s390/keyboard: use memdup_user_nul()
[deliverable/linux.git] / arch / s390 / include / asm / pgtable.h
CommitLineData
1da177e4 1/*
1da177e4 2 * S390 version
a53c8fab 3 * Copyright IBM Corp. 1999, 2000
1da177e4
LT
4 * Author(s): Hartmut Penner (hp@de.ibm.com)
5 * Ulrich Weigand (weigand@de.ibm.com)
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
7 *
8 * Derived from "include/asm-i386/pgtable.h"
9 */
10
11#ifndef _ASM_S390_PGTABLE_H
12#define _ASM_S390_PGTABLE_H
13
1da177e4 14/*
a1c843b8
MS
15 * The Linux memory management assumes a three-level page table setup.
16 * For s390 64 bit we use up to four of the five levels the hardware
17 * provides (region first tables are not used).
1da177e4
LT
18 *
19 * The "pgd_xxx()" functions are trivial for a folded two-level
20 * setup: the pgd is never bad, and a pmd always exists (as it's folded
21 * into the pgd entry)
22 *
23 * This file contains the functions and defines necessary to modify and use
24 * the S390 page table tree.
25 */
26#ifndef __ASSEMBLY__
9789db08 27#include <linux/sched.h>
2dcea57a 28#include <linux/mm_types.h>
abf09bed 29#include <linux/page-flags.h>
527e30b4 30#include <linux/radix-tree.h>
1da177e4 31#include <asm/bug.h>
b2fa47e6 32#include <asm/page.h>
1da177e4 33
1da177e4
LT
34extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
35extern void paging_init(void);
2b67fc46 36extern void vmem_map_init(void);
1da177e4
LT
37
38/*
39 * The S390 doesn't have any external MMU info: the kernel page
40 * tables contain all the necessary information.
41 */
4b3073e1 42#define update_mmu_cache(vma, address, ptep) do { } while (0)
b113da65 43#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
1da177e4
LT
44
45/*
238ec4ef 46 * ZERO_PAGE is a global shared page that is always zero; used
1da177e4
LT
47 * for zero-mapped memory areas etc..
48 */
238ec4ef
MS
49
50extern unsigned long empty_zero_page;
51extern unsigned long zero_page_mask;
52
53#define ZERO_PAGE(vaddr) \
54 (virt_to_page((void *)(empty_zero_page + \
55 (((unsigned long)(vaddr)) &zero_page_mask))))
816422ad 56#define __HAVE_COLOR_ZERO_PAGE
238ec4ef 57
4f2e2903 58/* TODO: s390 cannot support io_remap_pfn_range... */
1da177e4
LT
59#endif /* !__ASSEMBLY__ */
60
61/*
62 * PMD_SHIFT determines the size of the area a second-level page
63 * table can map
64 * PGDIR_SHIFT determines what a third-level page table entry can map
65 */
5a79859a
HC
66#define PMD_SHIFT 20
67#define PUD_SHIFT 31
68#define PGDIR_SHIFT 42
1da177e4
LT
69
70#define PMD_SIZE (1UL << PMD_SHIFT)
71#define PMD_MASK (~(PMD_SIZE-1))
190a1d72
MS
72#define PUD_SIZE (1UL << PUD_SHIFT)
73#define PUD_MASK (~(PUD_SIZE-1))
5a216a20
MS
74#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
75#define PGDIR_MASK (~(PGDIR_SIZE-1))
1da177e4
LT
76
77/*
78 * entries per page directory level: the S390 is two-level, so
79 * we don't really have any PMD directory physically.
80 * for S390 segment-table entries are combined to one PGD
81 * that leads to 1024 pte per pgd
82 */
146e4b3c 83#define PTRS_PER_PTE 256
146e4b3c 84#define PTRS_PER_PMD 2048
5a216a20 85#define PTRS_PER_PUD 2048
146e4b3c 86#define PTRS_PER_PGD 2048
1da177e4 87
d016bf7e 88#define FIRST_USER_ADDRESS 0UL
d455a369 89
1da177e4
LT
90#define pte_ERROR(e) \
91 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
92#define pmd_ERROR(e) \
93 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
190a1d72
MS
94#define pud_ERROR(e) \
95 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
1da177e4
LT
96#define pgd_ERROR(e) \
97 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
98
99#ifndef __ASSEMBLY__
100/*
a1c843b8
MS
101 * The vmalloc and module area will always be on the topmost area of the
102 * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
c972cc60
HC
103 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
104 * modules will reside. That makes sure that inter module branches always
105 * happen without trampolines and in addition the placement within a 2GB frame
106 * is branch prediction unit friendly.
8b62bc96 107 */
239a6425 108extern unsigned long VMALLOC_START;
14045ebf
MS
109extern unsigned long VMALLOC_END;
110extern struct page *vmemmap;
239a6425 111
14045ebf 112#define VMEM_MAX_PHYS ((unsigned long) vmemmap)
5fd9c6e2 113
c972cc60
HC
114extern unsigned long MODULES_VADDR;
115extern unsigned long MODULES_END;
116#define MODULES_VADDR MODULES_VADDR
117#define MODULES_END MODULES_END
118#define MODULES_LEN (1UL << 31)
c972cc60 119
c933146a
HC
120static inline int is_module_addr(void *addr)
121{
c933146a
HC
122 BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
123 if (addr < (void *)MODULES_VADDR)
124 return 0;
125 if (addr > (void *)MODULES_END)
126 return 0;
c933146a
HC
127 return 1;
128}
129
1da177e4 130/*
1da177e4 131 * A 64 bit pagetable entry of S390 has following format:
6a985c61 132 * | PFRA |0IPC| OS |
1da177e4
LT
133 * 0000000000111111111122222222223333333333444444444455555555556666
134 * 0123456789012345678901234567890123456789012345678901234567890123
135 *
136 * I Page-Invalid Bit: Page is not available for address-translation
137 * P Page-Protection Bit: Store access not possible for page
6a985c61 138 * C Change-bit override: HW is not required to set change bit
1da177e4
LT
139 *
140 * A 64 bit segmenttable entry of S390 has following format:
141 * | P-table origin | TT
142 * 0000000000111111111122222222223333333333444444444455555555556666
143 * 0123456789012345678901234567890123456789012345678901234567890123
144 *
145 * I Segment-Invalid Bit: Segment is not available for address-translation
146 * C Common-Segment Bit: Segment is not private (PoP 3-30)
147 * P Page-Protection Bit: Store access not possible for page
148 * TT Type 00
149 *
150 * A 64 bit region table entry of S390 has following format:
151 * | S-table origin | TF TTTL
152 * 0000000000111111111122222222223333333333444444444455555555556666
153 * 0123456789012345678901234567890123456789012345678901234567890123
154 *
155 * I Segment-Invalid Bit: Segment is not available for address-translation
156 * TT Type 01
157 * TF
190a1d72 158 * TL Table length
1da177e4
LT
159 *
160 * The 64 bit regiontable origin of S390 has following format:
161 * | region table origon | DTTL
162 * 0000000000111111111122222222223333333333444444444455555555556666
163 * 0123456789012345678901234567890123456789012345678901234567890123
164 *
165 * X Space-Switch event:
166 * G Segment-Invalid Bit:
167 * P Private-Space Bit:
168 * S Storage-Alteration:
169 * R Real space
170 * TL Table-Length:
171 *
172 * A storage key has the following format:
173 * | ACC |F|R|C|0|
174 * 0 3 4 5 6 7
175 * ACC: access key
176 * F : fetch protection bit
177 * R : referenced bit
178 * C : changed bit
179 */
180
181/* Hardware bits in the page table entry */
e5098611 182#define _PAGE_PROTECT 0x200 /* HW read-only bit */
83377484 183#define _PAGE_INVALID 0x400 /* HW invalid bit */
e5098611 184#define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
3610cce8
MS
185
186/* Software bits in the page table entry */
e5098611 187#define _PAGE_PRESENT 0x001 /* SW pte present bit */
e5098611
MS
188#define _PAGE_YOUNG 0x004 /* SW pte young bit */
189#define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
0944fe3f
MS
190#define _PAGE_READ 0x010 /* SW pte read bit */
191#define _PAGE_WRITE 0x020 /* SW pte write bit */
192#define _PAGE_SPECIAL 0x040 /* SW associated with special page */
b31288fa 193#define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
a08cb629 194#define __HAVE_ARCH_PTE_SPECIAL
1da177e4 195
5614dd92
MS
196#ifdef CONFIG_MEM_SOFT_DIRTY
197#define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
198#else
199#define _PAGE_SOFT_DIRTY 0x000
200#endif
201
138c9021 202/* Set of bits not changed in pte_modify */
6a5c1482 203#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
5614dd92 204 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
53492b1d 205
83377484 206/*
6e76d4b2
KS
207 * handle_pte_fault uses pte_present and pte_none to find out the pte type
208 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
209 * distinguish present from not-present ptes. It is changed only with the page
210 * table lock held.
83377484 211 *
e5098611 212 * The following table gives the different possible bit combinations for
a1c843b8
MS
213 * the pte hardware and software bits in the last 12 bits of a pte
214 * (. unassigned bit, x don't care, t swap type):
83377484 215 *
0944fe3f
MS
216 * 842100000000
217 * 000084210000
218 * 000000008421
a1c843b8
MS
219 * .IR.uswrdy.p
220 * empty .10.00000000
221 * swap .11..ttttt.0
222 * prot-none, clean, old .11.xx0000.1
223 * prot-none, clean, young .11.xx0001.1
224 * prot-none, dirty, old .10.xx0010.1
225 * prot-none, dirty, young .10.xx0011.1
226 * read-only, clean, old .11.xx0100.1
227 * read-only, clean, young .01.xx0101.1
228 * read-only, dirty, old .11.xx0110.1
229 * read-only, dirty, young .01.xx0111.1
230 * read-write, clean, old .11.xx1100.1
231 * read-write, clean, young .01.xx1101.1
232 * read-write, dirty, old .10.xx1110.1
233 * read-write, dirty, young .00.xx1111.1
234 * HW-bits: R read-only, I invalid
235 * SW-bits: p present, y young, d dirty, r read, w write, s special,
236 * u unused, l large
e5098611 237 *
a1c843b8
MS
238 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
239 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
240 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
83377484
MS
241 */
242
3610cce8
MS
243/* Bits in the segment/region table address-space-control-element */
244#define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
245#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
246#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
247#define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
248#define _ASCE_REAL_SPACE 0x20 /* real space control */
249#define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
250#define _ASCE_TYPE_REGION1 0x0c /* region first table type */
251#define _ASCE_TYPE_REGION2 0x08 /* region second table type */
252#define _ASCE_TYPE_REGION3 0x04 /* region third table type */
253#define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
254#define _ASCE_TABLE_LENGTH 0x03 /* region table length */
255
256/* Bits in the region table entry */
257#define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
e5098611
MS
258#define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
259#define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
3610cce8
MS
260#define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
261#define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
262#define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
263#define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
264#define _REGION_ENTRY_LENGTH 0x03 /* region third length */
265
266#define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
e5098611 267#define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
3610cce8 268#define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
e5098611 269#define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
3610cce8 270#define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
e5098611 271#define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
3610cce8 272
18da2369 273#define _REGION3_ENTRY_LARGE 0x400 /* RTTE-format control, large page */
1819ed1f 274#define _REGION3_ENTRY_RO 0x200 /* page protection bit */
18da2369 275
1da177e4 276/* Bits in the segment table entry */
0944fe3f 277#define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
152125b7 278#define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL
ea81531d 279#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
3610cce8 280#define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
e5098611
MS
281#define _SEGMENT_ENTRY_PROTECT 0x200 /* page protection bit */
282#define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
1da177e4 283
3610cce8 284#define _SEGMENT_ENTRY (0)
e5098611 285#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
3610cce8 286
152125b7
MS
287#define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
288#define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
152125b7 289#define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
152125b7
MS
290#define _SEGMENT_ENTRY_READ 0x0002 /* SW segment read bit */
291#define _SEGMENT_ENTRY_WRITE 0x0001 /* SW segment write bit */
0944fe3f 292
5614dd92
MS
293#ifdef CONFIG_MEM_SOFT_DIRTY
294#define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
295#else
296#define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
297#endif
298
0944fe3f
MS
299/*
300 * Segment table entry encoding (R = read-only, I = invalid, y = young bit):
13c6a790 301 * dy..R...I...rw
152125b7
MS
302 * prot-none, clean, old 00..1...1...00
303 * prot-none, clean, young 01..1...1...00
304 * prot-none, dirty, old 10..1...1...00
305 * prot-none, dirty, young 11..1...1...00
13c6a790
MS
306 * read-only, clean, old 00..1...1...10
307 * read-only, clean, young 01..1...0...10
308 * read-only, dirty, old 10..1...1...10
309 * read-only, dirty, young 11..1...0...10
152125b7
MS
310 * read-write, clean, old 00..1...1...11
311 * read-write, clean, young 01..1...0...11
312 * read-write, dirty, old 10..0...1...11
313 * read-write, dirty, young 11..0...0...11
0944fe3f
MS
314 * The segment table origin is used to distinguish empty (origin==0) from
315 * read-write, old segment table entries (origin!=0)
a1c843b8
MS
316 * HW-bits: R read-only, I invalid
317 * SW-bits: y young, d dirty, r read, w write
0944fe3f 318 */
e5098611 319
6c61cfe9 320/* Page status table bits for virtualization */
0d0dafc1
MS
321#define PGSTE_ACC_BITS 0xf000000000000000UL
322#define PGSTE_FP_BIT 0x0800000000000000UL
323#define PGSTE_PCL_BIT 0x0080000000000000UL
324#define PGSTE_HR_BIT 0x0040000000000000UL
325#define PGSTE_HC_BIT 0x0020000000000000UL
326#define PGSTE_GR_BIT 0x0004000000000000UL
327#define PGSTE_GC_BIT 0x0002000000000000UL
0a61b222
MS
328#define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
329#define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
6c61cfe9 330
b31288fa
KW
331/* Guest Page State used for virtualization */
332#define _PGSTE_GPS_ZERO 0x0000000080000000UL
333#define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
334#define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
335#define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
336
1da177e4 337/*
3610cce8
MS
338 * A user page table pointer has the space-switch-event bit, the
339 * private-space-control bit and the storage-alteration-event-control
340 * bit set. A kernel page table pointer doesn't need them.
1da177e4 341 */
3610cce8
MS
342#define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
343 _ASCE_ALT_EVENT)
1da177e4 344
1da177e4 345/*
9282ed92 346 * Page protection definitions.
1da177e4 347 */
e5098611 348#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID)
0944fe3f
MS
349#define PAGE_READ __pgprot(_PAGE_PRESENT | _PAGE_READ | \
350 _PAGE_INVALID | _PAGE_PROTECT)
351#define PAGE_WRITE __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
352 _PAGE_INVALID | _PAGE_PROTECT)
353
354#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
355 _PAGE_YOUNG | _PAGE_DIRTY)
356#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
357 _PAGE_YOUNG | _PAGE_DIRTY)
358#define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
359 _PAGE_PROTECT)
1da177e4
LT
360
361/*
043d0708
MS
362 * On s390 the page table entry has an invalid bit and a read-only bit.
363 * Read permission implies execute permission and write permission
364 * implies read permission.
1da177e4
LT
365 */
366 /*xwr*/
9282ed92 367#define __P000 PAGE_NONE
e5098611
MS
368#define __P001 PAGE_READ
369#define __P010 PAGE_READ
370#define __P011 PAGE_READ
371#define __P100 PAGE_READ
372#define __P101 PAGE_READ
373#define __P110 PAGE_READ
374#define __P111 PAGE_READ
9282ed92
GS
375
376#define __S000 PAGE_NONE
e5098611
MS
377#define __S001 PAGE_READ
378#define __S010 PAGE_WRITE
379#define __S011 PAGE_WRITE
380#define __S100 PAGE_READ
381#define __S101 PAGE_READ
382#define __S110 PAGE_WRITE
383#define __S111 PAGE_WRITE
1da177e4 384
106c992a
GS
385/*
386 * Segment entry (large page) protection definitions.
387 */
e5098611
MS
388#define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
389 _SEGMENT_ENTRY_PROTECT)
152125b7
MS
390#define SEGMENT_READ __pgprot(_SEGMENT_ENTRY_PROTECT | \
391 _SEGMENT_ENTRY_READ)
392#define SEGMENT_WRITE __pgprot(_SEGMENT_ENTRY_READ | \
393 _SEGMENT_ENTRY_WRITE)
106c992a 394
b2fa47e6
MS
395static inline int mm_has_pgste(struct mm_struct *mm)
396{
397#ifdef CONFIG_PGSTE
398 if (unlikely(mm->context.has_pgste))
399 return 1;
400#endif
401 return 0;
402}
65eef335 403
0b46e0a3
MS
404static inline int mm_alloc_pgste(struct mm_struct *mm)
405{
406#ifdef CONFIG_PGSTE
407 if (unlikely(mm->context.alloc_pgste))
408 return 1;
409#endif
410 return 0;
411}
412
2faee8ff
DD
413/*
414 * In the case that a guest uses storage keys
415 * faults should no longer be backed by zero pages
416 */
417#define mm_forbids_zeropage mm_use_skey
65eef335
DD
418static inline int mm_use_skey(struct mm_struct *mm)
419{
420#ifdef CONFIG_PGSTE
421 if (mm->context.use_skey)
422 return 1;
423#endif
424 return 0;
425}
426
1da177e4
LT
427/*
428 * pgd/pmd/pte query functions
429 */
5a216a20
MS
430static inline int pgd_present(pgd_t pgd)
431{
6252d702
MS
432 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
433 return 1;
5a216a20
MS
434 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
435}
436
437static inline int pgd_none(pgd_t pgd)
438{
6252d702
MS
439 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
440 return 0;
e5098611 441 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
5a216a20
MS
442}
443
444static inline int pgd_bad(pgd_t pgd)
445{
6252d702
MS
446 /*
447 * With dynamic page table levels the pgd can be a region table
448 * entry or a segment table entry. Check for the bit that are
449 * invalid for either table entry.
450 */
5a216a20 451 unsigned long mask =
e5098611 452 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
5a216a20
MS
453 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
454 return (pgd_val(pgd) & mask) != 0;
455}
190a1d72
MS
456
457static inline int pud_present(pud_t pud)
1da177e4 458{
6252d702
MS
459 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
460 return 1;
0d017923 461 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
1da177e4
LT
462}
463
190a1d72 464static inline int pud_none(pud_t pud)
1da177e4 465{
6252d702
MS
466 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
467 return 0;
e5098611 468 return (pud_val(pud) & _REGION_ENTRY_INVALID) != 0UL;
1da177e4
LT
469}
470
18da2369
HC
471static inline int pud_large(pud_t pud)
472{
473 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
474 return 0;
475 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
476}
477
190a1d72 478static inline int pud_bad(pud_t pud)
1da177e4 479{
6252d702
MS
480 /*
481 * With dynamic page table levels the pud can be a region table
482 * entry or a segment table entry. Check for the bit that are
483 * invalid for either table entry.
484 */
5a216a20 485 unsigned long mask =
e5098611 486 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
5a216a20
MS
487 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
488 return (pud_val(pud) & mask) != 0;
1da177e4
LT
489}
490
4448aaf0 491static inline int pmd_present(pmd_t pmd)
1da177e4 492{
e5098611 493 return pmd_val(pmd) != _SEGMENT_ENTRY_INVALID;
1da177e4
LT
494}
495
4448aaf0 496static inline int pmd_none(pmd_t pmd)
1da177e4 497{
e5098611 498 return pmd_val(pmd) == _SEGMENT_ENTRY_INVALID;
1da177e4
LT
499}
500
378b1e7a
HC
501static inline int pmd_large(pmd_t pmd)
502{
e5098611 503 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
378b1e7a
HC
504}
505
7cded342 506static inline unsigned long pmd_pfn(pmd_t pmd)
0944fe3f 507{
152125b7
MS
508 unsigned long origin_mask;
509
510 origin_mask = _SEGMENT_ENTRY_ORIGIN;
511 if (pmd_large(pmd))
512 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
513 return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
0944fe3f
MS
514}
515
4448aaf0 516static inline int pmd_bad(pmd_t pmd)
1da177e4 517{
0944fe3f
MS
518 if (pmd_large(pmd))
519 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
0944fe3f 520 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
1da177e4
LT
521}
522
1ae1c1d0
GS
523#define __HAVE_ARCH_PMD_WRITE
524static inline int pmd_write(pmd_t pmd)
525{
152125b7
MS
526 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
527}
528
529static inline int pmd_dirty(pmd_t pmd)
530{
531 int dirty = 1;
532 if (pmd_large(pmd))
533 dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
534 return dirty;
1ae1c1d0
GS
535}
536
537static inline int pmd_young(pmd_t pmd)
538{
152125b7
MS
539 int young = 1;
540 if (pmd_large(pmd))
0944fe3f 541 young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
0944fe3f 542 return young;
1ae1c1d0
GS
543}
544
e5098611 545static inline int pte_present(pte_t pte)
1da177e4 546{
e5098611
MS
547 /* Bit pattern: (pte & 0x001) == 0x001 */
548 return (pte_val(pte) & _PAGE_PRESENT) != 0;
1da177e4
LT
549}
550
e5098611 551static inline int pte_none(pte_t pte)
1da177e4 552{
e5098611
MS
553 /* Bit pattern: pte == 0x400 */
554 return pte_val(pte) == _PAGE_INVALID;
1da177e4
LT
555}
556
b31288fa
KW
557static inline int pte_swap(pte_t pte)
558{
a1c843b8
MS
559 /* Bit pattern: (pte & 0x201) == 0x200 */
560 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
561 == _PAGE_PROTECT;
b31288fa
KW
562}
563
7e675137
NP
564static inline int pte_special(pte_t pte)
565{
a08cb629 566 return (pte_val(pte) & _PAGE_SPECIAL);
7e675137
NP
567}
568
ba8a9229 569#define __HAVE_ARCH_PTE_SAME
b2fa47e6
MS
570static inline int pte_same(pte_t a, pte_t b)
571{
572 return pte_val(a) == pte_val(b);
573}
1da177e4 574
b54565b8
MS
575#ifdef CONFIG_NUMA_BALANCING
576static inline int pte_protnone(pte_t pte)
577{
578 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
579}
580
581static inline int pmd_protnone(pmd_t pmd)
582{
583 /* pmd_large(pmd) implies pmd_present(pmd) */
584 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
585}
586#endif
587
5614dd92
MS
588static inline int pte_soft_dirty(pte_t pte)
589{
590 return pte_val(pte) & _PAGE_SOFT_DIRTY;
591}
592#define pte_swp_soft_dirty pte_soft_dirty
593
594static inline pte_t pte_mksoft_dirty(pte_t pte)
595{
596 pte_val(pte) |= _PAGE_SOFT_DIRTY;
597 return pte;
598}
599#define pte_swp_mksoft_dirty pte_mksoft_dirty
600
601static inline pte_t pte_clear_soft_dirty(pte_t pte)
602{
603 pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
604 return pte;
605}
606#define pte_swp_clear_soft_dirty pte_clear_soft_dirty
607
608static inline int pmd_soft_dirty(pmd_t pmd)
609{
610 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
611}
612
613static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
614{
615 pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
616 return pmd;
617}
618
619static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
620{
621 pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
622 return pmd;
623}
624
1da177e4
LT
625/*
626 * query functions pte_write/pte_dirty/pte_young only work if
627 * pte_present() is true. Undefined behaviour if not..
628 */
4448aaf0 629static inline int pte_write(pte_t pte)
1da177e4 630{
e5098611 631 return (pte_val(pte) & _PAGE_WRITE) != 0;
1da177e4
LT
632}
633
4448aaf0 634static inline int pte_dirty(pte_t pte)
1da177e4 635{
e5098611 636 return (pte_val(pte) & _PAGE_DIRTY) != 0;
1da177e4
LT
637}
638
4448aaf0 639static inline int pte_young(pte_t pte)
1da177e4 640{
0944fe3f 641 return (pte_val(pte) & _PAGE_YOUNG) != 0;
1da177e4
LT
642}
643
b31288fa
KW
644#define __HAVE_ARCH_PTE_UNUSED
645static inline int pte_unused(pte_t pte)
646{
647 return pte_val(pte) & _PAGE_UNUSED;
648}
649
1da177e4
LT
650/*
651 * pgd/pmd/pte modification functions
652 */
653
b2fa47e6 654static inline void pgd_clear(pgd_t *pgd)
5a216a20 655{
6252d702
MS
656 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
657 pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
5a216a20
MS
658}
659
b2fa47e6 660static inline void pud_clear(pud_t *pud)
1da177e4 661{
6252d702
MS
662 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
663 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
1da177e4
LT
664}
665
b2fa47e6 666static inline void pmd_clear(pmd_t *pmdp)
1da177e4 667{
e5098611 668 pmd_val(*pmdp) = _SEGMENT_ENTRY_INVALID;
1da177e4
LT
669}
670
4448aaf0 671static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
1da177e4 672{
e5098611 673 pte_val(*ptep) = _PAGE_INVALID;
1da177e4
LT
674}
675
676/*
677 * The following pte modification functions only work if
678 * pte_present() is true. Undefined behaviour if not..
679 */
4448aaf0 680static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
1da177e4 681{
138c9021 682 pte_val(pte) &= _PAGE_CHG_MASK;
1da177e4 683 pte_val(pte) |= pgprot_val(newprot);
0944fe3f
MS
684 /*
685 * newprot for PAGE_NONE, PAGE_READ and PAGE_WRITE has the
686 * invalid bit set, clear it again for readable, young pages
687 */
688 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
689 pte_val(pte) &= ~_PAGE_INVALID;
690 /*
691 * newprot for PAGE_READ and PAGE_WRITE has the page protection
692 * bit set, clear it again for writable, dirty pages
693 */
e5098611
MS
694 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
695 pte_val(pte) &= ~_PAGE_PROTECT;
1da177e4
LT
696 return pte;
697}
698
4448aaf0 699static inline pte_t pte_wrprotect(pte_t pte)
1da177e4 700{
e5098611
MS
701 pte_val(pte) &= ~_PAGE_WRITE;
702 pte_val(pte) |= _PAGE_PROTECT;
1da177e4
LT
703 return pte;
704}
705
4448aaf0 706static inline pte_t pte_mkwrite(pte_t pte)
1da177e4 707{
e5098611
MS
708 pte_val(pte) |= _PAGE_WRITE;
709 if (pte_val(pte) & _PAGE_DIRTY)
710 pte_val(pte) &= ~_PAGE_PROTECT;
1da177e4
LT
711 return pte;
712}
713
4448aaf0 714static inline pte_t pte_mkclean(pte_t pte)
1da177e4 715{
e5098611
MS
716 pte_val(pte) &= ~_PAGE_DIRTY;
717 pte_val(pte) |= _PAGE_PROTECT;
1da177e4
LT
718 return pte;
719}
720
4448aaf0 721static inline pte_t pte_mkdirty(pte_t pte)
1da177e4 722{
5614dd92 723 pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
e5098611
MS
724 if (pte_val(pte) & _PAGE_WRITE)
725 pte_val(pte) &= ~_PAGE_PROTECT;
1da177e4
LT
726 return pte;
727}
728
4448aaf0 729static inline pte_t pte_mkold(pte_t pte)
1da177e4 730{
e5098611 731 pte_val(pte) &= ~_PAGE_YOUNG;
0944fe3f 732 pte_val(pte) |= _PAGE_INVALID;
1da177e4
LT
733 return pte;
734}
735
4448aaf0 736static inline pte_t pte_mkyoung(pte_t pte)
1da177e4 737{
0944fe3f
MS
738 pte_val(pte) |= _PAGE_YOUNG;
739 if (pte_val(pte) & _PAGE_READ)
740 pte_val(pte) &= ~_PAGE_INVALID;
1da177e4
LT
741 return pte;
742}
743
7e675137
NP
744static inline pte_t pte_mkspecial(pte_t pte)
745{
a08cb629 746 pte_val(pte) |= _PAGE_SPECIAL;
7e675137
NP
747 return pte;
748}
749
84afdcee
HC
750#ifdef CONFIG_HUGETLB_PAGE
751static inline pte_t pte_mkhuge(pte_t pte)
752{
e5098611 753 pte_val(pte) |= _PAGE_LARGE;
84afdcee
HC
754 return pte;
755}
756#endif
757
9282ed92 758static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
1da177e4 759{
53e857f3
MS
760 unsigned long pto = (unsigned long) ptep;
761
53e857f3
MS
762 /* Invalidation + global TLB flush for the pte */
763 asm volatile(
764 " ipte %2,%3"
765 : "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
766}
767
1b948d6c
MS
768static inline void __ptep_ipte_local(unsigned long address, pte_t *ptep)
769{
770 unsigned long pto = (unsigned long) ptep;
771
1b948d6c
MS
772 /* Invalidation + local TLB flush for the pte */
773 asm volatile(
774 " .insn rrf,0xb2210000,%2,%3,0,1"
775 : "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
776}
777
cfb0b241
HC
778static inline void __ptep_ipte_range(unsigned long address, int nr, pte_t *ptep)
779{
780 unsigned long pto = (unsigned long) ptep;
781
cfb0b241
HC
782 /* Invalidate a range of ptes + global TLB flush of the ptes */
783 do {
784 asm volatile(
785 " .insn rrf,0xb2210000,%2,%0,%1,0"
786 : "+a" (address), "+a" (nr) : "a" (pto) : "memory");
787 } while (nr != 255);
788}
789
0a61b222 790/*
ebde765c
MS
791 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
792 * both clear the TLB for the unmapped pte. The reason is that
793 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
794 * to modify an active pte. The sequence is
795 * 1) ptep_get_and_clear
796 * 2) set_pte_at
797 * 3) flush_tlb_range
798 * On s390 the tlb needs to get flushed with the modification of the pte
799 * if the pte is active. The only way how this can be implemented is to
800 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
801 * is a nop.
0a61b222 802 */
ebde765c
MS
803pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
804pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
0a61b222 805
0944fe3f
MS
806#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
807static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
808 unsigned long addr, pte_t *ptep)
809{
ebde765c 810 pte_t pte = *ptep;
0944fe3f 811
ebde765c
MS
812 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
813 return pte_young(pte);
0944fe3f
MS
814}
815
816#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
817static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
818 unsigned long address, pte_t *ptep)
819{
820 return ptep_test_and_clear_young(vma, address, ptep);
821}
822
ba8a9229 823#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
b2fa47e6 824static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
ebde765c 825 unsigned long addr, pte_t *ptep)
b2fa47e6 826{
ebde765c 827 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
b2fa47e6
MS
828}
829
830#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
ebde765c
MS
831pte_t ptep_modify_prot_start(struct mm_struct *, unsigned long, pte_t *);
832void ptep_modify_prot_commit(struct mm_struct *, unsigned long, pte_t *, pte_t);
ba8a9229
MS
833
834#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
f0e47c22 835static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
ebde765c 836 unsigned long addr, pte_t *ptep)
f0e47c22 837{
ebde765c 838 return ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1da177e4
LT
839}
840
ba8a9229
MS
841/*
842 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
843 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
844 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
845 * cannot be accessed while the batched unmap is running. In this case
846 * full==1 and a simple pte_clear is enough. See tlb.h.
847 */
848#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
849static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
ebde765c 850 unsigned long addr,
ba8a9229 851 pte_t *ptep, int full)
1da177e4 852{
ebde765c
MS
853 if (full) {
854 pte_t pte = *ptep;
855 *ptep = __pte(_PAGE_INVALID);
856 return pte;
b2fa47e6 857 }
ebde765c 858 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1da177e4
LT
859}
860
ba8a9229 861#define __HAVE_ARCH_PTEP_SET_WRPROTECT
ebde765c
MS
862static inline void ptep_set_wrprotect(struct mm_struct *mm,
863 unsigned long addr, pte_t *ptep)
b2fa47e6 864{
b2fa47e6
MS
865 pte_t pte = *ptep;
866
ebde765c
MS
867 if (pte_write(pte))
868 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
b2fa47e6 869}
ba8a9229
MS
870
871#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
b2fa47e6 872static inline int ptep_set_access_flags(struct vm_area_struct *vma,
ebde765c 873 unsigned long addr, pte_t *ptep,
b2fa47e6
MS
874 pte_t entry, int dirty)
875{
ebde765c 876 if (pte_same(*ptep, entry))
b2fa47e6 877 return 0;
ebde765c
MS
878 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
879 return 1;
880}
b2fa47e6 881
1e133ab2
MS
882/*
883 * Additional functions to handle KVM guest page tables
884 */
885void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
886 pte_t *ptep, pte_t entry);
887void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
888void ptep_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
889void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
890 pte_t *ptep , int reset);
891void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
892
893bool test_and_clear_guest_dirty(struct mm_struct *mm, unsigned long address);
894int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
895 unsigned char key, bool nq);
896unsigned char get_guest_storage_key(struct mm_struct *mm, unsigned long addr);
b2fa47e6 897
ebde765c
MS
898/*
899 * Certain architectures need to do special things when PTEs
900 * within a page table are directly modified. Thus, the following
901 * hook is made available.
902 */
903static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
904 pte_t *ptep, pte_t entry)
905{
906 if (mm_has_pgste(mm))
1e133ab2 907 ptep_set_pte_at(mm, addr, ptep, entry);
ebde765c 908 else
abf09bed 909 *ptep = entry;
b2fa47e6 910}
1da177e4 911
1da177e4
LT
912/*
913 * Conversion functions: convert a page and protection to a page entry,
914 * and a page entry and page directory to the page they refer to.
915 */
916static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
917{
918 pte_t __pte;
919 pte_val(__pte) = physpage + pgprot_val(pgprot);
0944fe3f 920 return pte_mkyoung(__pte);
1da177e4
LT
921}
922
2dcea57a
HC
923static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
924{
0b2b6e1d 925 unsigned long physpage = page_to_phys(page);
abf09bed 926 pte_t __pte = mk_pte_phys(physpage, pgprot);
1da177e4 927
e5098611
MS
928 if (pte_write(__pte) && PageDirty(page))
929 __pte = pte_mkdirty(__pte);
abf09bed 930 return __pte;
2dcea57a
HC
931}
932
190a1d72
MS
933#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
934#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
935#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
936#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1da177e4 937
190a1d72
MS
938#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
939#define pgd_offset_k(address) pgd_offset(&init_mm, address)
1da177e4 940
190a1d72
MS
941#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
942#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
5a216a20 943#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1da177e4 944
5a216a20
MS
945static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
946{
6252d702
MS
947 pud_t *pud = (pud_t *) pgd;
948 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
949 pud = (pud_t *) pgd_deref(*pgd);
5a216a20
MS
950 return pud + pud_index(address);
951}
1da177e4 952
190a1d72 953static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1da177e4 954{
6252d702
MS
955 pmd_t *pmd = (pmd_t *) pud;
956 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
957 pmd = (pmd_t *) pud_deref(*pud);
190a1d72 958 return pmd + pmd_index(address);
1da177e4
LT
959}
960
190a1d72
MS
961#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
962#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
963#define pte_page(x) pfn_to_page(pte_pfn(x))
1da177e4 964
152125b7 965#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1da177e4 966
190a1d72
MS
967/* Find an entry in the lowest level page table.. */
968#define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
969#define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1da177e4 970#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1da177e4 971#define pte_unmap(pte) do { } while (0)
1da177e4 972
106c992a 973#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1ae1c1d0
GS
974static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
975{
d8e7a33d 976 /*
e5098611 977 * pgprot is PAGE_NONE, PAGE_READ, or PAGE_WRITE (see __Pxxx / __Sxxx)
d8e7a33d
GS
978 * Convert to segment table entry format.
979 */
980 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
981 return pgprot_val(SEGMENT_NONE);
e5098611
MS
982 if (pgprot_val(pgprot) == pgprot_val(PAGE_READ))
983 return pgprot_val(SEGMENT_READ);
984 return pgprot_val(SEGMENT_WRITE);
1ae1c1d0
GS
985}
986
152125b7 987static inline pmd_t pmd_wrprotect(pmd_t pmd)
0944fe3f 988{
152125b7
MS
989 pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
990 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
991 return pmd;
992}
993
994static inline pmd_t pmd_mkwrite(pmd_t pmd)
995{
996 pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
997 if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
998 return pmd;
999 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1000 return pmd;
1001}
1002
1003static inline pmd_t pmd_mkclean(pmd_t pmd)
1004{
1005 if (pmd_large(pmd)) {
1006 pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
0944fe3f 1007 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
152125b7
MS
1008 }
1009 return pmd;
1010}
1011
1012static inline pmd_t pmd_mkdirty(pmd_t pmd)
1013{
1014 if (pmd_large(pmd)) {
5614dd92
MS
1015 pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY |
1016 _SEGMENT_ENTRY_SOFT_DIRTY;
152125b7
MS
1017 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1018 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1019 }
1020 return pmd;
1021}
1022
1023static inline pmd_t pmd_mkyoung(pmd_t pmd)
1024{
1025 if (pmd_large(pmd)) {
0944fe3f 1026 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
152125b7
MS
1027 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1028 pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
0944fe3f 1029 }
0944fe3f
MS
1030 return pmd;
1031}
1032
1033static inline pmd_t pmd_mkold(pmd_t pmd)
1034{
152125b7 1035 if (pmd_large(pmd)) {
0944fe3f
MS
1036 pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1037 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1038 }
0944fe3f
MS
1039 return pmd;
1040}
1041
1ae1c1d0
GS
1042static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1043{
152125b7
MS
1044 if (pmd_large(pmd)) {
1045 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1046 _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
fecffad2 1047 _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
152125b7
MS
1048 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1049 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1050 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1051 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1052 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1053 return pmd;
1054 }
1055 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
1ae1c1d0
GS
1056 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1057 return pmd;
1058}
1059
106c992a 1060static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1ae1c1d0 1061{
106c992a
GS
1062 pmd_t __pmd;
1063 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
152125b7 1064 return __pmd;
1ae1c1d0
GS
1065}
1066
106c992a
GS
1067#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1068
1b948d6c
MS
1069static inline void __pmdp_csp(pmd_t *pmdp)
1070{
1071 register unsigned long reg2 asm("2") = pmd_val(*pmdp);
1072 register unsigned long reg3 asm("3") = pmd_val(*pmdp) |
1073 _SEGMENT_ENTRY_INVALID;
1074 register unsigned long reg4 asm("4") = ((unsigned long) pmdp) + 5;
1075
1076 asm volatile(
1077 " csp %1,%3"
1078 : "=m" (*pmdp)
1079 : "d" (reg2), "d" (reg3), "d" (reg4), "m" (*pmdp) : "cc");
1080}
1081
1082static inline void __pmdp_idte(unsigned long address, pmd_t *pmdp)
1083{
1084 unsigned long sto;
1085
1086 sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1087 asm volatile(
1088 " .insn rrf,0xb98e0000,%2,%3,0,0"
1089 : "=m" (*pmdp)
1090 : "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
1091 : "cc" );
1092}
1093
1094static inline void __pmdp_idte_local(unsigned long address, pmd_t *pmdp)
1095{
1096 unsigned long sto;
1097
1098 sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1099 asm volatile(
1100 " .insn rrf,0xb98e0000,%2,%3,0,1"
1101 : "=m" (*pmdp)
1102 : "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
1103 : "cc" );
1104}
1105
227be799
MS
1106pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1107pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1b948d6c 1108
227be799
MS
1109#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1110
1111#define __HAVE_ARCH_PGTABLE_DEPOSIT
1112void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1113 pgtable_t pgtable);
1114
1115#define __HAVE_ARCH_PGTABLE_WITHDRAW
1116pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1b948d6c 1117
227be799
MS
1118#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1119static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1120 unsigned long addr, pmd_t *pmdp,
1121 pmd_t entry, int dirty)
3eabaee9 1122{
227be799 1123 VM_BUG_ON(addr & ~HPAGE_MASK);
3eabaee9 1124
227be799
MS
1125 entry = pmd_mkyoung(entry);
1126 if (dirty)
1127 entry = pmd_mkdirty(entry);
1128 if (pmd_val(*pmdp) == pmd_val(entry))
1129 return 0;
1130 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1131 return 1;
3eabaee9
MS
1132}
1133
227be799
MS
1134#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1135static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1136 unsigned long addr, pmd_t *pmdp)
1137{
1138 pmd_t pmd = *pmdp;
106c992a 1139
227be799
MS
1140 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1141 return pmd_young(pmd);
1142}
106c992a 1143
227be799
MS
1144#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1145static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1146 unsigned long addr, pmd_t *pmdp)
1147{
1148 VM_BUG_ON(addr & ~HPAGE_MASK);
1149 return pmdp_test_and_clear_young(vma, addr, pmdp);
1150}
106c992a 1151
106c992a
GS
1152static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1153 pmd_t *pmdp, pmd_t entry)
1154{
106c992a
GS
1155 *pmdp = entry;
1156}
1157
1158static inline pmd_t pmd_mkhuge(pmd_t pmd)
1159{
1160 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
152125b7
MS
1161 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1162 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1ae1c1d0
GS
1163 return pmd;
1164}
1165
8809aa2d
AK
1166#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1167static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
227be799 1168 unsigned long addr, pmd_t *pmdp)
1ae1c1d0 1169{
227be799 1170 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_INVALID));
1ae1c1d0
GS
1171}
1172
8809aa2d
AK
1173#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1174static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
227be799 1175 unsigned long addr,
8809aa2d 1176 pmd_t *pmdp, int full)
fcbe08d6 1177{
227be799
MS
1178 if (full) {
1179 pmd_t pmd = *pmdp;
1180 *pmdp = __pmd(_SEGMENT_ENTRY_INVALID);
1181 return pmd;
1182 }
1183 return pmdp_xchg_lazy(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_INVALID));
fcbe08d6
MS
1184}
1185
8809aa2d
AK
1186#define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1187static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
227be799 1188 unsigned long addr, pmd_t *pmdp)
1ae1c1d0 1189{
227be799 1190 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1ae1c1d0
GS
1191}
1192
1193#define __HAVE_ARCH_PMDP_INVALIDATE
1194static inline void pmdp_invalidate(struct vm_area_struct *vma,
227be799 1195 unsigned long addr, pmd_t *pmdp)
1ae1c1d0 1196{
227be799 1197 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_INVALID));
1ae1c1d0
GS
1198}
1199
be328650
GS
1200#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1201static inline void pmdp_set_wrprotect(struct mm_struct *mm,
227be799 1202 unsigned long addr, pmd_t *pmdp)
be328650
GS
1203{
1204 pmd_t pmd = *pmdp;
1205
227be799
MS
1206 if (pmd_write(pmd))
1207 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
be328650
GS
1208}
1209
f28b6ff8
AK
1210static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1211 unsigned long address,
1212 pmd_t *pmdp)
1213{
8809aa2d 1214 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
f28b6ff8
AK
1215}
1216#define pmdp_collapse_flush pmdp_collapse_flush
1217
1ae1c1d0
GS
1218#define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1219#define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1220
1221static inline int pmd_trans_huge(pmd_t pmd)
1222{
1223 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1224}
1225
fd8cfd30 1226#define has_transparent_hugepage has_transparent_hugepage
1ae1c1d0
GS
1227static inline int has_transparent_hugepage(void)
1228{
1229 return MACHINE_HAS_HPAGE ? 1 : 0;
1230}
75077afb
GS
1231#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1232
1da177e4 1233/*
1da177e4
LT
1234 * 64 bit swap entry format:
1235 * A page-table entry has some bits we have to treat in a special way.
4e0a6412 1236 * Bits 52 and bit 55 have to be zero, otherwise a specification
1da177e4 1237 * exception will occur instead of a page translation exception. The
4e0a6412 1238 * specification exception has the bad habit not to store necessary
1da177e4 1239 * information in the lowcore.
a1c843b8
MS
1240 * Bits 54 and 63 are used to indicate the page type.
1241 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1242 * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1243 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1244 * for the offset.
1245 * | offset |01100|type |00|
1246 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1247 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1da177e4 1248 */
5a79859a 1249
a1c843b8
MS
1250#define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1251#define __SWP_OFFSET_SHIFT 12
1252#define __SWP_TYPE_MASK ((1UL << 5) - 1)
1253#define __SWP_TYPE_SHIFT 2
5a79859a 1254
4448aaf0 1255static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1da177e4
LT
1256{
1257 pte_t pte;
a1c843b8
MS
1258
1259 pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1260 pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1261 pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1da177e4
LT
1262 return pte;
1263}
1264
a1c843b8
MS
1265static inline unsigned long __swp_type(swp_entry_t entry)
1266{
1267 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1268}
1269
1270static inline unsigned long __swp_offset(swp_entry_t entry)
1271{
1272 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1273}
1274
1275static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1276{
1277 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1278}
1da177e4
LT
1279
1280#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1281#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1282
1da177e4
LT
1283#endif /* !__ASSEMBLY__ */
1284
1285#define kern_addr_valid(addr) (1)
1286
17f34580
HC
1287extern int vmem_add_mapping(unsigned long start, unsigned long size);
1288extern int vmem_remove_mapping(unsigned long start, unsigned long size);
402b0862 1289extern int s390_enable_sie(void);
3ac8e380 1290extern int s390_enable_skey(void);
a13cff31 1291extern void s390_reset_cmma(struct mm_struct *mm);
f4eb07c1 1292
1f6b83e5
MS
1293/* s390 has a private copy of get unmapped area to deal with cache synonyms */
1294#define HAVE_ARCH_UNMAPPED_AREA
1295#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1296
1da177e4
LT
1297/*
1298 * No page table caches to initialise
1299 */
765a0cac
HC
1300static inline void pgtable_cache_init(void) { }
1301static inline void check_pgt_cache(void) { }
1da177e4 1302
1da177e4
LT
1303#include <asm-generic/pgtable.h>
1304
1305#endif /* _S390_PAGE_H */
This page took 1.606163 seconds and 5 git commands to generate.