[SPARC64]: Unify timer interrupt handler.
[deliverable/linux.git] / arch / sparc64 / kernel / smp.c
CommitLineData
1da177e4
LT
1/* smp.c: Sparc64 SMP support.
2 *
3 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
4 */
5
6#include <linux/module.h>
7#include <linux/kernel.h>
8#include <linux/sched.h>
9#include <linux/mm.h>
10#include <linux/pagemap.h>
11#include <linux/threads.h>
12#include <linux/smp.h>
13#include <linux/smp_lock.h>
14#include <linux/interrupt.h>
15#include <linux/kernel_stat.h>
16#include <linux/delay.h>
17#include <linux/init.h>
18#include <linux/spinlock.h>
19#include <linux/fs.h>
20#include <linux/seq_file.h>
21#include <linux/cache.h>
22#include <linux/jiffies.h>
23#include <linux/profile.h>
24#include <linux/bootmem.h>
25
26#include <asm/head.h>
27#include <asm/ptrace.h>
28#include <asm/atomic.h>
29#include <asm/tlbflush.h>
30#include <asm/mmu_context.h>
31#include <asm/cpudata.h>
32
33#include <asm/irq.h>
6d24c8dc 34#include <asm/irq_regs.h>
1da177e4
LT
35#include <asm/page.h>
36#include <asm/pgtable.h>
37#include <asm/oplib.h>
38#include <asm/uaccess.h>
39#include <asm/timer.h>
40#include <asm/starfire.h>
41#include <asm/tlb.h>
56fb4df6 42#include <asm/sections.h>
07f8e5f3 43#include <asm/prom.h>
1da177e4 44
1da177e4
LT
45extern void calibrate_delay(void);
46
47/* Please don't make this stuff initdata!!! --DaveM */
777a4475 48unsigned char boot_cpu_id;
1da177e4 49
c12a8289
AM
50cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE;
51cpumask_t phys_cpu_present_map __read_mostly = CPU_MASK_NONE;
8935dced
DM
52cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly =
53 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
1da177e4
LT
54static cpumask_t smp_commenced_mask;
55static cpumask_t cpu_callout_map;
56
57void smp_info(struct seq_file *m)
58{
59 int i;
60
61 seq_printf(m, "State:\n");
394e3902
AM
62 for_each_online_cpu(i)
63 seq_printf(m, "CPU%d:\t\tonline\n", i);
1da177e4
LT
64}
65
66void smp_bogo(struct seq_file *m)
67{
68 int i;
69
394e3902
AM
70 for_each_online_cpu(i)
71 seq_printf(m,
72 "Cpu%dBogo\t: %lu.%02lu\n"
73 "Cpu%dClkTck\t: %016lx\n",
74 i, cpu_data(i).udelay_val / (500000/HZ),
75 (cpu_data(i).udelay_val / (5000/HZ)) % 100,
76 i, cpu_data(i).clock_tick);
1da177e4
LT
77}
78
79void __init smp_store_cpu_info(int id)
80{
07f8e5f3
DM
81 struct device_node *dp;
82 int def;
1da177e4 83
1da177e4
LT
84 cpu_data(id).udelay_val = loops_per_jiffy;
85
07f8e5f3
DM
86 cpu_find_by_mid(id, &dp);
87 cpu_data(id).clock_tick =
88 of_getintprop_default(dp, "clock-frequency", 0);
1da177e4 89
f03b8a54 90 def = ((tlb_type == hypervisor) ? (8 * 1024) : (16 * 1024));
07f8e5f3
DM
91 cpu_data(id).dcache_size =
92 of_getintprop_default(dp, "dcache-size", def);
f03b8a54
DM
93
94 def = 32;
80dc0d6b 95 cpu_data(id).dcache_line_size =
07f8e5f3 96 of_getintprop_default(dp, "dcache-line-size", def);
f03b8a54
DM
97
98 def = 16 * 1024;
07f8e5f3
DM
99 cpu_data(id).icache_size =
100 of_getintprop_default(dp, "icache-size", def);
f03b8a54
DM
101
102 def = 32;
80dc0d6b 103 cpu_data(id).icache_line_size =
07f8e5f3 104 of_getintprop_default(dp, "icache-line-size", def);
f03b8a54
DM
105
106 def = ((tlb_type == hypervisor) ?
107 (3 * 1024 * 1024) :
108 (4 * 1024 * 1024));
07f8e5f3
DM
109 cpu_data(id).ecache_size =
110 of_getintprop_default(dp, "ecache-size", def);
f03b8a54
DM
111
112 def = 64;
80dc0d6b 113 cpu_data(id).ecache_line_size =
07f8e5f3 114 of_getintprop_default(dp, "ecache-line-size", def);
f03b8a54 115
80dc0d6b
DM
116 printk("CPU[%d]: Caches "
117 "D[sz(%d):line_sz(%d)] "
118 "I[sz(%d):line_sz(%d)] "
119 "E[sz(%d):line_sz(%d)]\n",
120 id,
121 cpu_data(id).dcache_size, cpu_data(id).dcache_line_size,
122 cpu_data(id).icache_size, cpu_data(id).icache_line_size,
123 cpu_data(id).ecache_size, cpu_data(id).ecache_line_size);
1da177e4
LT
124}
125
126static void smp_setup_percpu_timer(void);
127
128static volatile unsigned long callin_flag = 0;
129
1da177e4
LT
130void __init smp_callin(void)
131{
132 int cpuid = hard_smp_processor_id();
133
56fb4df6 134 __local_per_cpu_offset = __per_cpu_offset(cpuid);
1da177e4 135
4a07e646 136 if (tlb_type == hypervisor)
490384e7 137 sun4v_ktsb_register();
481295f9 138
56fb4df6 139 __flush_tlb_all();
1da177e4
LT
140
141 smp_setup_percpu_timer();
142
816242da
DM
143 if (cheetah_pcache_forced_on)
144 cheetah_enable_pcache();
145
1da177e4
LT
146 local_irq_enable();
147
148 calibrate_delay();
149 smp_store_cpu_info(cpuid);
150 callin_flag = 1;
151 __asm__ __volatile__("membar #Sync\n\t"
152 "flush %%g6" : : : "memory");
153
154 /* Clear this or we will die instantly when we
155 * schedule back to this idler...
156 */
db7d9a4e 157 current_thread_info()->new_child = 0;
1da177e4
LT
158
159 /* Attach to the address space of init_task. */
160 atomic_inc(&init_mm.mm_count);
161 current->active_mm = &init_mm;
162
163 while (!cpu_isset(cpuid, smp_commenced_mask))
4f07118f 164 rmb();
1da177e4
LT
165
166 cpu_set(cpuid, cpu_online_map);
5bfb5d69
NP
167
168 /* idle thread is expected to have preempt disabled */
169 preempt_disable();
1da177e4
LT
170}
171
172void cpu_panic(void)
173{
174 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
175 panic("SMP bolixed\n");
176}
177
d369ddd2 178static unsigned long current_tick_offset __read_mostly;
1da177e4
LT
179
180/* This tick register synchronization scheme is taken entirely from
181 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
182 *
183 * The only change I've made is to rework it so that the master
184 * initiates the synchonization instead of the slave. -DaveM
185 */
186
187#define MASTER 0
188#define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
189
190#define NUM_ROUNDS 64 /* magic value */
191#define NUM_ITERS 5 /* likewise */
192
193static DEFINE_SPINLOCK(itc_sync_lock);
194static unsigned long go[SLAVE + 1];
195
196#define DEBUG_TICK_SYNC 0
197
198static inline long get_delta (long *rt, long *master)
199{
200 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
201 unsigned long tcenter, t0, t1, tm;
202 unsigned long i;
203
204 for (i = 0; i < NUM_ITERS; i++) {
205 t0 = tick_ops->get_tick();
206 go[MASTER] = 1;
4f07118f 207 membar_storeload();
1da177e4 208 while (!(tm = go[SLAVE]))
4f07118f 209 rmb();
1da177e4 210 go[SLAVE] = 0;
4f07118f 211 wmb();
1da177e4
LT
212 t1 = tick_ops->get_tick();
213
214 if (t1 - t0 < best_t1 - best_t0)
215 best_t0 = t0, best_t1 = t1, best_tm = tm;
216 }
217
218 *rt = best_t1 - best_t0;
219 *master = best_tm - best_t0;
220
221 /* average best_t0 and best_t1 without overflow: */
222 tcenter = (best_t0/2 + best_t1/2);
223 if (best_t0 % 2 + best_t1 % 2 == 2)
224 tcenter++;
225 return tcenter - best_tm;
226}
227
228void smp_synchronize_tick_client(void)
229{
230 long i, delta, adj, adjust_latency = 0, done = 0;
231 unsigned long flags, rt, master_time_stamp, bound;
232#if DEBUG_TICK_SYNC
233 struct {
234 long rt; /* roundtrip time */
235 long master; /* master's timestamp */
236 long diff; /* difference between midpoint and master's timestamp */
237 long lat; /* estimate of itc adjustment latency */
238 } t[NUM_ROUNDS];
239#endif
240
241 go[MASTER] = 1;
242
243 while (go[MASTER])
4f07118f 244 rmb();
1da177e4
LT
245
246 local_irq_save(flags);
247 {
248 for (i = 0; i < NUM_ROUNDS; i++) {
249 delta = get_delta(&rt, &master_time_stamp);
250 if (delta == 0) {
251 done = 1; /* let's lock on to this... */
252 bound = rt;
253 }
254
255 if (!done) {
256 if (i > 0) {
257 adjust_latency += -delta;
258 adj = -delta + adjust_latency/4;
259 } else
260 adj = -delta;
261
262 tick_ops->add_tick(adj, current_tick_offset);
263 }
264#if DEBUG_TICK_SYNC
265 t[i].rt = rt;
266 t[i].master = master_time_stamp;
267 t[i].diff = delta;
268 t[i].lat = adjust_latency/4;
269#endif
270 }
271 }
272 local_irq_restore(flags);
273
274#if DEBUG_TICK_SYNC
275 for (i = 0; i < NUM_ROUNDS; i++)
276 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
277 t[i].rt, t[i].master, t[i].diff, t[i].lat);
278#endif
279
280 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU (last diff %ld cycles,"
281 "maxerr %lu cycles)\n", smp_processor_id(), delta, rt);
282}
283
284static void smp_start_sync_tick_client(int cpu);
285
286static void smp_synchronize_one_tick(int cpu)
287{
288 unsigned long flags, i;
289
290 go[MASTER] = 0;
291
292 smp_start_sync_tick_client(cpu);
293
294 /* wait for client to be ready */
295 while (!go[MASTER])
4f07118f 296 rmb();
1da177e4
LT
297
298 /* now let the client proceed into his loop */
299 go[MASTER] = 0;
4f07118f 300 membar_storeload();
1da177e4
LT
301
302 spin_lock_irqsave(&itc_sync_lock, flags);
303 {
304 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
305 while (!go[MASTER])
4f07118f 306 rmb();
1da177e4 307 go[MASTER] = 0;
4f07118f 308 wmb();
1da177e4 309 go[SLAVE] = tick_ops->get_tick();
4f07118f 310 membar_storeload();
1da177e4
LT
311 }
312 }
313 spin_unlock_irqrestore(&itc_sync_lock, flags);
314}
315
72aff53f
DM
316extern void sun4v_init_mondo_queues(int use_bootmem, int cpu, int alloc, int load);
317
1da177e4
LT
318extern unsigned long sparc64_cpu_startup;
319
320/* The OBP cpu startup callback truncates the 3rd arg cookie to
321 * 32-bits (I think) so to be safe we have it read the pointer
322 * contained here so we work on >4GB machines. -DaveM
323 */
324static struct thread_info *cpu_new_thread = NULL;
325
326static int __devinit smp_boot_one_cpu(unsigned int cpu)
327{
328 unsigned long entry =
329 (unsigned long)(&sparc64_cpu_startup);
330 unsigned long cookie =
331 (unsigned long)(&cpu_new_thread);
332 struct task_struct *p;
7890f794 333 int timeout, ret;
1da177e4
LT
334
335 p = fork_idle(cpu);
336 callin_flag = 0;
f3169641 337 cpu_new_thread = task_thread_info(p);
1da177e4
LT
338 cpu_set(cpu, cpu_callout_map);
339
7890f794 340 if (tlb_type == hypervisor) {
72aff53f
DM
341 /* Alloc the mondo queues, cpu will load them. */
342 sun4v_init_mondo_queues(0, cpu, 1, 0);
343
7890f794
DM
344 prom_startcpu_cpuid(cpu, entry, cookie);
345 } else {
07f8e5f3 346 struct device_node *dp;
7890f794 347
07f8e5f3
DM
348 cpu_find_by_mid(cpu, &dp);
349 prom_startcpu(dp->node, entry, cookie);
7890f794 350 }
1da177e4
LT
351
352 for (timeout = 0; timeout < 5000000; timeout++) {
353 if (callin_flag)
354 break;
355 udelay(100);
356 }
72aff53f 357
1da177e4
LT
358 if (callin_flag) {
359 ret = 0;
360 } else {
361 printk("Processor %d is stuck.\n", cpu);
362 cpu_clear(cpu, cpu_callout_map);
363 ret = -ENODEV;
364 }
365 cpu_new_thread = NULL;
366
367 return ret;
368}
369
370static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
371{
372 u64 result, target;
373 int stuck, tmp;
374
375 if (this_is_starfire) {
376 /* map to real upaid */
377 cpu = (((cpu & 0x3c) << 1) |
378 ((cpu & 0x40) >> 4) |
379 (cpu & 0x3));
380 }
381
382 target = (cpu << 14) | 0x70;
383again:
384 /* Ok, this is the real Spitfire Errata #54.
385 * One must read back from a UDB internal register
386 * after writes to the UDB interrupt dispatch, but
387 * before the membar Sync for that write.
388 * So we use the high UDB control register (ASI 0x7f,
389 * ADDR 0x20) for the dummy read. -DaveM
390 */
391 tmp = 0x40;
392 __asm__ __volatile__(
393 "wrpr %1, %2, %%pstate\n\t"
394 "stxa %4, [%0] %3\n\t"
395 "stxa %5, [%0+%8] %3\n\t"
396 "add %0, %8, %0\n\t"
397 "stxa %6, [%0+%8] %3\n\t"
398 "membar #Sync\n\t"
399 "stxa %%g0, [%7] %3\n\t"
400 "membar #Sync\n\t"
401 "mov 0x20, %%g1\n\t"
402 "ldxa [%%g1] 0x7f, %%g0\n\t"
403 "membar #Sync"
404 : "=r" (tmp)
405 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
406 "r" (data0), "r" (data1), "r" (data2), "r" (target),
407 "r" (0x10), "0" (tmp)
408 : "g1");
409
410 /* NOTE: PSTATE_IE is still clear. */
411 stuck = 100000;
412 do {
413 __asm__ __volatile__("ldxa [%%g0] %1, %0"
414 : "=r" (result)
415 : "i" (ASI_INTR_DISPATCH_STAT));
416 if (result == 0) {
417 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
418 : : "r" (pstate));
419 return;
420 }
421 stuck -= 1;
422 if (stuck == 0)
423 break;
424 } while (result & 0x1);
425 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
426 : : "r" (pstate));
427 if (stuck == 0) {
428 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
429 smp_processor_id(), result);
430 } else {
431 udelay(2);
432 goto again;
433 }
434}
435
436static __inline__ void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
437{
438 u64 pstate;
439 int i;
440
441 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
442 for_each_cpu_mask(i, mask)
443 spitfire_xcall_helper(data0, data1, data2, pstate, i);
444}
445
446/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
447 * packet, but we have no use for that. However we do take advantage of
448 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
449 */
450static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
451{
452 u64 pstate, ver;
92704a1c 453 int nack_busy_id, is_jbus;
1da177e4
LT
454
455 if (cpus_empty(mask))
456 return;
457
458 /* Unfortunately, someone at Sun had the brilliant idea to make the
459 * busy/nack fields hard-coded by ITID number for this Ultra-III
460 * derivative processor.
461 */
462 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
92704a1c
DM
463 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
464 (ver >> 32) == __SERRANO_ID);
1da177e4
LT
465
466 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
467
468retry:
469 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
470 : : "r" (pstate), "i" (PSTATE_IE));
471
472 /* Setup the dispatch data registers. */
473 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
474 "stxa %1, [%4] %6\n\t"
475 "stxa %2, [%5] %6\n\t"
476 "membar #Sync\n\t"
477 : /* no outputs */
478 : "r" (data0), "r" (data1), "r" (data2),
479 "r" (0x40), "r" (0x50), "r" (0x60),
480 "i" (ASI_INTR_W));
481
482 nack_busy_id = 0;
483 {
484 int i;
485
486 for_each_cpu_mask(i, mask) {
487 u64 target = (i << 14) | 0x70;
488
92704a1c 489 if (!is_jbus)
1da177e4
LT
490 target |= (nack_busy_id << 24);
491 __asm__ __volatile__(
492 "stxa %%g0, [%0] %1\n\t"
493 "membar #Sync\n\t"
494 : /* no outputs */
495 : "r" (target), "i" (ASI_INTR_W));
496 nack_busy_id++;
497 }
498 }
499
500 /* Now, poll for completion. */
501 {
502 u64 dispatch_stat;
503 long stuck;
504
505 stuck = 100000 * nack_busy_id;
506 do {
507 __asm__ __volatile__("ldxa [%%g0] %1, %0"
508 : "=r" (dispatch_stat)
509 : "i" (ASI_INTR_DISPATCH_STAT));
510 if (dispatch_stat == 0UL) {
511 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
512 : : "r" (pstate));
513 return;
514 }
515 if (!--stuck)
516 break;
517 } while (dispatch_stat & 0x5555555555555555UL);
518
519 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
520 : : "r" (pstate));
521
522 if ((dispatch_stat & ~(0x5555555555555555UL)) == 0) {
523 /* Busy bits will not clear, continue instead
524 * of freezing up on this cpu.
525 */
526 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
527 smp_processor_id(), dispatch_stat);
528 } else {
529 int i, this_busy_nack = 0;
530
531 /* Delay some random time with interrupts enabled
532 * to prevent deadlock.
533 */
534 udelay(2 * nack_busy_id);
535
536 /* Clear out the mask bits for cpus which did not
537 * NACK us.
538 */
539 for_each_cpu_mask(i, mask) {
540 u64 check_mask;
541
92704a1c 542 if (is_jbus)
1da177e4
LT
543 check_mask = (0x2UL << (2*i));
544 else
545 check_mask = (0x2UL <<
546 this_busy_nack);
547 if ((dispatch_stat & check_mask) == 0)
548 cpu_clear(i, mask);
549 this_busy_nack += 2;
550 }
551
552 goto retry;
553 }
554 }
555}
556
1d2f1f90 557/* Multi-cpu list version. */
a43fe0e7
DM
558static void hypervisor_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
559{
b830ab66
DM
560 struct trap_per_cpu *tb;
561 u16 *cpu_list;
562 u64 *mondo;
563 cpumask_t error_mask;
564 unsigned long flags, status;
3cab0c3e 565 int cnt, retries, this_cpu, prev_sent, i;
b830ab66
DM
566
567 /* We have to do this whole thing with interrupts fully disabled.
568 * Otherwise if we send an xcall from interrupt context it will
569 * corrupt both our mondo block and cpu list state.
570 *
571 * One consequence of this is that we cannot use timeout mechanisms
572 * that depend upon interrupts being delivered locally. So, for
573 * example, we cannot sample jiffies and expect it to advance.
574 *
575 * Fortunately, udelay() uses %stick/%tick so we can use that.
576 */
577 local_irq_save(flags);
578
579 this_cpu = smp_processor_id();
580 tb = &trap_block[this_cpu];
1d2f1f90 581
b830ab66 582 mondo = __va(tb->cpu_mondo_block_pa);
1d2f1f90
DM
583 mondo[0] = data0;
584 mondo[1] = data1;
585 mondo[2] = data2;
586 wmb();
587
b830ab66
DM
588 cpu_list = __va(tb->cpu_list_pa);
589
590 /* Setup the initial cpu list. */
591 cnt = 0;
592 for_each_cpu_mask(i, mask)
593 cpu_list[cnt++] = i;
594
595 cpus_clear(error_mask);
1d2f1f90 596 retries = 0;
3cab0c3e 597 prev_sent = 0;
1d2f1f90 598 do {
3cab0c3e 599 int forward_progress, n_sent;
1d2f1f90 600
b830ab66
DM
601 status = sun4v_cpu_mondo_send(cnt,
602 tb->cpu_list_pa,
603 tb->cpu_mondo_block_pa);
604
605 /* HV_EOK means all cpus received the xcall, we're done. */
606 if (likely(status == HV_EOK))
1d2f1f90 607 break;
b830ab66 608
3cab0c3e
DM
609 /* First, see if we made any forward progress.
610 *
611 * The hypervisor indicates successful sends by setting
612 * cpu list entries to the value 0xffff.
b830ab66 613 */
3cab0c3e 614 n_sent = 0;
b830ab66 615 for (i = 0; i < cnt; i++) {
3cab0c3e
DM
616 if (likely(cpu_list[i] == 0xffff))
617 n_sent++;
1d2f1f90
DM
618 }
619
3cab0c3e
DM
620 forward_progress = 0;
621 if (n_sent > prev_sent)
622 forward_progress = 1;
623
624 prev_sent = n_sent;
625
b830ab66
DM
626 /* If we get a HV_ECPUERROR, then one or more of the cpus
627 * in the list are in error state. Use the cpu_state()
628 * hypervisor call to find out which cpus are in error state.
629 */
630 if (unlikely(status == HV_ECPUERROR)) {
631 for (i = 0; i < cnt; i++) {
632 long err;
633 u16 cpu;
634
635 cpu = cpu_list[i];
636 if (cpu == 0xffff)
637 continue;
638
639 err = sun4v_cpu_state(cpu);
640 if (err >= 0 &&
641 err == HV_CPU_STATE_ERROR) {
3cab0c3e 642 cpu_list[i] = 0xffff;
b830ab66
DM
643 cpu_set(cpu, error_mask);
644 }
645 }
646 } else if (unlikely(status != HV_EWOULDBLOCK))
647 goto fatal_mondo_error;
648
3cab0c3e
DM
649 /* Don't bother rewriting the CPU list, just leave the
650 * 0xffff and non-0xffff entries in there and the
651 * hypervisor will do the right thing.
652 *
653 * Only advance timeout state if we didn't make any
654 * forward progress.
655 */
b830ab66
DM
656 if (unlikely(!forward_progress)) {
657 if (unlikely(++retries > 10000))
658 goto fatal_mondo_timeout;
659
660 /* Delay a little bit to let other cpus catch up
661 * on their cpu mondo queue work.
662 */
663 udelay(2 * cnt);
664 }
1d2f1f90
DM
665 } while (1);
666
b830ab66
DM
667 local_irq_restore(flags);
668
669 if (unlikely(!cpus_empty(error_mask)))
670 goto fatal_mondo_cpu_error;
671
672 return;
673
674fatal_mondo_cpu_error:
675 printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
676 "were in error state\n",
677 this_cpu);
678 printk(KERN_CRIT "CPU[%d]: Error mask [ ", this_cpu);
679 for_each_cpu_mask(i, error_mask)
680 printk("%d ", i);
681 printk("]\n");
682 return;
683
684fatal_mondo_timeout:
685 local_irq_restore(flags);
686 printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
687 " progress after %d retries.\n",
688 this_cpu, retries);
689 goto dump_cpu_list_and_out;
690
691fatal_mondo_error:
692 local_irq_restore(flags);
693 printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
694 this_cpu, status);
695 printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
696 "mondo_block_pa(%lx)\n",
697 this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
698
699dump_cpu_list_and_out:
700 printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
701 for (i = 0; i < cnt; i++)
702 printk("%u ", cpu_list[i]);
703 printk("]\n");
1d2f1f90 704}
a43fe0e7 705
1da177e4
LT
706/* Send cross call to all processors mentioned in MASK
707 * except self.
708 */
709static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask)
710{
711 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
712 int this_cpu = get_cpu();
713
714 cpus_and(mask, mask, cpu_online_map);
715 cpu_clear(this_cpu, mask);
716
717 if (tlb_type == spitfire)
718 spitfire_xcall_deliver(data0, data1, data2, mask);
a43fe0e7 719 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1da177e4 720 cheetah_xcall_deliver(data0, data1, data2, mask);
a43fe0e7
DM
721 else
722 hypervisor_xcall_deliver(data0, data1, data2, mask);
1da177e4
LT
723 /* NOTE: Caller runs local copy on master. */
724
725 put_cpu();
726}
727
728extern unsigned long xcall_sync_tick;
729
730static void smp_start_sync_tick_client(int cpu)
731{
732 cpumask_t mask = cpumask_of_cpu(cpu);
733
734 smp_cross_call_masked(&xcall_sync_tick,
735 0, 0, 0, mask);
736}
737
738/* Send cross call to all processors except self. */
739#define smp_cross_call(func, ctx, data1, data2) \
740 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
741
742struct call_data_struct {
743 void (*func) (void *info);
744 void *info;
745 atomic_t finished;
746 int wait;
747};
748
aa1d1a0a 749static __cacheline_aligned_in_smp DEFINE_SPINLOCK(call_lock);
1da177e4
LT
750static struct call_data_struct *call_data;
751
752extern unsigned long xcall_call_function;
753
aa1d1a0a
DM
754/**
755 * smp_call_function(): Run a function on all other CPUs.
756 * @func: The function to run. This must be fast and non-blocking.
757 * @info: An arbitrary pointer to pass to the function.
758 * @nonatomic: currently unused.
759 * @wait: If true, wait (atomically) until function has completed on other CPUs.
760 *
761 * Returns 0 on success, else a negative status code. Does not return until
762 * remote CPUs are nearly ready to execute <<func>> or are or have executed.
763 *
1da177e4
LT
764 * You must not call this function with disabled interrupts or from a
765 * hardware interrupt handler or from a bottom half handler.
766 */
bd40791e
DM
767static int smp_call_function_mask(void (*func)(void *info), void *info,
768 int nonatomic, int wait, cpumask_t mask)
1da177e4
LT
769{
770 struct call_data_struct data;
ee29074d 771 int cpus;
1da177e4 772
1da177e4
LT
773 /* Can deadlock when called with interrupts disabled */
774 WARN_ON(irqs_disabled());
775
776 data.func = func;
777 data.info = info;
778 atomic_set(&data.finished, 0);
779 data.wait = wait;
780
781 spin_lock(&call_lock);
782
ee29074d
DM
783 cpu_clear(smp_processor_id(), mask);
784 cpus = cpus_weight(mask);
785 if (!cpus)
786 goto out_unlock;
787
1da177e4 788 call_data = &data;
aa1d1a0a 789 mb();
1da177e4 790
bd40791e 791 smp_cross_call_masked(&xcall_call_function, 0, 0, 0, mask);
1da177e4 792
aa1d1a0a
DM
793 /* Wait for response */
794 while (atomic_read(&data.finished) != cpus)
795 cpu_relax();
1da177e4 796
ee29074d 797out_unlock:
1da177e4
LT
798 spin_unlock(&call_lock);
799
800 return 0;
1da177e4
LT
801}
802
bd40791e
DM
803int smp_call_function(void (*func)(void *info), void *info,
804 int nonatomic, int wait)
805{
806 return smp_call_function_mask(func, info, nonatomic, wait,
807 cpu_online_map);
808}
809
1da177e4
LT
810void smp_call_function_client(int irq, struct pt_regs *regs)
811{
812 void (*func) (void *info) = call_data->func;
813 void *info = call_data->info;
814
815 clear_softint(1 << irq);
816 if (call_data->wait) {
817 /* let initiator proceed only after completion */
818 func(info);
819 atomic_inc(&call_data->finished);
820 } else {
821 /* let initiator proceed after getting data */
822 atomic_inc(&call_data->finished);
823 func(info);
824 }
825}
826
bd40791e
DM
827static void tsb_sync(void *info)
828{
6f25f398 829 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
bd40791e
DM
830 struct mm_struct *mm = info;
831
6f25f398
DM
832 /* It is not valid to test "currrent->active_mm == mm" here.
833 *
834 * The value of "current" is not changed atomically with
835 * switch_mm(). But that's OK, we just need to check the
836 * current cpu's trap block PGD physical address.
837 */
838 if (tp->pgd_paddr == __pa(mm->pgd))
bd40791e
DM
839 tsb_context_switch(mm);
840}
841
842void smp_tsb_sync(struct mm_struct *mm)
843{
844 smp_call_function_mask(tsb_sync, mm, 0, 1, mm->cpu_vm_mask);
845}
846
1da177e4
LT
847extern unsigned long xcall_flush_tlb_mm;
848extern unsigned long xcall_flush_tlb_pending;
849extern unsigned long xcall_flush_tlb_kernel_range;
1da177e4
LT
850extern unsigned long xcall_report_regs;
851extern unsigned long xcall_receive_signal;
ee29074d 852extern unsigned long xcall_new_mmu_context_version;
1da177e4
LT
853
854#ifdef DCACHE_ALIASING_POSSIBLE
855extern unsigned long xcall_flush_dcache_page_cheetah;
856#endif
857extern unsigned long xcall_flush_dcache_page_spitfire;
858
859#ifdef CONFIG_DEBUG_DCFLUSH
860extern atomic_t dcpage_flushes;
861extern atomic_t dcpage_flushes_xcall;
862#endif
863
864static __inline__ void __local_flush_dcache_page(struct page *page)
865{
866#ifdef DCACHE_ALIASING_POSSIBLE
867 __flush_dcache_page(page_address(page),
868 ((tlb_type == spitfire) &&
869 page_mapping(page) != NULL));
870#else
871 if (page_mapping(page) != NULL &&
872 tlb_type == spitfire)
873 __flush_icache_page(__pa(page_address(page)));
874#endif
875}
876
877void smp_flush_dcache_page_impl(struct page *page, int cpu)
878{
879 cpumask_t mask = cpumask_of_cpu(cpu);
a43fe0e7
DM
880 int this_cpu;
881
882 if (tlb_type == hypervisor)
883 return;
1da177e4
LT
884
885#ifdef CONFIG_DEBUG_DCFLUSH
886 atomic_inc(&dcpage_flushes);
887#endif
a43fe0e7
DM
888
889 this_cpu = get_cpu();
890
1da177e4
LT
891 if (cpu == this_cpu) {
892 __local_flush_dcache_page(page);
893 } else if (cpu_online(cpu)) {
894 void *pg_addr = page_address(page);
895 u64 data0;
896
897 if (tlb_type == spitfire) {
898 data0 =
899 ((u64)&xcall_flush_dcache_page_spitfire);
900 if (page_mapping(page) != NULL)
901 data0 |= ((u64)1 << 32);
902 spitfire_xcall_deliver(data0,
903 __pa(pg_addr),
904 (u64) pg_addr,
905 mask);
a43fe0e7 906 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1da177e4
LT
907#ifdef DCACHE_ALIASING_POSSIBLE
908 data0 =
909 ((u64)&xcall_flush_dcache_page_cheetah);
910 cheetah_xcall_deliver(data0,
911 __pa(pg_addr),
912 0, mask);
913#endif
914 }
915#ifdef CONFIG_DEBUG_DCFLUSH
916 atomic_inc(&dcpage_flushes_xcall);
917#endif
918 }
919
920 put_cpu();
921}
922
923void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
924{
925 void *pg_addr = page_address(page);
926 cpumask_t mask = cpu_online_map;
927 u64 data0;
a43fe0e7
DM
928 int this_cpu;
929
930 if (tlb_type == hypervisor)
931 return;
932
933 this_cpu = get_cpu();
1da177e4
LT
934
935 cpu_clear(this_cpu, mask);
936
937#ifdef CONFIG_DEBUG_DCFLUSH
938 atomic_inc(&dcpage_flushes);
939#endif
940 if (cpus_empty(mask))
941 goto flush_self;
942 if (tlb_type == spitfire) {
943 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
944 if (page_mapping(page) != NULL)
945 data0 |= ((u64)1 << 32);
946 spitfire_xcall_deliver(data0,
947 __pa(pg_addr),
948 (u64) pg_addr,
949 mask);
a43fe0e7 950 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1da177e4
LT
951#ifdef DCACHE_ALIASING_POSSIBLE
952 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
953 cheetah_xcall_deliver(data0,
954 __pa(pg_addr),
955 0, mask);
956#endif
957 }
958#ifdef CONFIG_DEBUG_DCFLUSH
959 atomic_inc(&dcpage_flushes_xcall);
960#endif
961 flush_self:
962 __local_flush_dcache_page(page);
963
964 put_cpu();
965}
966
a0663a79
DM
967static void __smp_receive_signal_mask(cpumask_t mask)
968{
969 smp_cross_call_masked(&xcall_receive_signal, 0, 0, 0, mask);
970}
971
1da177e4
LT
972void smp_receive_signal(int cpu)
973{
974 cpumask_t mask = cpumask_of_cpu(cpu);
975
a0663a79
DM
976 if (cpu_online(cpu))
977 __smp_receive_signal_mask(mask);
1da177e4
LT
978}
979
980void smp_receive_signal_client(int irq, struct pt_regs *regs)
ee29074d
DM
981{
982 clear_softint(1 << irq);
983}
984
985void smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
1da177e4 986{
a0663a79 987 struct mm_struct *mm;
ee29074d 988 unsigned long flags;
a0663a79 989
1da177e4 990 clear_softint(1 << irq);
a0663a79
DM
991
992 /* See if we need to allocate a new TLB context because
993 * the version of the one we are using is now out of date.
994 */
995 mm = current->active_mm;
ee29074d
DM
996 if (unlikely(!mm || (mm == &init_mm)))
997 return;
a0663a79 998
ee29074d 999 spin_lock_irqsave(&mm->context.lock, flags);
aac0aadf 1000
ee29074d
DM
1001 if (unlikely(!CTX_VALID(mm->context)))
1002 get_new_mmu_context(mm);
aac0aadf 1003
ee29074d 1004 spin_unlock_irqrestore(&mm->context.lock, flags);
aac0aadf 1005
ee29074d
DM
1006 load_secondary_context(mm);
1007 __flush_tlb_mm(CTX_HWBITS(mm->context),
1008 SECONDARY_CONTEXT);
a0663a79
DM
1009}
1010
1011void smp_new_mmu_context_version(void)
1012{
ee29074d 1013 smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
1da177e4
LT
1014}
1015
1016void smp_report_regs(void)
1017{
1018 smp_cross_call(&xcall_report_regs, 0, 0, 0);
1019}
1020
1da177e4
LT
1021/* We know that the window frames of the user have been flushed
1022 * to the stack before we get here because all callers of us
1023 * are flush_tlb_*() routines, and these run after flush_cache_*()
1024 * which performs the flushw.
1025 *
1026 * The SMP TLB coherency scheme we use works as follows:
1027 *
1028 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1029 * space has (potentially) executed on, this is the heuristic
1030 * we use to avoid doing cross calls.
1031 *
1032 * Also, for flushing from kswapd and also for clones, we
1033 * use cpu_vm_mask as the list of cpus to make run the TLB.
1034 *
1035 * 2) TLB context numbers are shared globally across all processors
1036 * in the system, this allows us to play several games to avoid
1037 * cross calls.
1038 *
1039 * One invariant is that when a cpu switches to a process, and
1040 * that processes tsk->active_mm->cpu_vm_mask does not have the
1041 * current cpu's bit set, that tlb context is flushed locally.
1042 *
1043 * If the address space is non-shared (ie. mm->count == 1) we avoid
1044 * cross calls when we want to flush the currently running process's
1045 * tlb state. This is done by clearing all cpu bits except the current
1046 * processor's in current->active_mm->cpu_vm_mask and performing the
1047 * flush locally only. This will force any subsequent cpus which run
1048 * this task to flush the context from the local tlb if the process
1049 * migrates to another cpu (again).
1050 *
1051 * 3) For shared address spaces (threads) and swapping we bite the
1052 * bullet for most cases and perform the cross call (but only to
1053 * the cpus listed in cpu_vm_mask).
1054 *
1055 * The performance gain from "optimizing" away the cross call for threads is
1056 * questionable (in theory the big win for threads is the massive sharing of
1057 * address space state across processors).
1058 */
62dbec78
DM
1059
1060/* This currently is only used by the hugetlb arch pre-fault
1061 * hook on UltraSPARC-III+ and later when changing the pagesize
1062 * bits of the context register for an address space.
1063 */
1da177e4
LT
1064void smp_flush_tlb_mm(struct mm_struct *mm)
1065{
62dbec78
DM
1066 u32 ctx = CTX_HWBITS(mm->context);
1067 int cpu = get_cpu();
1da177e4 1068
62dbec78
DM
1069 if (atomic_read(&mm->mm_users) == 1) {
1070 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1071 goto local_flush_and_out;
1072 }
1da177e4 1073
62dbec78
DM
1074 smp_cross_call_masked(&xcall_flush_tlb_mm,
1075 ctx, 0, 0,
1076 mm->cpu_vm_mask);
1da177e4 1077
62dbec78
DM
1078local_flush_and_out:
1079 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1da177e4 1080
62dbec78 1081 put_cpu();
1da177e4
LT
1082}
1083
1084void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1085{
1086 u32 ctx = CTX_HWBITS(mm->context);
1087 int cpu = get_cpu();
1088
dedeb002 1089 if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1)
1da177e4 1090 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
dedeb002
HD
1091 else
1092 smp_cross_call_masked(&xcall_flush_tlb_pending,
1093 ctx, nr, (unsigned long) vaddrs,
1094 mm->cpu_vm_mask);
1da177e4 1095
1da177e4
LT
1096 __flush_tlb_pending(ctx, nr, vaddrs);
1097
1098 put_cpu();
1099}
1100
1101void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1102{
1103 start &= PAGE_MASK;
1104 end = PAGE_ALIGN(end);
1105 if (start != end) {
1106 smp_cross_call(&xcall_flush_tlb_kernel_range,
1107 0, start, end);
1108
1109 __flush_tlb_kernel_range(start, end);
1110 }
1111}
1112
1113/* CPU capture. */
1114/* #define CAPTURE_DEBUG */
1115extern unsigned long xcall_capture;
1116
1117static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1118static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1119static unsigned long penguins_are_doing_time;
1120
1121void smp_capture(void)
1122{
1123 int result = atomic_add_ret(1, &smp_capture_depth);
1124
1125 if (result == 1) {
1126 int ncpus = num_online_cpus();
1127
1128#ifdef CAPTURE_DEBUG
1129 printk("CPU[%d]: Sending penguins to jail...",
1130 smp_processor_id());
1131#endif
1132 penguins_are_doing_time = 1;
4f07118f 1133 membar_storestore_loadstore();
1da177e4
LT
1134 atomic_inc(&smp_capture_registry);
1135 smp_cross_call(&xcall_capture, 0, 0, 0);
1136 while (atomic_read(&smp_capture_registry) != ncpus)
4f07118f 1137 rmb();
1da177e4
LT
1138#ifdef CAPTURE_DEBUG
1139 printk("done\n");
1140#endif
1141 }
1142}
1143
1144void smp_release(void)
1145{
1146 if (atomic_dec_and_test(&smp_capture_depth)) {
1147#ifdef CAPTURE_DEBUG
1148 printk("CPU[%d]: Giving pardon to "
1149 "imprisoned penguins\n",
1150 smp_processor_id());
1151#endif
1152 penguins_are_doing_time = 0;
4f07118f 1153 membar_storeload_storestore();
1da177e4
LT
1154 atomic_dec(&smp_capture_registry);
1155 }
1156}
1157
1158/* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
1159 * can service tlb flush xcalls...
1160 */
1161extern void prom_world(int);
96c6e0d8 1162
1da177e4
LT
1163void smp_penguin_jailcell(int irq, struct pt_regs *regs)
1164{
1da177e4
LT
1165 clear_softint(1 << irq);
1166
1167 preempt_disable();
1168
1169 __asm__ __volatile__("flushw");
1da177e4
LT
1170 prom_world(1);
1171 atomic_inc(&smp_capture_registry);
4f07118f 1172 membar_storeload_storestore();
1da177e4 1173 while (penguins_are_doing_time)
4f07118f 1174 rmb();
1da177e4
LT
1175 atomic_dec(&smp_capture_registry);
1176 prom_world(0);
1177
1178 preempt_enable();
1179}
1180
1da177e4
LT
1181static void __init smp_setup_percpu_timer(void)
1182{
1da177e4
LT
1183 unsigned long pstate;
1184
1da177e4
LT
1185 /* Guarantee that the following sequences execute
1186 * uninterrupted.
1187 */
1188 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
1189 "wrpr %0, %1, %%pstate"
1190 : "=r" (pstate)
1191 : "i" (PSTATE_IE));
1192
1193 tick_ops->init_tick(current_tick_offset);
1194
1195 /* Restore PSTATE_IE. */
1196 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
1197 : /* no outputs */
1198 : "r" (pstate));
1199}
1200
1201void __init smp_tick_init(void)
1202{
1203 boot_cpu_id = hard_smp_processor_id();
1204 current_tick_offset = timer_tick_offset;
1da177e4
LT
1205}
1206
1207/* /proc/profile writes can call this, don't __init it please. */
1da177e4
LT
1208int setup_profiling_timer(unsigned int multiplier)
1209{
777a4475 1210 return -EINVAL;
1da177e4
LT
1211}
1212
9145bcf6
DM
1213static void __init smp_tune_scheduling(void)
1214{
07f8e5f3
DM
1215 struct device_node *dp;
1216 int instance;
9145bcf6
DM
1217 unsigned int def, smallest = ~0U;
1218
1219 def = ((tlb_type == hypervisor) ?
1220 (3 * 1024 * 1024) :
1221 (4 * 1024 * 1024));
1222
1223 instance = 0;
07f8e5f3 1224 while (!cpu_find_by_instance(instance, &dp, NULL)) {
9145bcf6
DM
1225 unsigned int val;
1226
07f8e5f3 1227 val = of_getintprop_default(dp, "ecache-size", def);
9145bcf6
DM
1228 if (val < smallest)
1229 smallest = val;
1230
1231 instance++;
1232 }
1233
1234 /* Any value less than 256K is nonsense. */
1235 if (smallest < (256U * 1024U))
1236 smallest = 256 * 1024;
1237
1238 max_cache_size = smallest;
1239
1240 if (smallest < 1U * 1024U * 1024U)
1241 printk(KERN_INFO "Using max_cache_size of %uKB\n",
1242 smallest / 1024U);
1243 else
1244 printk(KERN_INFO "Using max_cache_size of %uMB\n",
1245 smallest / 1024U / 1024U);
1246}
1247
7abea921 1248/* Constrain the number of cpus to max_cpus. */
1da177e4
LT
1249void __init smp_prepare_cpus(unsigned int max_cpus)
1250{
8935dced
DM
1251 int i;
1252
1da177e4 1253 if (num_possible_cpus() > max_cpus) {
7abea921
DM
1254 int instance, mid;
1255
1da177e4
LT
1256 instance = 0;
1257 while (!cpu_find_by_instance(instance, NULL, &mid)) {
1258 if (mid != boot_cpu_id) {
1259 cpu_clear(mid, phys_cpu_present_map);
7d3aee9a 1260 cpu_clear(mid, cpu_present_map);
1da177e4
LT
1261 if (num_possible_cpus() <= max_cpus)
1262 break;
1263 }
1264 instance++;
1265 }
1266 }
1267
a283a525 1268 for_each_possible_cpu(i) {
8935dced
DM
1269 if (tlb_type == hypervisor) {
1270 int j;
1271
1272 /* XXX get this mapping from machine description */
a283a525 1273 for_each_possible_cpu(j) {
8935dced
DM
1274 if ((j >> 2) == (i >> 2))
1275 cpu_set(j, cpu_sibling_map[i]);
1276 }
1277 } else {
1278 cpu_set(i, cpu_sibling_map[i]);
1279 }
1280 }
1281
1da177e4 1282 smp_store_cpu_info(boot_cpu_id);
9145bcf6 1283 smp_tune_scheduling();
1da177e4
LT
1284}
1285
7abea921
DM
1286/* Set this up early so that things like the scheduler can init
1287 * properly. We use the same cpu mask for both the present and
1288 * possible cpu map.
1289 */
1290void __init smp_setup_cpu_possible_map(void)
1291{
1292 int instance, mid;
1293
1294 instance = 0;
1295 while (!cpu_find_by_instance(instance, NULL, &mid)) {
7d3aee9a 1296 if (mid < NR_CPUS) {
7abea921 1297 cpu_set(mid, phys_cpu_present_map);
7d3aee9a
DM
1298 cpu_set(mid, cpu_present_map);
1299 }
7abea921
DM
1300 instance++;
1301 }
1302}
1303
1da177e4
LT
1304void __devinit smp_prepare_boot_cpu(void)
1305{
1da177e4
LT
1306}
1307
b282b6f8 1308int __cpuinit __cpu_up(unsigned int cpu)
1da177e4
LT
1309{
1310 int ret = smp_boot_one_cpu(cpu);
1311
1312 if (!ret) {
1313 cpu_set(cpu, smp_commenced_mask);
1314 while (!cpu_isset(cpu, cpu_online_map))
1315 mb();
1316 if (!cpu_isset(cpu, cpu_online_map)) {
1317 ret = -ENODEV;
1318 } else {
02fead75
DM
1319 /* On SUN4V, writes to %tick and %stick are
1320 * not allowed.
1321 */
1322 if (tlb_type != hypervisor)
1323 smp_synchronize_one_tick(cpu);
1da177e4
LT
1324 }
1325 }
1326 return ret;
1327}
1328
1329void __init smp_cpus_done(unsigned int max_cpus)
1330{
1331 unsigned long bogosum = 0;
1332 int i;
1333
394e3902
AM
1334 for_each_online_cpu(i)
1335 bogosum += cpu_data(i).udelay_val;
1da177e4
LT
1336 printk("Total of %ld processors activated "
1337 "(%lu.%02lu BogoMIPS).\n",
1338 (long) num_online_cpus(),
1339 bogosum/(500000/HZ),
1340 (bogosum/(5000/HZ))%100);
1341}
1342
1da177e4
LT
1343void smp_send_reschedule(int cpu)
1344{
64c7c8f8 1345 smp_receive_signal(cpu);
1da177e4
LT
1346}
1347
1348/* This is a nop because we capture all other cpus
1349 * anyways when making the PROM active.
1350 */
1351void smp_send_stop(void)
1352{
1353}
1354
d369ddd2
DM
1355unsigned long __per_cpu_base __read_mostly;
1356unsigned long __per_cpu_shift __read_mostly;
1da177e4
LT
1357
1358EXPORT_SYMBOL(__per_cpu_base);
1359EXPORT_SYMBOL(__per_cpu_shift);
1360
1361void __init setup_per_cpu_areas(void)
1362{
1363 unsigned long goal, size, i;
1364 char *ptr;
1da177e4
LT
1365
1366 /* Copy section for each CPU (we discard the original) */
5a089006
DM
1367 goal = PERCPU_ENOUGH_ROOM;
1368
1da177e4
LT
1369 __per_cpu_shift = 0;
1370 for (size = 1UL; size < goal; size <<= 1UL)
1371 __per_cpu_shift++;
1372
56fb4df6 1373 ptr = alloc_bootmem(size * NR_CPUS);
1da177e4
LT
1374
1375 __per_cpu_base = ptr - __per_cpu_start;
1376
1da177e4
LT
1377 for (i = 0; i < NR_CPUS; i++, ptr += size)
1378 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
951bc82c
DM
1379
1380 /* Setup %g5 for the boot cpu. */
1381 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1da177e4 1382}
This page took 0.313754 seconds and 5 git commands to generate.