Merge tag 'regulator-v3.13' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[deliverable/linux.git] / arch / x86 / include / asm / bitops.h
CommitLineData
1965aae3
PA
1#ifndef _ASM_X86_BITOPS_H
2#define _ASM_X86_BITOPS_H
1c54d770
JF
3
4/*
5 * Copyright 1992, Linus Torvalds.
c8399943
AK
6 *
7 * Note: inlines with more than a single statement should be marked
8 * __always_inline to avoid problems with older gcc's inlining heuristics.
1c54d770
JF
9 */
10
11#ifndef _LINUX_BITOPS_H
12#error only <linux/bitops.h> can be included directly
13#endif
14
15#include <linux/compiler.h>
16#include <asm/alternative.h>
0c44c2d0 17#include <asm/rmwcc.h>
1c54d770 18
9b710506
PA
19#if BITS_PER_LONG == 32
20# define _BITOPS_LONG_SHIFT 5
21#elif BITS_PER_LONG == 64
22# define _BITOPS_LONG_SHIFT 6
23#else
24# error "Unexpected BITS_PER_LONG"
25#endif
26
e8f380e0
BP
27#define BIT_64(n) (U64_C(1) << (n))
28
1c54d770
JF
29/*
30 * These have to be done with inline assembly: that way the bit-setting
31 * is guaranteed to be atomic. All bit operations return 0 if the bit
32 * was cleared before the operation and != 0 if it was not.
33 *
34 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
35 */
36
37#if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 1)
38/* Technically wrong, but this avoids compilation errors on some gcc
39 versions. */
1a750e0c 40#define BITOP_ADDR(x) "=m" (*(volatile long *) (x))
1c54d770 41#else
1a750e0c 42#define BITOP_ADDR(x) "+m" (*(volatile long *) (x))
1c54d770
JF
43#endif
44
7dbceaf9 45#define ADDR BITOP_ADDR(addr)
1a750e0c
LT
46
47/*
48 * We do the locked ops that don't return the old value as
49 * a mask operation on a byte.
50 */
7dbceaf9
IM
51#define IS_IMMEDIATE(nr) (__builtin_constant_p(nr))
52#define CONST_MASK_ADDR(nr, addr) BITOP_ADDR((void *)(addr) + ((nr)>>3))
53#define CONST_MASK(nr) (1 << ((nr) & 7))
1a750e0c 54
1c54d770
JF
55/**
56 * set_bit - Atomically set a bit in memory
57 * @nr: the bit to set
58 * @addr: the address to start counting from
59 *
60 * This function is atomic and may not be reordered. See __set_bit()
61 * if you do not require the atomic guarantees.
62 *
63 * Note: there are no guarantees that this function will not be reordered
64 * on non x86 architectures, so if you are writing portable code,
65 * make sure not to rely on its reordering guarantees.
66 *
67 * Note that @nr may be almost arbitrarily large; this function is not
68 * restricted to acting on a single-word quantity.
69 */
c8399943 70static __always_inline void
9b710506 71set_bit(long nr, volatile unsigned long *addr)
1c54d770 72{
7dbceaf9
IM
73 if (IS_IMMEDIATE(nr)) {
74 asm volatile(LOCK_PREFIX "orb %1,%0"
75 : CONST_MASK_ADDR(nr, addr)
437a0a54 76 : "iq" ((u8)CONST_MASK(nr))
7dbceaf9
IM
77 : "memory");
78 } else {
79 asm volatile(LOCK_PREFIX "bts %1,%0"
80 : BITOP_ADDR(addr) : "Ir" (nr) : "memory");
81 }
1c54d770
JF
82}
83
84/**
85 * __set_bit - Set a bit in memory
86 * @nr: the bit to set
87 * @addr: the address to start counting from
88 *
89 * Unlike set_bit(), this function is non-atomic and may be reordered.
90 * If it's called on the same region of memory simultaneously, the effect
91 * may be that only one operation succeeds.
92 */
9b710506 93static inline void __set_bit(long nr, volatile unsigned long *addr)
1c54d770 94{
f19dcf4a 95 asm volatile("bts %1,%0" : ADDR : "Ir" (nr) : "memory");
1c54d770
JF
96}
97
1c54d770
JF
98/**
99 * clear_bit - Clears a bit in memory
100 * @nr: Bit to clear
101 * @addr: Address to start counting from
102 *
103 * clear_bit() is atomic and may not be reordered. However, it does
104 * not contain a memory barrier, so if it is used for locking purposes,
105 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
106 * in order to ensure changes are visible on other processors.
107 */
c8399943 108static __always_inline void
9b710506 109clear_bit(long nr, volatile unsigned long *addr)
1c54d770 110{
7dbceaf9
IM
111 if (IS_IMMEDIATE(nr)) {
112 asm volatile(LOCK_PREFIX "andb %1,%0"
113 : CONST_MASK_ADDR(nr, addr)
437a0a54 114 : "iq" ((u8)~CONST_MASK(nr)));
7dbceaf9
IM
115 } else {
116 asm volatile(LOCK_PREFIX "btr %1,%0"
117 : BITOP_ADDR(addr)
118 : "Ir" (nr));
119 }
1c54d770
JF
120}
121
122/*
123 * clear_bit_unlock - Clears a bit in memory
124 * @nr: Bit to clear
125 * @addr: Address to start counting from
126 *
127 * clear_bit() is atomic and implies release semantics before the memory
128 * operation. It can be used for an unlock.
129 */
9b710506 130static inline void clear_bit_unlock(long nr, volatile unsigned long *addr)
1c54d770
JF
131{
132 barrier();
133 clear_bit(nr, addr);
134}
135
9b710506 136static inline void __clear_bit(long nr, volatile unsigned long *addr)
1c54d770 137{
eb2b4e68 138 asm volatile("btr %1,%0" : ADDR : "Ir" (nr));
1c54d770
JF
139}
140
141/*
142 * __clear_bit_unlock - Clears a bit in memory
143 * @nr: Bit to clear
144 * @addr: Address to start counting from
145 *
146 * __clear_bit() is non-atomic and implies release semantics before the memory
147 * operation. It can be used for an unlock if no other CPUs can concurrently
148 * modify other bits in the word.
149 *
150 * No memory barrier is required here, because x86 cannot reorder stores past
151 * older loads. Same principle as spin_unlock.
152 */
9b710506 153static inline void __clear_bit_unlock(long nr, volatile unsigned long *addr)
1c54d770
JF
154{
155 barrier();
156 __clear_bit(nr, addr);
157}
158
159#define smp_mb__before_clear_bit() barrier()
160#define smp_mb__after_clear_bit() barrier()
161
162/**
163 * __change_bit - Toggle a bit in memory
164 * @nr: the bit to change
165 * @addr: the address to start counting from
166 *
167 * Unlike change_bit(), this function is non-atomic and may be reordered.
168 * If it's called on the same region of memory simultaneously, the effect
169 * may be that only one operation succeeds.
170 */
9b710506 171static inline void __change_bit(long nr, volatile unsigned long *addr)
1c54d770 172{
eb2b4e68 173 asm volatile("btc %1,%0" : ADDR : "Ir" (nr));
1c54d770
JF
174}
175
176/**
177 * change_bit - Toggle a bit in memory
178 * @nr: Bit to change
179 * @addr: Address to start counting from
180 *
181 * change_bit() is atomic and may not be reordered.
182 * Note that @nr may be almost arbitrarily large; this function is not
183 * restricted to acting on a single-word quantity.
184 */
9b710506 185static inline void change_bit(long nr, volatile unsigned long *addr)
1c54d770 186{
838e8bb7
UB
187 if (IS_IMMEDIATE(nr)) {
188 asm volatile(LOCK_PREFIX "xorb %1,%0"
189 : CONST_MASK_ADDR(nr, addr)
190 : "iq" ((u8)CONST_MASK(nr)));
191 } else {
192 asm volatile(LOCK_PREFIX "btc %1,%0"
193 : BITOP_ADDR(addr)
194 : "Ir" (nr));
195 }
1c54d770
JF
196}
197
198/**
199 * test_and_set_bit - Set a bit and return its old value
200 * @nr: Bit to set
201 * @addr: Address to count from
202 *
203 * This operation is atomic and cannot be reordered.
204 * It also implies a memory barrier.
205 */
9b710506 206static inline int test_and_set_bit(long nr, volatile unsigned long *addr)
1c54d770 207{
0c44c2d0 208 GEN_BINARY_RMWcc(LOCK_PREFIX "bts", *addr, nr, "%0", "c");
1c54d770
JF
209}
210
211/**
212 * test_and_set_bit_lock - Set a bit and return its old value for lock
213 * @nr: Bit to set
214 * @addr: Address to count from
215 *
216 * This is the same as test_and_set_bit on x86.
217 */
c8399943 218static __always_inline int
9b710506 219test_and_set_bit_lock(long nr, volatile unsigned long *addr)
1c54d770
JF
220{
221 return test_and_set_bit(nr, addr);
222}
223
224/**
225 * __test_and_set_bit - Set a bit and return its old value
226 * @nr: Bit to set
227 * @addr: Address to count from
228 *
229 * This operation is non-atomic and can be reordered.
230 * If two examples of this operation race, one can appear to succeed
231 * but actually fail. You must protect multiple accesses with a lock.
232 */
9b710506 233static inline int __test_and_set_bit(long nr, volatile unsigned long *addr)
1c54d770
JF
234{
235 int oldbit;
236
eb2b4e68
SHT
237 asm("bts %2,%1\n\t"
238 "sbb %0,%0"
239 : "=r" (oldbit), ADDR
240 : "Ir" (nr));
1c54d770
JF
241 return oldbit;
242}
243
244/**
245 * test_and_clear_bit - Clear a bit and return its old value
246 * @nr: Bit to clear
247 * @addr: Address to count from
248 *
249 * This operation is atomic and cannot be reordered.
250 * It also implies a memory barrier.
251 */
9b710506 252static inline int test_and_clear_bit(long nr, volatile unsigned long *addr)
1c54d770 253{
0c44c2d0 254 GEN_BINARY_RMWcc(LOCK_PREFIX "btr", *addr, nr, "%0", "c");
1c54d770
JF
255}
256
257/**
258 * __test_and_clear_bit - Clear a bit and return its old value
259 * @nr: Bit to clear
260 * @addr: Address to count from
261 *
262 * This operation is non-atomic and can be reordered.
263 * If two examples of this operation race, one can appear to succeed
264 * but actually fail. You must protect multiple accesses with a lock.
d0a69d63
MT
265 *
266 * Note: the operation is performed atomically with respect to
267 * the local CPU, but not other CPUs. Portable code should not
268 * rely on this behaviour.
269 * KVM relies on this behaviour on x86 for modifying memory that is also
270 * accessed from a hypervisor on the same CPU if running in a VM: don't change
271 * this without also updating arch/x86/kernel/kvm.c
1c54d770 272 */
9b710506 273static inline int __test_and_clear_bit(long nr, volatile unsigned long *addr)
1c54d770
JF
274{
275 int oldbit;
276
eb2b4e68 277 asm volatile("btr %2,%1\n\t"
1c54d770 278 "sbb %0,%0"
eb2b4e68
SHT
279 : "=r" (oldbit), ADDR
280 : "Ir" (nr));
1c54d770
JF
281 return oldbit;
282}
283
284/* WARNING: non atomic and it can be reordered! */
9b710506 285static inline int __test_and_change_bit(long nr, volatile unsigned long *addr)
1c54d770
JF
286{
287 int oldbit;
288
eb2b4e68 289 asm volatile("btc %2,%1\n\t"
1c54d770 290 "sbb %0,%0"
eb2b4e68
SHT
291 : "=r" (oldbit), ADDR
292 : "Ir" (nr) : "memory");
1c54d770
JF
293
294 return oldbit;
295}
296
297/**
298 * test_and_change_bit - Change a bit and return its old value
299 * @nr: Bit to change
300 * @addr: Address to count from
301 *
302 * This operation is atomic and cannot be reordered.
303 * It also implies a memory barrier.
304 */
9b710506 305static inline int test_and_change_bit(long nr, volatile unsigned long *addr)
1c54d770 306{
0c44c2d0 307 GEN_BINARY_RMWcc(LOCK_PREFIX "btc", *addr, nr, "%0", "c");
1c54d770
JF
308}
309
9b710506 310static __always_inline int constant_test_bit(long nr, const volatile unsigned long *addr)
1c54d770 311{
9b710506
PA
312 return ((1UL << (nr & (BITS_PER_LONG-1))) &
313 (addr[nr >> _BITOPS_LONG_SHIFT])) != 0;
1c54d770
JF
314}
315
9b710506 316static inline int variable_test_bit(long nr, volatile const unsigned long *addr)
1c54d770
JF
317{
318 int oldbit;
319
eb2b4e68 320 asm volatile("bt %2,%1\n\t"
1c54d770
JF
321 "sbb %0,%0"
322 : "=r" (oldbit)
eb2b4e68 323 : "m" (*(unsigned long *)addr), "Ir" (nr));
1c54d770
JF
324
325 return oldbit;
326}
327
328#if 0 /* Fool kernel-doc since it doesn't do macros yet */
329/**
330 * test_bit - Determine whether a bit is set
331 * @nr: bit number to test
332 * @addr: Address to start counting from
333 */
334static int test_bit(int nr, const volatile unsigned long *addr);
335#endif
336
f19dcf4a
JP
337#define test_bit(nr, addr) \
338 (__builtin_constant_p((nr)) \
339 ? constant_test_bit((nr), (addr)) \
340 : variable_test_bit((nr), (addr)))
1c54d770 341
12d9c842
AH
342/**
343 * __ffs - find first set bit in word
344 * @word: The word to search
345 *
346 * Undefined if no bit exists, so code should check against 0 first.
347 */
348static inline unsigned long __ffs(unsigned long word)
349{
e26a44a2 350 asm("rep; bsf %1,%0"
f19dcf4a
JP
351 : "=r" (word)
352 : "rm" (word));
12d9c842
AH
353 return word;
354}
355
356/**
357 * ffz - find first zero bit in word
358 * @word: The word to search
359 *
360 * Undefined if no zero exists, so code should check against ~0UL first.
361 */
362static inline unsigned long ffz(unsigned long word)
363{
e26a44a2 364 asm("rep; bsf %1,%0"
f19dcf4a
JP
365 : "=r" (word)
366 : "r" (~word));
12d9c842
AH
367 return word;
368}
369
370/*
371 * __fls: find last set bit in word
372 * @word: The word to search
373 *
8450e853 374 * Undefined if no set bit exists, so code should check against 0 first.
12d9c842
AH
375 */
376static inline unsigned long __fls(unsigned long word)
377{
f19dcf4a
JP
378 asm("bsr %1,%0"
379 : "=r" (word)
380 : "rm" (word));
12d9c842
AH
381 return word;
382}
383
83d99df7
PA
384#undef ADDR
385
12d9c842
AH
386#ifdef __KERNEL__
387/**
388 * ffs - find first set bit in word
389 * @x: the word to search
390 *
391 * This is defined the same way as the libc and compiler builtin ffs
392 * routines, therefore differs in spirit from the other bitops.
393 *
394 * ffs(value) returns 0 if value is 0 or the position of the first
395 * set bit if value is nonzero. The first (least significant) bit
396 * is at position 1.
397 */
398static inline int ffs(int x)
399{
400 int r;
ca3d30cc
DH
401
402#ifdef CONFIG_X86_64
403 /*
404 * AMD64 says BSFL won't clobber the dest reg if x==0; Intel64 says the
405 * dest reg is undefined if x==0, but their CPU architect says its
406 * value is written to set it to the same as before, except that the
407 * top 32 bits will be cleared.
408 *
409 * We cannot do this on 32 bits because at the very least some
410 * 486 CPUs did not behave this way.
411 */
ca3d30cc
DH
412 asm("bsfl %1,%0"
413 : "=r" (r)
1edfbb41 414 : "rm" (x), "0" (-1));
ca3d30cc 415#elif defined(CONFIG_X86_CMOV)
f19dcf4a
JP
416 asm("bsfl %1,%0\n\t"
417 "cmovzl %2,%0"
ca3d30cc 418 : "=&r" (r) : "rm" (x), "r" (-1));
12d9c842 419#else
f19dcf4a
JP
420 asm("bsfl %1,%0\n\t"
421 "jnz 1f\n\t"
422 "movl $-1,%0\n"
423 "1:" : "=r" (r) : "rm" (x));
12d9c842
AH
424#endif
425 return r + 1;
426}
427
428/**
429 * fls - find last set bit in word
430 * @x: the word to search
431 *
432 * This is defined in a similar way as the libc and compiler builtin
433 * ffs, but returns the position of the most significant set bit.
434 *
435 * fls(value) returns 0 if value is 0 or the position of the last
436 * set bit if value is nonzero. The last (most significant) bit is
437 * at position 32.
438 */
439static inline int fls(int x)
440{
441 int r;
ca3d30cc
DH
442
443#ifdef CONFIG_X86_64
444 /*
445 * AMD64 says BSRL won't clobber the dest reg if x==0; Intel64 says the
446 * dest reg is undefined if x==0, but their CPU architect says its
447 * value is written to set it to the same as before, except that the
448 * top 32 bits will be cleared.
449 *
450 * We cannot do this on 32 bits because at the very least some
451 * 486 CPUs did not behave this way.
452 */
ca3d30cc
DH
453 asm("bsrl %1,%0"
454 : "=r" (r)
1edfbb41 455 : "rm" (x), "0" (-1));
ca3d30cc 456#elif defined(CONFIG_X86_CMOV)
f19dcf4a
JP
457 asm("bsrl %1,%0\n\t"
458 "cmovzl %2,%0"
459 : "=&r" (r) : "rm" (x), "rm" (-1));
12d9c842 460#else
f19dcf4a
JP
461 asm("bsrl %1,%0\n\t"
462 "jnz 1f\n\t"
463 "movl $-1,%0\n"
464 "1:" : "=r" (r) : "rm" (x));
12d9c842
AH
465#endif
466 return r + 1;
467}
d66462f5 468
ca3d30cc
DH
469/**
470 * fls64 - find last set bit in a 64-bit word
471 * @x: the word to search
472 *
473 * This is defined in a similar way as the libc and compiler builtin
474 * ffsll, but returns the position of the most significant set bit.
475 *
476 * fls64(value) returns 0 if value is 0 or the position of the last
477 * set bit if value is nonzero. The last (most significant) bit is
478 * at position 64.
479 */
480#ifdef CONFIG_X86_64
481static __always_inline int fls64(__u64 x)
482{
1edfbb41 483 int bitpos = -1;
ca3d30cc
DH
484 /*
485 * AMD64 says BSRQ won't clobber the dest reg if x==0; Intel64 says the
486 * dest reg is undefined if x==0, but their CPU architect says its
487 * value is written to set it to the same as before.
488 */
1edfbb41 489 asm("bsrq %1,%q0"
ca3d30cc
DH
490 : "+r" (bitpos)
491 : "rm" (x));
492 return bitpos + 1;
493}
494#else
495#include <asm-generic/bitops/fls64.h>
496#endif
497
708ff2a0
AM
498#include <asm-generic/bitops/find.h>
499
d66462f5
AH
500#include <asm-generic/bitops/sched.h>
501
502#define ARCH_HAS_FAST_MULTIPLIER 1
503
d61931d8
BP
504#include <asm/arch_hweight.h>
505
506#include <asm-generic/bitops/const_hweight.h>
1c54d770 507
861b5ae7 508#include <asm-generic/bitops/le.h>
d66462f5 509
148817ba 510#include <asm-generic/bitops/ext2-atomic-setbit.h>
d66462f5 511
d66462f5 512#endif /* __KERNEL__ */
1965aae3 513#endif /* _ASM_X86_BITOPS_H */
This page took 0.464768 seconds and 5 git commands to generate.