
739}
740
4448aaf0 741static inline pte_t pte_mkyoung(pte_t pte)
1da177e4
LT
742{
743 /* S/390 doesn't keep its dirty/referenced bit in the pte.
744 * There is no point in setting the real referenced bit.
745 */
746 return pte;
747}
748
7e675137
NP
749static inline pte_t pte_mkspecial(pte_t pte)
750{
a08cb629 751 pte_val(pte) |= _PAGE_SPECIAL;
7e675137
NP
752 return pte;
753}
754
15e86b0c
FF
755#ifdef CONFIG_PGSTE
756/*
757 * Get (and clear) the user dirty bit for a PTE.
758 */
759static inline int kvm_s390_test_and_clear_page_dirty(struct mm_struct *mm,
760 pte_t *ptep)
761{
762 int dirty;
763 unsigned long *pgste;
764 struct page *page;
765 unsigned int skey;
766
250cf776 767 if (!mm->context.has_pgste)
15e86b0c
FF
768 return -EINVAL;
769 rcp_lock(ptep);
770 pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
771 page = virt_to_page(pte_val(*ptep));
772 skey = page_get_storage_key(page_to_phys(page));
773 if (skey & _PAGE_CHANGED) {
774 set_bit_simple(RCP_GC_BIT, pgste);
775 set_bit_simple(KVM_UD_BIT, pgste);
776 }
777 if (test_and_clear_bit_simple(RCP_HC_BIT, pgste)) {
778 SetPageDirty(page);
779 set_bit_simple(KVM_UD_BIT, pgste);
780 }
781 dirty = test_and_clear_bit_simple(KVM_UD_BIT, pgste);
782 if (skey & _PAGE_CHANGED)
783 page_clear_dirty(page);
784 rcp_unlock(ptep);
785 return dirty;
786}
787#endif
788
ba8a9229
MS
789#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
790static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
791 unsigned long addr, pte_t *ptep)
1da177e4 792{
5b7baf05
CB
793#ifdef CONFIG_PGSTE
794 unsigned long physpage;
795 int young;
796 unsigned long *pgste;
797
250cf776 798 if (!vma->vm_mm->context.has_pgste)
5b7baf05
CB
799 return 0;
800 physpage = pte_val(*ptep) & PAGE_MASK;
801 pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
802
803 young = ((page_get_storage_key(physpage) & _PAGE_REFERENCED) != 0);
804 rcp_lock(ptep);
805 if (young)
c71799c1
HC
806 set_bit_simple(RCP_GR_BIT, pgste);
807 young |= test_and_clear_bit_simple(RCP_HR_BIT, pgste);
5b7baf05
CB
808 rcp_unlock(ptep);
809 return young;
810#endif
1da177e4
LT
811 return 0;
812}
813
ba8a9229
MS
814#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
815static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
816 unsigned long address, pte_t *ptep)
1da177e4 817{
5b7baf05
CB
818 /* No need to flush TLB
819 * On s390 reference bits are in storage key and never in TLB
820 * With virtualization we handle the reference bit, without we
821 * we can simply return */
822#ifdef CONFIG_PGSTE
823 return ptep_test_and_clear_young(vma, address, ptep);
824#endif
ba8a9229 825 return 0;
1da177e4
LT
826}
827
9282ed92 828static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
1da177e4 829{
9282ed92 830 if (!(pte_val(*ptep) & _PAGE_INVALID)) {
1da177e4 831#ifndef __s390x__
146e4b3c 832 /* pto must point to the start of the segment table */
1da177e4 833 pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00);
9282ed92
GS
834#else
835 /* ipte in zarch mode can do the math */
836 pte_t *pto = ptep;
837#endif
94c12cc7
MS
838 asm volatile(
839 " ipte %2,%3"
840 : "=m" (*ptep) : "m" (*ptep),
841 "a" (pto), "a" (address));
1da177e4 842 }
9282ed92
GS
843}
844
146e4b3c
MS
845static inline void ptep_invalidate(struct mm_struct *mm,
846 unsigned long address, pte_t *ptep)
9282ed92 847{
250cf776 848 if (mm->context.has_pgste) {
5b7baf05
CB
849 rcp_lock(ptep);
850 __ptep_ipte(address, ptep);
851 ptep_rcp_copy(ptep);
852 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
853 rcp_unlock(ptep);
854 return;
855 }
9282ed92 856 __ptep_ipte(address, ptep);
5b7baf05
CB
857 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
858 if (mm->context.noexec) {
146e4b3c 859 __ptep_ipte(address, ptep + PTRS_PER_PTE);
5b7baf05
CB
860 pte_val(*(ptep + PTRS_PER_PTE)) = _PAGE_TYPE_EMPTY;
861 }
f0e47c22
MS
862}
863
ba8a9229
MS
864/*
865 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
866 * both clear the TLB for the unmapped pte. The reason is that
867 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
868 * to modify an active pte. The sequence is
869 * 1) ptep_get_and_clear
870 * 2) set_pte_at
871 * 3) flush_tlb_range
872 * On s390 the tlb needs to get flushed with the modification of the pte
873 * if the pte is active. The only way how this can be implemented is to
874 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
875 * is a nop.
876 */
877#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
878#define ptep_get_and_clear(__mm, __address, __ptep) \
879({ \
880 pte_t __pte = *(__ptep); \
881 if (atomic_read(&(__mm)->mm_users) > 1 || \
882 (__mm) != current->active_mm) \
146e4b3c 883 ptep_invalidate(__mm, __address, __ptep); \
ba8a9229
MS
884 else \
885 pte_clear((__mm), (__address), (__ptep)); \
886 __pte; \
887})
888
889#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
f0e47c22
MS
890static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
891 unsigned long address, pte_t *ptep)
892{
893 pte_t pte = *ptep;
146e4b3c 894 ptep_invalidate(vma->vm_mm, address, ptep);
1da177e4
LT
895 return pte;
896}
897
ba8a9229
MS
898/*
899 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
900 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
901 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
902 * cannot be accessed while the batched unmap is running. In this case
903 * full==1 and a simple pte_clear is enough. See tlb.h.
904 */
905#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
906static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
907 unsigned long addr,
908 pte_t *ptep, int full)
1da177e4 909{
ba8a9229
MS
910 pte_t pte = *ptep;
911
912 if (full)
913 pte_clear(mm, addr, ptep);
914 else
146e4b3c 915 ptep_invalidate(mm, addr, ptep);
ba8a9229 916 return pte;
1da177e4
LT
917}
918
ba8a9229
MS
919#define __HAVE_ARCH_PTEP_SET_WRPROTECT
920#define ptep_set_wrprotect(__mm, __addr, __ptep) \
921({ \
922 pte_t __pte = *(__ptep); \
923 if (pte_write(__pte)) { \
924 if (atomic_read(&(__mm)->mm_users) > 1 || \
925 (__mm) != current->active_mm) \
146e4b3c 926 ptep_invalidate(__mm, __addr, __ptep); \
ba8a9229
MS
927 set_pte_at(__mm, __addr, __ptep, pte_wrprotect(__pte)); \
928 } \
929})
930
931#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
f0e47c22
MS
932#define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __dirty) \
933({ \
934 int __changed = !pte_same(*(__ptep), __entry); \
935 if (__changed) { \
146e4b3c 936 ptep_invalidate((__vma)->vm_mm, __addr, __ptep); \
f0e47c22
MS
937 set_pte_at((__vma)->vm_mm, __addr, __ptep, __entry); \
938 } \
939 __changed; \
8dab5241 940})
1da177e4
LT
941
942/*
943 * Test and clear dirty bit in storage key.
944 * We can't clear the changed bit atomically. This is a potential
945 * race against modification of the referenced bit. This function
946 * should therefore only be called if it is not mapped in any
947 * address space.
948 */
ba8a9229 949#define __HAVE_ARCH_PAGE_TEST_DIRTY
6c210482 950static inline int page_test_dirty(struct page *page)
2dcea57a 951{
6c210482
MS
952 return (page_get_storage_key(page_to_phys(page)) & _PAGE_CHANGED) != 0;
953}
2dcea57a 954
ba8a9229 955#define __HAVE_ARCH_PAGE_CLEAR_DIRTY
6c210482
MS
956static inline void page_clear_dirty(struct page *page)
957{
958 page_set_storage_key(page_to_phys(page), PAGE_DEFAULT_KEY);
2dcea57a 959}
1da177e4
LT
960
961/*
962 * Test and clear referenced bit in storage key.
963 */
ba8a9229 964#define __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
2dcea57a
HC
965static inline int page_test_and_clear_young(struct page *page)
966{
0b2b6e1d 967 unsigned long physpage = page_to_phys(page);
2dcea57a
HC
968 int ccode;
969
0b2b6e1d
HC
970 asm volatile(
971 " rrbe 0,%1\n"
972 " ipm %0\n"
973 " srl %0,28\n"
2dcea57a
HC
974 : "=d" (ccode) : "a" (physpage) : "cc" );
975 return ccode & 2;
976}
1da177e4
LT
977
978/*
979 * Conversion functions: convert a page and protection to a page entry,
980 * and a page entry and page directory to the page they refer to.
981 */
982static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
983{
984 pte_t __pte;
985 pte_val(__pte) = physpage + pgprot_val(pgprot);
986 return __pte;
987}
988
2dcea57a
HC
989static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
990{
0b2b6e1d 991 unsigned long physpage = page_to_phys(page);
1da177e4 992
2dcea57a
HC
993 return mk_pte_phys(physpage, pgprot);
994}
995
190a1d72
MS
996#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
997#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
998#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
999#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1da177e4 1000
190a1d72
MS
1001#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1002#define pgd_offset_k(address) pgd_offset(&init_mm, address)
1da177e4 1003
190a1d72 1004#ifndef __s390x__
1da177e4 1005
190a1d72
MS
1006#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1007#define pud_deref(pmd) ({ BUG(); 0UL; })
1008#define pgd_deref(pmd) ({ BUG(); 0UL; })
46a82b2d 1009
190a1d72
MS
1010#define pud_offset(pgd, address) ((pud_t *) pgd)
1011#define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address))
1da177e4 1012
190a1d72 1013#else /* __s390x__ */
1da177e4 1014
190a1d72
MS
1015#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1016#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
5a216a20 1017#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1da177e4 1018
5a216a20
MS
1019static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
1020{
6252d702
MS
1021 pud_t *pud = (pud_t *) pgd;
1022 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1023 pud = (pud_t *) pgd_deref(*pgd);
5a216a20
MS
1024 return pud + pud_index(address);
1025}
1da177e4 1026
190a1d72 1027static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1da177e4 1028{
6252d702
MS
1029 pmd_t *pmd = (pmd_t *) pud;
1030 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1031 pmd = (pmd_t *) pud_deref(*pud);
190a1d72 1032 return pmd + pmd_index(address);
1da177e4
LT
1033}
1034
190a1d72 1035#endif /* __s390x__ */
1da177e4 1036
190a1d72
MS
1037#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1038#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1039#define pte_page(x) pfn_to_page(pte_pfn(x))
1da177e4 1040
190a1d72 1041#define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
1da177e4 1042
190a1d72
MS
1043/* Find an entry in the lowest level page table.. */
1044#define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1045#define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1da177e4
LT
1046#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1047#define pte_offset_map_nested(pmd, address) pte_offset_kernel(pmd, address)
1048#define pte_unmap(pte) do { } while (0)
1049#define pte_unmap_nested(pte) do { } while (0)
1050
1051/*
1052 * 31 bit swap entry format:
1053 * A page-table entry has some bits we have to treat in a special way.
1054 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
1055 * exception will occur instead of a page translation exception. The
1056 * specifiation exception has the bad habit not to store necessary
1057 * information in the lowcore.
1058 * Bit 21 and bit 22 are the page invalid bit and the page protection
1059 * bit. We set both to indicate a swapped page.
1060 * Bit 30 and 31 are used to distinguish the different page types. For
1061 * a swapped page these bits need to be zero.
1062 * This leaves the bits 1-19 and bits 24-29 to store type and offset.
1063 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
1064 * plus 24 for the offset.
1065 * 0| offset |0110|o|type |00|
1066 * 0 0000000001111111111 2222 2 22222 33
1067 * 0 1234567890123456789 0123 4 56789 01
1068 *
1069 * 64 bit swap entry format:
1070 * A page-table entry has some bits we have to treat in a special way.
1071 * Bits 52 and bit 55 have to be zero, otherwise an specification
1072 * exception will occur instead of a page translation exception. The
1073 * specifiation exception has the bad habit not to store necessary
1074 * information in the lowcore.
1075 * Bit 53 and bit 54 are the page invalid bit and the page protection
1076 * bit. We set both to indicate a swapped page.
1077 * Bit 62 and 63 are used to distinguish the different page types. For
1078 * a swapped page these bits need to be zero.
1079 * This leaves the bits 0-51 and bits 56-61 to store type and offset.
1080 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
1081 * plus 56 for the offset.
1082 * | offset |0110|o|type |00|
1083 * 0000000000111111111122222222223333333333444444444455 5555 5 55566 66
1084 * 0123456789012345678901234567890123456789012345678901 2345 6 78901 23
1085 */
1086#ifndef __s390x__
1087#define __SWP_OFFSET_MASK (~0UL >> 12)
1088#else
1089#define __SWP_OFFSET_MASK (~0UL >> 11)
1090#endif
4448aaf0 1091static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1da177e4
LT
1092{
1093 pte_t pte;
1094 offset &= __SWP_OFFSET_MASK;
9282ed92 1095 pte_val(pte) = _PAGE_TYPE_SWAP | ((type & 0x1f) << 2) |
1da177e4
LT
1096 ((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
1097 return pte;
1098}
1099
1100#define __swp_type(entry) (((entry).val >> 2) & 0x1f)
1101#define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1))
1102#define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
1103
1104#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1105#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1106
1107#ifndef __s390x__
1108# define PTE_FILE_MAX_BITS 26
1109#else /* __s390x__ */
1110# define PTE_FILE_MAX_BITS 59
1111#endif /* __s390x__ */
1112
1113#define pte_to_pgoff(__pte) \
1114 ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
1115
1116#define pgoff_to_pte(__off) \
1117 ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
9282ed92 1118 | _PAGE_TYPE_FILE })
1da177e4
LT
1119
1120#endif /* !__ASSEMBLY__ */
1121
1122#define kern_addr_valid(addr) (1)
1123
17f34580
HC
1124extern int vmem_add_mapping(unsigned long start, unsigned long size);
1125extern int vmem_remove_mapping(unsigned long start, unsigned long size);
402b0862 1126extern int s390_enable_sie(void);
f4eb07c1 1127
1da177e4
LT
1128/*
1129 * No page table caches to initialise
1130 */
1131#define pgtable_cache_init() do { } while (0)
1132
1da177e4
LT
1133#include <asm-generic/pgtable.h>
1134
1135#endif /* _S390_PAGE_H */
This page took 0.471914 seconds and 5 git commands to generate.