arch/tile: optimize get_user/put_user and friends
[deliverable/linux.git] / arch / tile / kernel / setup.c
CommitLineData
867e359b
CM
1/*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 */
14
15#include <linux/sched.h>
16#include <linux/kernel.h>
17#include <linux/mmzone.h>
18#include <linux/bootmem.h>
19#include <linux/module.h>
20#include <linux/node.h>
21#include <linux/cpu.h>
22#include <linux/ioport.h>
0707ad30 23#include <linux/irq.h>
867e359b
CM
24#include <linux/kexec.h>
25#include <linux/pci.h>
26#include <linux/initrd.h>
27#include <linux/io.h>
28#include <linux/highmem.h>
29#include <linux/smp.h>
30#include <linux/timex.h>
31#include <asm/setup.h>
32#include <asm/sections.h>
867e359b
CM
33#include <asm/cacheflush.h>
34#include <asm/pgalloc.h>
35#include <asm/mmu_context.h>
36#include <hv/hypervisor.h>
37#include <arch/interrupts.h>
38
39/* <linux/smp.h> doesn't provide this definition. */
40#ifndef CONFIG_SMP
41#define setup_max_cpus 1
42#endif
43
44static inline int ABS(int x) { return x >= 0 ? x : -x; }
45
46/* Chip information */
47char chip_model[64] __write_once;
48
49struct pglist_data node_data[MAX_NUMNODES] __read_mostly;
50EXPORT_SYMBOL(node_data);
51
52/* We only create bootmem data on node 0. */
53static bootmem_data_t __initdata node0_bdata;
54
55/* Information on the NUMA nodes that we compute early */
56unsigned long __cpuinitdata node_start_pfn[MAX_NUMNODES];
57unsigned long __cpuinitdata node_end_pfn[MAX_NUMNODES];
58unsigned long __initdata node_memmap_pfn[MAX_NUMNODES];
59unsigned long __initdata node_percpu_pfn[MAX_NUMNODES];
60unsigned long __initdata node_free_pfn[MAX_NUMNODES];
61
76c567fb
CM
62static unsigned long __initdata node_percpu[MAX_NUMNODES];
63
867e359b
CM
64#ifdef CONFIG_HIGHMEM
65/* Page frame index of end of lowmem on each controller. */
66unsigned long __cpuinitdata node_lowmem_end_pfn[MAX_NUMNODES];
67
68/* Number of pages that can be mapped into lowmem. */
69static unsigned long __initdata mappable_physpages;
70#endif
71
72/* Data on which physical memory controller corresponds to which NUMA node */
73int node_controller[MAX_NUMNODES] = { [0 ... MAX_NUMNODES-1] = -1 };
74
75#ifdef CONFIG_HIGHMEM
76/* Map information from VAs to PAs */
77unsigned long pbase_map[1 << (32 - HPAGE_SHIFT)]
78 __write_once __attribute__((aligned(L2_CACHE_BYTES)));
79EXPORT_SYMBOL(pbase_map);
80
81/* Map information from PAs to VAs */
82void *vbase_map[NR_PA_HIGHBIT_VALUES]
83 __write_once __attribute__((aligned(L2_CACHE_BYTES)));
84EXPORT_SYMBOL(vbase_map);
85#endif
86
87/* Node number as a function of the high PA bits */
88int highbits_to_node[NR_PA_HIGHBIT_VALUES] __write_once;
89EXPORT_SYMBOL(highbits_to_node);
90
91static unsigned int __initdata maxmem_pfn = -1U;
92static unsigned int __initdata maxnodemem_pfn[MAX_NUMNODES] = {
93 [0 ... MAX_NUMNODES-1] = -1U
94};
95static nodemask_t __initdata isolnodes;
96
97#ifdef CONFIG_PCI
98enum { DEFAULT_PCI_RESERVE_MB = 64 };
99static unsigned int __initdata pci_reserve_mb = DEFAULT_PCI_RESERVE_MB;
100unsigned long __initdata pci_reserve_start_pfn = -1U;
101unsigned long __initdata pci_reserve_end_pfn = -1U;
102#endif
103
104static int __init setup_maxmem(char *str)
105{
bfffe79b
CM
106 unsigned long long maxmem;
107 if (str == NULL || (maxmem = memparse(str, NULL)) == 0)
867e359b
CM
108 return -EINVAL;
109
bfffe79b 110 maxmem_pfn = (maxmem >> HPAGE_SHIFT) << (HPAGE_SHIFT - PAGE_SHIFT);
0707ad30 111 pr_info("Forcing RAM used to no more than %dMB\n",
867e359b
CM
112 maxmem_pfn >> (20 - PAGE_SHIFT));
113 return 0;
114}
115early_param("maxmem", setup_maxmem);
116
117static int __init setup_maxnodemem(char *str)
118{
119 char *endp;
bfffe79b
CM
120 unsigned long long maxnodemem;
121 long node;
867e359b
CM
122
123 node = str ? simple_strtoul(str, &endp, 0) : INT_MAX;
bfffe79b 124 if (node >= MAX_NUMNODES || *endp != ':')
867e359b
CM
125 return -EINVAL;
126
bfffe79b
CM
127 maxnodemem = memparse(endp+1, NULL);
128 maxnodemem_pfn[node] = (maxnodemem >> HPAGE_SHIFT) <<
867e359b 129 (HPAGE_SHIFT - PAGE_SHIFT);
0707ad30 130 pr_info("Forcing RAM used on node %ld to no more than %dMB\n",
867e359b
CM
131 node, maxnodemem_pfn[node] >> (20 - PAGE_SHIFT));
132 return 0;
133}
134early_param("maxnodemem", setup_maxnodemem);
135
136static int __init setup_isolnodes(char *str)
137{
138 char buf[MAX_NUMNODES * 5];
139 if (str == NULL || nodelist_parse(str, isolnodes) != 0)
140 return -EINVAL;
141
142 nodelist_scnprintf(buf, sizeof(buf), isolnodes);
0707ad30 143 pr_info("Set isolnodes value to '%s'\n", buf);
867e359b
CM
144 return 0;
145}
146early_param("isolnodes", setup_isolnodes);
147
148#ifdef CONFIG_PCI
149static int __init setup_pci_reserve(char* str)
150{
151 unsigned long mb;
152
153 if (str == NULL || strict_strtoul(str, 0, &mb) != 0 ||
154 mb > 3 * 1024)
155 return -EINVAL;
156
157 pci_reserve_mb = mb;
0707ad30 158 pr_info("Reserving %dMB for PCIE root complex mappings\n",
867e359b
CM
159 pci_reserve_mb);
160 return 0;
161}
162early_param("pci_reserve", setup_pci_reserve);
163#endif
164
165#ifndef __tilegx__
166/*
167 * vmalloc=size forces the vmalloc area to be exactly 'size' bytes.
168 * This can be used to increase (or decrease) the vmalloc area.
169 */
170static int __init parse_vmalloc(char *arg)
171{
172 if (!arg)
173 return -EINVAL;
174
175 VMALLOC_RESERVE = (memparse(arg, &arg) + PGDIR_SIZE - 1) & PGDIR_MASK;
176
177 /* See validate_va() for more on this test. */
178 if ((long)_VMALLOC_START >= 0)
179 early_panic("\"vmalloc=%#lx\" value too large: maximum %#lx\n",
180 VMALLOC_RESERVE, _VMALLOC_END - 0x80000000UL);
181
182 return 0;
183}
184early_param("vmalloc", parse_vmalloc);
185#endif
186
187#ifdef CONFIG_HIGHMEM
188/*
a78c942d
CM
189 * Determine for each controller where its lowmem is mapped and how much of
190 * it is mapped there. On controller zero, the first few megabytes are
191 * already mapped in as code at MEM_SV_INTRPT, so in principle we could
192 * start our data mappings higher up, but for now we don't bother, to avoid
193 * additional confusion.
867e359b
CM
194 *
195 * One question is whether, on systems with more than 768 Mb and
196 * controllers of different sizes, to map in a proportionate amount of
197 * each one, or to try to map the same amount from each controller.
198 * (E.g. if we have three controllers with 256MB, 1GB, and 256MB
199 * respectively, do we map 256MB from each, or do we map 128 MB, 512
200 * MB, and 128 MB respectively?) For now we use a proportionate
201 * solution like the latter.
202 *
203 * The VA/PA mapping demands that we align our decisions at 16 MB
204 * boundaries so that we can rapidly convert VA to PA.
205 */
206static void *__init setup_pa_va_mapping(void)
207{
208 unsigned long curr_pages = 0;
209 unsigned long vaddr = PAGE_OFFSET;
210 nodemask_t highonlynodes = isolnodes;
211 int i, j;
212
213 memset(pbase_map, -1, sizeof(pbase_map));
214 memset(vbase_map, -1, sizeof(vbase_map));
215
216 /* Node zero cannot be isolated for LOWMEM purposes. */
217 node_clear(0, highonlynodes);
218
219 /* Count up the number of pages on non-highonlynodes controllers. */
220 mappable_physpages = 0;
221 for_each_online_node(i) {
222 if (!node_isset(i, highonlynodes))
223 mappable_physpages +=
224 node_end_pfn[i] - node_start_pfn[i];
225 }
226
227 for_each_online_node(i) {
228 unsigned long start = node_start_pfn[i];
229 unsigned long end = node_end_pfn[i];
230 unsigned long size = end - start;
231 unsigned long vaddr_end;
232
233 if (node_isset(i, highonlynodes)) {
234 /* Mark this controller as having no lowmem. */
235 node_lowmem_end_pfn[i] = start;
236 continue;
237 }
238
239 curr_pages += size;
240 if (mappable_physpages > MAXMEM_PFN) {
241 vaddr_end = PAGE_OFFSET +
242 (((u64)curr_pages * MAXMEM_PFN /
243 mappable_physpages)
244 << PAGE_SHIFT);
245 } else {
246 vaddr_end = PAGE_OFFSET + (curr_pages << PAGE_SHIFT);
247 }
248 for (j = 0; vaddr < vaddr_end; vaddr += HPAGE_SIZE, ++j) {
249 unsigned long this_pfn =
250 start + (j << HUGETLB_PAGE_ORDER);
251 pbase_map[vaddr >> HPAGE_SHIFT] = this_pfn;
252 if (vbase_map[__pfn_to_highbits(this_pfn)] ==
253 (void *)-1)
254 vbase_map[__pfn_to_highbits(this_pfn)] =
255 (void *)(vaddr & HPAGE_MASK);
256 }
257 node_lowmem_end_pfn[i] = start + (j << HUGETLB_PAGE_ORDER);
258 BUG_ON(node_lowmem_end_pfn[i] > end);
259 }
260
261 /* Return highest address of any mapped memory. */
262 return (void *)vaddr;
263}
264#endif /* CONFIG_HIGHMEM */
265
266/*
267 * Register our most important memory mappings with the debug stub.
268 *
269 * This is up to 4 mappings for lowmem, one mapping per memory
270 * controller, plus one for our text segment.
271 */
0707ad30 272static void __cpuinit store_permanent_mappings(void)
867e359b
CM
273{
274 int i;
275
276 for_each_online_node(i) {
277 HV_PhysAddr pa = ((HV_PhysAddr)node_start_pfn[i]) << PAGE_SHIFT;
278#ifdef CONFIG_HIGHMEM
279 HV_PhysAddr high_mapped_pa = node_lowmem_end_pfn[i];
280#else
281 HV_PhysAddr high_mapped_pa = node_end_pfn[i];
282#endif
283
284 unsigned long pages = high_mapped_pa - node_start_pfn[i];
285 HV_VirtAddr addr = (HV_VirtAddr) __va(pa);
286 hv_store_mapping(addr, pages << PAGE_SHIFT, pa);
287 }
288
289 hv_store_mapping((HV_VirtAddr)_stext,
290 (uint32_t)(_einittext - _stext), 0);
291}
292
293/*
294 * Use hv_inquire_physical() to populate node_{start,end}_pfn[]
295 * and node_online_map, doing suitable sanity-checking.
296 * Also set min_low_pfn, max_low_pfn, and max_pfn.
297 */
298static void __init setup_memory(void)
299{
300 int i, j;
301 int highbits_seen[NR_PA_HIGHBIT_VALUES] = { 0 };
302#ifdef CONFIG_HIGHMEM
303 long highmem_pages;
304#endif
305#ifndef __tilegx__
306 int cap;
307#endif
308#if defined(CONFIG_HIGHMEM) || defined(__tilegx__)
309 long lowmem_pages;
310#endif
311
312 /* We are using a char to hold the cpu_2_node[] mapping */
e18105c1 313 BUILD_BUG_ON(MAX_NUMNODES > 127);
867e359b
CM
314
315 /* Discover the ranges of memory available to us */
316 for (i = 0; ; ++i) {
317 unsigned long start, size, end, highbits;
318 HV_PhysAddrRange range = hv_inquire_physical(i);
319 if (range.size == 0)
320 break;
321#ifdef CONFIG_FLATMEM
322 if (i > 0) {
0707ad30 323 pr_err("Can't use discontiguous PAs: %#llx..%#llx\n",
867e359b
CM
324 range.size, range.start + range.size);
325 continue;
326 }
327#endif
328#ifndef __tilegx__
329 if ((unsigned long)range.start) {
0707ad30 330 pr_err("Range not at 4GB multiple: %#llx..%#llx\n",
867e359b
CM
331 range.start, range.start + range.size);
332 continue;
333 }
334#endif
335 if ((range.start & (HPAGE_SIZE-1)) != 0 ||
336 (range.size & (HPAGE_SIZE-1)) != 0) {
337 unsigned long long start_pa = range.start;
0707ad30 338 unsigned long long orig_size = range.size;
867e359b
CM
339 range.start = (start_pa + HPAGE_SIZE - 1) & HPAGE_MASK;
340 range.size -= (range.start - start_pa);
341 range.size &= HPAGE_MASK;
0707ad30 342 pr_err("Range not hugepage-aligned: %#llx..%#llx:"
867e359b 343 " now %#llx-%#llx\n",
0707ad30 344 start_pa, start_pa + orig_size,
867e359b
CM
345 range.start, range.start + range.size);
346 }
347 highbits = __pa_to_highbits(range.start);
348 if (highbits >= NR_PA_HIGHBIT_VALUES) {
0707ad30 349 pr_err("PA high bits too high: %#llx..%#llx\n",
867e359b
CM
350 range.start, range.start + range.size);
351 continue;
352 }
353 if (highbits_seen[highbits]) {
0707ad30 354 pr_err("Range overlaps in high bits: %#llx..%#llx\n",
867e359b
CM
355 range.start, range.start + range.size);
356 continue;
357 }
358 highbits_seen[highbits] = 1;
359 if (PFN_DOWN(range.size) > maxnodemem_pfn[i]) {
0707ad30
CM
360 int max_size = maxnodemem_pfn[i];
361 if (max_size > 0) {
362 pr_err("Maxnodemem reduced node %d to"
363 " %d pages\n", i, max_size);
364 range.size = PFN_PHYS(max_size);
867e359b 365 } else {
0707ad30 366 pr_err("Maxnodemem disabled node %d\n", i);
867e359b
CM
367 continue;
368 }
369 }
370 if (num_physpages + PFN_DOWN(range.size) > maxmem_pfn) {
0707ad30
CM
371 int max_size = maxmem_pfn - num_physpages;
372 if (max_size > 0) {
373 pr_err("Maxmem reduced node %d to %d pages\n",
374 i, max_size);
375 range.size = PFN_PHYS(max_size);
867e359b 376 } else {
0707ad30 377 pr_err("Maxmem disabled node %d\n", i);
867e359b
CM
378 continue;
379 }
380 }
381 if (i >= MAX_NUMNODES) {
0707ad30 382 pr_err("Too many PA nodes (#%d): %#llx...%#llx\n",
867e359b
CM
383 i, range.size, range.size + range.start);
384 continue;
385 }
386
387 start = range.start >> PAGE_SHIFT;
388 size = range.size >> PAGE_SHIFT;
389 end = start + size;
390
391#ifndef __tilegx__
392 if (((HV_PhysAddr)end << PAGE_SHIFT) !=
393 (range.start + range.size)) {
0707ad30 394 pr_err("PAs too high to represent: %#llx..%#llx\n",
867e359b
CM
395 range.start, range.start + range.size);
396 continue;
397 }
398#endif
399#ifdef CONFIG_PCI
400 /*
401 * Blocks that overlap the pci reserved region must
402 * have enough space to hold the maximum percpu data
403 * region at the top of the range. If there isn't
404 * enough space above the reserved region, just
405 * truncate the node.
406 */
407 if (start <= pci_reserve_start_pfn &&
408 end > pci_reserve_start_pfn) {
409 unsigned int per_cpu_size =
410 __per_cpu_end - __per_cpu_start;
411 unsigned int percpu_pages =
412 NR_CPUS * (PFN_UP(per_cpu_size) >> PAGE_SHIFT);
413 if (end < pci_reserve_end_pfn + percpu_pages) {
414 end = pci_reserve_start_pfn;
0707ad30 415 pr_err("PCI mapping region reduced node %d to"
867e359b
CM
416 " %ld pages\n", i, end - start);
417 }
418 }
419#endif
420
421 for (j = __pfn_to_highbits(start);
422 j <= __pfn_to_highbits(end - 1); j++)
423 highbits_to_node[j] = i;
424
425 node_start_pfn[i] = start;
426 node_end_pfn[i] = end;
427 node_controller[i] = range.controller;
428 num_physpages += size;
429 max_pfn = end;
430
431 /* Mark node as online */
432 node_set(i, node_online_map);
433 node_set(i, node_possible_map);
434 }
435
436#ifndef __tilegx__
437 /*
438 * For 4KB pages, mem_map "struct page" data is 1% of the size
439 * of the physical memory, so can be quite big (640 MB for
440 * four 16G zones). These structures must be mapped in
441 * lowmem, and since we currently cap out at about 768 MB,
442 * it's impractical to try to use this much address space.
443 * For now, arbitrarily cap the amount of physical memory
444 * we're willing to use at 8 million pages (32GB of 4KB pages).
445 */
446 cap = 8 * 1024 * 1024; /* 8 million pages */
447 if (num_physpages > cap) {
448 int num_nodes = num_online_nodes();
449 int cap_each = cap / num_nodes;
450 unsigned long dropped_pages = 0;
451 for (i = 0; i < num_nodes; ++i) {
452 int size = node_end_pfn[i] - node_start_pfn[i];
453 if (size > cap_each) {
454 dropped_pages += (size - cap_each);
455 node_end_pfn[i] = node_start_pfn[i] + cap_each;
456 }
457 }
458 num_physpages -= dropped_pages;
0707ad30 459 pr_warning("Only using %ldMB memory;"
867e359b
CM
460 " ignoring %ldMB.\n",
461 num_physpages >> (20 - PAGE_SHIFT),
462 dropped_pages >> (20 - PAGE_SHIFT));
0707ad30 463 pr_warning("Consider using a larger page size.\n");
867e359b
CM
464 }
465#endif
466
467 /* Heap starts just above the last loaded address. */
468 min_low_pfn = PFN_UP((unsigned long)_end - PAGE_OFFSET);
469
470#ifdef CONFIG_HIGHMEM
471 /* Find where we map lowmem from each controller. */
472 high_memory = setup_pa_va_mapping();
473
474 /* Set max_low_pfn based on what node 0 can directly address. */
475 max_low_pfn = node_lowmem_end_pfn[0];
476
477 lowmem_pages = (mappable_physpages > MAXMEM_PFN) ?
478 MAXMEM_PFN : mappable_physpages;
479 highmem_pages = (long) (num_physpages - lowmem_pages);
480
0707ad30 481 pr_notice("%ldMB HIGHMEM available.\n",
867e359b 482 pages_to_mb(highmem_pages > 0 ? highmem_pages : 0));
0707ad30 483 pr_notice("%ldMB LOWMEM available.\n",
867e359b
CM
484 pages_to_mb(lowmem_pages));
485#else
486 /* Set max_low_pfn based on what node 0 can directly address. */
487 max_low_pfn = node_end_pfn[0];
488
489#ifndef __tilegx__
490 if (node_end_pfn[0] > MAXMEM_PFN) {
0707ad30 491 pr_warning("Only using %ldMB LOWMEM.\n",
867e359b 492 MAXMEM>>20);
0707ad30 493 pr_warning("Use a HIGHMEM enabled kernel.\n");
867e359b
CM
494 max_low_pfn = MAXMEM_PFN;
495 max_pfn = MAXMEM_PFN;
496 num_physpages = MAXMEM_PFN;
497 node_end_pfn[0] = MAXMEM_PFN;
498 } else {
0707ad30 499 pr_notice("%ldMB memory available.\n",
867e359b
CM
500 pages_to_mb(node_end_pfn[0]));
501 }
502 for (i = 1; i < MAX_NUMNODES; ++i) {
503 node_start_pfn[i] = 0;
504 node_end_pfn[i] = 0;
505 }
506 high_memory = __va(node_end_pfn[0]);
507#else
508 lowmem_pages = 0;
509 for (i = 0; i < MAX_NUMNODES; ++i) {
510 int pages = node_end_pfn[i] - node_start_pfn[i];
511 lowmem_pages += pages;
512 if (pages)
513 high_memory = pfn_to_kaddr(node_end_pfn[i]);
514 }
0707ad30 515 pr_notice("%ldMB memory available.\n",
867e359b
CM
516 pages_to_mb(lowmem_pages));
517#endif
518#endif
519}
520
521static void __init setup_bootmem_allocator(void)
522{
523 unsigned long bootmap_size, first_alloc_pfn, last_alloc_pfn;
524
525 /* Provide a node 0 bdata. */
526 NODE_DATA(0)->bdata = &node0_bdata;
527
528#ifdef CONFIG_PCI
529 /* Don't let boot memory alias the PCI region. */
530 last_alloc_pfn = min(max_low_pfn, pci_reserve_start_pfn);
531#else
532 last_alloc_pfn = max_low_pfn;
533#endif
534
535 /*
536 * Initialize the boot-time allocator (with low memory only):
537 * The first argument says where to put the bitmap, and the
538 * second says where the end of allocatable memory is.
539 */
540 bootmap_size = init_bootmem(min_low_pfn, last_alloc_pfn);
541
542 /*
543 * Let the bootmem allocator use all the space we've given it
544 * except for its own bitmap.
545 */
546 first_alloc_pfn = min_low_pfn + PFN_UP(bootmap_size);
547 if (first_alloc_pfn >= last_alloc_pfn)
548 early_panic("Not enough memory on controller 0 for bootmem\n");
549
550 free_bootmem(PFN_PHYS(first_alloc_pfn),
551 PFN_PHYS(last_alloc_pfn - first_alloc_pfn));
552
553#ifdef CONFIG_KEXEC
554 if (crashk_res.start != crashk_res.end)
28f65c11 555 reserve_bootmem(crashk_res.start, resource_size(&crashk_res), 0);
867e359b 556#endif
867e359b
CM
557}
558
559void *__init alloc_remap(int nid, unsigned long size)
560{
561 int pages = node_end_pfn[nid] - node_start_pfn[nid];
562 void *map = pfn_to_kaddr(node_memmap_pfn[nid]);
563 BUG_ON(size != pages * sizeof(struct page));
564 memset(map, 0, size);
565 return map;
566}
567
568static int __init percpu_size(void)
569{
76c567fb
CM
570 int size = __per_cpu_end - __per_cpu_start;
571 size += PERCPU_MODULE_RESERVE;
572 size += PERCPU_DYNAMIC_EARLY_SIZE;
573 if (size < PCPU_MIN_UNIT_SIZE)
574 size = PCPU_MIN_UNIT_SIZE;
575 size = roundup(size, PAGE_SIZE);
576
867e359b
CM
577 /* In several places we assume the per-cpu data fits on a huge page. */
578 BUG_ON(kdata_huge && size > HPAGE_SIZE);
579 return size;
580}
581
582static inline unsigned long alloc_bootmem_pfn(int size, unsigned long goal)
583{
584 void *kva = __alloc_bootmem(size, PAGE_SIZE, goal);
585 unsigned long pfn = kaddr_to_pfn(kva);
586 BUG_ON(goal && PFN_PHYS(pfn) != goal);
587 return pfn;
588}
589
590static void __init zone_sizes_init(void)
591{
592 unsigned long zones_size[MAX_NR_ZONES] = { 0 };
867e359b
CM
593 int size = percpu_size();
594 int num_cpus = smp_height * smp_width;
595 int i;
596
597 for (i = 0; i < num_cpus; ++i)
598 node_percpu[cpu_to_node(i)] += size;
599
600 for_each_online_node(i) {
601 unsigned long start = node_start_pfn[i];
602 unsigned long end = node_end_pfn[i];
603#ifdef CONFIG_HIGHMEM
604 unsigned long lowmem_end = node_lowmem_end_pfn[i];
605#else
606 unsigned long lowmem_end = end;
607#endif
608 int memmap_size = (end - start) * sizeof(struct page);
609 node_free_pfn[i] = start;
610
611 /*
612 * Set aside pages for per-cpu data and the mem_map array.
613 *
614 * Since the per-cpu data requires special homecaching,
615 * if we are in kdata_huge mode, we put it at the end of
616 * the lowmem region. If we're not in kdata_huge mode,
617 * we take the per-cpu pages from the bottom of the
618 * controller, since that avoids fragmenting a huge page
619 * that users might want. We always take the memmap
620 * from the bottom of the controller, since with
621 * kdata_huge that lets it be under a huge TLB entry.
622 *
623 * If the user has requested isolnodes for a controller,
624 * though, there'll be no lowmem, so we just alloc_bootmem
625 * the memmap. There will be no percpu memory either.
626 */
627 if (__pfn_to_highbits(start) == 0) {
628 /* In low PAs, allocate via bootmem. */
629 unsigned long goal = 0;
630 node_memmap_pfn[i] =
631 alloc_bootmem_pfn(memmap_size, goal);
632 if (kdata_huge)
633 goal = PFN_PHYS(lowmem_end) - node_percpu[i];
634 if (node_percpu[i])
635 node_percpu_pfn[i] =
636 alloc_bootmem_pfn(node_percpu[i], goal);
637 } else if (cpu_isset(i, isolnodes)) {
638 node_memmap_pfn[i] = alloc_bootmem_pfn(memmap_size, 0);
639 BUG_ON(node_percpu[i] != 0);
640 } else {
641 /* In high PAs, just reserve some pages. */
642 node_memmap_pfn[i] = node_free_pfn[i];
643 node_free_pfn[i] += PFN_UP(memmap_size);
644 if (!kdata_huge) {
645 node_percpu_pfn[i] = node_free_pfn[i];
646 node_free_pfn[i] += PFN_UP(node_percpu[i]);
647 } else {
648 node_percpu_pfn[i] =
649 lowmem_end - PFN_UP(node_percpu[i]);
650 }
651 }
652
653#ifdef CONFIG_HIGHMEM
654 if (start > lowmem_end) {
655 zones_size[ZONE_NORMAL] = 0;
656 zones_size[ZONE_HIGHMEM] = end - start;
657 } else {
658 zones_size[ZONE_NORMAL] = lowmem_end - start;
659 zones_size[ZONE_HIGHMEM] = end - lowmem_end;
660 }
661#else
662 zones_size[ZONE_NORMAL] = end - start;
663#endif
664
665 /*
666 * Everyone shares node 0's bootmem allocator, but
667 * we use alloc_remap(), above, to put the actual
668 * struct page array on the individual controllers,
669 * which is most of the data that we actually care about.
670 * We can't place bootmem allocators on the other
671 * controllers since the bootmem allocator can only
672 * operate on 32-bit physical addresses.
673 */
674 NODE_DATA(i)->bdata = NODE_DATA(0)->bdata;
675
676 free_area_init_node(i, zones_size, start, NULL);
76c567fb 677 printk(KERN_DEBUG " Normal zone: %ld per-cpu pages\n",
867e359b
CM
678 PFN_UP(node_percpu[i]));
679
680 /* Track the type of memory on each node */
681 if (zones_size[ZONE_NORMAL])
682 node_set_state(i, N_NORMAL_MEMORY);
683#ifdef CONFIG_HIGHMEM
684 if (end != start)
685 node_set_state(i, N_HIGH_MEMORY);
686#endif
687
688 node_set_online(i);
689 }
690}
691
692#ifdef CONFIG_NUMA
693
694/* which logical CPUs are on which nodes */
695struct cpumask node_2_cpu_mask[MAX_NUMNODES] __write_once;
696EXPORT_SYMBOL(node_2_cpu_mask);
697
698/* which node each logical CPU is on */
699char cpu_2_node[NR_CPUS] __write_once __attribute__((aligned(L2_CACHE_BYTES)));
700EXPORT_SYMBOL(cpu_2_node);
701
702/* Return cpu_to_node() except for cpus not yet assigned, which return -1 */
703static int __init cpu_to_bound_node(int cpu, struct cpumask* unbound_cpus)
704{
705 if (!cpu_possible(cpu) || cpumask_test_cpu(cpu, unbound_cpus))
706 return -1;
707 else
708 return cpu_to_node(cpu);
709}
710
711/* Return number of immediately-adjacent tiles sharing the same NUMA node. */
712static int __init node_neighbors(int node, int cpu,
713 struct cpumask *unbound_cpus)
714{
715 int neighbors = 0;
716 int w = smp_width;
717 int h = smp_height;
718 int x = cpu % w;
719 int y = cpu / w;
720 if (x > 0 && cpu_to_bound_node(cpu-1, unbound_cpus) == node)
721 ++neighbors;
722 if (x < w-1 && cpu_to_bound_node(cpu+1, unbound_cpus) == node)
723 ++neighbors;
724 if (y > 0 && cpu_to_bound_node(cpu-w, unbound_cpus) == node)
725 ++neighbors;
726 if (y < h-1 && cpu_to_bound_node(cpu+w, unbound_cpus) == node)
727 ++neighbors;
728 return neighbors;
729}
730
731static void __init setup_numa_mapping(void)
732{
733 int distance[MAX_NUMNODES][NR_CPUS];
734 HV_Coord coord;
735 int cpu, node, cpus, i, x, y;
736 int num_nodes = num_online_nodes();
737 struct cpumask unbound_cpus;
738 nodemask_t default_nodes;
739
740 cpumask_clear(&unbound_cpus);
741
742 /* Get set of nodes we will use for defaults */
743 nodes_andnot(default_nodes, node_online_map, isolnodes);
744 if (nodes_empty(default_nodes)) {
745 BUG_ON(!node_isset(0, node_online_map));
0707ad30 746 pr_err("Forcing NUMA node zero available as a default node\n");
867e359b
CM
747 node_set(0, default_nodes);
748 }
749
750 /* Populate the distance[] array */
751 memset(distance, -1, sizeof(distance));
752 cpu = 0;
753 for (coord.y = 0; coord.y < smp_height; ++coord.y) {
754 for (coord.x = 0; coord.x < smp_width;
755 ++coord.x, ++cpu) {
756 BUG_ON(cpu >= nr_cpu_ids);
757 if (!cpu_possible(cpu)) {
758 cpu_2_node[cpu] = -1;
759 continue;
760 }
761 for_each_node_mask(node, default_nodes) {
762 HV_MemoryControllerInfo info =
763 hv_inquire_memory_controller(
764 coord, node_controller[node]);
765 distance[node][cpu] =
766 ABS(info.coord.x) + ABS(info.coord.y);
767 }
768 cpumask_set_cpu(cpu, &unbound_cpus);
769 }
770 }
771 cpus = cpu;
772
773 /*
774 * Round-robin through the NUMA nodes until all the cpus are
775 * assigned. We could be more clever here (e.g. create four
776 * sorted linked lists on the same set of cpu nodes, and pull
777 * off them in round-robin sequence, removing from all four
778 * lists each time) but given the relatively small numbers
779 * involved, O(n^2) seem OK for a one-time cost.
780 */
781 node = first_node(default_nodes);
782 while (!cpumask_empty(&unbound_cpus)) {
783 int best_cpu = -1;
784 int best_distance = INT_MAX;
785 for (cpu = 0; cpu < cpus; ++cpu) {
786 if (cpumask_test_cpu(cpu, &unbound_cpus)) {
787 /*
788 * Compute metric, which is how much
789 * closer the cpu is to this memory
790 * controller than the others, shifted
791 * up, and then the number of
792 * neighbors already in the node as an
793 * epsilon adjustment to try to keep
794 * the nodes compact.
795 */
796 int d = distance[node][cpu] * num_nodes;
797 for_each_node_mask(i, default_nodes) {
798 if (i != node)
799 d -= distance[i][cpu];
800 }
801 d *= 8; /* allow space for epsilon */
802 d -= node_neighbors(node, cpu, &unbound_cpus);
803 if (d < best_distance) {
804 best_cpu = cpu;
805 best_distance = d;
806 }
807 }
808 }
809 BUG_ON(best_cpu < 0);
810 cpumask_set_cpu(best_cpu, &node_2_cpu_mask[node]);
811 cpu_2_node[best_cpu] = node;
812 cpumask_clear_cpu(best_cpu, &unbound_cpus);
813 node = next_node(node, default_nodes);
814 if (node == MAX_NUMNODES)
815 node = first_node(default_nodes);
816 }
817
818 /* Print out node assignments and set defaults for disabled cpus */
819 cpu = 0;
820 for (y = 0; y < smp_height; ++y) {
821 printk(KERN_DEBUG "NUMA cpu-to-node row %d:", y);
822 for (x = 0; x < smp_width; ++x, ++cpu) {
823 if (cpu_to_node(cpu) < 0) {
0707ad30 824 pr_cont(" -");
867e359b
CM
825 cpu_2_node[cpu] = first_node(default_nodes);
826 } else {
0707ad30 827 pr_cont(" %d", cpu_to_node(cpu));
867e359b
CM
828 }
829 }
0707ad30 830 pr_cont("\n");
867e359b
CM
831 }
832}
833
834static struct cpu cpu_devices[NR_CPUS];
835
836static int __init topology_init(void)
837{
838 int i;
839
840 for_each_online_node(i)
841 register_one_node(i);
842
4d658d13 843 for (i = 0; i < smp_height * smp_width; ++i)
867e359b
CM
844 register_cpu(&cpu_devices[i], i);
845
846 return 0;
847}
848
849subsys_initcall(topology_init);
850
851#else /* !CONFIG_NUMA */
852
853#define setup_numa_mapping() do { } while (0)
854
855#endif /* CONFIG_NUMA */
856
857/**
0707ad30
CM
858 * setup_cpu() - Do all necessary per-cpu, tile-specific initialization.
859 * @boot: Is this the boot cpu?
867e359b 860 *
0707ad30 861 * Called from setup_arch() on the boot cpu, or online_secondary().
867e359b 862 */
0707ad30 863void __cpuinit setup_cpu(int boot)
867e359b 864{
0707ad30
CM
865 /* The boot cpu sets up its permanent mappings much earlier. */
866 if (!boot)
867 store_permanent_mappings();
868
867e359b
CM
869 /* Allow asynchronous TLB interrupts. */
870#if CHIP_HAS_TILE_DMA()
5d966115
CM
871 arch_local_irq_unmask(INT_DMATLB_MISS);
872 arch_local_irq_unmask(INT_DMATLB_ACCESS);
867e359b
CM
873#endif
874#if CHIP_HAS_SN_PROC()
5d966115 875 arch_local_irq_unmask(INT_SNITLB_MISS);
867e359b 876#endif
a78c942d 877#ifdef __tilegx__
5d966115 878 arch_local_irq_unmask(INT_SINGLE_STEP_K);
a78c942d 879#endif
867e359b
CM
880
881 /*
882 * Allow user access to many generic SPRs, like the cycle
883 * counter, PASS/FAIL/DONE, INTERRUPT_CRITICAL_SECTION, etc.
884 */
885 __insn_mtspr(SPR_MPL_WORLD_ACCESS_SET_0, 1);
886
887#if CHIP_HAS_SN()
888 /* Static network is not restricted. */
889 __insn_mtspr(SPR_MPL_SN_ACCESS_SET_0, 1);
890#endif
891#if CHIP_HAS_SN_PROC()
892 __insn_mtspr(SPR_MPL_SN_NOTIFY_SET_0, 1);
893 __insn_mtspr(SPR_MPL_SN_CPL_SET_0, 1);
894#endif
895
896 /*
a78c942d
CM
897 * Set the MPL for interrupt control 0 & 1 to the corresponding
898 * values. This includes access to the SYSTEM_SAVE and EX_CONTEXT
899 * SPRs, as well as the interrupt mask.
867e359b
CM
900 */
901 __insn_mtspr(SPR_MPL_INTCTRL_0_SET_0, 1);
a78c942d 902 __insn_mtspr(SPR_MPL_INTCTRL_1_SET_1, 1);
0707ad30
CM
903
904 /* Initialize IRQ support for this cpu. */
905 setup_irq_regs();
906
907#ifdef CONFIG_HARDWALL
908 /* Reset the network state on this cpu. */
909 reset_network_state();
910#endif
867e359b
CM
911}
912
43d9ebba
CM
913#ifdef CONFIG_BLK_DEV_INITRD
914
51bcdf88
CM
915/*
916 * Note that the kernel can potentially support other compression
917 * techniques than gz, though we don't do so by default. If we ever
918 * decide to do so we can either look for other filename extensions,
919 * or just allow a file with this name to be compressed with an
920 * arbitrary compressor (somewhat counterintuitively).
921 */
867e359b
CM
922static int __initdata set_initramfs_file;
923static char __initdata initramfs_file[128] = "initramfs.cpio.gz";
924
925static int __init setup_initramfs_file(char *str)
926{
927 if (str == NULL)
928 return -EINVAL;
929 strncpy(initramfs_file, str, sizeof(initramfs_file) - 1);
930 set_initramfs_file = 1;
931
932 return 0;
933}
934early_param("initramfs_file", setup_initramfs_file);
935
936/*
51bcdf88 937 * We look for an "initramfs.cpio.gz" file in the hvfs.
867e359b 938 * If there is one, we allocate some memory for it and it will be
51bcdf88 939 * unpacked to the initramfs.
867e359b
CM
940 */
941static void __init load_hv_initrd(void)
942{
943 HV_FS_StatInfo stat;
944 int fd, rc;
945 void *initrd;
946
947 fd = hv_fs_findfile((HV_VirtAddr) initramfs_file);
948 if (fd == HV_ENOENT) {
949 if (set_initramfs_file)
0707ad30
CM
950 pr_warning("No such hvfs initramfs file '%s'\n",
951 initramfs_file);
867e359b
CM
952 return;
953 }
954 BUG_ON(fd < 0);
955 stat = hv_fs_fstat(fd);
956 BUG_ON(stat.size < 0);
957 if (stat.flags & HV_FS_ISDIR) {
0707ad30
CM
958 pr_warning("Ignoring hvfs file '%s': it's a directory.\n",
959 initramfs_file);
867e359b
CM
960 return;
961 }
962 initrd = alloc_bootmem_pages(stat.size);
963 rc = hv_fs_pread(fd, (HV_VirtAddr) initrd, stat.size, 0);
964 if (rc != stat.size) {
0707ad30 965 pr_err("Error reading %d bytes from hvfs file '%s': %d\n",
867e359b 966 stat.size, initramfs_file, rc);
bc63de7c 967 free_initrd_mem((unsigned long) initrd, stat.size);
867e359b
CM
968 return;
969 }
970 initrd_start = (unsigned long) initrd;
971 initrd_end = initrd_start + stat.size;
972}
973
974void __init free_initrd_mem(unsigned long begin, unsigned long end)
975{
bc63de7c 976 free_bootmem(__pa(begin), end - begin);
867e359b
CM
977}
978
43d9ebba
CM
979#else
980static inline void load_hv_initrd(void) {}
981#endif /* CONFIG_BLK_DEV_INITRD */
982
867e359b
CM
983static void __init validate_hv(void)
984{
985 /*
986 * It may already be too late, but let's check our built-in
987 * configuration against what the hypervisor is providing.
988 */
989 unsigned long glue_size = hv_sysconf(HV_SYSCONF_GLUE_SIZE);
990 int hv_page_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_SMALL);
991 int hv_hpage_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_LARGE);
992 HV_ASIDRange asid_range;
993
994#ifndef CONFIG_SMP
995 HV_Topology topology = hv_inquire_topology();
996 BUG_ON(topology.coord.x != 0 || topology.coord.y != 0);
997 if (topology.width != 1 || topology.height != 1) {
0707ad30
CM
998 pr_warning("Warning: booting UP kernel on %dx%d grid;"
999 " will ignore all but first tile.\n",
1000 topology.width, topology.height);
867e359b
CM
1001 }
1002#endif
1003
1004 if (PAGE_OFFSET + HV_GLUE_START_CPA + glue_size > (unsigned long)_text)
1005 early_panic("Hypervisor glue size %ld is too big!\n",
1006 glue_size);
1007 if (hv_page_size != PAGE_SIZE)
1008 early_panic("Hypervisor page size %#x != our %#lx\n",
1009 hv_page_size, PAGE_SIZE);
1010 if (hv_hpage_size != HPAGE_SIZE)
1011 early_panic("Hypervisor huge page size %#x != our %#lx\n",
1012 hv_hpage_size, HPAGE_SIZE);
1013
1014#ifdef CONFIG_SMP
1015 /*
1016 * Some hypervisor APIs take a pointer to a bitmap array
1017 * whose size is at least the number of cpus on the chip.
1018 * We use a struct cpumask for this, so it must be big enough.
1019 */
1020 if ((smp_height * smp_width) > nr_cpu_ids)
1021 early_panic("Hypervisor %d x %d grid too big for Linux"
1022 " NR_CPUS %d\n", smp_height, smp_width,
1023 nr_cpu_ids);
1024#endif
1025
1026 /*
1027 * Check that we're using allowed ASIDs, and initialize the
1028 * various asid variables to their appropriate initial states.
1029 */
1030 asid_range = hv_inquire_asid(0);
1031 __get_cpu_var(current_asid) = min_asid = asid_range.start;
1032 max_asid = asid_range.start + asid_range.size - 1;
1033
1034 if (hv_confstr(HV_CONFSTR_CHIP_MODEL, (HV_VirtAddr)chip_model,
1035 sizeof(chip_model)) < 0) {
0707ad30 1036 pr_err("Warning: HV_CONFSTR_CHIP_MODEL not available\n");
867e359b
CM
1037 strlcpy(chip_model, "unknown", sizeof(chip_model));
1038 }
1039}
1040
1041static void __init validate_va(void)
1042{
1043#ifndef __tilegx__ /* FIXME: GX: probably some validation relevant here */
1044 /*
1045 * Similarly, make sure we're only using allowed VAs.
1046 * We assume we can contiguously use MEM_USER_INTRPT .. MEM_HV_INTRPT,
1047 * and 0 .. KERNEL_HIGH_VADDR.
1048 * In addition, make sure we CAN'T use the end of memory, since
1049 * we use the last chunk of each pgd for the pgd_list.
1050 */
a78c942d 1051 int i, user_kernel_ok = 0;
867e359b
CM
1052 unsigned long max_va = 0;
1053 unsigned long list_va =
1054 ((PGD_LIST_OFFSET / sizeof(pgd_t)) << PGDIR_SHIFT);
1055
1056 for (i = 0; ; ++i) {
1057 HV_VirtAddrRange range = hv_inquire_virtual(i);
1058 if (range.size == 0)
1059 break;
1060 if (range.start <= MEM_USER_INTRPT &&
1061 range.start + range.size >= MEM_HV_INTRPT)
a78c942d 1062 user_kernel_ok = 1;
867e359b
CM
1063 if (range.start == 0)
1064 max_va = range.size;
1065 BUG_ON(range.start + range.size > list_va);
1066 }
a78c942d
CM
1067 if (!user_kernel_ok)
1068 early_panic("Hypervisor not configured for user/kernel VAs\n");
867e359b
CM
1069 if (max_va == 0)
1070 early_panic("Hypervisor not configured for low VAs\n");
1071 if (max_va < KERNEL_HIGH_VADDR)
1072 early_panic("Hypervisor max VA %#lx smaller than %#lx\n",
1073 max_va, KERNEL_HIGH_VADDR);
1074
1075 /* Kernel PCs must have their high bit set; see intvec.S. */
1076 if ((long)VMALLOC_START >= 0)
1077 early_panic(
1078 "Linux VMALLOC region below the 2GB line (%#lx)!\n"
1079 "Reconfigure the kernel with fewer NR_HUGE_VMAPS\n"
1080 "or smaller VMALLOC_RESERVE.\n",
1081 VMALLOC_START);
1082#endif
1083}
1084
1085/*
1086 * cpu_lotar_map lists all the cpus that are valid for the supervisor
1087 * to cache data on at a page level, i.e. what cpus can be placed in
1088 * the LOTAR field of a PTE. It is equivalent to the set of possible
1089 * cpus plus any other cpus that are willing to share their cache.
1090 * It is set by hv_inquire_tiles(HV_INQ_TILES_LOTAR).
1091 */
1092struct cpumask __write_once cpu_lotar_map;
1093EXPORT_SYMBOL(cpu_lotar_map);
1094
1095#if CHIP_HAS_CBOX_HOME_MAP()
1096/*
1097 * hash_for_home_map lists all the tiles that hash-for-home data
1098 * will be cached on. Note that this may includes tiles that are not
1099 * valid for this supervisor to use otherwise (e.g. if a hypervisor
1100 * device is being shared between multiple supervisors).
1101 * It is set by hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE).
1102 */
1103struct cpumask hash_for_home_map;
1104EXPORT_SYMBOL(hash_for_home_map);
1105#endif
1106
1107/*
1108 * cpu_cacheable_map lists all the cpus whose caches the hypervisor can
5f054e31 1109 * flush on our behalf. It is set to cpu_possible_mask OR'ed with
867e359b
CM
1110 * hash_for_home_map, and it is what should be passed to
1111 * hv_flush_remote() to flush all caches. Note that if there are
1112 * dedicated hypervisor driver tiles that have authorized use of their
1113 * cache, those tiles will only appear in cpu_lotar_map, NOT in
1114 * cpu_cacheable_map, as they are a special case.
1115 */
1116struct cpumask __write_once cpu_cacheable_map;
1117EXPORT_SYMBOL(cpu_cacheable_map);
1118
1119static __initdata struct cpumask disabled_map;
1120
1121static int __init disabled_cpus(char *str)
1122{
1123 int boot_cpu = smp_processor_id();
1124
1125 if (str == NULL || cpulist_parse_crop(str, &disabled_map) != 0)
1126 return -EINVAL;
1127 if (cpumask_test_cpu(boot_cpu, &disabled_map)) {
0707ad30 1128 pr_err("disabled_cpus: can't disable boot cpu %d\n", boot_cpu);
867e359b
CM
1129 cpumask_clear_cpu(boot_cpu, &disabled_map);
1130 }
1131 return 0;
1132}
1133
1134early_param("disabled_cpus", disabled_cpus);
1135
0707ad30 1136void __init print_disabled_cpus(void)
867e359b
CM
1137{
1138 if (!cpumask_empty(&disabled_map)) {
1139 char buf[100];
1140 cpulist_scnprintf(buf, sizeof(buf), &disabled_map);
0707ad30 1141 pr_info("CPUs not available for Linux: %s\n", buf);
867e359b
CM
1142 }
1143}
1144
1145static void __init setup_cpu_maps(void)
1146{
1147 struct cpumask hv_disabled_map, cpu_possible_init;
1148 int boot_cpu = smp_processor_id();
1149 int cpus, i, rc;
1150
1151 /* Learn which cpus are allowed by the hypervisor. */
1152 rc = hv_inquire_tiles(HV_INQ_TILES_AVAIL,
1153 (HV_VirtAddr) cpumask_bits(&cpu_possible_init),
1154 sizeof(cpu_cacheable_map));
1155 if (rc < 0)
1156 early_panic("hv_inquire_tiles(AVAIL) failed: rc %d\n", rc);
1157 if (!cpumask_test_cpu(boot_cpu, &cpu_possible_init))
1158 early_panic("Boot CPU %d disabled by hypervisor!\n", boot_cpu);
1159
1160 /* Compute the cpus disabled by the hvconfig file. */
1161 cpumask_complement(&hv_disabled_map, &cpu_possible_init);
1162
1163 /* Include them with the cpus disabled by "disabled_cpus". */
1164 cpumask_or(&disabled_map, &disabled_map, &hv_disabled_map);
1165
1166 /*
1167 * Disable every cpu after "setup_max_cpus". But don't mark
1168 * as disabled the cpus that are outside of our initial rectangle,
1169 * since that turns out to be confusing.
1170 */
1171 cpus = 1; /* this cpu */
1172 cpumask_set_cpu(boot_cpu, &disabled_map); /* ignore this cpu */
1173 for (i = 0; cpus < setup_max_cpus; ++i)
1174 if (!cpumask_test_cpu(i, &disabled_map))
1175 ++cpus;
1176 for (; i < smp_height * smp_width; ++i)
1177 cpumask_set_cpu(i, &disabled_map);
1178 cpumask_clear_cpu(boot_cpu, &disabled_map); /* reset this cpu */
1179 for (i = smp_height * smp_width; i < NR_CPUS; ++i)
1180 cpumask_clear_cpu(i, &disabled_map);
1181
1182 /*
1183 * Setup cpu_possible map as every cpu allocated to us, minus
1184 * the results of any "disabled_cpus" settings.
1185 */
1186 cpumask_andnot(&cpu_possible_init, &cpu_possible_init, &disabled_map);
1187 init_cpu_possible(&cpu_possible_init);
1188
1189 /* Learn which cpus are valid for LOTAR caching. */
1190 rc = hv_inquire_tiles(HV_INQ_TILES_LOTAR,
1191 (HV_VirtAddr) cpumask_bits(&cpu_lotar_map),
1192 sizeof(cpu_lotar_map));
1193 if (rc < 0) {
0707ad30 1194 pr_err("warning: no HV_INQ_TILES_LOTAR; using AVAIL\n");
0b5f9c00 1195 cpu_lotar_map = *cpu_possible_mask;
867e359b
CM
1196 }
1197
1198#if CHIP_HAS_CBOX_HOME_MAP()
1199 /* Retrieve set of CPUs used for hash-for-home caching */
1200 rc = hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE,
1201 (HV_VirtAddr) hash_for_home_map.bits,
1202 sizeof(hash_for_home_map));
1203 if (rc < 0)
1204 early_panic("hv_inquire_tiles(HFH_CACHE) failed: rc %d\n", rc);
0b5f9c00 1205 cpumask_or(&cpu_cacheable_map, cpu_possible_mask, &hash_for_home_map);
867e359b 1206#else
0b5f9c00 1207 cpu_cacheable_map = *cpu_possible_mask;
867e359b
CM
1208#endif
1209}
1210
1211
1212static int __init dataplane(char *str)
1213{
0707ad30 1214 pr_warning("WARNING: dataplane support disabled in this kernel\n");
867e359b
CM
1215 return 0;
1216}
1217
1218early_param("dataplane", dataplane);
1219
1220#ifdef CONFIG_CMDLINE_BOOL
1221static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
1222#endif
1223
1224void __init setup_arch(char **cmdline_p)
1225{
1226 int len;
1227
1228#if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
1229 len = hv_get_command_line((HV_VirtAddr) boot_command_line,
1230 COMMAND_LINE_SIZE);
1231 if (boot_command_line[0])
0707ad30
CM
1232 pr_warning("WARNING: ignoring dynamic command line \"%s\"\n",
1233 boot_command_line);
867e359b
CM
1234 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
1235#else
1236 char *hv_cmdline;
1237#if defined(CONFIG_CMDLINE_BOOL)
1238 if (builtin_cmdline[0]) {
1239 int builtin_len = strlcpy(boot_command_line, builtin_cmdline,
1240 COMMAND_LINE_SIZE);
1241 if (builtin_len < COMMAND_LINE_SIZE-1)
1242 boot_command_line[builtin_len++] = ' ';
1243 hv_cmdline = &boot_command_line[builtin_len];
1244 len = COMMAND_LINE_SIZE - builtin_len;
1245 } else
1246#endif
1247 {
1248 hv_cmdline = boot_command_line;
1249 len = COMMAND_LINE_SIZE;
1250 }
1251 len = hv_get_command_line((HV_VirtAddr) hv_cmdline, len);
1252 if (len < 0 || len > COMMAND_LINE_SIZE)
1253 early_panic("hv_get_command_line failed: %d\n", len);
1254#endif
1255
1256 *cmdline_p = boot_command_line;
1257
1258 /* Set disabled_map and setup_max_cpus very early */
1259 parse_early_param();
1260
1261 /* Make sure the kernel is compatible with the hypervisor. */
1262 validate_hv();
1263 validate_va();
1264
1265 setup_cpu_maps();
1266
1267
1268#ifdef CONFIG_PCI
1269 /*
1270 * Initialize the PCI structures. This is done before memory
1271 * setup so that we know whether or not a pci_reserve region
1272 * is necessary.
1273 */
1274 if (tile_pci_init() == 0)
1275 pci_reserve_mb = 0;
1276
1277 /* PCI systems reserve a region just below 4GB for mapping iomem. */
1278 pci_reserve_end_pfn = (1 << (32 - PAGE_SHIFT));
1279 pci_reserve_start_pfn = pci_reserve_end_pfn -
1280 (pci_reserve_mb << (20 - PAGE_SHIFT));
1281#endif
1282
1283 init_mm.start_code = (unsigned long) _text;
1284 init_mm.end_code = (unsigned long) _etext;
1285 init_mm.end_data = (unsigned long) _edata;
1286 init_mm.brk = (unsigned long) _end;
1287
1288 setup_memory();
1289 store_permanent_mappings();
1290 setup_bootmem_allocator();
1291
1292 /*
1293 * NOTE: before this point _nobody_ is allowed to allocate
1294 * any memory using the bootmem allocator.
1295 */
1296
1297 paging_init();
1298 setup_numa_mapping();
1299 zone_sizes_init();
1300 set_page_homes();
0707ad30 1301 setup_cpu(1);
867e359b
CM
1302 setup_clock();
1303 load_hv_initrd();
1304}
1305
1306
1307/*
1308 * Set up per-cpu memory.
1309 */
1310
1311unsigned long __per_cpu_offset[NR_CPUS] __write_once;
1312EXPORT_SYMBOL(__per_cpu_offset);
1313
1314static size_t __initdata pfn_offset[MAX_NUMNODES] = { 0 };
1315static unsigned long __initdata percpu_pfn[NR_CPUS] = { 0 };
1316
1317/*
1318 * As the percpu code allocates pages, we return the pages from the
1319 * end of the node for the specified cpu.
1320 */
1321static void *__init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
1322{
1323 int nid = cpu_to_node(cpu);
1324 unsigned long pfn = node_percpu_pfn[nid] + pfn_offset[nid];
1325
1326 BUG_ON(size % PAGE_SIZE != 0);
1327 pfn_offset[nid] += size / PAGE_SIZE;
76c567fb
CM
1328 BUG_ON(node_percpu[nid] < size);
1329 node_percpu[nid] -= size;
867e359b
CM
1330 if (percpu_pfn[cpu] == 0)
1331 percpu_pfn[cpu] = pfn;
1332 return pfn_to_kaddr(pfn);
1333}
1334
1335/*
1336 * Pages reserved for percpu memory are not freeable, and in any case we are
1337 * on a short path to panic() in setup_per_cpu_area() at this point anyway.
1338 */
1339static void __init pcpu_fc_free(void *ptr, size_t size)
1340{
1341}
1342
1343/*
1344 * Set up vmalloc page tables using bootmem for the percpu code.
1345 */
1346static void __init pcpu_fc_populate_pte(unsigned long addr)
1347{
1348 pgd_t *pgd;
1349 pud_t *pud;
1350 pmd_t *pmd;
1351 pte_t *pte;
1352
1353 BUG_ON(pgd_addr_invalid(addr));
77d23303
CM
1354 if (addr < VMALLOC_START || addr >= VMALLOC_END)
1355 panic("PCPU addr %#lx outside vmalloc range %#lx..%#lx;"
1356 " try increasing CONFIG_VMALLOC_RESERVE\n",
1357 addr, VMALLOC_START, VMALLOC_END);
867e359b
CM
1358
1359 pgd = swapper_pg_dir + pgd_index(addr);
1360 pud = pud_offset(pgd, addr);
1361 BUG_ON(!pud_present(*pud));
1362 pmd = pmd_offset(pud, addr);
1363 if (pmd_present(*pmd)) {
1364 BUG_ON(pmd_huge_page(*pmd));
1365 } else {
1366 pte = __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE,
1367 HV_PAGE_TABLE_ALIGN, 0);
1368 pmd_populate_kernel(&init_mm, pmd, pte);
1369 }
1370}
1371
1372void __init setup_per_cpu_areas(void)
1373{
1374 struct page *pg;
1375 unsigned long delta, pfn, lowmem_va;
1376 unsigned long size = percpu_size();
1377 char *ptr;
1378 int rc, cpu, i;
1379
1380 rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE, pcpu_fc_alloc,
1381 pcpu_fc_free, pcpu_fc_populate_pte);
1382 if (rc < 0)
1383 panic("Cannot initialize percpu area (err=%d)", rc);
1384
1385 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1386 for_each_possible_cpu(cpu) {
1387 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
1388
1389 /* finv the copy out of cache so we can change homecache */
1390 ptr = pcpu_base_addr + pcpu_unit_offsets[cpu];
1391 __finv_buffer(ptr, size);
1392 pfn = percpu_pfn[cpu];
1393
1394 /* Rewrite the page tables to cache on that cpu */
1395 pg = pfn_to_page(pfn);
1396 for (i = 0; i < size; i += PAGE_SIZE, ++pfn, ++pg) {
1397
1398 /* Update the vmalloc mapping and page home. */
1399 pte_t *ptep =
1400 virt_to_pte(NULL, (unsigned long)ptr + i);
1401 pte_t pte = *ptep;
1402 BUG_ON(pfn != pte_pfn(pte));
1403 pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_TILE_L3);
1404 pte = set_remote_cache_cpu(pte, cpu);
1405 set_pte(ptep, pte);
1406
1407 /* Update the lowmem mapping for consistency. */
1408 lowmem_va = (unsigned long)pfn_to_kaddr(pfn);
1409 ptep = virt_to_pte(NULL, lowmem_va);
1410 if (pte_huge(*ptep)) {
1411 printk(KERN_DEBUG "early shatter of huge page"
1412 " at %#lx\n", lowmem_va);
1413 shatter_pmd((pmd_t *)ptep);
1414 ptep = virt_to_pte(NULL, lowmem_va);
1415 BUG_ON(pte_huge(*ptep));
1416 }
1417 BUG_ON(pfn != pte_pfn(*ptep));
1418 set_pte(ptep, pte);
1419 }
1420 }
1421
1422 /* Set our thread pointer appropriately. */
1423 set_my_cpu_offset(__per_cpu_offset[smp_processor_id()]);
1424
1425 /* Make sure the finv's have completed. */
1426 mb_incoherent();
1427
1428 /* Flush the TLB so we reference it properly from here on out. */
1429 local_flush_tlb_all();
1430}
1431
1432static struct resource data_resource = {
1433 .name = "Kernel data",
1434 .start = 0,
1435 .end = 0,
1436 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
1437};
1438
1439static struct resource code_resource = {
1440 .name = "Kernel code",
1441 .start = 0,
1442 .end = 0,
1443 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
1444};
1445
1446/*
1447 * We reserve all resources above 4GB so that PCI won't try to put
1448 * mappings above 4GB; the standard allows that for some devices but
1449 * the probing code trunates values to 32 bits.
1450 */
1451#ifdef CONFIG_PCI
1452static struct resource* __init
1453insert_non_bus_resource(void)
1454{
1455 struct resource *res =
1456 kzalloc(sizeof(struct resource), GFP_ATOMIC);
1457 res->name = "Non-Bus Physical Address Space";
1458 res->start = (1ULL << 32);
1459 res->end = -1LL;
1460 res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1461 if (insert_resource(&iomem_resource, res)) {
1462 kfree(res);
1463 return NULL;
1464 }
1465 return res;
1466}
1467#endif
1468
1469static struct resource* __init
1470insert_ram_resource(u64 start_pfn, u64 end_pfn)
1471{
1472 struct resource *res =
1473 kzalloc(sizeof(struct resource), GFP_ATOMIC);
1474 res->name = "System RAM";
1475 res->start = start_pfn << PAGE_SHIFT;
1476 res->end = (end_pfn << PAGE_SHIFT) - 1;
1477 res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1478 if (insert_resource(&iomem_resource, res)) {
1479 kfree(res);
1480 return NULL;
1481 }
1482 return res;
1483}
1484
1485/*
1486 * Request address space for all standard resources
1487 *
1488 * If the system includes PCI root complex drivers, we need to create
1489 * a window just below 4GB where PCI BARs can be mapped.
1490 */
1491static int __init request_standard_resources(void)
1492{
1493 int i;
1494 enum { CODE_DELTA = MEM_SV_INTRPT - PAGE_OFFSET };
1495
1496 iomem_resource.end = -1LL;
1497#ifdef CONFIG_PCI
1498 insert_non_bus_resource();
1499#endif
1500
1501 for_each_online_node(i) {
1502 u64 start_pfn = node_start_pfn[i];
1503 u64 end_pfn = node_end_pfn[i];
1504
1505#ifdef CONFIG_PCI
1506 if (start_pfn <= pci_reserve_start_pfn &&
1507 end_pfn > pci_reserve_start_pfn) {
1508 if (end_pfn > pci_reserve_end_pfn)
1509 insert_ram_resource(pci_reserve_end_pfn,
1510 end_pfn);
1511 end_pfn = pci_reserve_start_pfn;
1512 }
1513#endif
1514 insert_ram_resource(start_pfn, end_pfn);
1515 }
1516
1517 code_resource.start = __pa(_text - CODE_DELTA);
1518 code_resource.end = __pa(_etext - CODE_DELTA)-1;
1519 data_resource.start = __pa(_sdata);
1520 data_resource.end = __pa(_end)-1;
1521
1522 insert_resource(&iomem_resource, &code_resource);
1523 insert_resource(&iomem_resource, &data_resource);
1524
1525#ifdef CONFIG_KEXEC
1526 insert_resource(&iomem_resource, &crashk_res);
1527#endif
1528
1529 return 0;
1530}
1531
1532subsys_initcall(request_standard_resources);
This page took 0.179683 seconds and 5 git commands to generate.