arch/tile: implement arch_ptrace using user_regset on tile
[deliverable/linux.git] / arch / tile / kernel / pci-dma.c
CommitLineData
867e359b
CM
1/*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 */
14
15#include <linux/mm.h>
16#include <linux/dma-mapping.h>
41bb38fc 17#include <linux/swiotlb.h>
867e359b 18#include <linux/vmalloc.h>
3989efb7 19#include <linux/export.h>
867e359b
CM
20#include <asm/tlbflush.h>
21#include <asm/homecache.h>
22
23/* Generic DMA mapping functions: */
24
25/*
bbaa22c3
CM
26 * Allocate what Linux calls "coherent" memory. On TILEPro this is
27 * uncached memory; on TILE-Gx it is hash-for-home memory.
867e359b 28 */
bbaa22c3
CM
29#ifdef __tilepro__
30#define PAGE_HOME_DMA PAGE_HOME_UNCACHED
31#else
32#define PAGE_HOME_DMA PAGE_HOME_HASH
33#endif
34
41bb38fc
CM
35static void *tile_dma_alloc_coherent(struct device *dev, size_t size,
36 dma_addr_t *dma_handle, gfp_t gfp,
37 struct dma_attrs *attrs)
867e359b
CM
38{
39 u64 dma_mask = dev->coherent_dma_mask ?: DMA_BIT_MASK(32);
40 int node = dev_to_node(dev);
41 int order = get_order(size);
42 struct page *pg;
43 dma_addr_t addr;
44
482e6f84 45 gfp |= __GFP_ZERO;
867e359b
CM
46
47 /*
eef015c8
CM
48 * If the mask specifies that the memory be in the first 4 GB, then
49 * we force the allocation to come from the DMA zone. We also
50 * force the node to 0 since that's the only node where the DMA
51 * zone isn't empty. If the mask size is smaller than 32 bits, we
52 * may still not be able to guarantee a suitable memory address, in
53 * which case we will return NULL. But such devices are uncommon.
867e359b 54 */
eef015c8
CM
55 if (dma_mask <= DMA_BIT_MASK(32)) {
56 gfp |= GFP_DMA;
867e359b 57 node = 0;
eef015c8 58 }
867e359b 59
bbaa22c3 60 pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_DMA);
867e359b
CM
61 if (pg == NULL)
62 return NULL;
63
64 addr = page_to_phys(pg);
65 if (addr + size > dma_mask) {
bbaa22c3 66 __homecache_free_pages(pg, order);
867e359b
CM
67 return NULL;
68 }
69
70 *dma_handle = addr;
41bb38fc 71
867e359b
CM
72 return page_address(pg);
73}
867e359b
CM
74
75/*
41bb38fc 76 * Free memory that was allocated with tile_dma_alloc_coherent.
867e359b 77 */
41bb38fc
CM
78static void tile_dma_free_coherent(struct device *dev, size_t size,
79 void *vaddr, dma_addr_t dma_handle,
80 struct dma_attrs *attrs)
867e359b
CM
81{
82 homecache_free_pages((unsigned long)vaddr, get_order(size));
83}
867e359b
CM
84
85/*
86 * The map routines "map" the specified address range for DMA
87 * accesses. The memory belongs to the device after this call is
88 * issued, until it is unmapped with dma_unmap_single.
89 *
90 * We don't need to do any mapping, we just flush the address range
91 * out of the cache and return a DMA address.
92 *
93 * The unmap routines do whatever is necessary before the processor
94 * accesses the memory again, and must be called before the driver
95 * touches the memory. We can get away with a cache invalidate if we
96 * can count on nothing having been touched.
97 */
98
bbaa22c3
CM
99/* Set up a single page for DMA access. */
100static void __dma_prep_page(struct page *page, unsigned long offset,
101 size_t size, enum dma_data_direction direction)
76c567fb 102{
bbaa22c3
CM
103 /*
104 * Flush the page from cache if necessary.
105 * On tilegx, data is delivered to hash-for-home L3; on tilepro,
106 * data is delivered direct to memory.
107 *
108 * NOTE: If we were just doing DMA_TO_DEVICE we could optimize
109 * this to be a "flush" not a "finv" and keep some of the
110 * state in cache across the DMA operation, but it doesn't seem
111 * worth creating the necessary flush_buffer_xxx() infrastructure.
112 */
113 int home = page_home(page);
114 switch (home) {
115 case PAGE_HOME_HASH:
116#ifdef __tilegx__
117 return;
118#endif
119 break;
120 case PAGE_HOME_UNCACHED:
121#ifdef __tilepro__
122 return;
123#endif
124 break;
125 case PAGE_HOME_IMMUTABLE:
126 /* Should be going to the device only. */
127 BUG_ON(direction == DMA_FROM_DEVICE ||
128 direction == DMA_BIDIRECTIONAL);
129 return;
130 case PAGE_HOME_INCOHERENT:
131 /* Incoherent anyway, so no need to work hard here. */
132 return;
133 default:
134 BUG_ON(home < 0 || home >= NR_CPUS);
135 break;
136 }
137 homecache_finv_page(page);
138
139#ifdef DEBUG_ALIGNMENT
140 /* Warn if the region isn't cacheline aligned. */
141 if (offset & (L2_CACHE_BYTES - 1) || (size & (L2_CACHE_BYTES - 1)))
142 pr_warn("Unaligned DMA to non-hfh memory: PA %#llx/%#lx\n",
143 PFN_PHYS(page_to_pfn(page)) + offset, size);
144#endif
145}
76c567fb 146
bbaa22c3
CM
147/* Make the page ready to be read by the core. */
148static void __dma_complete_page(struct page *page, unsigned long offset,
149 size_t size, enum dma_data_direction direction)
150{
151#ifdef __tilegx__
152 switch (page_home(page)) {
153 case PAGE_HOME_HASH:
154 /* I/O device delivered data the way the cpu wanted it. */
155 break;
156 case PAGE_HOME_INCOHERENT:
157 /* Incoherent anyway, so no need to work hard here. */
158 break;
159 case PAGE_HOME_IMMUTABLE:
160 /* Extra read-only copies are not a problem. */
161 break;
162 default:
163 /* Flush the bogus hash-for-home I/O entries to memory. */
164 homecache_finv_map_page(page, PAGE_HOME_HASH);
165 break;
166 }
167#endif
168}
76c567fb 169
bbaa22c3
CM
170static void __dma_prep_pa_range(dma_addr_t dma_addr, size_t size,
171 enum dma_data_direction direction)
172{
173 struct page *page = pfn_to_page(PFN_DOWN(dma_addr));
174 unsigned long offset = dma_addr & (PAGE_SIZE - 1);
175 size_t bytes = min(size, (size_t)(PAGE_SIZE - offset));
176
177 while (size != 0) {
178 __dma_prep_page(page, offset, bytes, direction);
179 size -= bytes;
180 ++page;
181 offset = 0;
182 bytes = min((size_t)PAGE_SIZE, size);
183 }
184}
185
186static void __dma_complete_pa_range(dma_addr_t dma_addr, size_t size,
187 enum dma_data_direction direction)
188{
189 struct page *page = pfn_to_page(PFN_DOWN(dma_addr));
190 unsigned long offset = dma_addr & (PAGE_SIZE - 1);
191 size_t bytes = min(size, (size_t)(PAGE_SIZE - offset));
192
193 while (size != 0) {
194 __dma_complete_page(page, offset, bytes, direction);
195 size -= bytes;
196 ++page;
197 offset = 0;
198 bytes = min((size_t)PAGE_SIZE, size);
76c567fb
CM
199 }
200}
867e359b 201
41bb38fc
CM
202static int tile_dma_map_sg(struct device *dev, struct scatterlist *sglist,
203 int nents, enum dma_data_direction direction,
204 struct dma_attrs *attrs)
205{
206 struct scatterlist *sg;
207 int i;
bbaa22c3 208
41bb38fc
CM
209 BUG_ON(!valid_dma_direction(direction));
210
211 WARN_ON(nents == 0 || sglist->length == 0);
212
213 for_each_sg(sglist, sg, nents, i) {
214 sg->dma_address = sg_phys(sg);
215 __dma_prep_pa_range(sg->dma_address, sg->length, direction);
216#ifdef CONFIG_NEED_SG_DMA_LENGTH
217 sg->dma_length = sg->length;
218#endif
219 }
220
221 return nents;
222}
223
224static void tile_dma_unmap_sg(struct device *dev, struct scatterlist *sglist,
225 int nents, enum dma_data_direction direction,
226 struct dma_attrs *attrs)
227{
228 struct scatterlist *sg;
229 int i;
230
231 BUG_ON(!valid_dma_direction(direction));
232 for_each_sg(sglist, sg, nents, i) {
233 sg->dma_address = sg_phys(sg);
234 __dma_complete_pa_range(sg->dma_address, sg->length,
235 direction);
236 }
237}
238
239static dma_addr_t tile_dma_map_page(struct device *dev, struct page *page,
240 unsigned long offset, size_t size,
241 enum dma_data_direction direction,
242 struct dma_attrs *attrs)
867e359b 243{
41bb38fc
CM
244 BUG_ON(!valid_dma_direction(direction));
245
246 BUG_ON(offset + size > PAGE_SIZE);
247 __dma_prep_page(page, offset, size, direction);
248
249 return page_to_pa(page) + offset;
250}
251
252static void tile_dma_unmap_page(struct device *dev, dma_addr_t dma_address,
253 size_t size, enum dma_data_direction direction,
254 struct dma_attrs *attrs)
255{
256 BUG_ON(!valid_dma_direction(direction));
257
258 __dma_complete_page(pfn_to_page(PFN_DOWN(dma_address)),
259 dma_address & PAGE_OFFSET, size, direction);
260}
867e359b 261
41bb38fc
CM
262static void tile_dma_sync_single_for_cpu(struct device *dev,
263 dma_addr_t dma_handle,
264 size_t size,
265 enum dma_data_direction direction)
266{
867e359b 267 BUG_ON(!valid_dma_direction(direction));
867e359b 268
41bb38fc
CM
269 __dma_complete_pa_range(dma_handle, size, direction);
270}
867e359b 271
41bb38fc
CM
272static void tile_dma_sync_single_for_device(struct device *dev,
273 dma_addr_t dma_handle, size_t size,
274 enum dma_data_direction direction)
275{
276 __dma_prep_pa_range(dma_handle, size, direction);
867e359b 277}
867e359b 278
41bb38fc
CM
279static void tile_dma_sync_sg_for_cpu(struct device *dev,
280 struct scatterlist *sglist, int nelems,
281 enum dma_data_direction direction)
867e359b 282{
41bb38fc
CM
283 struct scatterlist *sg;
284 int i;
285
867e359b 286 BUG_ON(!valid_dma_direction(direction));
41bb38fc
CM
287 WARN_ON(nelems == 0 || sglist->length == 0);
288
289 for_each_sg(sglist, sg, nelems, i) {
290 dma_sync_single_for_cpu(dev, sg->dma_address,
291 sg_dma_len(sg), direction);
292 }
867e359b 293}
867e359b 294
41bb38fc
CM
295static void tile_dma_sync_sg_for_device(struct device *dev,
296 struct scatterlist *sglist, int nelems,
297 enum dma_data_direction direction)
298{
299 struct scatterlist *sg;
300 int i;
301
302 BUG_ON(!valid_dma_direction(direction));
303 WARN_ON(nelems == 0 || sglist->length == 0);
304
305 for_each_sg(sglist, sg, nelems, i) {
306 dma_sync_single_for_device(dev, sg->dma_address,
307 sg_dma_len(sg), direction);
308 }
309}
310
311static inline int
312tile_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
313{
314 return 0;
315}
316
317static inline int
318tile_dma_supported(struct device *dev, u64 mask)
319{
320 return 1;
321}
322
323static struct dma_map_ops tile_default_dma_map_ops = {
324 .alloc = tile_dma_alloc_coherent,
325 .free = tile_dma_free_coherent,
326 .map_page = tile_dma_map_page,
327 .unmap_page = tile_dma_unmap_page,
328 .map_sg = tile_dma_map_sg,
329 .unmap_sg = tile_dma_unmap_sg,
330 .sync_single_for_cpu = tile_dma_sync_single_for_cpu,
331 .sync_single_for_device = tile_dma_sync_single_for_device,
332 .sync_sg_for_cpu = tile_dma_sync_sg_for_cpu,
333 .sync_sg_for_device = tile_dma_sync_sg_for_device,
334 .mapping_error = tile_dma_mapping_error,
335 .dma_supported = tile_dma_supported
336};
337
338struct dma_map_ops *tile_dma_map_ops = &tile_default_dma_map_ops;
339EXPORT_SYMBOL(tile_dma_map_ops);
340
341/* Generic PCI DMA mapping functions */
342
343static void *tile_pci_dma_alloc_coherent(struct device *dev, size_t size,
344 dma_addr_t *dma_handle, gfp_t gfp,
345 struct dma_attrs *attrs)
346{
347 int node = dev_to_node(dev);
348 int order = get_order(size);
349 struct page *pg;
350 dma_addr_t addr;
351
352 gfp |= __GFP_ZERO;
353
354 pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_DMA);
355 if (pg == NULL)
356 return NULL;
357
358 addr = page_to_phys(pg);
359
360 *dma_handle = phys_to_dma(dev, addr);
361
362 return page_address(pg);
363}
364
365/*
366 * Free memory that was allocated with tile_pci_dma_alloc_coherent.
367 */
368static void tile_pci_dma_free_coherent(struct device *dev, size_t size,
369 void *vaddr, dma_addr_t dma_handle,
370 struct dma_attrs *attrs)
371{
372 homecache_free_pages((unsigned long)vaddr, get_order(size));
373}
374
375static int tile_pci_dma_map_sg(struct device *dev, struct scatterlist *sglist,
376 int nents, enum dma_data_direction direction,
377 struct dma_attrs *attrs)
867e359b
CM
378{
379 struct scatterlist *sg;
380 int i;
381
382 BUG_ON(!valid_dma_direction(direction));
383
384 WARN_ON(nents == 0 || sglist->length == 0);
385
386 for_each_sg(sglist, sg, nents, i) {
867e359b 387 sg->dma_address = sg_phys(sg);
bbaa22c3 388 __dma_prep_pa_range(sg->dma_address, sg->length, direction);
41bb38fc
CM
389
390 sg->dma_address = phys_to_dma(dev, sg->dma_address);
391#ifdef CONFIG_NEED_SG_DMA_LENGTH
392 sg->dma_length = sg->length;
393#endif
867e359b
CM
394 }
395
396 return nents;
397}
867e359b 398
41bb38fc
CM
399static void tile_pci_dma_unmap_sg(struct device *dev,
400 struct scatterlist *sglist, int nents,
401 enum dma_data_direction direction,
402 struct dma_attrs *attrs)
867e359b 403{
bbaa22c3
CM
404 struct scatterlist *sg;
405 int i;
406
867e359b 407 BUG_ON(!valid_dma_direction(direction));
bbaa22c3
CM
408 for_each_sg(sglist, sg, nents, i) {
409 sg->dma_address = sg_phys(sg);
410 __dma_complete_pa_range(sg->dma_address, sg->length,
411 direction);
412 }
867e359b 413}
867e359b 414
41bb38fc
CM
415static dma_addr_t tile_pci_dma_map_page(struct device *dev, struct page *page,
416 unsigned long offset, size_t size,
417 enum dma_data_direction direction,
418 struct dma_attrs *attrs)
867e359b
CM
419{
420 BUG_ON(!valid_dma_direction(direction));
421
76c567fb 422 BUG_ON(offset + size > PAGE_SIZE);
bbaa22c3 423 __dma_prep_page(page, offset, size, direction);
41bb38fc
CM
424
425 return phys_to_dma(dev, page_to_pa(page) + offset);
867e359b 426}
867e359b 427
41bb38fc
CM
428static void tile_pci_dma_unmap_page(struct device *dev, dma_addr_t dma_address,
429 size_t size,
430 enum dma_data_direction direction,
431 struct dma_attrs *attrs)
867e359b
CM
432{
433 BUG_ON(!valid_dma_direction(direction));
41bb38fc
CM
434
435 dma_address = dma_to_phys(dev, dma_address);
436
bbaa22c3
CM
437 __dma_complete_page(pfn_to_page(PFN_DOWN(dma_address)),
438 dma_address & PAGE_OFFSET, size, direction);
867e359b 439}
867e359b 440
41bb38fc
CM
441static void tile_pci_dma_sync_single_for_cpu(struct device *dev,
442 dma_addr_t dma_handle,
443 size_t size,
444 enum dma_data_direction direction)
867e359b
CM
445{
446 BUG_ON(!valid_dma_direction(direction));
41bb38fc
CM
447
448 dma_handle = dma_to_phys(dev, dma_handle);
449
bbaa22c3 450 __dma_complete_pa_range(dma_handle, size, direction);
867e359b 451}
867e359b 452
41bb38fc
CM
453static void tile_pci_dma_sync_single_for_device(struct device *dev,
454 dma_addr_t dma_handle,
455 size_t size,
456 enum dma_data_direction
457 direction)
867e359b 458{
41bb38fc
CM
459 dma_handle = dma_to_phys(dev, dma_handle);
460
bbaa22c3 461 __dma_prep_pa_range(dma_handle, size, direction);
867e359b 462}
867e359b 463
41bb38fc
CM
464static void tile_pci_dma_sync_sg_for_cpu(struct device *dev,
465 struct scatterlist *sglist,
466 int nelems,
467 enum dma_data_direction direction)
867e359b 468{
bbaa22c3
CM
469 struct scatterlist *sg;
470 int i;
471
867e359b 472 BUG_ON(!valid_dma_direction(direction));
bbaa22c3
CM
473 WARN_ON(nelems == 0 || sglist->length == 0);
474
475 for_each_sg(sglist, sg, nelems, i) {
476 dma_sync_single_for_cpu(dev, sg->dma_address,
477 sg_dma_len(sg), direction);
478 }
867e359b 479}
867e359b 480
41bb38fc
CM
481static void tile_pci_dma_sync_sg_for_device(struct device *dev,
482 struct scatterlist *sglist,
483 int nelems,
484 enum dma_data_direction direction)
867e359b
CM
485{
486 struct scatterlist *sg;
487 int i;
488
489 BUG_ON(!valid_dma_direction(direction));
490 WARN_ON(nelems == 0 || sglist->length == 0);
491
492 for_each_sg(sglist, sg, nelems, i) {
493 dma_sync_single_for_device(dev, sg->dma_address,
494 sg_dma_len(sg), direction);
495 }
496}
867e359b 497
41bb38fc
CM
498static inline int
499tile_pci_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
867e359b 500{
41bb38fc 501 return 0;
867e359b 502}
867e359b 503
41bb38fc
CM
504static inline int
505tile_pci_dma_supported(struct device *dev, u64 mask)
867e359b 506{
41bb38fc 507 return 1;
867e359b 508}
867e359b 509
41bb38fc
CM
510static struct dma_map_ops tile_pci_default_dma_map_ops = {
511 .alloc = tile_pci_dma_alloc_coherent,
512 .free = tile_pci_dma_free_coherent,
513 .map_page = tile_pci_dma_map_page,
514 .unmap_page = tile_pci_dma_unmap_page,
515 .map_sg = tile_pci_dma_map_sg,
516 .unmap_sg = tile_pci_dma_unmap_sg,
517 .sync_single_for_cpu = tile_pci_dma_sync_single_for_cpu,
518 .sync_single_for_device = tile_pci_dma_sync_single_for_device,
519 .sync_sg_for_cpu = tile_pci_dma_sync_sg_for_cpu,
520 .sync_sg_for_device = tile_pci_dma_sync_sg_for_device,
521 .mapping_error = tile_pci_dma_mapping_error,
522 .dma_supported = tile_pci_dma_supported
523};
524
525struct dma_map_ops *gx_pci_dma_map_ops = &tile_pci_default_dma_map_ops;
526EXPORT_SYMBOL(gx_pci_dma_map_ops);
527
528/* PCI DMA mapping functions for legacy PCI devices */
529
530#ifdef CONFIG_SWIOTLB
531static void *tile_swiotlb_alloc_coherent(struct device *dev, size_t size,
532 dma_addr_t *dma_handle, gfp_t gfp,
533 struct dma_attrs *attrs)
534{
535 gfp |= GFP_DMA;
536 return swiotlb_alloc_coherent(dev, size, dma_handle, gfp);
537}
538
539static void tile_swiotlb_free_coherent(struct device *dev, size_t size,
540 void *vaddr, dma_addr_t dma_addr,
541 struct dma_attrs *attrs)
867e359b 542{
41bb38fc 543 swiotlb_free_coherent(dev, size, vaddr, dma_addr);
867e359b 544}
41bb38fc
CM
545
546static struct dma_map_ops pci_swiotlb_dma_ops = {
547 .alloc = tile_swiotlb_alloc_coherent,
548 .free = tile_swiotlb_free_coherent,
549 .map_page = swiotlb_map_page,
550 .unmap_page = swiotlb_unmap_page,
551 .map_sg = swiotlb_map_sg_attrs,
552 .unmap_sg = swiotlb_unmap_sg_attrs,
553 .sync_single_for_cpu = swiotlb_sync_single_for_cpu,
554 .sync_single_for_device = swiotlb_sync_single_for_device,
555 .sync_sg_for_cpu = swiotlb_sync_sg_for_cpu,
556 .sync_sg_for_device = swiotlb_sync_sg_for_device,
557 .dma_supported = swiotlb_dma_supported,
558 .mapping_error = swiotlb_dma_mapping_error,
559};
560
561struct dma_map_ops *gx_legacy_pci_dma_map_ops = &pci_swiotlb_dma_ops;
562#else
563struct dma_map_ops *gx_legacy_pci_dma_map_ops;
564#endif
565EXPORT_SYMBOL(gx_legacy_pci_dma_map_ops);
566
567#ifdef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
568int dma_set_coherent_mask(struct device *dev, u64 mask)
569{
570 struct dma_map_ops *dma_ops = get_dma_ops(dev);
571
572 /* Handle legacy PCI devices with limited memory addressability. */
573 if (((dma_ops == gx_pci_dma_map_ops) ||
574 (dma_ops == gx_legacy_pci_dma_map_ops)) &&
575 (mask <= DMA_BIT_MASK(32))) {
576 if (mask > dev->archdata.max_direct_dma_addr)
577 mask = dev->archdata.max_direct_dma_addr;
578 }
579
580 if (!dma_supported(dev, mask))
581 return -EIO;
582 dev->coherent_dma_mask = mask;
583 return 0;
584}
585EXPORT_SYMBOL(dma_set_coherent_mask);
586#endif
This page took 0.192645 seconds and 5 git commands to generate.