x86/amd-iommu: Cleanup inv_pages command handling
[deliverable/linux.git] / arch / x86 / kernel / amd_iommu.c
CommitLineData
b6c02715 1/*
5d0d7156 2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
b6c02715
JR
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/pci.h>
a66022c4 21#include <linux/bitmap.h>
5a0e3ad6 22#include <linux/slab.h>
7f26508b 23#include <linux/debugfs.h>
b6c02715 24#include <linux/scatterlist.h>
51491367 25#include <linux/dma-mapping.h>
b6c02715 26#include <linux/iommu-helper.h>
c156e347 27#include <linux/iommu.h>
b6c02715 28#include <asm/proto.h>
46a7fa27 29#include <asm/iommu.h>
1d9b16d1 30#include <asm/gart.h>
6a9401a7 31#include <asm/amd_iommu_proto.h>
b6c02715 32#include <asm/amd_iommu_types.h>
c6da992e 33#include <asm/amd_iommu.h>
b6c02715
JR
34
35#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
36
136f78a1
JR
37#define EXIT_LOOP_COUNT 10000000
38
b6c02715
JR
39static DEFINE_RWLOCK(amd_iommu_devtable_lock);
40
bd60b735
JR
41/* A list of preallocated protection domains */
42static LIST_HEAD(iommu_pd_list);
43static DEFINE_SPINLOCK(iommu_pd_list_lock);
44
0feae533
JR
45/*
46 * Domain for untranslated devices - only allocated
47 * if iommu=pt passed on kernel cmd line.
48 */
49static struct protection_domain *pt_domain;
50
26961efe 51static struct iommu_ops amd_iommu_ops;
26961efe 52
431b2a20
JR
53/*
54 * general struct to manage commands send to an IOMMU
55 */
d6449536 56struct iommu_cmd {
b6c02715
JR
57 u32 data[4];
58};
59
a345b23b 60static void reset_iommu_command_buffer(struct amd_iommu *iommu);
04bfdd84 61static void update_domain(struct protection_domain *domain);
c1eee67b 62
15898bbc
JR
63/****************************************************************************
64 *
65 * Helper functions
66 *
67 ****************************************************************************/
68
69static inline u16 get_device_id(struct device *dev)
70{
71 struct pci_dev *pdev = to_pci_dev(dev);
72
73 return calc_devid(pdev->bus->number, pdev->devfn);
74}
75
657cbb6b
JR
76static struct iommu_dev_data *get_dev_data(struct device *dev)
77{
78 return dev->archdata.iommu;
79}
80
71c70984
JR
81/*
82 * In this function the list of preallocated protection domains is traversed to
83 * find the domain for a specific device
84 */
85static struct dma_ops_domain *find_protection_domain(u16 devid)
86{
87 struct dma_ops_domain *entry, *ret = NULL;
88 unsigned long flags;
89 u16 alias = amd_iommu_alias_table[devid];
90
91 if (list_empty(&iommu_pd_list))
92 return NULL;
93
94 spin_lock_irqsave(&iommu_pd_list_lock, flags);
95
96 list_for_each_entry(entry, &iommu_pd_list, list) {
97 if (entry->target_dev == devid ||
98 entry->target_dev == alias) {
99 ret = entry;
100 break;
101 }
102 }
103
104 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
105
106 return ret;
107}
108
98fc5a69
JR
109/*
110 * This function checks if the driver got a valid device from the caller to
111 * avoid dereferencing invalid pointers.
112 */
113static bool check_device(struct device *dev)
114{
115 u16 devid;
116
117 if (!dev || !dev->dma_mask)
118 return false;
119
120 /* No device or no PCI device */
339d3261 121 if (dev->bus != &pci_bus_type)
98fc5a69
JR
122 return false;
123
124 devid = get_device_id(dev);
125
126 /* Out of our scope? */
127 if (devid > amd_iommu_last_bdf)
128 return false;
129
130 if (amd_iommu_rlookup_table[devid] == NULL)
131 return false;
132
133 return true;
134}
135
657cbb6b
JR
136static int iommu_init_device(struct device *dev)
137{
138 struct iommu_dev_data *dev_data;
139 struct pci_dev *pdev;
140 u16 devid, alias;
141
142 if (dev->archdata.iommu)
143 return 0;
144
145 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
146 if (!dev_data)
147 return -ENOMEM;
148
b00d3bcf
JR
149 dev_data->dev = dev;
150
657cbb6b
JR
151 devid = get_device_id(dev);
152 alias = amd_iommu_alias_table[devid];
153 pdev = pci_get_bus_and_slot(PCI_BUS(alias), alias & 0xff);
154 if (pdev)
155 dev_data->alias = &pdev->dev;
156
24100055
JR
157 atomic_set(&dev_data->bind, 0);
158
657cbb6b
JR
159 dev->archdata.iommu = dev_data;
160
161
162 return 0;
163}
164
165static void iommu_uninit_device(struct device *dev)
166{
167 kfree(dev->archdata.iommu);
168}
b7cc9554
JR
169
170void __init amd_iommu_uninit_devices(void)
171{
172 struct pci_dev *pdev = NULL;
173
174 for_each_pci_dev(pdev) {
175
176 if (!check_device(&pdev->dev))
177 continue;
178
179 iommu_uninit_device(&pdev->dev);
180 }
181}
182
183int __init amd_iommu_init_devices(void)
184{
185 struct pci_dev *pdev = NULL;
186 int ret = 0;
187
188 for_each_pci_dev(pdev) {
189
190 if (!check_device(&pdev->dev))
191 continue;
192
193 ret = iommu_init_device(&pdev->dev);
194 if (ret)
195 goto out_free;
196 }
197
198 return 0;
199
200out_free:
201
202 amd_iommu_uninit_devices();
203
204 return ret;
205}
7f26508b
JR
206#ifdef CONFIG_AMD_IOMMU_STATS
207
208/*
209 * Initialization code for statistics collection
210 */
211
da49f6df 212DECLARE_STATS_COUNTER(compl_wait);
0f2a86f2 213DECLARE_STATS_COUNTER(cnt_map_single);
146a6917 214DECLARE_STATS_COUNTER(cnt_unmap_single);
d03f067a 215DECLARE_STATS_COUNTER(cnt_map_sg);
55877a6b 216DECLARE_STATS_COUNTER(cnt_unmap_sg);
c8f0fb36 217DECLARE_STATS_COUNTER(cnt_alloc_coherent);
5d31ee7e 218DECLARE_STATS_COUNTER(cnt_free_coherent);
c1858976 219DECLARE_STATS_COUNTER(cross_page);
f57d98ae 220DECLARE_STATS_COUNTER(domain_flush_single);
18811f55 221DECLARE_STATS_COUNTER(domain_flush_all);
5774f7c5 222DECLARE_STATS_COUNTER(alloced_io_mem);
8ecaf8f1 223DECLARE_STATS_COUNTER(total_map_requests);
da49f6df 224
7f26508b 225static struct dentry *stats_dir;
7f26508b
JR
226static struct dentry *de_fflush;
227
228static void amd_iommu_stats_add(struct __iommu_counter *cnt)
229{
230 if (stats_dir == NULL)
231 return;
232
233 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
234 &cnt->value);
235}
236
237static void amd_iommu_stats_init(void)
238{
239 stats_dir = debugfs_create_dir("amd-iommu", NULL);
240 if (stats_dir == NULL)
241 return;
242
7f26508b
JR
243 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
244 (u32 *)&amd_iommu_unmap_flush);
da49f6df
JR
245
246 amd_iommu_stats_add(&compl_wait);
0f2a86f2 247 amd_iommu_stats_add(&cnt_map_single);
146a6917 248 amd_iommu_stats_add(&cnt_unmap_single);
d03f067a 249 amd_iommu_stats_add(&cnt_map_sg);
55877a6b 250 amd_iommu_stats_add(&cnt_unmap_sg);
c8f0fb36 251 amd_iommu_stats_add(&cnt_alloc_coherent);
5d31ee7e 252 amd_iommu_stats_add(&cnt_free_coherent);
c1858976 253 amd_iommu_stats_add(&cross_page);
f57d98ae 254 amd_iommu_stats_add(&domain_flush_single);
18811f55 255 amd_iommu_stats_add(&domain_flush_all);
5774f7c5 256 amd_iommu_stats_add(&alloced_io_mem);
8ecaf8f1 257 amd_iommu_stats_add(&total_map_requests);
7f26508b
JR
258}
259
260#endif
261
a80dc3e0
JR
262/****************************************************************************
263 *
264 * Interrupt handling functions
265 *
266 ****************************************************************************/
267
e3e59876
JR
268static void dump_dte_entry(u16 devid)
269{
270 int i;
271
272 for (i = 0; i < 8; ++i)
273 pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
274 amd_iommu_dev_table[devid].data[i]);
275}
276
945b4ac4
JR
277static void dump_command(unsigned long phys_addr)
278{
279 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
280 int i;
281
282 for (i = 0; i < 4; ++i)
283 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
284}
285
a345b23b 286static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
90008ee4
JR
287{
288 u32 *event = __evt;
289 int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
290 int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
291 int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
292 int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
293 u64 address = (u64)(((u64)event[3]) << 32) | event[2];
294
4c6f40d4 295 printk(KERN_ERR "AMD-Vi: Event logged [");
90008ee4
JR
296
297 switch (type) {
298 case EVENT_TYPE_ILL_DEV:
299 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
300 "address=0x%016llx flags=0x%04x]\n",
301 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
302 address, flags);
e3e59876 303 dump_dte_entry(devid);
90008ee4
JR
304 break;
305 case EVENT_TYPE_IO_FAULT:
306 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
307 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
308 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
309 domid, address, flags);
310 break;
311 case EVENT_TYPE_DEV_TAB_ERR:
312 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
313 "address=0x%016llx flags=0x%04x]\n",
314 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
315 address, flags);
316 break;
317 case EVENT_TYPE_PAGE_TAB_ERR:
318 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
319 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
320 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
321 domid, address, flags);
322 break;
323 case EVENT_TYPE_ILL_CMD:
324 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
8eed9833 325 iommu->reset_in_progress = true;
a345b23b 326 reset_iommu_command_buffer(iommu);
945b4ac4 327 dump_command(address);
90008ee4
JR
328 break;
329 case EVENT_TYPE_CMD_HARD_ERR:
330 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
331 "flags=0x%04x]\n", address, flags);
332 break;
333 case EVENT_TYPE_IOTLB_INV_TO:
334 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
335 "address=0x%016llx]\n",
336 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
337 address);
338 break;
339 case EVENT_TYPE_INV_DEV_REQ:
340 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
341 "address=0x%016llx flags=0x%04x]\n",
342 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
343 address, flags);
344 break;
345 default:
346 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
347 }
348}
349
350static void iommu_poll_events(struct amd_iommu *iommu)
351{
352 u32 head, tail;
353 unsigned long flags;
354
355 spin_lock_irqsave(&iommu->lock, flags);
356
357 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
358 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
359
360 while (head != tail) {
a345b23b 361 iommu_print_event(iommu, iommu->evt_buf + head);
90008ee4
JR
362 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
363 }
364
365 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
366
367 spin_unlock_irqrestore(&iommu->lock, flags);
368}
369
a80dc3e0
JR
370irqreturn_t amd_iommu_int_handler(int irq, void *data)
371{
90008ee4
JR
372 struct amd_iommu *iommu;
373
3bd22172 374 for_each_iommu(iommu)
90008ee4
JR
375 iommu_poll_events(iommu);
376
377 return IRQ_HANDLED;
a80dc3e0
JR
378}
379
431b2a20
JR
380/****************************************************************************
381 *
382 * IOMMU command queuing functions
383 *
384 ****************************************************************************/
385
ded46737
JR
386static void build_completion_wait(struct iommu_cmd *cmd)
387{
388 memset(cmd, 0, sizeof(*cmd));
389 cmd->data[0] = CMD_COMPL_WAIT_INT_MASK;
390 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
391}
392
94fe79e2
JR
393static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
394{
395 memset(cmd, 0, sizeof(*cmd));
396 cmd->data[0] = devid;
397 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
398}
399
11b6402c
JR
400static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
401 size_t size, u16 domid, int pde)
402{
403 u64 pages;
404 int s;
405
406 pages = iommu_num_pages(address, size, PAGE_SIZE);
407 s = 0;
408
409 if (pages > 1) {
410 /*
411 * If we have to flush more than one page, flush all
412 * TLB entries for this domain
413 */
414 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
415 s = 1;
416 }
417
418 address &= PAGE_MASK;
419
420 memset(cmd, 0, sizeof(*cmd));
421 cmd->data[1] |= domid;
422 cmd->data[2] = lower_32_bits(address);
423 cmd->data[3] = upper_32_bits(address);
424 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
425 if (s) /* size bit - we flush more than one 4kb page */
426 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
427 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
428 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
429}
430
431b2a20
JR
431/*
432 * Writes the command to the IOMMUs command buffer and informs the
433 * hardware about the new command. Must be called with iommu->lock held.
434 */
d6449536 435static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
436{
437 u32 tail, head;
438 u8 *target;
439
549c90dc 440 WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
a19ae1ec 441 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
8a7c5ef3 442 target = iommu->cmd_buf + tail;
a19ae1ec
JR
443 memcpy_toio(target, cmd, sizeof(*cmd));
444 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
445 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
446 if (tail == head)
447 return -ENOMEM;
448 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
449
450 return 0;
451}
452
431b2a20
JR
453/*
454 * General queuing function for commands. Takes iommu->lock and calls
455 * __iommu_queue_command().
456 */
d6449536 457static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
458{
459 unsigned long flags;
460 int ret;
461
462 spin_lock_irqsave(&iommu->lock, flags);
463 ret = __iommu_queue_command(iommu, cmd);
09ee17eb 464 if (!ret)
0cfd7aa9 465 iommu->need_sync = true;
a19ae1ec
JR
466 spin_unlock_irqrestore(&iommu->lock, flags);
467
468 return ret;
469}
470
8d201968
JR
471/*
472 * This function waits until an IOMMU has completed a completion
473 * wait command
474 */
475static void __iommu_wait_for_completion(struct amd_iommu *iommu)
476{
477 int ready = 0;
478 unsigned status = 0;
479 unsigned long i = 0;
480
da49f6df
JR
481 INC_STATS_COUNTER(compl_wait);
482
8d201968
JR
483 while (!ready && (i < EXIT_LOOP_COUNT)) {
484 ++i;
485 /* wait for the bit to become one */
486 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
487 ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
488 }
489
490 /* set bit back to zero */
491 status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
492 writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);
493
8eed9833
JR
494 if (unlikely(i == EXIT_LOOP_COUNT))
495 iommu->reset_in_progress = true;
8d201968
JR
496}
497
498/*
499 * This function queues a completion wait command into the command
500 * buffer of an IOMMU
501 */
502static int __iommu_completion_wait(struct amd_iommu *iommu)
503{
504 struct iommu_cmd cmd;
505
ded46737 506 build_completion_wait(&cmd);
8d201968
JR
507
508 return __iommu_queue_command(iommu, &cmd);
509}
510
431b2a20
JR
511/*
512 * This function is called whenever we need to ensure that the IOMMU has
513 * completed execution of all commands we sent. It sends a
514 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
515 * us about that by writing a value to a physical address we pass with
516 * the command.
517 */
a19ae1ec
JR
518static int iommu_completion_wait(struct amd_iommu *iommu)
519{
8d201968
JR
520 int ret = 0;
521 unsigned long flags;
a19ae1ec 522
7e4f88da
JR
523 spin_lock_irqsave(&iommu->lock, flags);
524
09ee17eb
JR
525 if (!iommu->need_sync)
526 goto out;
527
8d201968 528 ret = __iommu_completion_wait(iommu);
09ee17eb 529
0cfd7aa9 530 iommu->need_sync = false;
a19ae1ec
JR
531
532 if (ret)
7e4f88da 533 goto out;
a19ae1ec 534
8d201968 535 __iommu_wait_for_completion(iommu);
84df8175 536
7e4f88da
JR
537out:
538 spin_unlock_irqrestore(&iommu->lock, flags);
a19ae1ec 539
8eed9833
JR
540 if (iommu->reset_in_progress)
541 reset_iommu_command_buffer(iommu);
542
a19ae1ec
JR
543 return 0;
544}
545
0518a3a4
JR
546static void iommu_flush_complete(struct protection_domain *domain)
547{
548 int i;
549
550 for (i = 0; i < amd_iommus_present; ++i) {
551 if (!domain->dev_iommu[i])
552 continue;
553
554 /*
555 * Devices of this domain are behind this IOMMU
556 * We need to wait for completion of all commands.
557 */
558 iommu_completion_wait(amd_iommus[i]);
559 }
560}
561
431b2a20
JR
562/*
563 * Command send function for invalidating a device table entry
564 */
3fa43655
JR
565static int iommu_flush_device(struct device *dev)
566{
567 struct amd_iommu *iommu;
b00d3bcf 568 struct iommu_cmd cmd;
3fa43655
JR
569 u16 devid;
570
571 devid = get_device_id(dev);
572 iommu = amd_iommu_rlookup_table[devid];
573
94fe79e2 574 build_inv_dte(&cmd, devid);
b00d3bcf
JR
575
576 return iommu_queue_command(iommu, &cmd);
3fa43655
JR
577}
578
431b2a20
JR
579/*
580 * TLB invalidation function which is called from the mapping functions.
581 * It invalidates a single PTE if the range to flush is within a single
582 * page. Otherwise it flushes the whole TLB of the IOMMU.
583 */
6de8ad9b
JR
584static void __iommu_flush_pages(struct protection_domain *domain,
585 u64 address, size_t size, int pde)
a19ae1ec 586{
11b6402c
JR
587 struct iommu_cmd cmd;
588 int ret = 0, i;
a19ae1ec 589
11b6402c 590 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
999ba417 591
6de8ad9b
JR
592 for (i = 0; i < amd_iommus_present; ++i) {
593 if (!domain->dev_iommu[i])
594 continue;
595
596 /*
597 * Devices of this domain are behind this IOMMU
598 * We need a TLB flush
599 */
11b6402c 600 ret |= iommu_queue_command(amd_iommus[i], &cmd);
6de8ad9b
JR
601 }
602
11b6402c 603 WARN_ON(ret);
6de8ad9b
JR
604}
605
606static void iommu_flush_pages(struct protection_domain *domain,
607 u64 address, size_t size)
608{
609 __iommu_flush_pages(domain, address, size, 0);
a19ae1ec 610}
b6c02715 611
1c655773 612/* Flush the whole IO/TLB for a given protection domain */
dcd1e92e 613static void iommu_flush_tlb(struct protection_domain *domain)
1c655773 614{
dcd1e92e 615 __iommu_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1c655773
JR
616}
617
42a49f96 618/* Flush the whole IO/TLB for a given protection domain - including PDE */
dcd1e92e 619static void iommu_flush_tlb_pde(struct protection_domain *domain)
42a49f96 620{
dcd1e92e 621 __iommu_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
42a49f96
CW
622}
623
b00d3bcf 624
43f49609 625/*
b00d3bcf 626 * This function flushes the DTEs for all devices in domain
43f49609 627 */
b00d3bcf
JR
628static void iommu_flush_domain_devices(struct protection_domain *domain)
629{
630 struct iommu_dev_data *dev_data;
631 unsigned long flags;
632
633 spin_lock_irqsave(&domain->lock, flags);
634
635 list_for_each_entry(dev_data, &domain->dev_list, list)
636 iommu_flush_device(dev_data->dev);
637
638 spin_unlock_irqrestore(&domain->lock, flags);
639}
640
641static void iommu_flush_all_domain_devices(void)
43f49609 642{
09b42804 643 struct protection_domain *domain;
e394d72a 644 unsigned long flags;
18811f55 645
09b42804 646 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
bfd1be18 647
09b42804 648 list_for_each_entry(domain, &amd_iommu_pd_list, list) {
b00d3bcf 649 iommu_flush_domain_devices(domain);
09b42804 650 iommu_flush_complete(domain);
bfd1be18 651 }
e394d72a 652
09b42804 653 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
e394d72a
JR
654}
655
b00d3bcf
JR
656void amd_iommu_flush_all_devices(void)
657{
658 iommu_flush_all_domain_devices();
659}
660
09b42804
JR
661/*
662 * This function uses heavy locking and may disable irqs for some time. But
663 * this is no issue because it is only called during resume.
664 */
bfd1be18 665void amd_iommu_flush_all_domains(void)
e394d72a 666{
e3306664 667 struct protection_domain *domain;
09b42804
JR
668 unsigned long flags;
669
670 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
e394d72a 671
e3306664 672 list_for_each_entry(domain, &amd_iommu_pd_list, list) {
09b42804 673 spin_lock(&domain->lock);
e3306664
JR
674 iommu_flush_tlb_pde(domain);
675 iommu_flush_complete(domain);
09b42804 676 spin_unlock(&domain->lock);
e3306664 677 }
09b42804
JR
678
679 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
bfd1be18
JR
680}
681
a345b23b
JR
682static void reset_iommu_command_buffer(struct amd_iommu *iommu)
683{
684 pr_err("AMD-Vi: Resetting IOMMU command buffer\n");
685
b26e81b8
JR
686 if (iommu->reset_in_progress)
687 panic("AMD-Vi: ILLEGAL_COMMAND_ERROR while resetting command buffer\n");
688
a345b23b 689 amd_iommu_reset_cmd_buffer(iommu);
b00d3bcf
JR
690 amd_iommu_flush_all_devices();
691 amd_iommu_flush_all_domains();
b26e81b8
JR
692
693 iommu->reset_in_progress = false;
a345b23b
JR
694}
695
431b2a20
JR
696/****************************************************************************
697 *
698 * The functions below are used the create the page table mappings for
699 * unity mapped regions.
700 *
701 ****************************************************************************/
702
308973d3
JR
703/*
704 * This function is used to add another level to an IO page table. Adding
705 * another level increases the size of the address space by 9 bits to a size up
706 * to 64 bits.
707 */
708static bool increase_address_space(struct protection_domain *domain,
709 gfp_t gfp)
710{
711 u64 *pte;
712
713 if (domain->mode == PAGE_MODE_6_LEVEL)
714 /* address space already 64 bit large */
715 return false;
716
717 pte = (void *)get_zeroed_page(gfp);
718 if (!pte)
719 return false;
720
721 *pte = PM_LEVEL_PDE(domain->mode,
722 virt_to_phys(domain->pt_root));
723 domain->pt_root = pte;
724 domain->mode += 1;
725 domain->updated = true;
726
727 return true;
728}
729
730static u64 *alloc_pte(struct protection_domain *domain,
731 unsigned long address,
cbb9d729 732 unsigned long page_size,
308973d3
JR
733 u64 **pte_page,
734 gfp_t gfp)
735{
cbb9d729 736 int level, end_lvl;
308973d3 737 u64 *pte, *page;
cbb9d729
JR
738
739 BUG_ON(!is_power_of_2(page_size));
308973d3
JR
740
741 while (address > PM_LEVEL_SIZE(domain->mode))
742 increase_address_space(domain, gfp);
743
cbb9d729
JR
744 level = domain->mode - 1;
745 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
746 address = PAGE_SIZE_ALIGN(address, page_size);
747 end_lvl = PAGE_SIZE_LEVEL(page_size);
308973d3
JR
748
749 while (level > end_lvl) {
750 if (!IOMMU_PTE_PRESENT(*pte)) {
751 page = (u64 *)get_zeroed_page(gfp);
752 if (!page)
753 return NULL;
754 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
755 }
756
cbb9d729
JR
757 /* No level skipping support yet */
758 if (PM_PTE_LEVEL(*pte) != level)
759 return NULL;
760
308973d3
JR
761 level -= 1;
762
763 pte = IOMMU_PTE_PAGE(*pte);
764
765 if (pte_page && level == end_lvl)
766 *pte_page = pte;
767
768 pte = &pte[PM_LEVEL_INDEX(level, address)];
769 }
770
771 return pte;
772}
773
774/*
775 * This function checks if there is a PTE for a given dma address. If
776 * there is one, it returns the pointer to it.
777 */
24cd7723 778static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
308973d3
JR
779{
780 int level;
781 u64 *pte;
782
24cd7723
JR
783 if (address > PM_LEVEL_SIZE(domain->mode))
784 return NULL;
785
786 level = domain->mode - 1;
787 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
308973d3 788
24cd7723
JR
789 while (level > 0) {
790
791 /* Not Present */
308973d3
JR
792 if (!IOMMU_PTE_PRESENT(*pte))
793 return NULL;
794
24cd7723
JR
795 /* Large PTE */
796 if (PM_PTE_LEVEL(*pte) == 0x07) {
797 unsigned long pte_mask, __pte;
798
799 /*
800 * If we have a series of large PTEs, make
801 * sure to return a pointer to the first one.
802 */
803 pte_mask = PTE_PAGE_SIZE(*pte);
804 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
805 __pte = ((unsigned long)pte) & pte_mask;
806
807 return (u64 *)__pte;
808 }
809
810 /* No level skipping support yet */
811 if (PM_PTE_LEVEL(*pte) != level)
812 return NULL;
813
308973d3
JR
814 level -= 1;
815
24cd7723 816 /* Walk to the next level */
308973d3
JR
817 pte = IOMMU_PTE_PAGE(*pte);
818 pte = &pte[PM_LEVEL_INDEX(level, address)];
308973d3
JR
819 }
820
821 return pte;
822}
823
431b2a20
JR
824/*
825 * Generic mapping functions. It maps a physical address into a DMA
826 * address space. It allocates the page table pages if necessary.
827 * In the future it can be extended to a generic mapping function
828 * supporting all features of AMD IOMMU page tables like level skipping
829 * and full 64 bit address spaces.
830 */
38e817fe
JR
831static int iommu_map_page(struct protection_domain *dom,
832 unsigned long bus_addr,
833 unsigned long phys_addr,
abdc5eb3 834 int prot,
cbb9d729 835 unsigned long page_size)
bd0e5211 836{
8bda3092 837 u64 __pte, *pte;
cbb9d729 838 int i, count;
abdc5eb3 839
bad1cac2 840 if (!(prot & IOMMU_PROT_MASK))
bd0e5211
JR
841 return -EINVAL;
842
cbb9d729
JR
843 bus_addr = PAGE_ALIGN(bus_addr);
844 phys_addr = PAGE_ALIGN(phys_addr);
845 count = PAGE_SIZE_PTE_COUNT(page_size);
846 pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
847
848 for (i = 0; i < count; ++i)
849 if (IOMMU_PTE_PRESENT(pte[i]))
850 return -EBUSY;
bd0e5211 851
cbb9d729
JR
852 if (page_size > PAGE_SIZE) {
853 __pte = PAGE_SIZE_PTE(phys_addr, page_size);
854 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
855 } else
856 __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
bd0e5211 857
bd0e5211
JR
858 if (prot & IOMMU_PROT_IR)
859 __pte |= IOMMU_PTE_IR;
860 if (prot & IOMMU_PROT_IW)
861 __pte |= IOMMU_PTE_IW;
862
cbb9d729
JR
863 for (i = 0; i < count; ++i)
864 pte[i] = __pte;
bd0e5211 865
04bfdd84
JR
866 update_domain(dom);
867
bd0e5211
JR
868 return 0;
869}
870
24cd7723
JR
871static unsigned long iommu_unmap_page(struct protection_domain *dom,
872 unsigned long bus_addr,
873 unsigned long page_size)
eb74ff6c 874{
24cd7723
JR
875 unsigned long long unmap_size, unmapped;
876 u64 *pte;
877
878 BUG_ON(!is_power_of_2(page_size));
879
880 unmapped = 0;
eb74ff6c 881
24cd7723
JR
882 while (unmapped < page_size) {
883
884 pte = fetch_pte(dom, bus_addr);
885
886 if (!pte) {
887 /*
888 * No PTE for this address
889 * move forward in 4kb steps
890 */
891 unmap_size = PAGE_SIZE;
892 } else if (PM_PTE_LEVEL(*pte) == 0) {
893 /* 4kb PTE found for this address */
894 unmap_size = PAGE_SIZE;
895 *pte = 0ULL;
896 } else {
897 int count, i;
898
899 /* Large PTE found which maps this address */
900 unmap_size = PTE_PAGE_SIZE(*pte);
901 count = PAGE_SIZE_PTE_COUNT(unmap_size);
902 for (i = 0; i < count; i++)
903 pte[i] = 0ULL;
904 }
905
906 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
907 unmapped += unmap_size;
908 }
909
910 BUG_ON(!is_power_of_2(unmapped));
eb74ff6c 911
24cd7723 912 return unmapped;
eb74ff6c 913}
eb74ff6c 914
431b2a20
JR
915/*
916 * This function checks if a specific unity mapping entry is needed for
917 * this specific IOMMU.
918 */
bd0e5211
JR
919static int iommu_for_unity_map(struct amd_iommu *iommu,
920 struct unity_map_entry *entry)
921{
922 u16 bdf, i;
923
924 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
925 bdf = amd_iommu_alias_table[i];
926 if (amd_iommu_rlookup_table[bdf] == iommu)
927 return 1;
928 }
929
930 return 0;
931}
932
431b2a20
JR
933/*
934 * This function actually applies the mapping to the page table of the
935 * dma_ops domain.
936 */
bd0e5211
JR
937static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
938 struct unity_map_entry *e)
939{
940 u64 addr;
941 int ret;
942
943 for (addr = e->address_start; addr < e->address_end;
944 addr += PAGE_SIZE) {
abdc5eb3 945 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
cbb9d729 946 PAGE_SIZE);
bd0e5211
JR
947 if (ret)
948 return ret;
949 /*
950 * if unity mapping is in aperture range mark the page
951 * as allocated in the aperture
952 */
953 if (addr < dma_dom->aperture_size)
c3239567 954 __set_bit(addr >> PAGE_SHIFT,
384de729 955 dma_dom->aperture[0]->bitmap);
bd0e5211
JR
956 }
957
958 return 0;
959}
960
171e7b37
JR
961/*
962 * Init the unity mappings for a specific IOMMU in the system
963 *
964 * Basically iterates over all unity mapping entries and applies them to
965 * the default domain DMA of that IOMMU if necessary.
966 */
967static int iommu_init_unity_mappings(struct amd_iommu *iommu)
968{
969 struct unity_map_entry *entry;
970 int ret;
971
972 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
973 if (!iommu_for_unity_map(iommu, entry))
974 continue;
975 ret = dma_ops_unity_map(iommu->default_dom, entry);
976 if (ret)
977 return ret;
978 }
979
980 return 0;
981}
982
431b2a20
JR
983/*
984 * Inits the unity mappings required for a specific device
985 */
bd0e5211
JR
986static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
987 u16 devid)
988{
989 struct unity_map_entry *e;
990 int ret;
991
992 list_for_each_entry(e, &amd_iommu_unity_map, list) {
993 if (!(devid >= e->devid_start && devid <= e->devid_end))
994 continue;
995 ret = dma_ops_unity_map(dma_dom, e);
996 if (ret)
997 return ret;
998 }
999
1000 return 0;
1001}
1002
431b2a20
JR
1003/****************************************************************************
1004 *
1005 * The next functions belong to the address allocator for the dma_ops
1006 * interface functions. They work like the allocators in the other IOMMU
1007 * drivers. Its basically a bitmap which marks the allocated pages in
1008 * the aperture. Maybe it could be enhanced in the future to a more
1009 * efficient allocator.
1010 *
1011 ****************************************************************************/
d3086444 1012
431b2a20 1013/*
384de729 1014 * The address allocator core functions.
431b2a20
JR
1015 *
1016 * called with domain->lock held
1017 */
384de729 1018
171e7b37
JR
1019/*
1020 * Used to reserve address ranges in the aperture (e.g. for exclusion
1021 * ranges.
1022 */
1023static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1024 unsigned long start_page,
1025 unsigned int pages)
1026{
1027 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1028
1029 if (start_page + pages > last_page)
1030 pages = last_page - start_page;
1031
1032 for (i = start_page; i < start_page + pages; ++i) {
1033 int index = i / APERTURE_RANGE_PAGES;
1034 int page = i % APERTURE_RANGE_PAGES;
1035 __set_bit(page, dom->aperture[index]->bitmap);
1036 }
1037}
1038
9cabe89b
JR
1039/*
1040 * This function is used to add a new aperture range to an existing
1041 * aperture in case of dma_ops domain allocation or address allocation
1042 * failure.
1043 */
576175c2 1044static int alloc_new_range(struct dma_ops_domain *dma_dom,
9cabe89b
JR
1045 bool populate, gfp_t gfp)
1046{
1047 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
576175c2 1048 struct amd_iommu *iommu;
d91afd15 1049 unsigned long i;
9cabe89b 1050
f5e9705c
JR
1051#ifdef CONFIG_IOMMU_STRESS
1052 populate = false;
1053#endif
1054
9cabe89b
JR
1055 if (index >= APERTURE_MAX_RANGES)
1056 return -ENOMEM;
1057
1058 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1059 if (!dma_dom->aperture[index])
1060 return -ENOMEM;
1061
1062 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1063 if (!dma_dom->aperture[index]->bitmap)
1064 goto out_free;
1065
1066 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1067
1068 if (populate) {
1069 unsigned long address = dma_dom->aperture_size;
1070 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1071 u64 *pte, *pte_page;
1072
1073 for (i = 0; i < num_ptes; ++i) {
cbb9d729 1074 pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
9cabe89b
JR
1075 &pte_page, gfp);
1076 if (!pte)
1077 goto out_free;
1078
1079 dma_dom->aperture[index]->pte_pages[i] = pte_page;
1080
1081 address += APERTURE_RANGE_SIZE / 64;
1082 }
1083 }
1084
1085 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1086
b595076a 1087 /* Initialize the exclusion range if necessary */
576175c2
JR
1088 for_each_iommu(iommu) {
1089 if (iommu->exclusion_start &&
1090 iommu->exclusion_start >= dma_dom->aperture[index]->offset
1091 && iommu->exclusion_start < dma_dom->aperture_size) {
1092 unsigned long startpage;
1093 int pages = iommu_num_pages(iommu->exclusion_start,
1094 iommu->exclusion_length,
1095 PAGE_SIZE);
1096 startpage = iommu->exclusion_start >> PAGE_SHIFT;
1097 dma_ops_reserve_addresses(dma_dom, startpage, pages);
1098 }
00cd122a
JR
1099 }
1100
1101 /*
1102 * Check for areas already mapped as present in the new aperture
1103 * range and mark those pages as reserved in the allocator. Such
1104 * mappings may already exist as a result of requested unity
1105 * mappings for devices.
1106 */
1107 for (i = dma_dom->aperture[index]->offset;
1108 i < dma_dom->aperture_size;
1109 i += PAGE_SIZE) {
24cd7723 1110 u64 *pte = fetch_pte(&dma_dom->domain, i);
00cd122a
JR
1111 if (!pte || !IOMMU_PTE_PRESENT(*pte))
1112 continue;
1113
1114 dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
1115 }
1116
04bfdd84
JR
1117 update_domain(&dma_dom->domain);
1118
9cabe89b
JR
1119 return 0;
1120
1121out_free:
04bfdd84
JR
1122 update_domain(&dma_dom->domain);
1123
9cabe89b
JR
1124 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1125
1126 kfree(dma_dom->aperture[index]);
1127 dma_dom->aperture[index] = NULL;
1128
1129 return -ENOMEM;
1130}
1131
384de729
JR
1132static unsigned long dma_ops_area_alloc(struct device *dev,
1133 struct dma_ops_domain *dom,
1134 unsigned int pages,
1135 unsigned long align_mask,
1136 u64 dma_mask,
1137 unsigned long start)
1138{
803b8cb4 1139 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
384de729
JR
1140 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1141 int i = start >> APERTURE_RANGE_SHIFT;
1142 unsigned long boundary_size;
1143 unsigned long address = -1;
1144 unsigned long limit;
1145
803b8cb4
JR
1146 next_bit >>= PAGE_SHIFT;
1147
384de729
JR
1148 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1149 PAGE_SIZE) >> PAGE_SHIFT;
1150
1151 for (;i < max_index; ++i) {
1152 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1153
1154 if (dom->aperture[i]->offset >= dma_mask)
1155 break;
1156
1157 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1158 dma_mask >> PAGE_SHIFT);
1159
1160 address = iommu_area_alloc(dom->aperture[i]->bitmap,
1161 limit, next_bit, pages, 0,
1162 boundary_size, align_mask);
1163 if (address != -1) {
1164 address = dom->aperture[i]->offset +
1165 (address << PAGE_SHIFT);
803b8cb4 1166 dom->next_address = address + (pages << PAGE_SHIFT);
384de729
JR
1167 break;
1168 }
1169
1170 next_bit = 0;
1171 }
1172
1173 return address;
1174}
1175
d3086444
JR
1176static unsigned long dma_ops_alloc_addresses(struct device *dev,
1177 struct dma_ops_domain *dom,
6d4f343f 1178 unsigned int pages,
832a90c3
JR
1179 unsigned long align_mask,
1180 u64 dma_mask)
d3086444 1181{
d3086444 1182 unsigned long address;
d3086444 1183
fe16f088
JR
1184#ifdef CONFIG_IOMMU_STRESS
1185 dom->next_address = 0;
1186 dom->need_flush = true;
1187#endif
d3086444 1188
384de729 1189 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
803b8cb4 1190 dma_mask, dom->next_address);
d3086444 1191
1c655773 1192 if (address == -1) {
803b8cb4 1193 dom->next_address = 0;
384de729
JR
1194 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1195 dma_mask, 0);
1c655773
JR
1196 dom->need_flush = true;
1197 }
d3086444 1198
384de729 1199 if (unlikely(address == -1))
8fd524b3 1200 address = DMA_ERROR_CODE;
d3086444
JR
1201
1202 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1203
1204 return address;
1205}
1206
431b2a20
JR
1207/*
1208 * The address free function.
1209 *
1210 * called with domain->lock held
1211 */
d3086444
JR
1212static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1213 unsigned long address,
1214 unsigned int pages)
1215{
384de729
JR
1216 unsigned i = address >> APERTURE_RANGE_SHIFT;
1217 struct aperture_range *range = dom->aperture[i];
80be308d 1218
384de729
JR
1219 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1220
47bccd6b
JR
1221#ifdef CONFIG_IOMMU_STRESS
1222 if (i < 4)
1223 return;
1224#endif
80be308d 1225
803b8cb4 1226 if (address >= dom->next_address)
80be308d 1227 dom->need_flush = true;
384de729
JR
1228
1229 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
803b8cb4 1230
a66022c4 1231 bitmap_clear(range->bitmap, address, pages);
384de729 1232
d3086444
JR
1233}
1234
431b2a20
JR
1235/****************************************************************************
1236 *
1237 * The next functions belong to the domain allocation. A domain is
1238 * allocated for every IOMMU as the default domain. If device isolation
1239 * is enabled, every device get its own domain. The most important thing
1240 * about domains is the page table mapping the DMA address space they
1241 * contain.
1242 *
1243 ****************************************************************************/
1244
aeb26f55
JR
1245/*
1246 * This function adds a protection domain to the global protection domain list
1247 */
1248static void add_domain_to_list(struct protection_domain *domain)
1249{
1250 unsigned long flags;
1251
1252 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1253 list_add(&domain->list, &amd_iommu_pd_list);
1254 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1255}
1256
1257/*
1258 * This function removes a protection domain to the global
1259 * protection domain list
1260 */
1261static void del_domain_from_list(struct protection_domain *domain)
1262{
1263 unsigned long flags;
1264
1265 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1266 list_del(&domain->list);
1267 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1268}
1269
ec487d1a
JR
1270static u16 domain_id_alloc(void)
1271{
1272 unsigned long flags;
1273 int id;
1274
1275 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1276 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1277 BUG_ON(id == 0);
1278 if (id > 0 && id < MAX_DOMAIN_ID)
1279 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1280 else
1281 id = 0;
1282 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1283
1284 return id;
1285}
1286
a2acfb75
JR
1287static void domain_id_free(int id)
1288{
1289 unsigned long flags;
1290
1291 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1292 if (id > 0 && id < MAX_DOMAIN_ID)
1293 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1294 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1295}
a2acfb75 1296
86db2e5d 1297static void free_pagetable(struct protection_domain *domain)
ec487d1a
JR
1298{
1299 int i, j;
1300 u64 *p1, *p2, *p3;
1301
86db2e5d 1302 p1 = domain->pt_root;
ec487d1a
JR
1303
1304 if (!p1)
1305 return;
1306
1307 for (i = 0; i < 512; ++i) {
1308 if (!IOMMU_PTE_PRESENT(p1[i]))
1309 continue;
1310
1311 p2 = IOMMU_PTE_PAGE(p1[i]);
3cc3d84b 1312 for (j = 0; j < 512; ++j) {
ec487d1a
JR
1313 if (!IOMMU_PTE_PRESENT(p2[j]))
1314 continue;
1315 p3 = IOMMU_PTE_PAGE(p2[j]);
1316 free_page((unsigned long)p3);
1317 }
1318
1319 free_page((unsigned long)p2);
1320 }
1321
1322 free_page((unsigned long)p1);
86db2e5d
JR
1323
1324 domain->pt_root = NULL;
ec487d1a
JR
1325}
1326
431b2a20
JR
1327/*
1328 * Free a domain, only used if something went wrong in the
1329 * allocation path and we need to free an already allocated page table
1330 */
ec487d1a
JR
1331static void dma_ops_domain_free(struct dma_ops_domain *dom)
1332{
384de729
JR
1333 int i;
1334
ec487d1a
JR
1335 if (!dom)
1336 return;
1337
aeb26f55
JR
1338 del_domain_from_list(&dom->domain);
1339
86db2e5d 1340 free_pagetable(&dom->domain);
ec487d1a 1341
384de729
JR
1342 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1343 if (!dom->aperture[i])
1344 continue;
1345 free_page((unsigned long)dom->aperture[i]->bitmap);
1346 kfree(dom->aperture[i]);
1347 }
ec487d1a
JR
1348
1349 kfree(dom);
1350}
1351
431b2a20
JR
1352/*
1353 * Allocates a new protection domain usable for the dma_ops functions.
b595076a 1354 * It also initializes the page table and the address allocator data
431b2a20
JR
1355 * structures required for the dma_ops interface
1356 */
87a64d52 1357static struct dma_ops_domain *dma_ops_domain_alloc(void)
ec487d1a
JR
1358{
1359 struct dma_ops_domain *dma_dom;
ec487d1a
JR
1360
1361 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1362 if (!dma_dom)
1363 return NULL;
1364
1365 spin_lock_init(&dma_dom->domain.lock);
1366
1367 dma_dom->domain.id = domain_id_alloc();
1368 if (dma_dom->domain.id == 0)
1369 goto free_dma_dom;
7c392cbe 1370 INIT_LIST_HEAD(&dma_dom->domain.dev_list);
8f7a017c 1371 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
ec487d1a 1372 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
9fdb19d6 1373 dma_dom->domain.flags = PD_DMA_OPS_MASK;
ec487d1a
JR
1374 dma_dom->domain.priv = dma_dom;
1375 if (!dma_dom->domain.pt_root)
1376 goto free_dma_dom;
ec487d1a 1377
1c655773 1378 dma_dom->need_flush = false;
bd60b735 1379 dma_dom->target_dev = 0xffff;
1c655773 1380
aeb26f55
JR
1381 add_domain_to_list(&dma_dom->domain);
1382
576175c2 1383 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
ec487d1a 1384 goto free_dma_dom;
ec487d1a 1385
431b2a20 1386 /*
ec487d1a
JR
1387 * mark the first page as allocated so we never return 0 as
1388 * a valid dma-address. So we can use 0 as error value
431b2a20 1389 */
384de729 1390 dma_dom->aperture[0]->bitmap[0] = 1;
803b8cb4 1391 dma_dom->next_address = 0;
ec487d1a 1392
ec487d1a
JR
1393
1394 return dma_dom;
1395
1396free_dma_dom:
1397 dma_ops_domain_free(dma_dom);
1398
1399 return NULL;
1400}
1401
5b28df6f
JR
1402/*
1403 * little helper function to check whether a given protection domain is a
1404 * dma_ops domain
1405 */
1406static bool dma_ops_domain(struct protection_domain *domain)
1407{
1408 return domain->flags & PD_DMA_OPS_MASK;
1409}
1410
407d733e 1411static void set_dte_entry(u16 devid, struct protection_domain *domain)
b20ac0d4 1412{
b20ac0d4 1413 u64 pte_root = virt_to_phys(domain->pt_root);
863c74eb 1414
38ddf41b
JR
1415 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1416 << DEV_ENTRY_MODE_SHIFT;
1417 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4 1418
b20ac0d4 1419 amd_iommu_dev_table[devid].data[2] = domain->id;
aa879fff
JR
1420 amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
1421 amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
15898bbc
JR
1422}
1423
1424static void clear_dte_entry(u16 devid)
1425{
15898bbc
JR
1426 /* remove entry from the device table seen by the hardware */
1427 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1428 amd_iommu_dev_table[devid].data[1] = 0;
1429 amd_iommu_dev_table[devid].data[2] = 0;
1430
1431 amd_iommu_apply_erratum_63(devid);
7f760ddd
JR
1432}
1433
1434static void do_attach(struct device *dev, struct protection_domain *domain)
1435{
1436 struct iommu_dev_data *dev_data;
1437 struct amd_iommu *iommu;
1438 u16 devid;
1439
1440 devid = get_device_id(dev);
1441 iommu = amd_iommu_rlookup_table[devid];
1442 dev_data = get_dev_data(dev);
1443
1444 /* Update data structures */
1445 dev_data->domain = domain;
1446 list_add(&dev_data->list, &domain->dev_list);
1447 set_dte_entry(devid, domain);
1448
1449 /* Do reference counting */
1450 domain->dev_iommu[iommu->index] += 1;
1451 domain->dev_cnt += 1;
1452
1453 /* Flush the DTE entry */
3fa43655 1454 iommu_flush_device(dev);
7f760ddd
JR
1455}
1456
1457static void do_detach(struct device *dev)
1458{
1459 struct iommu_dev_data *dev_data;
1460 struct amd_iommu *iommu;
1461 u16 devid;
1462
1463 devid = get_device_id(dev);
1464 iommu = amd_iommu_rlookup_table[devid];
1465 dev_data = get_dev_data(dev);
15898bbc
JR
1466
1467 /* decrease reference counters */
7f760ddd
JR
1468 dev_data->domain->dev_iommu[iommu->index] -= 1;
1469 dev_data->domain->dev_cnt -= 1;
1470
1471 /* Update data structures */
1472 dev_data->domain = NULL;
1473 list_del(&dev_data->list);
1474 clear_dte_entry(devid);
15898bbc 1475
7f760ddd 1476 /* Flush the DTE entry */
3fa43655 1477 iommu_flush_device(dev);
2b681faf
JR
1478}
1479
1480/*
1481 * If a device is not yet associated with a domain, this function does
1482 * assigns it visible for the hardware
1483 */
15898bbc
JR
1484static int __attach_device(struct device *dev,
1485 struct protection_domain *domain)
2b681faf 1486{
657cbb6b 1487 struct iommu_dev_data *dev_data, *alias_data;
84fe6c19 1488 int ret;
657cbb6b 1489
657cbb6b
JR
1490 dev_data = get_dev_data(dev);
1491 alias_data = get_dev_data(dev_data->alias);
7f760ddd 1492
657cbb6b
JR
1493 if (!alias_data)
1494 return -EINVAL;
15898bbc 1495
2b681faf
JR
1496 /* lock domain */
1497 spin_lock(&domain->lock);
1498
15898bbc 1499 /* Some sanity checks */
84fe6c19 1500 ret = -EBUSY;
657cbb6b
JR
1501 if (alias_data->domain != NULL &&
1502 alias_data->domain != domain)
84fe6c19 1503 goto out_unlock;
eba6ac60 1504
657cbb6b
JR
1505 if (dev_data->domain != NULL &&
1506 dev_data->domain != domain)
84fe6c19 1507 goto out_unlock;
15898bbc
JR
1508
1509 /* Do real assignment */
7f760ddd
JR
1510 if (dev_data->alias != dev) {
1511 alias_data = get_dev_data(dev_data->alias);
1512 if (alias_data->domain == NULL)
1513 do_attach(dev_data->alias, domain);
24100055
JR
1514
1515 atomic_inc(&alias_data->bind);
657cbb6b 1516 }
15898bbc 1517
7f760ddd
JR
1518 if (dev_data->domain == NULL)
1519 do_attach(dev, domain);
eba6ac60 1520
24100055
JR
1521 atomic_inc(&dev_data->bind);
1522
84fe6c19
JL
1523 ret = 0;
1524
1525out_unlock:
1526
eba6ac60
JR
1527 /* ready */
1528 spin_unlock(&domain->lock);
15898bbc 1529
84fe6c19 1530 return ret;
0feae533 1531}
b20ac0d4 1532
407d733e
JR
1533/*
1534 * If a device is not yet associated with a domain, this function does
1535 * assigns it visible for the hardware
1536 */
15898bbc
JR
1537static int attach_device(struct device *dev,
1538 struct protection_domain *domain)
0feae533 1539{
eba6ac60 1540 unsigned long flags;
15898bbc 1541 int ret;
eba6ac60
JR
1542
1543 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
15898bbc 1544 ret = __attach_device(dev, domain);
b20ac0d4
JR
1545 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1546
0feae533
JR
1547 /*
1548 * We might boot into a crash-kernel here. The crashed kernel
1549 * left the caches in the IOMMU dirty. So we have to flush
1550 * here to evict all dirty stuff.
1551 */
dcd1e92e 1552 iommu_flush_tlb_pde(domain);
15898bbc
JR
1553
1554 return ret;
b20ac0d4
JR
1555}
1556
355bf553
JR
1557/*
1558 * Removes a device from a protection domain (unlocked)
1559 */
15898bbc 1560static void __detach_device(struct device *dev)
355bf553 1561{
657cbb6b 1562 struct iommu_dev_data *dev_data = get_dev_data(dev);
24100055 1563 struct iommu_dev_data *alias_data;
2ca76279 1564 struct protection_domain *domain;
7c392cbe 1565 unsigned long flags;
c4596114 1566
7f760ddd 1567 BUG_ON(!dev_data->domain);
355bf553 1568
2ca76279
JR
1569 domain = dev_data->domain;
1570
1571 spin_lock_irqsave(&domain->lock, flags);
24100055 1572
7f760ddd 1573 if (dev_data->alias != dev) {
24100055 1574 alias_data = get_dev_data(dev_data->alias);
7f760ddd
JR
1575 if (atomic_dec_and_test(&alias_data->bind))
1576 do_detach(dev_data->alias);
24100055
JR
1577 }
1578
7f760ddd
JR
1579 if (atomic_dec_and_test(&dev_data->bind))
1580 do_detach(dev);
1581
2ca76279 1582 spin_unlock_irqrestore(&domain->lock, flags);
21129f78
JR
1583
1584 /*
1585 * If we run in passthrough mode the device must be assigned to the
d3ad9373
JR
1586 * passthrough domain if it is detached from any other domain.
1587 * Make sure we can deassign from the pt_domain itself.
21129f78 1588 */
d3ad9373
JR
1589 if (iommu_pass_through &&
1590 (dev_data->domain == NULL && domain != pt_domain))
15898bbc 1591 __attach_device(dev, pt_domain);
355bf553
JR
1592}
1593
1594/*
1595 * Removes a device from a protection domain (with devtable_lock held)
1596 */
15898bbc 1597static void detach_device(struct device *dev)
355bf553
JR
1598{
1599 unsigned long flags;
1600
1601 /* lock device table */
1602 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
15898bbc 1603 __detach_device(dev);
355bf553
JR
1604 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1605}
e275a2a0 1606
15898bbc
JR
1607/*
1608 * Find out the protection domain structure for a given PCI device. This
1609 * will give us the pointer to the page table root for example.
1610 */
1611static struct protection_domain *domain_for_device(struct device *dev)
1612{
1613 struct protection_domain *dom;
657cbb6b 1614 struct iommu_dev_data *dev_data, *alias_data;
15898bbc
JR
1615 unsigned long flags;
1616 u16 devid, alias;
1617
657cbb6b
JR
1618 devid = get_device_id(dev);
1619 alias = amd_iommu_alias_table[devid];
1620 dev_data = get_dev_data(dev);
1621 alias_data = get_dev_data(dev_data->alias);
1622 if (!alias_data)
1623 return NULL;
15898bbc
JR
1624
1625 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
657cbb6b 1626 dom = dev_data->domain;
15898bbc 1627 if (dom == NULL &&
657cbb6b
JR
1628 alias_data->domain != NULL) {
1629 __attach_device(dev, alias_data->domain);
1630 dom = alias_data->domain;
15898bbc
JR
1631 }
1632
1633 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1634
1635 return dom;
1636}
1637
e275a2a0
JR
1638static int device_change_notifier(struct notifier_block *nb,
1639 unsigned long action, void *data)
1640{
1641 struct device *dev = data;
98fc5a69 1642 u16 devid;
e275a2a0
JR
1643 struct protection_domain *domain;
1644 struct dma_ops_domain *dma_domain;
1645 struct amd_iommu *iommu;
1ac4cbbc 1646 unsigned long flags;
e275a2a0 1647
98fc5a69
JR
1648 if (!check_device(dev))
1649 return 0;
e275a2a0 1650
98fc5a69
JR
1651 devid = get_device_id(dev);
1652 iommu = amd_iommu_rlookup_table[devid];
e275a2a0
JR
1653
1654 switch (action) {
c1eee67b 1655 case BUS_NOTIFY_UNBOUND_DRIVER:
657cbb6b
JR
1656
1657 domain = domain_for_device(dev);
1658
e275a2a0
JR
1659 if (!domain)
1660 goto out;
a1ca331c
JR
1661 if (iommu_pass_through)
1662 break;
15898bbc 1663 detach_device(dev);
1ac4cbbc
JR
1664 break;
1665 case BUS_NOTIFY_ADD_DEVICE:
657cbb6b
JR
1666
1667 iommu_init_device(dev);
1668
1669 domain = domain_for_device(dev);
1670
1ac4cbbc
JR
1671 /* allocate a protection domain if a device is added */
1672 dma_domain = find_protection_domain(devid);
1673 if (dma_domain)
1674 goto out;
87a64d52 1675 dma_domain = dma_ops_domain_alloc();
1ac4cbbc
JR
1676 if (!dma_domain)
1677 goto out;
1678 dma_domain->target_dev = devid;
1679
1680 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1681 list_add_tail(&dma_domain->list, &iommu_pd_list);
1682 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1683
e275a2a0 1684 break;
657cbb6b
JR
1685 case BUS_NOTIFY_DEL_DEVICE:
1686
1687 iommu_uninit_device(dev);
1688
e275a2a0
JR
1689 default:
1690 goto out;
1691 }
1692
3fa43655 1693 iommu_flush_device(dev);
e275a2a0
JR
1694 iommu_completion_wait(iommu);
1695
1696out:
1697 return 0;
1698}
1699
b25ae679 1700static struct notifier_block device_nb = {
e275a2a0
JR
1701 .notifier_call = device_change_notifier,
1702};
355bf553 1703
8638c491
JR
1704void amd_iommu_init_notifier(void)
1705{
1706 bus_register_notifier(&pci_bus_type, &device_nb);
1707}
1708
431b2a20
JR
1709/*****************************************************************************
1710 *
1711 * The next functions belong to the dma_ops mapping/unmapping code.
1712 *
1713 *****************************************************************************/
1714
1715/*
1716 * In the dma_ops path we only have the struct device. This function
1717 * finds the corresponding IOMMU, the protection domain and the
1718 * requestor id for a given device.
1719 * If the device is not yet associated with a domain this is also done
1720 * in this function.
1721 */
94f6d190 1722static struct protection_domain *get_domain(struct device *dev)
b20ac0d4 1723{
94f6d190 1724 struct protection_domain *domain;
b20ac0d4 1725 struct dma_ops_domain *dma_dom;
94f6d190 1726 u16 devid = get_device_id(dev);
b20ac0d4 1727
f99c0f1c 1728 if (!check_device(dev))
94f6d190 1729 return ERR_PTR(-EINVAL);
b20ac0d4 1730
94f6d190
JR
1731 domain = domain_for_device(dev);
1732 if (domain != NULL && !dma_ops_domain(domain))
1733 return ERR_PTR(-EBUSY);
f99c0f1c 1734
94f6d190
JR
1735 if (domain != NULL)
1736 return domain;
b20ac0d4 1737
15898bbc 1738 /* Device not bount yet - bind it */
94f6d190 1739 dma_dom = find_protection_domain(devid);
15898bbc 1740 if (!dma_dom)
94f6d190
JR
1741 dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
1742 attach_device(dev, &dma_dom->domain);
15898bbc 1743 DUMP_printk("Using protection domain %d for device %s\n",
94f6d190 1744 dma_dom->domain.id, dev_name(dev));
f91ba190 1745
94f6d190 1746 return &dma_dom->domain;
b20ac0d4
JR
1747}
1748
04bfdd84
JR
1749static void update_device_table(struct protection_domain *domain)
1750{
492667da 1751 struct iommu_dev_data *dev_data;
04bfdd84 1752
492667da
JR
1753 list_for_each_entry(dev_data, &domain->dev_list, list) {
1754 u16 devid = get_device_id(dev_data->dev);
1755 set_dte_entry(devid, domain);
04bfdd84
JR
1756 }
1757}
1758
1759static void update_domain(struct protection_domain *domain)
1760{
1761 if (!domain->updated)
1762 return;
1763
1764 update_device_table(domain);
b00d3bcf 1765 iommu_flush_domain_devices(domain);
601367d7 1766 iommu_flush_tlb_pde(domain);
04bfdd84
JR
1767
1768 domain->updated = false;
1769}
1770
8bda3092
JR
1771/*
1772 * This function fetches the PTE for a given address in the aperture
1773 */
1774static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
1775 unsigned long address)
1776{
384de729 1777 struct aperture_range *aperture;
8bda3092
JR
1778 u64 *pte, *pte_page;
1779
384de729
JR
1780 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1781 if (!aperture)
1782 return NULL;
1783
1784 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
8bda3092 1785 if (!pte) {
cbb9d729 1786 pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
abdc5eb3 1787 GFP_ATOMIC);
384de729
JR
1788 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
1789 } else
8c8c143c 1790 pte += PM_LEVEL_INDEX(0, address);
8bda3092 1791
04bfdd84 1792 update_domain(&dom->domain);
8bda3092
JR
1793
1794 return pte;
1795}
1796
431b2a20
JR
1797/*
1798 * This is the generic map function. It maps one 4kb page at paddr to
1799 * the given address in the DMA address space for the domain.
1800 */
680525e0 1801static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
cb76c322
JR
1802 unsigned long address,
1803 phys_addr_t paddr,
1804 int direction)
1805{
1806 u64 *pte, __pte;
1807
1808 WARN_ON(address > dom->aperture_size);
1809
1810 paddr &= PAGE_MASK;
1811
8bda3092 1812 pte = dma_ops_get_pte(dom, address);
53812c11 1813 if (!pte)
8fd524b3 1814 return DMA_ERROR_CODE;
cb76c322
JR
1815
1816 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
1817
1818 if (direction == DMA_TO_DEVICE)
1819 __pte |= IOMMU_PTE_IR;
1820 else if (direction == DMA_FROM_DEVICE)
1821 __pte |= IOMMU_PTE_IW;
1822 else if (direction == DMA_BIDIRECTIONAL)
1823 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
1824
1825 WARN_ON(*pte);
1826
1827 *pte = __pte;
1828
1829 return (dma_addr_t)address;
1830}
1831
431b2a20
JR
1832/*
1833 * The generic unmapping function for on page in the DMA address space.
1834 */
680525e0 1835static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
cb76c322
JR
1836 unsigned long address)
1837{
384de729 1838 struct aperture_range *aperture;
cb76c322
JR
1839 u64 *pte;
1840
1841 if (address >= dom->aperture_size)
1842 return;
1843
384de729
JR
1844 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1845 if (!aperture)
1846 return;
1847
1848 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1849 if (!pte)
1850 return;
cb76c322 1851
8c8c143c 1852 pte += PM_LEVEL_INDEX(0, address);
cb76c322
JR
1853
1854 WARN_ON(!*pte);
1855
1856 *pte = 0ULL;
1857}
1858
431b2a20
JR
1859/*
1860 * This function contains common code for mapping of a physically
24f81160
JR
1861 * contiguous memory region into DMA address space. It is used by all
1862 * mapping functions provided with this IOMMU driver.
431b2a20
JR
1863 * Must be called with the domain lock held.
1864 */
cb76c322 1865static dma_addr_t __map_single(struct device *dev,
cb76c322
JR
1866 struct dma_ops_domain *dma_dom,
1867 phys_addr_t paddr,
1868 size_t size,
6d4f343f 1869 int dir,
832a90c3
JR
1870 bool align,
1871 u64 dma_mask)
cb76c322
JR
1872{
1873 dma_addr_t offset = paddr & ~PAGE_MASK;
53812c11 1874 dma_addr_t address, start, ret;
cb76c322 1875 unsigned int pages;
6d4f343f 1876 unsigned long align_mask = 0;
cb76c322
JR
1877 int i;
1878
e3c449f5 1879 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
1880 paddr &= PAGE_MASK;
1881
8ecaf8f1
JR
1882 INC_STATS_COUNTER(total_map_requests);
1883
c1858976
JR
1884 if (pages > 1)
1885 INC_STATS_COUNTER(cross_page);
1886
6d4f343f
JR
1887 if (align)
1888 align_mask = (1UL << get_order(size)) - 1;
1889
11b83888 1890retry:
832a90c3
JR
1891 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
1892 dma_mask);
8fd524b3 1893 if (unlikely(address == DMA_ERROR_CODE)) {
11b83888
JR
1894 /*
1895 * setting next_address here will let the address
1896 * allocator only scan the new allocated range in the
1897 * first run. This is a small optimization.
1898 */
1899 dma_dom->next_address = dma_dom->aperture_size;
1900
576175c2 1901 if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
11b83888
JR
1902 goto out;
1903
1904 /*
af901ca1 1905 * aperture was successfully enlarged by 128 MB, try
11b83888
JR
1906 * allocation again
1907 */
1908 goto retry;
1909 }
cb76c322
JR
1910
1911 start = address;
1912 for (i = 0; i < pages; ++i) {
680525e0 1913 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
8fd524b3 1914 if (ret == DMA_ERROR_CODE)
53812c11
JR
1915 goto out_unmap;
1916
cb76c322
JR
1917 paddr += PAGE_SIZE;
1918 start += PAGE_SIZE;
1919 }
1920 address += offset;
1921
5774f7c5
JR
1922 ADD_STATS_COUNTER(alloced_io_mem, size);
1923
afa9fdc2 1924 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
dcd1e92e 1925 iommu_flush_tlb(&dma_dom->domain);
1c655773 1926 dma_dom->need_flush = false;
318afd41 1927 } else if (unlikely(amd_iommu_np_cache))
6de8ad9b 1928 iommu_flush_pages(&dma_dom->domain, address, size);
270cab24 1929
cb76c322
JR
1930out:
1931 return address;
53812c11
JR
1932
1933out_unmap:
1934
1935 for (--i; i >= 0; --i) {
1936 start -= PAGE_SIZE;
680525e0 1937 dma_ops_domain_unmap(dma_dom, start);
53812c11
JR
1938 }
1939
1940 dma_ops_free_addresses(dma_dom, address, pages);
1941
8fd524b3 1942 return DMA_ERROR_CODE;
cb76c322
JR
1943}
1944
431b2a20
JR
1945/*
1946 * Does the reverse of the __map_single function. Must be called with
1947 * the domain lock held too
1948 */
cd8c82e8 1949static void __unmap_single(struct dma_ops_domain *dma_dom,
cb76c322
JR
1950 dma_addr_t dma_addr,
1951 size_t size,
1952 int dir)
1953{
04e0463e 1954 dma_addr_t flush_addr;
cb76c322
JR
1955 dma_addr_t i, start;
1956 unsigned int pages;
1957
8fd524b3 1958 if ((dma_addr == DMA_ERROR_CODE) ||
b8d9905d 1959 (dma_addr + size > dma_dom->aperture_size))
cb76c322
JR
1960 return;
1961
04e0463e 1962 flush_addr = dma_addr;
e3c449f5 1963 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
1964 dma_addr &= PAGE_MASK;
1965 start = dma_addr;
1966
1967 for (i = 0; i < pages; ++i) {
680525e0 1968 dma_ops_domain_unmap(dma_dom, start);
cb76c322
JR
1969 start += PAGE_SIZE;
1970 }
1971
5774f7c5
JR
1972 SUB_STATS_COUNTER(alloced_io_mem, size);
1973
cb76c322 1974 dma_ops_free_addresses(dma_dom, dma_addr, pages);
270cab24 1975
80be308d 1976 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
04e0463e 1977 iommu_flush_pages(&dma_dom->domain, flush_addr, size);
80be308d
JR
1978 dma_dom->need_flush = false;
1979 }
cb76c322
JR
1980}
1981
431b2a20
JR
1982/*
1983 * The exported map_single function for dma_ops.
1984 */
51491367
FT
1985static dma_addr_t map_page(struct device *dev, struct page *page,
1986 unsigned long offset, size_t size,
1987 enum dma_data_direction dir,
1988 struct dma_attrs *attrs)
4da70b9e
JR
1989{
1990 unsigned long flags;
4da70b9e 1991 struct protection_domain *domain;
4da70b9e 1992 dma_addr_t addr;
832a90c3 1993 u64 dma_mask;
51491367 1994 phys_addr_t paddr = page_to_phys(page) + offset;
4da70b9e 1995
0f2a86f2
JR
1996 INC_STATS_COUNTER(cnt_map_single);
1997
94f6d190
JR
1998 domain = get_domain(dev);
1999 if (PTR_ERR(domain) == -EINVAL)
4da70b9e 2000 return (dma_addr_t)paddr;
94f6d190
JR
2001 else if (IS_ERR(domain))
2002 return DMA_ERROR_CODE;
4da70b9e 2003
f99c0f1c
JR
2004 dma_mask = *dev->dma_mask;
2005
4da70b9e 2006 spin_lock_irqsave(&domain->lock, flags);
94f6d190 2007
cd8c82e8 2008 addr = __map_single(dev, domain->priv, paddr, size, dir, false,
832a90c3 2009 dma_mask);
8fd524b3 2010 if (addr == DMA_ERROR_CODE)
4da70b9e
JR
2011 goto out;
2012
0518a3a4 2013 iommu_flush_complete(domain);
4da70b9e
JR
2014
2015out:
2016 spin_unlock_irqrestore(&domain->lock, flags);
2017
2018 return addr;
2019}
2020
431b2a20
JR
2021/*
2022 * The exported unmap_single function for dma_ops.
2023 */
51491367
FT
2024static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2025 enum dma_data_direction dir, struct dma_attrs *attrs)
4da70b9e
JR
2026{
2027 unsigned long flags;
4da70b9e 2028 struct protection_domain *domain;
4da70b9e 2029
146a6917
JR
2030 INC_STATS_COUNTER(cnt_unmap_single);
2031
94f6d190
JR
2032 domain = get_domain(dev);
2033 if (IS_ERR(domain))
5b28df6f
JR
2034 return;
2035
4da70b9e
JR
2036 spin_lock_irqsave(&domain->lock, flags);
2037
cd8c82e8 2038 __unmap_single(domain->priv, dma_addr, size, dir);
4da70b9e 2039
0518a3a4 2040 iommu_flush_complete(domain);
4da70b9e
JR
2041
2042 spin_unlock_irqrestore(&domain->lock, flags);
2043}
2044
431b2a20
JR
2045/*
2046 * This is a special map_sg function which is used if we should map a
2047 * device which is not handled by an AMD IOMMU in the system.
2048 */
65b050ad
JR
2049static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
2050 int nelems, int dir)
2051{
2052 struct scatterlist *s;
2053 int i;
2054
2055 for_each_sg(sglist, s, nelems, i) {
2056 s->dma_address = (dma_addr_t)sg_phys(s);
2057 s->dma_length = s->length;
2058 }
2059
2060 return nelems;
2061}
2062
431b2a20
JR
2063/*
2064 * The exported map_sg function for dma_ops (handles scatter-gather
2065 * lists).
2066 */
65b050ad 2067static int map_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2068 int nelems, enum dma_data_direction dir,
2069 struct dma_attrs *attrs)
65b050ad
JR
2070{
2071 unsigned long flags;
65b050ad 2072 struct protection_domain *domain;
65b050ad
JR
2073 int i;
2074 struct scatterlist *s;
2075 phys_addr_t paddr;
2076 int mapped_elems = 0;
832a90c3 2077 u64 dma_mask;
65b050ad 2078
d03f067a
JR
2079 INC_STATS_COUNTER(cnt_map_sg);
2080
94f6d190
JR
2081 domain = get_domain(dev);
2082 if (PTR_ERR(domain) == -EINVAL)
f99c0f1c 2083 return map_sg_no_iommu(dev, sglist, nelems, dir);
94f6d190
JR
2084 else if (IS_ERR(domain))
2085 return 0;
dbcc112e 2086
832a90c3 2087 dma_mask = *dev->dma_mask;
65b050ad 2088
65b050ad
JR
2089 spin_lock_irqsave(&domain->lock, flags);
2090
2091 for_each_sg(sglist, s, nelems, i) {
2092 paddr = sg_phys(s);
2093
cd8c82e8 2094 s->dma_address = __map_single(dev, domain->priv,
832a90c3
JR
2095 paddr, s->length, dir, false,
2096 dma_mask);
65b050ad
JR
2097
2098 if (s->dma_address) {
2099 s->dma_length = s->length;
2100 mapped_elems++;
2101 } else
2102 goto unmap;
65b050ad
JR
2103 }
2104
0518a3a4 2105 iommu_flush_complete(domain);
65b050ad
JR
2106
2107out:
2108 spin_unlock_irqrestore(&domain->lock, flags);
2109
2110 return mapped_elems;
2111unmap:
2112 for_each_sg(sglist, s, mapped_elems, i) {
2113 if (s->dma_address)
cd8c82e8 2114 __unmap_single(domain->priv, s->dma_address,
65b050ad
JR
2115 s->dma_length, dir);
2116 s->dma_address = s->dma_length = 0;
2117 }
2118
2119 mapped_elems = 0;
2120
2121 goto out;
2122}
2123
431b2a20
JR
2124/*
2125 * The exported map_sg function for dma_ops (handles scatter-gather
2126 * lists).
2127 */
65b050ad 2128static void unmap_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2129 int nelems, enum dma_data_direction dir,
2130 struct dma_attrs *attrs)
65b050ad
JR
2131{
2132 unsigned long flags;
65b050ad
JR
2133 struct protection_domain *domain;
2134 struct scatterlist *s;
65b050ad
JR
2135 int i;
2136
55877a6b
JR
2137 INC_STATS_COUNTER(cnt_unmap_sg);
2138
94f6d190
JR
2139 domain = get_domain(dev);
2140 if (IS_ERR(domain))
5b28df6f
JR
2141 return;
2142
65b050ad
JR
2143 spin_lock_irqsave(&domain->lock, flags);
2144
2145 for_each_sg(sglist, s, nelems, i) {
cd8c82e8 2146 __unmap_single(domain->priv, s->dma_address,
65b050ad 2147 s->dma_length, dir);
65b050ad
JR
2148 s->dma_address = s->dma_length = 0;
2149 }
2150
0518a3a4 2151 iommu_flush_complete(domain);
65b050ad
JR
2152
2153 spin_unlock_irqrestore(&domain->lock, flags);
2154}
2155
431b2a20
JR
2156/*
2157 * The exported alloc_coherent function for dma_ops.
2158 */
5d8b53cf
JR
2159static void *alloc_coherent(struct device *dev, size_t size,
2160 dma_addr_t *dma_addr, gfp_t flag)
2161{
2162 unsigned long flags;
2163 void *virt_addr;
5d8b53cf 2164 struct protection_domain *domain;
5d8b53cf 2165 phys_addr_t paddr;
832a90c3 2166 u64 dma_mask = dev->coherent_dma_mask;
5d8b53cf 2167
c8f0fb36
JR
2168 INC_STATS_COUNTER(cnt_alloc_coherent);
2169
94f6d190
JR
2170 domain = get_domain(dev);
2171 if (PTR_ERR(domain) == -EINVAL) {
f99c0f1c
JR
2172 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2173 *dma_addr = __pa(virt_addr);
2174 return virt_addr;
94f6d190
JR
2175 } else if (IS_ERR(domain))
2176 return NULL;
5d8b53cf 2177
f99c0f1c
JR
2178 dma_mask = dev->coherent_dma_mask;
2179 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2180 flag |= __GFP_ZERO;
5d8b53cf
JR
2181
2182 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2183 if (!virt_addr)
b25ae679 2184 return NULL;
5d8b53cf 2185
5d8b53cf
JR
2186 paddr = virt_to_phys(virt_addr);
2187
832a90c3
JR
2188 if (!dma_mask)
2189 dma_mask = *dev->dma_mask;
2190
5d8b53cf
JR
2191 spin_lock_irqsave(&domain->lock, flags);
2192
cd8c82e8 2193 *dma_addr = __map_single(dev, domain->priv, paddr,
832a90c3 2194 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf 2195
8fd524b3 2196 if (*dma_addr == DMA_ERROR_CODE) {
367d04c4 2197 spin_unlock_irqrestore(&domain->lock, flags);
5b28df6f 2198 goto out_free;
367d04c4 2199 }
5d8b53cf 2200
0518a3a4 2201 iommu_flush_complete(domain);
5d8b53cf 2202
5d8b53cf
JR
2203 spin_unlock_irqrestore(&domain->lock, flags);
2204
2205 return virt_addr;
5b28df6f
JR
2206
2207out_free:
2208
2209 free_pages((unsigned long)virt_addr, get_order(size));
2210
2211 return NULL;
5d8b53cf
JR
2212}
2213
431b2a20
JR
2214/*
2215 * The exported free_coherent function for dma_ops.
431b2a20 2216 */
5d8b53cf
JR
2217static void free_coherent(struct device *dev, size_t size,
2218 void *virt_addr, dma_addr_t dma_addr)
2219{
2220 unsigned long flags;
5d8b53cf 2221 struct protection_domain *domain;
5d8b53cf 2222
5d31ee7e
JR
2223 INC_STATS_COUNTER(cnt_free_coherent);
2224
94f6d190
JR
2225 domain = get_domain(dev);
2226 if (IS_ERR(domain))
5b28df6f
JR
2227 goto free_mem;
2228
5d8b53cf
JR
2229 spin_lock_irqsave(&domain->lock, flags);
2230
cd8c82e8 2231 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 2232
0518a3a4 2233 iommu_flush_complete(domain);
5d8b53cf
JR
2234
2235 spin_unlock_irqrestore(&domain->lock, flags);
2236
2237free_mem:
2238 free_pages((unsigned long)virt_addr, get_order(size));
2239}
2240
b39ba6ad
JR
2241/*
2242 * This function is called by the DMA layer to find out if we can handle a
2243 * particular device. It is part of the dma_ops.
2244 */
2245static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2246{
420aef8a 2247 return check_device(dev);
b39ba6ad
JR
2248}
2249
c432f3df 2250/*
431b2a20
JR
2251 * The function for pre-allocating protection domains.
2252 *
c432f3df
JR
2253 * If the driver core informs the DMA layer if a driver grabs a device
2254 * we don't need to preallocate the protection domains anymore.
2255 * For now we have to.
2256 */
0e93dd88 2257static void prealloc_protection_domains(void)
c432f3df
JR
2258{
2259 struct pci_dev *dev = NULL;
2260 struct dma_ops_domain *dma_dom;
98fc5a69 2261 u16 devid;
c432f3df 2262
d18c69d3 2263 for_each_pci_dev(dev) {
98fc5a69
JR
2264
2265 /* Do we handle this device? */
2266 if (!check_device(&dev->dev))
c432f3df 2267 continue;
98fc5a69
JR
2268
2269 /* Is there already any domain for it? */
15898bbc 2270 if (domain_for_device(&dev->dev))
c432f3df 2271 continue;
98fc5a69
JR
2272
2273 devid = get_device_id(&dev->dev);
2274
87a64d52 2275 dma_dom = dma_ops_domain_alloc();
c432f3df
JR
2276 if (!dma_dom)
2277 continue;
2278 init_unity_mappings_for_device(dma_dom, devid);
bd60b735
JR
2279 dma_dom->target_dev = devid;
2280
15898bbc 2281 attach_device(&dev->dev, &dma_dom->domain);
be831297 2282
bd60b735 2283 list_add_tail(&dma_dom->list, &iommu_pd_list);
c432f3df
JR
2284 }
2285}
2286
160c1d8e 2287static struct dma_map_ops amd_iommu_dma_ops = {
6631ee9d
JR
2288 .alloc_coherent = alloc_coherent,
2289 .free_coherent = free_coherent,
51491367
FT
2290 .map_page = map_page,
2291 .unmap_page = unmap_page,
6631ee9d
JR
2292 .map_sg = map_sg,
2293 .unmap_sg = unmap_sg,
b39ba6ad 2294 .dma_supported = amd_iommu_dma_supported,
6631ee9d
JR
2295};
2296
431b2a20
JR
2297/*
2298 * The function which clues the AMD IOMMU driver into dma_ops.
2299 */
f5325094
JR
2300
2301void __init amd_iommu_init_api(void)
2302{
2303 register_iommu(&amd_iommu_ops);
2304}
2305
6631ee9d
JR
2306int __init amd_iommu_init_dma_ops(void)
2307{
2308 struct amd_iommu *iommu;
6631ee9d
JR
2309 int ret;
2310
431b2a20
JR
2311 /*
2312 * first allocate a default protection domain for every IOMMU we
2313 * found in the system. Devices not assigned to any other
2314 * protection domain will be assigned to the default one.
2315 */
3bd22172 2316 for_each_iommu(iommu) {
87a64d52 2317 iommu->default_dom = dma_ops_domain_alloc();
6631ee9d
JR
2318 if (iommu->default_dom == NULL)
2319 return -ENOMEM;
e2dc14a2 2320 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
6631ee9d
JR
2321 ret = iommu_init_unity_mappings(iommu);
2322 if (ret)
2323 goto free_domains;
2324 }
2325
431b2a20 2326 /*
8793abeb 2327 * Pre-allocate the protection domains for each device.
431b2a20 2328 */
8793abeb 2329 prealloc_protection_domains();
6631ee9d
JR
2330
2331 iommu_detected = 1;
75f1cdf1 2332 swiotlb = 0;
6631ee9d 2333
431b2a20 2334 /* Make the driver finally visible to the drivers */
6631ee9d
JR
2335 dma_ops = &amd_iommu_dma_ops;
2336
7f26508b
JR
2337 amd_iommu_stats_init();
2338
6631ee9d
JR
2339 return 0;
2340
2341free_domains:
2342
3bd22172 2343 for_each_iommu(iommu) {
6631ee9d
JR
2344 if (iommu->default_dom)
2345 dma_ops_domain_free(iommu->default_dom);
2346 }
2347
2348 return ret;
2349}
6d98cd80
JR
2350
2351/*****************************************************************************
2352 *
2353 * The following functions belong to the exported interface of AMD IOMMU
2354 *
2355 * This interface allows access to lower level functions of the IOMMU
2356 * like protection domain handling and assignement of devices to domains
2357 * which is not possible with the dma_ops interface.
2358 *
2359 *****************************************************************************/
2360
6d98cd80
JR
2361static void cleanup_domain(struct protection_domain *domain)
2362{
492667da 2363 struct iommu_dev_data *dev_data, *next;
6d98cd80 2364 unsigned long flags;
6d98cd80
JR
2365
2366 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2367
492667da
JR
2368 list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
2369 struct device *dev = dev_data->dev;
2370
04e856c0 2371 __detach_device(dev);
492667da
JR
2372 atomic_set(&dev_data->bind, 0);
2373 }
6d98cd80
JR
2374
2375 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2376}
2377
2650815f
JR
2378static void protection_domain_free(struct protection_domain *domain)
2379{
2380 if (!domain)
2381 return;
2382
aeb26f55
JR
2383 del_domain_from_list(domain);
2384
2650815f
JR
2385 if (domain->id)
2386 domain_id_free(domain->id);
2387
2388 kfree(domain);
2389}
2390
2391static struct protection_domain *protection_domain_alloc(void)
c156e347
JR
2392{
2393 struct protection_domain *domain;
2394
2395 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2396 if (!domain)
2650815f 2397 return NULL;
c156e347
JR
2398
2399 spin_lock_init(&domain->lock);
5d214fe6 2400 mutex_init(&domain->api_lock);
c156e347
JR
2401 domain->id = domain_id_alloc();
2402 if (!domain->id)
2650815f 2403 goto out_err;
7c392cbe 2404 INIT_LIST_HEAD(&domain->dev_list);
2650815f 2405
aeb26f55
JR
2406 add_domain_to_list(domain);
2407
2650815f
JR
2408 return domain;
2409
2410out_err:
2411 kfree(domain);
2412
2413 return NULL;
2414}
2415
2416static int amd_iommu_domain_init(struct iommu_domain *dom)
2417{
2418 struct protection_domain *domain;
2419
2420 domain = protection_domain_alloc();
2421 if (!domain)
c156e347 2422 goto out_free;
2650815f
JR
2423
2424 domain->mode = PAGE_MODE_3_LEVEL;
c156e347
JR
2425 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2426 if (!domain->pt_root)
2427 goto out_free;
2428
2429 dom->priv = domain;
2430
2431 return 0;
2432
2433out_free:
2650815f 2434 protection_domain_free(domain);
c156e347
JR
2435
2436 return -ENOMEM;
2437}
2438
98383fc3
JR
2439static void amd_iommu_domain_destroy(struct iommu_domain *dom)
2440{
2441 struct protection_domain *domain = dom->priv;
2442
2443 if (!domain)
2444 return;
2445
2446 if (domain->dev_cnt > 0)
2447 cleanup_domain(domain);
2448
2449 BUG_ON(domain->dev_cnt != 0);
2450
2451 free_pagetable(domain);
2452
8b408fe4 2453 protection_domain_free(domain);
98383fc3
JR
2454
2455 dom->priv = NULL;
2456}
2457
684f2888
JR
2458static void amd_iommu_detach_device(struct iommu_domain *dom,
2459 struct device *dev)
2460{
657cbb6b 2461 struct iommu_dev_data *dev_data = dev->archdata.iommu;
684f2888 2462 struct amd_iommu *iommu;
684f2888
JR
2463 u16 devid;
2464
98fc5a69 2465 if (!check_device(dev))
684f2888
JR
2466 return;
2467
98fc5a69 2468 devid = get_device_id(dev);
684f2888 2469
657cbb6b 2470 if (dev_data->domain != NULL)
15898bbc 2471 detach_device(dev);
684f2888
JR
2472
2473 iommu = amd_iommu_rlookup_table[devid];
2474 if (!iommu)
2475 return;
2476
3fa43655 2477 iommu_flush_device(dev);
684f2888
JR
2478 iommu_completion_wait(iommu);
2479}
2480
01106066
JR
2481static int amd_iommu_attach_device(struct iommu_domain *dom,
2482 struct device *dev)
2483{
2484 struct protection_domain *domain = dom->priv;
657cbb6b 2485 struct iommu_dev_data *dev_data;
01106066 2486 struct amd_iommu *iommu;
15898bbc 2487 int ret;
01106066
JR
2488 u16 devid;
2489
98fc5a69 2490 if (!check_device(dev))
01106066
JR
2491 return -EINVAL;
2492
657cbb6b
JR
2493 dev_data = dev->archdata.iommu;
2494
98fc5a69 2495 devid = get_device_id(dev);
01106066
JR
2496
2497 iommu = amd_iommu_rlookup_table[devid];
2498 if (!iommu)
2499 return -EINVAL;
2500
657cbb6b 2501 if (dev_data->domain)
15898bbc 2502 detach_device(dev);
01106066 2503
15898bbc 2504 ret = attach_device(dev, domain);
01106066
JR
2505
2506 iommu_completion_wait(iommu);
2507
15898bbc 2508 return ret;
01106066
JR
2509}
2510
468e2366
JR
2511static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
2512 phys_addr_t paddr, int gfp_order, int iommu_prot)
c6229ca6 2513{
468e2366 2514 unsigned long page_size = 0x1000UL << gfp_order;
c6229ca6 2515 struct protection_domain *domain = dom->priv;
c6229ca6
JR
2516 int prot = 0;
2517 int ret;
2518
2519 if (iommu_prot & IOMMU_READ)
2520 prot |= IOMMU_PROT_IR;
2521 if (iommu_prot & IOMMU_WRITE)
2522 prot |= IOMMU_PROT_IW;
2523
5d214fe6 2524 mutex_lock(&domain->api_lock);
795e74f7 2525 ret = iommu_map_page(domain, iova, paddr, prot, page_size);
5d214fe6
JR
2526 mutex_unlock(&domain->api_lock);
2527
795e74f7 2528 return ret;
c6229ca6
JR
2529}
2530
468e2366
JR
2531static int amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
2532 int gfp_order)
eb74ff6c 2533{
eb74ff6c 2534 struct protection_domain *domain = dom->priv;
468e2366 2535 unsigned long page_size, unmap_size;
eb74ff6c 2536
468e2366 2537 page_size = 0x1000UL << gfp_order;
eb74ff6c 2538
5d214fe6 2539 mutex_lock(&domain->api_lock);
468e2366 2540 unmap_size = iommu_unmap_page(domain, iova, page_size);
795e74f7 2541 mutex_unlock(&domain->api_lock);
eb74ff6c 2542
601367d7 2543 iommu_flush_tlb_pde(domain);
5d214fe6 2544
468e2366 2545 return get_order(unmap_size);
eb74ff6c
JR
2546}
2547
645c4c8d
JR
2548static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2549 unsigned long iova)
2550{
2551 struct protection_domain *domain = dom->priv;
f03152bb 2552 unsigned long offset_mask;
645c4c8d 2553 phys_addr_t paddr;
f03152bb 2554 u64 *pte, __pte;
645c4c8d 2555
24cd7723 2556 pte = fetch_pte(domain, iova);
645c4c8d 2557
a6d41a40 2558 if (!pte || !IOMMU_PTE_PRESENT(*pte))
645c4c8d
JR
2559 return 0;
2560
f03152bb
JR
2561 if (PM_PTE_LEVEL(*pte) == 0)
2562 offset_mask = PAGE_SIZE - 1;
2563 else
2564 offset_mask = PTE_PAGE_SIZE(*pte) - 1;
2565
2566 __pte = *pte & PM_ADDR_MASK;
2567 paddr = (__pte & ~offset_mask) | (iova & offset_mask);
645c4c8d
JR
2568
2569 return paddr;
2570}
2571
dbb9fd86
SY
2572static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
2573 unsigned long cap)
2574{
80a506b8
JR
2575 switch (cap) {
2576 case IOMMU_CAP_CACHE_COHERENCY:
2577 return 1;
2578 }
2579
dbb9fd86
SY
2580 return 0;
2581}
2582
26961efe
JR
2583static struct iommu_ops amd_iommu_ops = {
2584 .domain_init = amd_iommu_domain_init,
2585 .domain_destroy = amd_iommu_domain_destroy,
2586 .attach_dev = amd_iommu_attach_device,
2587 .detach_dev = amd_iommu_detach_device,
468e2366
JR
2588 .map = amd_iommu_map,
2589 .unmap = amd_iommu_unmap,
26961efe 2590 .iova_to_phys = amd_iommu_iova_to_phys,
dbb9fd86 2591 .domain_has_cap = amd_iommu_domain_has_cap,
26961efe
JR
2592};
2593
0feae533
JR
2594/*****************************************************************************
2595 *
2596 * The next functions do a basic initialization of IOMMU for pass through
2597 * mode
2598 *
2599 * In passthrough mode the IOMMU is initialized and enabled but not used for
2600 * DMA-API translation.
2601 *
2602 *****************************************************************************/
2603
2604int __init amd_iommu_init_passthrough(void)
2605{
15898bbc 2606 struct amd_iommu *iommu;
0feae533 2607 struct pci_dev *dev = NULL;
15898bbc 2608 u16 devid;
0feae533 2609
af901ca1 2610 /* allocate passthrough domain */
0feae533
JR
2611 pt_domain = protection_domain_alloc();
2612 if (!pt_domain)
2613 return -ENOMEM;
2614
2615 pt_domain->mode |= PAGE_MODE_NONE;
2616
6c54aabd 2617 for_each_pci_dev(dev) {
98fc5a69 2618 if (!check_device(&dev->dev))
0feae533
JR
2619 continue;
2620
98fc5a69
JR
2621 devid = get_device_id(&dev->dev);
2622
15898bbc 2623 iommu = amd_iommu_rlookup_table[devid];
0feae533
JR
2624 if (!iommu)
2625 continue;
2626
15898bbc 2627 attach_device(&dev->dev, pt_domain);
0feae533
JR
2628 }
2629
2630 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
2631
2632 return 0;
2633}
This page took 0.67967 seconds and 5 git commands to generate.