sparc64: Get rid of real_setup_per_cpu_areas().
[deliverable/linux.git] / arch / sparc / kernel / smp_64.c
CommitLineData
1da177e4
LT
1/* smp.c: Sparc64 SMP support.
2 *
cf3d7c1e 3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
1da177e4
LT
4 */
5
6#include <linux/module.h>
7#include <linux/kernel.h>
8#include <linux/sched.h>
9#include <linux/mm.h>
10#include <linux/pagemap.h>
11#include <linux/threads.h>
12#include <linux/smp.h>
1da177e4
LT
13#include <linux/interrupt.h>
14#include <linux/kernel_stat.h>
15#include <linux/delay.h>
16#include <linux/init.h>
17#include <linux/spinlock.h>
18#include <linux/fs.h>
19#include <linux/seq_file.h>
20#include <linux/cache.h>
21#include <linux/jiffies.h>
22#include <linux/profile.h>
73fffc03 23#include <linux/bootmem.h>
82960b85 24#include <linux/cpu.h>
1da177e4
LT
25
26#include <asm/head.h>
27#include <asm/ptrace.h>
28#include <asm/atomic.h>
29#include <asm/tlbflush.h>
30#include <asm/mmu_context.h>
31#include <asm/cpudata.h>
27a2ef38
DM
32#include <asm/hvtramp.h>
33#include <asm/io.h>
cf3d7c1e 34#include <asm/timer.h>
1da177e4
LT
35
36#include <asm/irq.h>
6d24c8dc 37#include <asm/irq_regs.h>
1da177e4
LT
38#include <asm/page.h>
39#include <asm/pgtable.h>
40#include <asm/oplib.h>
41#include <asm/uaccess.h>
1da177e4
LT
42#include <asm/starfire.h>
43#include <asm/tlb.h>
56fb4df6 44#include <asm/sections.h>
07f8e5f3 45#include <asm/prom.h>
5cbc3073 46#include <asm/mdesc.h>
4f0234f4 47#include <asm/ldc.h>
e0204409 48#include <asm/hypervisor.h>
1da177e4 49
a2f9f6bb
DM
50int sparc64_multi_core __read_mostly;
51
d5a7430d 52DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
f78eae2e
DM
53cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
54 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
4f0234f4 55
d5a7430d 56EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
4f0234f4
DM
57EXPORT_SYMBOL(cpu_core_map);
58
1da177e4 59static cpumask_t smp_commenced_mask;
1da177e4
LT
60
61void smp_info(struct seq_file *m)
62{
63 int i;
64
65 seq_printf(m, "State:\n");
394e3902
AM
66 for_each_online_cpu(i)
67 seq_printf(m, "CPU%d:\t\tonline\n", i);
1da177e4
LT
68}
69
70void smp_bogo(struct seq_file *m)
71{
72 int i;
73
394e3902
AM
74 for_each_online_cpu(i)
75 seq_printf(m,
394e3902 76 "Cpu%dClkTck\t: %016lx\n",
394e3902 77 i, cpu_data(i).clock_tick);
1da177e4
LT
78}
79
112f4871 80extern void setup_sparc64_timer(void);
1da177e4
LT
81
82static volatile unsigned long callin_flag = 0;
83
0f7f22d9 84void __cpuinit smp_callin(void)
1da177e4
LT
85{
86 int cpuid = hard_smp_processor_id();
87
56fb4df6 88 __local_per_cpu_offset = __per_cpu_offset(cpuid);
1da177e4 89
4a07e646 90 if (tlb_type == hypervisor)
490384e7 91 sun4v_ktsb_register();
481295f9 92
56fb4df6 93 __flush_tlb_all();
1da177e4 94
112f4871 95 setup_sparc64_timer();
1da177e4 96
816242da
DM
97 if (cheetah_pcache_forced_on)
98 cheetah_enable_pcache();
99
1da177e4
LT
100 local_irq_enable();
101
1da177e4
LT
102 callin_flag = 1;
103 __asm__ __volatile__("membar #Sync\n\t"
104 "flush %%g6" : : : "memory");
105
106 /* Clear this or we will die instantly when we
107 * schedule back to this idler...
108 */
db7d9a4e 109 current_thread_info()->new_child = 0;
1da177e4
LT
110
111 /* Attach to the address space of init_task. */
112 atomic_inc(&init_mm.mm_count);
113 current->active_mm = &init_mm;
114
82960b85
DM
115 /* inform the notifiers about the new cpu */
116 notify_cpu_starting(cpuid);
117
1da177e4 118 while (!cpu_isset(cpuid, smp_commenced_mask))
4f07118f 119 rmb();
1da177e4 120
8e255baa 121 ipi_call_lock_irq();
1da177e4 122 cpu_set(cpuid, cpu_online_map);
8e255baa 123 ipi_call_unlock_irq();
5bfb5d69
NP
124
125 /* idle thread is expected to have preempt disabled */
126 preempt_disable();
1da177e4
LT
127}
128
129void cpu_panic(void)
130{
131 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
132 panic("SMP bolixed\n");
133}
134
1da177e4
LT
135/* This tick register synchronization scheme is taken entirely from
136 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
137 *
138 * The only change I've made is to rework it so that the master
139 * initiates the synchonization instead of the slave. -DaveM
140 */
141
142#define MASTER 0
143#define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
144
145#define NUM_ROUNDS 64 /* magic value */
146#define NUM_ITERS 5 /* likewise */
147
148static DEFINE_SPINLOCK(itc_sync_lock);
149static unsigned long go[SLAVE + 1];
150
151#define DEBUG_TICK_SYNC 0
152
153static inline long get_delta (long *rt, long *master)
154{
155 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
156 unsigned long tcenter, t0, t1, tm;
157 unsigned long i;
158
159 for (i = 0; i < NUM_ITERS; i++) {
160 t0 = tick_ops->get_tick();
161 go[MASTER] = 1;
293666b7 162 membar_safe("#StoreLoad");
1da177e4 163 while (!(tm = go[SLAVE]))
4f07118f 164 rmb();
1da177e4 165 go[SLAVE] = 0;
4f07118f 166 wmb();
1da177e4
LT
167 t1 = tick_ops->get_tick();
168
169 if (t1 - t0 < best_t1 - best_t0)
170 best_t0 = t0, best_t1 = t1, best_tm = tm;
171 }
172
173 *rt = best_t1 - best_t0;
174 *master = best_tm - best_t0;
175
176 /* average best_t0 and best_t1 without overflow: */
177 tcenter = (best_t0/2 + best_t1/2);
178 if (best_t0 % 2 + best_t1 % 2 == 2)
179 tcenter++;
180 return tcenter - best_tm;
181}
182
183void smp_synchronize_tick_client(void)
184{
185 long i, delta, adj, adjust_latency = 0, done = 0;
186 unsigned long flags, rt, master_time_stamp, bound;
187#if DEBUG_TICK_SYNC
188 struct {
189 long rt; /* roundtrip time */
190 long master; /* master's timestamp */
191 long diff; /* difference between midpoint and master's timestamp */
192 long lat; /* estimate of itc adjustment latency */
193 } t[NUM_ROUNDS];
194#endif
195
196 go[MASTER] = 1;
197
198 while (go[MASTER])
4f07118f 199 rmb();
1da177e4
LT
200
201 local_irq_save(flags);
202 {
203 for (i = 0; i < NUM_ROUNDS; i++) {
204 delta = get_delta(&rt, &master_time_stamp);
205 if (delta == 0) {
206 done = 1; /* let's lock on to this... */
207 bound = rt;
208 }
209
210 if (!done) {
211 if (i > 0) {
212 adjust_latency += -delta;
213 adj = -delta + adjust_latency/4;
214 } else
215 adj = -delta;
216
112f4871 217 tick_ops->add_tick(adj);
1da177e4
LT
218 }
219#if DEBUG_TICK_SYNC
220 t[i].rt = rt;
221 t[i].master = master_time_stamp;
222 t[i].diff = delta;
223 t[i].lat = adjust_latency/4;
224#endif
225 }
226 }
227 local_irq_restore(flags);
228
229#if DEBUG_TICK_SYNC
230 for (i = 0; i < NUM_ROUNDS; i++)
231 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
232 t[i].rt, t[i].master, t[i].diff, t[i].lat);
233#endif
234
519c4d2d
JP
235 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
236 "(last diff %ld cycles, maxerr %lu cycles)\n",
237 smp_processor_id(), delta, rt);
1da177e4
LT
238}
239
240static void smp_start_sync_tick_client(int cpu);
241
242static void smp_synchronize_one_tick(int cpu)
243{
244 unsigned long flags, i;
245
246 go[MASTER] = 0;
247
248 smp_start_sync_tick_client(cpu);
249
250 /* wait for client to be ready */
251 while (!go[MASTER])
4f07118f 252 rmb();
1da177e4
LT
253
254 /* now let the client proceed into his loop */
255 go[MASTER] = 0;
293666b7 256 membar_safe("#StoreLoad");
1da177e4
LT
257
258 spin_lock_irqsave(&itc_sync_lock, flags);
259 {
260 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
261 while (!go[MASTER])
4f07118f 262 rmb();
1da177e4 263 go[MASTER] = 0;
4f07118f 264 wmb();
1da177e4 265 go[SLAVE] = tick_ops->get_tick();
293666b7 266 membar_safe("#StoreLoad");
1da177e4
LT
267 }
268 }
269 spin_unlock_irqrestore(&itc_sync_lock, flags);
270}
271
b14f5c10 272#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
27a2ef38
DM
273/* XXX Put this in some common place. XXX */
274static unsigned long kimage_addr_to_ra(void *p)
275{
276 unsigned long val = (unsigned long) p;
277
278 return kern_base + (val - KERNBASE);
279}
280
557fe0e8 281static void __cpuinit ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg, void **descrp)
b14f5c10
DM
282{
283 extern unsigned long sparc64_ttable_tl0;
284 extern unsigned long kern_locked_tte_data;
b14f5c10
DM
285 struct hvtramp_descr *hdesc;
286 unsigned long trampoline_ra;
287 struct trap_per_cpu *tb;
288 u64 tte_vaddr, tte_data;
289 unsigned long hv_err;
64658743 290 int i;
b14f5c10 291
64658743
DM
292 hdesc = kzalloc(sizeof(*hdesc) +
293 (sizeof(struct hvtramp_mapping) *
294 num_kernel_image_mappings - 1),
295 GFP_KERNEL);
b14f5c10 296 if (!hdesc) {
27a2ef38 297 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
b14f5c10
DM
298 "hvtramp_descr.\n");
299 return;
300 }
557fe0e8 301 *descrp = hdesc;
b14f5c10
DM
302
303 hdesc->cpu = cpu;
64658743 304 hdesc->num_mappings = num_kernel_image_mappings;
b14f5c10
DM
305
306 tb = &trap_block[cpu];
b14f5c10
DM
307
308 hdesc->fault_info_va = (unsigned long) &tb->fault_info;
309 hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
310
311 hdesc->thread_reg = thread_reg;
312
313 tte_vaddr = (unsigned long) KERNBASE;
314 tte_data = kern_locked_tte_data;
315
64658743
DM
316 for (i = 0; i < hdesc->num_mappings; i++) {
317 hdesc->maps[i].vaddr = tte_vaddr;
318 hdesc->maps[i].tte = tte_data;
b14f5c10
DM
319 tte_vaddr += 0x400000;
320 tte_data += 0x400000;
b14f5c10
DM
321 }
322
323 trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
324
325 hv_err = sun4v_cpu_start(cpu, trampoline_ra,
326 kimage_addr_to_ra(&sparc64_ttable_tl0),
327 __pa(hdesc));
e0204409
DM
328 if (hv_err)
329 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
330 "gives error %lu\n", hv_err);
b14f5c10
DM
331}
332#endif
333
1da177e4
LT
334extern unsigned long sparc64_cpu_startup;
335
336/* The OBP cpu startup callback truncates the 3rd arg cookie to
337 * 32-bits (I think) so to be safe we have it read the pointer
338 * contained here so we work on >4GB machines. -DaveM
339 */
340static struct thread_info *cpu_new_thread = NULL;
341
8c29890a 342static int __cpuinit smp_boot_one_cpu(unsigned int cpu)
1da177e4
LT
343{
344 unsigned long entry =
345 (unsigned long)(&sparc64_cpu_startup);
346 unsigned long cookie =
347 (unsigned long)(&cpu_new_thread);
348 struct task_struct *p;
557fe0e8 349 void *descr = NULL;
7890f794 350 int timeout, ret;
1da177e4
LT
351
352 p = fork_idle(cpu);
1177bf97
AM
353 if (IS_ERR(p))
354 return PTR_ERR(p);
1da177e4 355 callin_flag = 0;
f3169641 356 cpu_new_thread = task_thread_info(p);
1da177e4 357
7890f794 358 if (tlb_type == hypervisor) {
b14f5c10 359#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
4f0234f4
DM
360 if (ldom_domaining_enabled)
361 ldom_startcpu_cpuid(cpu,
557fe0e8
DM
362 (unsigned long) cpu_new_thread,
363 &descr);
4f0234f4
DM
364 else
365#endif
366 prom_startcpu_cpuid(cpu, entry, cookie);
7890f794 367 } else {
5cbc3073 368 struct device_node *dp = of_find_node_by_cpuid(cpu);
7890f794 369
07f8e5f3 370 prom_startcpu(dp->node, entry, cookie);
7890f794 371 }
1da177e4 372
4f0234f4 373 for (timeout = 0; timeout < 50000; timeout++) {
1da177e4
LT
374 if (callin_flag)
375 break;
376 udelay(100);
377 }
72aff53f 378
1da177e4
LT
379 if (callin_flag) {
380 ret = 0;
381 } else {
382 printk("Processor %d is stuck.\n", cpu);
1da177e4
LT
383 ret = -ENODEV;
384 }
385 cpu_new_thread = NULL;
386
557fe0e8 387 kfree(descr);
b37d40d1 388
1da177e4
LT
389 return ret;
390}
391
392static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
393{
394 u64 result, target;
395 int stuck, tmp;
396
397 if (this_is_starfire) {
398 /* map to real upaid */
399 cpu = (((cpu & 0x3c) << 1) |
400 ((cpu & 0x40) >> 4) |
401 (cpu & 0x3));
402 }
403
404 target = (cpu << 14) | 0x70;
405again:
406 /* Ok, this is the real Spitfire Errata #54.
407 * One must read back from a UDB internal register
408 * after writes to the UDB interrupt dispatch, but
409 * before the membar Sync for that write.
410 * So we use the high UDB control register (ASI 0x7f,
411 * ADDR 0x20) for the dummy read. -DaveM
412 */
413 tmp = 0x40;
414 __asm__ __volatile__(
415 "wrpr %1, %2, %%pstate\n\t"
416 "stxa %4, [%0] %3\n\t"
417 "stxa %5, [%0+%8] %3\n\t"
418 "add %0, %8, %0\n\t"
419 "stxa %6, [%0+%8] %3\n\t"
420 "membar #Sync\n\t"
421 "stxa %%g0, [%7] %3\n\t"
422 "membar #Sync\n\t"
423 "mov 0x20, %%g1\n\t"
424 "ldxa [%%g1] 0x7f, %%g0\n\t"
425 "membar #Sync"
426 : "=r" (tmp)
427 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
428 "r" (data0), "r" (data1), "r" (data2), "r" (target),
429 "r" (0x10), "0" (tmp)
430 : "g1");
431
432 /* NOTE: PSTATE_IE is still clear. */
433 stuck = 100000;
434 do {
435 __asm__ __volatile__("ldxa [%%g0] %1, %0"
436 : "=r" (result)
437 : "i" (ASI_INTR_DISPATCH_STAT));
438 if (result == 0) {
439 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
440 : : "r" (pstate));
441 return;
442 }
443 stuck -= 1;
444 if (stuck == 0)
445 break;
446 } while (result & 0x1);
447 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
448 : : "r" (pstate));
449 if (stuck == 0) {
90181136 450 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
1da177e4
LT
451 smp_processor_id(), result);
452 } else {
453 udelay(2);
454 goto again;
455 }
456}
457
90f7ae8a 458static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
1da177e4 459{
90f7ae8a
DM
460 u64 *mondo, data0, data1, data2;
461 u16 *cpu_list;
1da177e4
LT
462 u64 pstate;
463 int i;
464
465 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
90f7ae8a
DM
466 cpu_list = __va(tb->cpu_list_pa);
467 mondo = __va(tb->cpu_mondo_block_pa);
468 data0 = mondo[0];
469 data1 = mondo[1];
470 data2 = mondo[2];
471 for (i = 0; i < cnt; i++)
472 spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
1da177e4
LT
473}
474
475/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
476 * packet, but we have no use for that. However we do take advantage of
477 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
478 */
90f7ae8a 479static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
1da177e4 480{
22adb358 481 int nack_busy_id, is_jbus, need_more;
90f7ae8a
DM
482 u64 *mondo, pstate, ver, busy_mask;
483 u16 *cpu_list;
1da177e4 484
90f7ae8a
DM
485 cpu_list = __va(tb->cpu_list_pa);
486 mondo = __va(tb->cpu_mondo_block_pa);
cd5bc89d 487
1da177e4
LT
488 /* Unfortunately, someone at Sun had the brilliant idea to make the
489 * busy/nack fields hard-coded by ITID number for this Ultra-III
490 * derivative processor.
491 */
492 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
92704a1c
DM
493 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
494 (ver >> 32) == __SERRANO_ID);
1da177e4
LT
495
496 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
497
498retry:
22adb358 499 need_more = 0;
1da177e4
LT
500 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
501 : : "r" (pstate), "i" (PSTATE_IE));
502
503 /* Setup the dispatch data registers. */
504 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
505 "stxa %1, [%4] %6\n\t"
506 "stxa %2, [%5] %6\n\t"
507 "membar #Sync\n\t"
508 : /* no outputs */
90f7ae8a 509 : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
1da177e4
LT
510 "r" (0x40), "r" (0x50), "r" (0x60),
511 "i" (ASI_INTR_W));
512
513 nack_busy_id = 0;
0de56d1a 514 busy_mask = 0;
1da177e4
LT
515 {
516 int i;
517
90f7ae8a
DM
518 for (i = 0; i < cnt; i++) {
519 u64 target, nr;
520
521 nr = cpu_list[i];
522 if (nr == 0xffff)
523 continue;
1da177e4 524
90f7ae8a 525 target = (nr << 14) | 0x70;
0de56d1a 526 if (is_jbus) {
90f7ae8a 527 busy_mask |= (0x1UL << (nr * 2));
0de56d1a 528 } else {
1da177e4 529 target |= (nack_busy_id << 24);
0de56d1a
DM
530 busy_mask |= (0x1UL <<
531 (nack_busy_id * 2));
532 }
1da177e4
LT
533 __asm__ __volatile__(
534 "stxa %%g0, [%0] %1\n\t"
535 "membar #Sync\n\t"
536 : /* no outputs */
537 : "r" (target), "i" (ASI_INTR_W));
538 nack_busy_id++;
22adb358
DM
539 if (nack_busy_id == 32) {
540 need_more = 1;
541 break;
542 }
1da177e4
LT
543 }
544 }
545
546 /* Now, poll for completion. */
547 {
0de56d1a 548 u64 dispatch_stat, nack_mask;
1da177e4
LT
549 long stuck;
550
551 stuck = 100000 * nack_busy_id;
0de56d1a 552 nack_mask = busy_mask << 1;
1da177e4
LT
553 do {
554 __asm__ __volatile__("ldxa [%%g0] %1, %0"
555 : "=r" (dispatch_stat)
556 : "i" (ASI_INTR_DISPATCH_STAT));
0de56d1a 557 if (!(dispatch_stat & (busy_mask | nack_mask))) {
1da177e4
LT
558 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
559 : : "r" (pstate));
22adb358 560 if (unlikely(need_more)) {
90f7ae8a
DM
561 int i, this_cnt = 0;
562 for (i = 0; i < cnt; i++) {
563 if (cpu_list[i] == 0xffff)
564 continue;
565 cpu_list[i] = 0xffff;
566 this_cnt++;
567 if (this_cnt == 32)
22adb358
DM
568 break;
569 }
570 goto retry;
571 }
1da177e4
LT
572 return;
573 }
574 if (!--stuck)
575 break;
0de56d1a 576 } while (dispatch_stat & busy_mask);
1da177e4
LT
577
578 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
579 : : "r" (pstate));
580
0de56d1a 581 if (dispatch_stat & busy_mask) {
1da177e4
LT
582 /* Busy bits will not clear, continue instead
583 * of freezing up on this cpu.
584 */
90181136 585 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
1da177e4
LT
586 smp_processor_id(), dispatch_stat);
587 } else {
588 int i, this_busy_nack = 0;
589
590 /* Delay some random time with interrupts enabled
591 * to prevent deadlock.
592 */
593 udelay(2 * nack_busy_id);
594
595 /* Clear out the mask bits for cpus which did not
596 * NACK us.
597 */
90f7ae8a
DM
598 for (i = 0; i < cnt; i++) {
599 u64 check_mask, nr;
600
601 nr = cpu_list[i];
602 if (nr == 0xffff)
603 continue;
1da177e4 604
92704a1c 605 if (is_jbus)
90f7ae8a 606 check_mask = (0x2UL << (2*nr));
1da177e4
LT
607 else
608 check_mask = (0x2UL <<
609 this_busy_nack);
610 if ((dispatch_stat & check_mask) == 0)
90f7ae8a 611 cpu_list[i] = 0xffff;
1da177e4 612 this_busy_nack += 2;
22adb358
DM
613 if (this_busy_nack == 64)
614 break;
1da177e4
LT
615 }
616
617 goto retry;
618 }
619 }
620}
621
1d2f1f90 622/* Multi-cpu list version. */
90f7ae8a 623static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
a43fe0e7 624{
ed4d9c66 625 int retries, this_cpu, prev_sent, i, saw_cpu_error;
c02a5119 626 unsigned long status;
b830ab66 627 u16 *cpu_list;
17f34f0e 628
b830ab66 629 this_cpu = smp_processor_id();
1d2f1f90 630
b830ab66
DM
631 cpu_list = __va(tb->cpu_list_pa);
632
ed4d9c66 633 saw_cpu_error = 0;
1d2f1f90 634 retries = 0;
3cab0c3e 635 prev_sent = 0;
1d2f1f90 636 do {
3cab0c3e 637 int forward_progress, n_sent;
1d2f1f90 638
b830ab66
DM
639 status = sun4v_cpu_mondo_send(cnt,
640 tb->cpu_list_pa,
641 tb->cpu_mondo_block_pa);
642
643 /* HV_EOK means all cpus received the xcall, we're done. */
644 if (likely(status == HV_EOK))
1d2f1f90 645 break;
b830ab66 646
3cab0c3e
DM
647 /* First, see if we made any forward progress.
648 *
649 * The hypervisor indicates successful sends by setting
650 * cpu list entries to the value 0xffff.
b830ab66 651 */
3cab0c3e 652 n_sent = 0;
b830ab66 653 for (i = 0; i < cnt; i++) {
3cab0c3e
DM
654 if (likely(cpu_list[i] == 0xffff))
655 n_sent++;
1d2f1f90
DM
656 }
657
3cab0c3e
DM
658 forward_progress = 0;
659 if (n_sent > prev_sent)
660 forward_progress = 1;
661
662 prev_sent = n_sent;
663
b830ab66
DM
664 /* If we get a HV_ECPUERROR, then one or more of the cpus
665 * in the list are in error state. Use the cpu_state()
666 * hypervisor call to find out which cpus are in error state.
667 */
668 if (unlikely(status == HV_ECPUERROR)) {
669 for (i = 0; i < cnt; i++) {
670 long err;
671 u16 cpu;
672
673 cpu = cpu_list[i];
674 if (cpu == 0xffff)
675 continue;
676
677 err = sun4v_cpu_state(cpu);
ed4d9c66
DM
678 if (err == HV_CPU_STATE_ERROR) {
679 saw_cpu_error = (cpu + 1);
3cab0c3e 680 cpu_list[i] = 0xffff;
b830ab66
DM
681 }
682 }
683 } else if (unlikely(status != HV_EWOULDBLOCK))
684 goto fatal_mondo_error;
685
3cab0c3e
DM
686 /* Don't bother rewriting the CPU list, just leave the
687 * 0xffff and non-0xffff entries in there and the
688 * hypervisor will do the right thing.
689 *
690 * Only advance timeout state if we didn't make any
691 * forward progress.
692 */
b830ab66
DM
693 if (unlikely(!forward_progress)) {
694 if (unlikely(++retries > 10000))
695 goto fatal_mondo_timeout;
696
697 /* Delay a little bit to let other cpus catch up
698 * on their cpu mondo queue work.
699 */
700 udelay(2 * cnt);
701 }
1d2f1f90
DM
702 } while (1);
703
ed4d9c66 704 if (unlikely(saw_cpu_error))
b830ab66
DM
705 goto fatal_mondo_cpu_error;
706
707 return;
708
709fatal_mondo_cpu_error:
710 printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
ed4d9c66
DM
711 "(including %d) were in error state\n",
712 this_cpu, saw_cpu_error - 1);
b830ab66
DM
713 return;
714
715fatal_mondo_timeout:
b830ab66
DM
716 printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
717 " progress after %d retries.\n",
718 this_cpu, retries);
719 goto dump_cpu_list_and_out;
720
721fatal_mondo_error:
b830ab66
DM
722 printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
723 this_cpu, status);
724 printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
725 "mondo_block_pa(%lx)\n",
726 this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
727
728dump_cpu_list_and_out:
729 printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
730 for (i = 0; i < cnt; i++)
731 printk("%u ", cpu_list[i]);
732 printk("]\n");
1d2f1f90 733}
a43fe0e7 734
90f7ae8a 735static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
deb16999
DM
736
737static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
738{
90f7ae8a
DM
739 struct trap_per_cpu *tb;
740 int this_cpu, i, cnt;
c02a5119 741 unsigned long flags;
90f7ae8a
DM
742 u16 *cpu_list;
743 u64 *mondo;
c02a5119
DM
744
745 /* We have to do this whole thing with interrupts fully disabled.
746 * Otherwise if we send an xcall from interrupt context it will
747 * corrupt both our mondo block and cpu list state.
748 *
749 * One consequence of this is that we cannot use timeout mechanisms
750 * that depend upon interrupts being delivered locally. So, for
751 * example, we cannot sample jiffies and expect it to advance.
752 *
753 * Fortunately, udelay() uses %stick/%tick so we can use that.
754 */
755 local_irq_save(flags);
90f7ae8a
DM
756
757 this_cpu = smp_processor_id();
758 tb = &trap_block[this_cpu];
759
760 mondo = __va(tb->cpu_mondo_block_pa);
761 mondo[0] = data0;
762 mondo[1] = data1;
763 mondo[2] = data2;
764 wmb();
765
766 cpu_list = __va(tb->cpu_list_pa);
767
768 /* Setup the initial cpu list. */
769 cnt = 0;
8e757281 770 for_each_cpu(i, mask) {
90f7ae8a
DM
771 if (i == this_cpu || !cpu_online(i))
772 continue;
773 cpu_list[cnt++] = i;
774 }
775
776 if (cnt)
777 xcall_deliver_impl(tb, cnt);
778
c02a5119 779 local_irq_restore(flags);
deb16999 780}
5e0797e5 781
91a4231c
DM
782/* Send cross call to all processors mentioned in MASK_P
783 * except self. Really, there are only two cases currently,
784 * "&cpu_online_map" and "&mm->cpu_vm_mask".
1da177e4 785 */
ae583885 786static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
1da177e4
LT
787{
788 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
1da177e4 789
ae583885
DM
790 xcall_deliver(data0, data1, data2, mask);
791}
1da177e4 792
ae583885
DM
793/* Send cross call to all processors except self. */
794static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
795{
796 smp_cross_call_masked(func, ctx, data1, data2, &cpu_online_map);
1da177e4
LT
797}
798
799extern unsigned long xcall_sync_tick;
800
801static void smp_start_sync_tick_client(int cpu)
802{
24445a4a
DM
803 xcall_deliver((u64) &xcall_sync_tick, 0, 0,
804 &cpumask_of_cpu(cpu));
1da177e4
LT
805}
806
1da177e4
LT
807extern unsigned long xcall_call_function;
808
f46df02a 809void arch_send_call_function_ipi_mask(const struct cpumask *mask)
1da177e4 810{
f46df02a 811 xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
d172ad18 812}
1da177e4 813
d172ad18 814extern unsigned long xcall_call_function_single;
1da177e4 815
d172ad18
DM
816void arch_send_call_function_single_ipi(int cpu)
817{
19926630
DM
818 xcall_deliver((u64) &xcall_call_function_single, 0, 0,
819 &cpumask_of_cpu(cpu));
1da177e4
LT
820}
821
822void smp_call_function_client(int irq, struct pt_regs *regs)
823{
d172ad18
DM
824 clear_softint(1 << irq);
825 generic_smp_call_function_interrupt();
826}
1da177e4 827
d172ad18
DM
828void smp_call_function_single_client(int irq, struct pt_regs *regs)
829{
1da177e4 830 clear_softint(1 << irq);
d172ad18 831 generic_smp_call_function_single_interrupt();
1da177e4
LT
832}
833
bd40791e
DM
834static void tsb_sync(void *info)
835{
6f25f398 836 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
bd40791e
DM
837 struct mm_struct *mm = info;
838
6f25f398
DM
839 /* It is not valid to test "currrent->active_mm == mm" here.
840 *
841 * The value of "current" is not changed atomically with
842 * switch_mm(). But that's OK, we just need to check the
843 * current cpu's trap block PGD physical address.
844 */
845 if (tp->pgd_paddr == __pa(mm->pgd))
bd40791e
DM
846 tsb_context_switch(mm);
847}
848
849void smp_tsb_sync(struct mm_struct *mm)
850{
81f1adf0 851 smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
bd40791e
DM
852}
853
1da177e4
LT
854extern unsigned long xcall_flush_tlb_mm;
855extern unsigned long xcall_flush_tlb_pending;
856extern unsigned long xcall_flush_tlb_kernel_range;
93dae5b7 857extern unsigned long xcall_fetch_glob_regs;
1da177e4 858extern unsigned long xcall_receive_signal;
ee29074d 859extern unsigned long xcall_new_mmu_context_version;
e2fdd7fd
DM
860#ifdef CONFIG_KGDB
861extern unsigned long xcall_kgdb_capture;
862#endif
1da177e4
LT
863
864#ifdef DCACHE_ALIASING_POSSIBLE
865extern unsigned long xcall_flush_dcache_page_cheetah;
866#endif
867extern unsigned long xcall_flush_dcache_page_spitfire;
868
869#ifdef CONFIG_DEBUG_DCFLUSH
870extern atomic_t dcpage_flushes;
871extern atomic_t dcpage_flushes_xcall;
872#endif
873
d979f179 874static inline void __local_flush_dcache_page(struct page *page)
1da177e4
LT
875{
876#ifdef DCACHE_ALIASING_POSSIBLE
877 __flush_dcache_page(page_address(page),
878 ((tlb_type == spitfire) &&
879 page_mapping(page) != NULL));
880#else
881 if (page_mapping(page) != NULL &&
882 tlb_type == spitfire)
883 __flush_icache_page(__pa(page_address(page)));
884#endif
885}
886
887void smp_flush_dcache_page_impl(struct page *page, int cpu)
888{
a43fe0e7
DM
889 int this_cpu;
890
891 if (tlb_type == hypervisor)
892 return;
1da177e4
LT
893
894#ifdef CONFIG_DEBUG_DCFLUSH
895 atomic_inc(&dcpage_flushes);
896#endif
a43fe0e7
DM
897
898 this_cpu = get_cpu();
899
1da177e4
LT
900 if (cpu == this_cpu) {
901 __local_flush_dcache_page(page);
902 } else if (cpu_online(cpu)) {
903 void *pg_addr = page_address(page);
622824db 904 u64 data0 = 0;
1da177e4
LT
905
906 if (tlb_type == spitfire) {
622824db 907 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
1da177e4
LT
908 if (page_mapping(page) != NULL)
909 data0 |= ((u64)1 << 32);
a43fe0e7 910 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1da177e4 911#ifdef DCACHE_ALIASING_POSSIBLE
622824db 912 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
1da177e4
LT
913#endif
914 }
622824db
DM
915 if (data0) {
916 xcall_deliver(data0, __pa(pg_addr),
ae583885 917 (u64) pg_addr, &cpumask_of_cpu(cpu));
1da177e4 918#ifdef CONFIG_DEBUG_DCFLUSH
622824db 919 atomic_inc(&dcpage_flushes_xcall);
1da177e4 920#endif
622824db 921 }
1da177e4
LT
922 }
923
924 put_cpu();
925}
926
927void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
928{
622824db 929 void *pg_addr;
a43fe0e7 930 int this_cpu;
622824db 931 u64 data0;
a43fe0e7
DM
932
933 if (tlb_type == hypervisor)
934 return;
935
936 this_cpu = get_cpu();
1da177e4 937
1da177e4
LT
938#ifdef CONFIG_DEBUG_DCFLUSH
939 atomic_inc(&dcpage_flushes);
940#endif
622824db
DM
941 data0 = 0;
942 pg_addr = page_address(page);
1da177e4
LT
943 if (tlb_type == spitfire) {
944 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
945 if (page_mapping(page) != NULL)
946 data0 |= ((u64)1 << 32);
a43fe0e7 947 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1da177e4
LT
948#ifdef DCACHE_ALIASING_POSSIBLE
949 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
1da177e4
LT
950#endif
951 }
622824db
DM
952 if (data0) {
953 xcall_deliver(data0, __pa(pg_addr),
ae583885 954 (u64) pg_addr, &cpu_online_map);
1da177e4 955#ifdef CONFIG_DEBUG_DCFLUSH
622824db 956 atomic_inc(&dcpage_flushes_xcall);
1da177e4 957#endif
622824db 958 }
1da177e4
LT
959 __local_flush_dcache_page(page);
960
961 put_cpu();
962}
963
ee29074d 964void smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
1da177e4 965{
a0663a79 966 struct mm_struct *mm;
ee29074d 967 unsigned long flags;
a0663a79 968
1da177e4 969 clear_softint(1 << irq);
a0663a79
DM
970
971 /* See if we need to allocate a new TLB context because
972 * the version of the one we are using is now out of date.
973 */
974 mm = current->active_mm;
ee29074d
DM
975 if (unlikely(!mm || (mm == &init_mm)))
976 return;
a0663a79 977
ee29074d 978 spin_lock_irqsave(&mm->context.lock, flags);
aac0aadf 979
ee29074d
DM
980 if (unlikely(!CTX_VALID(mm->context)))
981 get_new_mmu_context(mm);
aac0aadf 982
ee29074d 983 spin_unlock_irqrestore(&mm->context.lock, flags);
aac0aadf 984
ee29074d
DM
985 load_secondary_context(mm);
986 __flush_tlb_mm(CTX_HWBITS(mm->context),
987 SECONDARY_CONTEXT);
a0663a79
DM
988}
989
990void smp_new_mmu_context_version(void)
991{
ee29074d 992 smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
1da177e4
LT
993}
994
e2fdd7fd
DM
995#ifdef CONFIG_KGDB
996void kgdb_roundup_cpus(unsigned long flags)
997{
998 smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
999}
1000#endif
1001
93dae5b7
DM
1002void smp_fetch_global_regs(void)
1003{
1004 smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1005}
93dae5b7 1006
1da177e4
LT
1007/* We know that the window frames of the user have been flushed
1008 * to the stack before we get here because all callers of us
1009 * are flush_tlb_*() routines, and these run after flush_cache_*()
1010 * which performs the flushw.
1011 *
1012 * The SMP TLB coherency scheme we use works as follows:
1013 *
1014 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1015 * space has (potentially) executed on, this is the heuristic
1016 * we use to avoid doing cross calls.
1017 *
1018 * Also, for flushing from kswapd and also for clones, we
1019 * use cpu_vm_mask as the list of cpus to make run the TLB.
1020 *
1021 * 2) TLB context numbers are shared globally across all processors
1022 * in the system, this allows us to play several games to avoid
1023 * cross calls.
1024 *
1025 * One invariant is that when a cpu switches to a process, and
1026 * that processes tsk->active_mm->cpu_vm_mask does not have the
1027 * current cpu's bit set, that tlb context is flushed locally.
1028 *
1029 * If the address space is non-shared (ie. mm->count == 1) we avoid
1030 * cross calls when we want to flush the currently running process's
1031 * tlb state. This is done by clearing all cpu bits except the current
f9384d41 1032 * processor's in current->mm->cpu_vm_mask and performing the
1da177e4
LT
1033 * flush locally only. This will force any subsequent cpus which run
1034 * this task to flush the context from the local tlb if the process
1035 * migrates to another cpu (again).
1036 *
1037 * 3) For shared address spaces (threads) and swapping we bite the
1038 * bullet for most cases and perform the cross call (but only to
1039 * the cpus listed in cpu_vm_mask).
1040 *
1041 * The performance gain from "optimizing" away the cross call for threads is
1042 * questionable (in theory the big win for threads is the massive sharing of
1043 * address space state across processors).
1044 */
62dbec78
DM
1045
1046/* This currently is only used by the hugetlb arch pre-fault
1047 * hook on UltraSPARC-III+ and later when changing the pagesize
1048 * bits of the context register for an address space.
1049 */
1da177e4
LT
1050void smp_flush_tlb_mm(struct mm_struct *mm)
1051{
62dbec78
DM
1052 u32 ctx = CTX_HWBITS(mm->context);
1053 int cpu = get_cpu();
1da177e4 1054
62dbec78 1055 if (atomic_read(&mm->mm_users) == 1) {
81f1adf0 1056 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
62dbec78
DM
1057 goto local_flush_and_out;
1058 }
1da177e4 1059
62dbec78
DM
1060 smp_cross_call_masked(&xcall_flush_tlb_mm,
1061 ctx, 0, 0,
81f1adf0 1062 mm_cpumask(mm));
1da177e4 1063
62dbec78
DM
1064local_flush_and_out:
1065 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1da177e4 1066
62dbec78 1067 put_cpu();
1da177e4
LT
1068}
1069
1070void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1071{
1072 u32 ctx = CTX_HWBITS(mm->context);
1073 int cpu = get_cpu();
1074
f9384d41 1075 if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
81f1adf0 1076 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
dedeb002
HD
1077 else
1078 smp_cross_call_masked(&xcall_flush_tlb_pending,
1079 ctx, nr, (unsigned long) vaddrs,
81f1adf0 1080 mm_cpumask(mm));
1da177e4 1081
1da177e4
LT
1082 __flush_tlb_pending(ctx, nr, vaddrs);
1083
1084 put_cpu();
1085}
1086
1087void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1088{
1089 start &= PAGE_MASK;
1090 end = PAGE_ALIGN(end);
1091 if (start != end) {
1092 smp_cross_call(&xcall_flush_tlb_kernel_range,
1093 0, start, end);
1094
1095 __flush_tlb_kernel_range(start, end);
1096 }
1097}
1098
1099/* CPU capture. */
1100/* #define CAPTURE_DEBUG */
1101extern unsigned long xcall_capture;
1102
1103static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1104static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1105static unsigned long penguins_are_doing_time;
1106
1107void smp_capture(void)
1108{
1109 int result = atomic_add_ret(1, &smp_capture_depth);
1110
1111 if (result == 1) {
1112 int ncpus = num_online_cpus();
1113
1114#ifdef CAPTURE_DEBUG
1115 printk("CPU[%d]: Sending penguins to jail...",
1116 smp_processor_id());
1117#endif
1118 penguins_are_doing_time = 1;
1da177e4
LT
1119 atomic_inc(&smp_capture_registry);
1120 smp_cross_call(&xcall_capture, 0, 0, 0);
1121 while (atomic_read(&smp_capture_registry) != ncpus)
4f07118f 1122 rmb();
1da177e4
LT
1123#ifdef CAPTURE_DEBUG
1124 printk("done\n");
1125#endif
1126 }
1127}
1128
1129void smp_release(void)
1130{
1131 if (atomic_dec_and_test(&smp_capture_depth)) {
1132#ifdef CAPTURE_DEBUG
1133 printk("CPU[%d]: Giving pardon to "
1134 "imprisoned penguins\n",
1135 smp_processor_id());
1136#endif
1137 penguins_are_doing_time = 0;
293666b7 1138 membar_safe("#StoreLoad");
1da177e4
LT
1139 atomic_dec(&smp_capture_registry);
1140 }
1141}
1142
b4f4372f
DM
1143/* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1144 * set, so they can service tlb flush xcalls...
1da177e4
LT
1145 */
1146extern void prom_world(int);
96c6e0d8 1147
1da177e4
LT
1148void smp_penguin_jailcell(int irq, struct pt_regs *regs)
1149{
1da177e4
LT
1150 clear_softint(1 << irq);
1151
1152 preempt_disable();
1153
1154 __asm__ __volatile__("flushw");
1da177e4
LT
1155 prom_world(1);
1156 atomic_inc(&smp_capture_registry);
293666b7 1157 membar_safe("#StoreLoad");
1da177e4 1158 while (penguins_are_doing_time)
4f07118f 1159 rmb();
1da177e4
LT
1160 atomic_dec(&smp_capture_registry);
1161 prom_world(0);
1162
1163 preempt_enable();
1164}
1165
1da177e4 1166/* /proc/profile writes can call this, don't __init it please. */
1da177e4
LT
1167int setup_profiling_timer(unsigned int multiplier)
1168{
777a4475 1169 return -EINVAL;
1da177e4
LT
1170}
1171
1172void __init smp_prepare_cpus(unsigned int max_cpus)
1173{
1da177e4
LT
1174}
1175
5cbc3073 1176void __devinit smp_prepare_boot_cpu(void)
7abea921 1177{
7abea921
DM
1178}
1179
5e0797e5
DM
1180void __init smp_setup_processor_id(void)
1181{
1182 if (tlb_type == spitfire)
deb16999 1183 xcall_deliver_impl = spitfire_xcall_deliver;
5e0797e5 1184 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
deb16999 1185 xcall_deliver_impl = cheetah_xcall_deliver;
5e0797e5 1186 else
deb16999 1187 xcall_deliver_impl = hypervisor_xcall_deliver;
5e0797e5
DM
1188}
1189
5cbc3073 1190void __devinit smp_fill_in_sib_core_maps(void)
1da177e4 1191{
5cbc3073
DM
1192 unsigned int i;
1193
e0204409 1194 for_each_present_cpu(i) {
5cbc3073
DM
1195 unsigned int j;
1196
39dd992a 1197 cpus_clear(cpu_core_map[i]);
5cbc3073 1198 if (cpu_data(i).core_id == 0) {
f78eae2e 1199 cpu_set(i, cpu_core_map[i]);
5cbc3073
DM
1200 continue;
1201 }
1202
e0204409 1203 for_each_present_cpu(j) {
5cbc3073
DM
1204 if (cpu_data(i).core_id ==
1205 cpu_data(j).core_id)
f78eae2e
DM
1206 cpu_set(j, cpu_core_map[i]);
1207 }
1208 }
1209
e0204409 1210 for_each_present_cpu(i) {
f78eae2e
DM
1211 unsigned int j;
1212
d5a7430d 1213 cpus_clear(per_cpu(cpu_sibling_map, i));
f78eae2e 1214 if (cpu_data(i).proc_id == -1) {
d5a7430d 1215 cpu_set(i, per_cpu(cpu_sibling_map, i));
f78eae2e
DM
1216 continue;
1217 }
1218
e0204409 1219 for_each_present_cpu(j) {
f78eae2e
DM
1220 if (cpu_data(i).proc_id ==
1221 cpu_data(j).proc_id)
d5a7430d 1222 cpu_set(j, per_cpu(cpu_sibling_map, i));
5cbc3073
DM
1223 }
1224 }
1da177e4
LT
1225}
1226
b282b6f8 1227int __cpuinit __cpu_up(unsigned int cpu)
1da177e4
LT
1228{
1229 int ret = smp_boot_one_cpu(cpu);
1230
1231 if (!ret) {
1232 cpu_set(cpu, smp_commenced_mask);
1233 while (!cpu_isset(cpu, cpu_online_map))
1234 mb();
1235 if (!cpu_isset(cpu, cpu_online_map)) {
1236 ret = -ENODEV;
1237 } else {
02fead75
DM
1238 /* On SUN4V, writes to %tick and %stick are
1239 * not allowed.
1240 */
1241 if (tlb_type != hypervisor)
1242 smp_synchronize_one_tick(cpu);
1da177e4
LT
1243 }
1244 }
1245 return ret;
1246}
1247
4f0234f4 1248#ifdef CONFIG_HOTPLUG_CPU
e0204409
DM
1249void cpu_play_dead(void)
1250{
1251 int cpu = smp_processor_id();
1252 unsigned long pstate;
1253
1254 idle_task_exit();
1255
1256 if (tlb_type == hypervisor) {
1257 struct trap_per_cpu *tb = &trap_block[cpu];
1258
1259 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1260 tb->cpu_mondo_pa, 0);
1261 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1262 tb->dev_mondo_pa, 0);
1263 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1264 tb->resum_mondo_pa, 0);
1265 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1266 tb->nonresum_mondo_pa, 0);
1267 }
1268
1269 cpu_clear(cpu, smp_commenced_mask);
1270 membar_safe("#Sync");
1271
1272 local_irq_disable();
1273
1274 __asm__ __volatile__(
1275 "rdpr %%pstate, %0\n\t"
1276 "wrpr %0, %1, %%pstate"
1277 : "=r" (pstate)
1278 : "i" (PSTATE_IE));
1279
1280 while (1)
1281 barrier();
1282}
1283
4f0234f4
DM
1284int __cpu_disable(void)
1285{
e0204409
DM
1286 int cpu = smp_processor_id();
1287 cpuinfo_sparc *c;
1288 int i;
1289
1290 for_each_cpu_mask(i, cpu_core_map[cpu])
1291 cpu_clear(cpu, cpu_core_map[i]);
1292 cpus_clear(cpu_core_map[cpu]);
1293
d5a7430d
MT
1294 for_each_cpu_mask(i, per_cpu(cpu_sibling_map, cpu))
1295 cpu_clear(cpu, per_cpu(cpu_sibling_map, i));
1296 cpus_clear(per_cpu(cpu_sibling_map, cpu));
e0204409
DM
1297
1298 c = &cpu_data(cpu);
1299
1300 c->core_id = 0;
1301 c->proc_id = -1;
1302
e0204409
DM
1303 smp_wmb();
1304
1305 /* Make sure no interrupts point to this cpu. */
1306 fixup_irqs();
1307
1308 local_irq_enable();
1309 mdelay(1);
1310 local_irq_disable();
1311
4d084617
PM
1312 ipi_call_lock();
1313 cpu_clear(cpu, cpu_online_map);
1314 ipi_call_unlock();
1315
e0204409 1316 return 0;
4f0234f4
DM
1317}
1318
1319void __cpu_die(unsigned int cpu)
1320{
e0204409
DM
1321 int i;
1322
1323 for (i = 0; i < 100; i++) {
1324 smp_rmb();
1325 if (!cpu_isset(cpu, smp_commenced_mask))
1326 break;
1327 msleep(100);
1328 }
1329 if (cpu_isset(cpu, smp_commenced_mask)) {
1330 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1331 } else {
1332#if defined(CONFIG_SUN_LDOMS)
1333 unsigned long hv_err;
1334 int limit = 100;
1335
1336 do {
1337 hv_err = sun4v_cpu_stop(cpu);
1338 if (hv_err == HV_EOK) {
1339 cpu_clear(cpu, cpu_present_map);
1340 break;
1341 }
1342 } while (--limit > 0);
1343 if (limit <= 0) {
1344 printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1345 hv_err);
1346 }
1347#endif
1348 }
4f0234f4
DM
1349}
1350#endif
1351
1da177e4
LT
1352void __init smp_cpus_done(unsigned int max_cpus)
1353{
1da177e4
LT
1354}
1355
1da177e4
LT
1356void smp_send_reschedule(int cpu)
1357{
19926630
DM
1358 xcall_deliver((u64) &xcall_receive_signal, 0, 0,
1359 &cpumask_of_cpu(cpu));
1360}
1361
1362void smp_receive_signal_client(int irq, struct pt_regs *regs)
1363{
1364 clear_softint(1 << irq);
1da177e4
LT
1365}
1366
1367/* This is a nop because we capture all other cpus
1368 * anyways when making the PROM active.
1369 */
1370void smp_send_stop(void)
1371{
1372}
1373
73fffc03 1374void __init setup_per_cpu_areas(void)
1da177e4 1375{
73fffc03 1376 unsigned long base, shift, goal, size, i;
1da177e4 1377 char *ptr;
1da177e4
LT
1378
1379 /* Copy section for each CPU (we discard the original) */
5a089006
DM
1380 goal = PERCPU_ENOUGH_ROOM;
1381
5a5488d3 1382 shift = PAGE_SHIFT;
b6e3590f 1383 for (size = PAGE_SIZE; size < goal; size <<= 1UL)
5a5488d3 1384 shift++;
1da177e4 1385
73fffc03
DM
1386 ptr = __alloc_bootmem(size * NR_CPUS, PAGE_SIZE, 0);
1387 if (!ptr) {
b9709456
DM
1388 prom_printf("Cannot allocate per-cpu memory.\n");
1389 prom_halt();
1390 }
1da177e4 1391
5a5488d3 1392 base = ptr - __per_cpu_start;
1da177e4 1393
5a5488d3
DM
1394 for (i = 0; i < NR_CPUS; i++, ptr += size) {
1395 __per_cpu_offset(i) = base + (i * size);
1da177e4 1396 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
5a5488d3 1397 }
951bc82c
DM
1398
1399 /* Setup %g5 for the boot cpu. */
1400 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
b696fdc2
DM
1401
1402 of_fill_in_cpu_data();
1403 if (tlb_type == hypervisor)
1404 mdesc_fill_in_cpu_data(CPU_MASK_ALL_PTR);
1da177e4 1405}
This page took 0.611732 seconds and 5 git commands to generate.