AMD IOMMU: save pci_dev instead of devid
[deliverable/linux.git] / arch / x86 / kernel / amd_iommu.c
CommitLineData
b6c02715
JR
1/*
2 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/pci.h>
21#include <linux/gfp.h>
22#include <linux/bitops.h>
23#include <linux/scatterlist.h>
24#include <linux/iommu-helper.h>
25#include <asm/proto.h>
46a7fa27 26#include <asm/iommu.h>
b6c02715 27#include <asm/amd_iommu_types.h>
c6da992e 28#include <asm/amd_iommu.h>
b6c02715
JR
29
30#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
31
136f78a1
JR
32#define EXIT_LOOP_COUNT 10000000
33
b6c02715
JR
34static DEFINE_RWLOCK(amd_iommu_devtable_lock);
35
431b2a20
JR
36/*
37 * general struct to manage commands send to an IOMMU
38 */
d6449536 39struct iommu_cmd {
b6c02715
JR
40 u32 data[4];
41};
42
bd0e5211
JR
43static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
44 struct unity_map_entry *e);
45
431b2a20 46/* returns !0 if the IOMMU is caching non-present entries in its TLB */
4da70b9e
JR
47static int iommu_has_npcache(struct amd_iommu *iommu)
48{
49 return iommu->cap & IOMMU_CAP_NPCACHE;
50}
51
431b2a20
JR
52/****************************************************************************
53 *
54 * IOMMU command queuing functions
55 *
56 ****************************************************************************/
57
58/*
59 * Writes the command to the IOMMUs command buffer and informs the
60 * hardware about the new command. Must be called with iommu->lock held.
61 */
d6449536 62static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
63{
64 u32 tail, head;
65 u8 *target;
66
67 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
8a7c5ef3 68 target = iommu->cmd_buf + tail;
a19ae1ec
JR
69 memcpy_toio(target, cmd, sizeof(*cmd));
70 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
71 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
72 if (tail == head)
73 return -ENOMEM;
74 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
75
76 return 0;
77}
78
431b2a20
JR
79/*
80 * General queuing function for commands. Takes iommu->lock and calls
81 * __iommu_queue_command().
82 */
d6449536 83static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
84{
85 unsigned long flags;
86 int ret;
87
88 spin_lock_irqsave(&iommu->lock, flags);
89 ret = __iommu_queue_command(iommu, cmd);
90 spin_unlock_irqrestore(&iommu->lock, flags);
91
92 return ret;
93}
94
431b2a20
JR
95/*
96 * This function is called whenever we need to ensure that the IOMMU has
97 * completed execution of all commands we sent. It sends a
98 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
99 * us about that by writing a value to a physical address we pass with
100 * the command.
101 */
a19ae1ec
JR
102static int iommu_completion_wait(struct amd_iommu *iommu)
103{
519c31ba
JR
104 int ret, ready = 0;
105 unsigned status = 0;
d6449536 106 struct iommu_cmd cmd;
136f78a1 107 unsigned long i = 0;
a19ae1ec
JR
108
109 memset(&cmd, 0, sizeof(cmd));
519c31ba 110 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
a19ae1ec
JR
111 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);
112
113 iommu->need_sync = 0;
114
115 ret = iommu_queue_command(iommu, &cmd);
116
117 if (ret)
118 return ret;
119
136f78a1
JR
120 while (!ready && (i < EXIT_LOOP_COUNT)) {
121 ++i;
519c31ba
JR
122 /* wait for the bit to become one */
123 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
124 ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
136f78a1
JR
125 }
126
519c31ba
JR
127 /* set bit back to zero */
128 status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
129 writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);
130
136f78a1
JR
131 if (unlikely((i == EXIT_LOOP_COUNT) && printk_ratelimit()))
132 printk(KERN_WARNING "AMD IOMMU: Completion wait loop failed\n");
a19ae1ec
JR
133
134 return 0;
135}
136
431b2a20
JR
137/*
138 * Command send function for invalidating a device table entry
139 */
a19ae1ec
JR
140static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
141{
d6449536 142 struct iommu_cmd cmd;
a19ae1ec
JR
143
144 BUG_ON(iommu == NULL);
145
146 memset(&cmd, 0, sizeof(cmd));
147 CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
148 cmd.data[0] = devid;
149
150 iommu->need_sync = 1;
151
152 return iommu_queue_command(iommu, &cmd);
153}
154
431b2a20
JR
155/*
156 * Generic command send function for invalidaing TLB entries
157 */
a19ae1ec
JR
158static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
159 u64 address, u16 domid, int pde, int s)
160{
d6449536 161 struct iommu_cmd cmd;
a19ae1ec
JR
162
163 memset(&cmd, 0, sizeof(cmd));
164 address &= PAGE_MASK;
165 CMD_SET_TYPE(&cmd, CMD_INV_IOMMU_PAGES);
166 cmd.data[1] |= domid;
8a456695 167 cmd.data[2] = lower_32_bits(address);
8ea80d78 168 cmd.data[3] = upper_32_bits(address);
431b2a20 169 if (s) /* size bit - we flush more than one 4kb page */
a19ae1ec 170 cmd.data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
431b2a20 171 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
a19ae1ec
JR
172 cmd.data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
173
174 iommu->need_sync = 1;
175
176 return iommu_queue_command(iommu, &cmd);
177}
178
431b2a20
JR
179/*
180 * TLB invalidation function which is called from the mapping functions.
181 * It invalidates a single PTE if the range to flush is within a single
182 * page. Otherwise it flushes the whole TLB of the IOMMU.
183 */
a19ae1ec
JR
184static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
185 u64 address, size_t size)
186{
999ba417 187 int s = 0;
a8132e5f 188 unsigned pages = iommu_num_pages(address, size);
a19ae1ec
JR
189
190 address &= PAGE_MASK;
191
999ba417
JR
192 if (pages > 1) {
193 /*
194 * If we have to flush more than one page, flush all
195 * TLB entries for this domain
196 */
197 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
198 s = 1;
a19ae1ec
JR
199 }
200
999ba417
JR
201 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s);
202
a19ae1ec
JR
203 return 0;
204}
b6c02715 205
1c655773
JR
206/* Flush the whole IO/TLB for a given protection domain */
207static void iommu_flush_tlb(struct amd_iommu *iommu, u16 domid)
208{
209 u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
210
211 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 1);
212}
213
431b2a20
JR
214/****************************************************************************
215 *
216 * The functions below are used the create the page table mappings for
217 * unity mapped regions.
218 *
219 ****************************************************************************/
220
221/*
222 * Generic mapping functions. It maps a physical address into a DMA
223 * address space. It allocates the page table pages if necessary.
224 * In the future it can be extended to a generic mapping function
225 * supporting all features of AMD IOMMU page tables like level skipping
226 * and full 64 bit address spaces.
227 */
bd0e5211
JR
228static int iommu_map(struct protection_domain *dom,
229 unsigned long bus_addr,
230 unsigned long phys_addr,
231 int prot)
232{
233 u64 __pte, *pte, *page;
234
235 bus_addr = PAGE_ALIGN(bus_addr);
236 phys_addr = PAGE_ALIGN(bus_addr);
237
238 /* only support 512GB address spaces for now */
239 if (bus_addr > IOMMU_MAP_SIZE_L3 || !(prot & IOMMU_PROT_MASK))
240 return -EINVAL;
241
242 pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(bus_addr)];
243
244 if (!IOMMU_PTE_PRESENT(*pte)) {
245 page = (u64 *)get_zeroed_page(GFP_KERNEL);
246 if (!page)
247 return -ENOMEM;
248 *pte = IOMMU_L2_PDE(virt_to_phys(page));
249 }
250
251 pte = IOMMU_PTE_PAGE(*pte);
252 pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];
253
254 if (!IOMMU_PTE_PRESENT(*pte)) {
255 page = (u64 *)get_zeroed_page(GFP_KERNEL);
256 if (!page)
257 return -ENOMEM;
258 *pte = IOMMU_L1_PDE(virt_to_phys(page));
259 }
260
261 pte = IOMMU_PTE_PAGE(*pte);
262 pte = &pte[IOMMU_PTE_L0_INDEX(bus_addr)];
263
264 if (IOMMU_PTE_PRESENT(*pte))
265 return -EBUSY;
266
267 __pte = phys_addr | IOMMU_PTE_P;
268 if (prot & IOMMU_PROT_IR)
269 __pte |= IOMMU_PTE_IR;
270 if (prot & IOMMU_PROT_IW)
271 __pte |= IOMMU_PTE_IW;
272
273 *pte = __pte;
274
275 return 0;
276}
277
431b2a20
JR
278/*
279 * This function checks if a specific unity mapping entry is needed for
280 * this specific IOMMU.
281 */
bd0e5211
JR
282static int iommu_for_unity_map(struct amd_iommu *iommu,
283 struct unity_map_entry *entry)
284{
285 u16 bdf, i;
286
287 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
288 bdf = amd_iommu_alias_table[i];
289 if (amd_iommu_rlookup_table[bdf] == iommu)
290 return 1;
291 }
292
293 return 0;
294}
295
431b2a20
JR
296/*
297 * Init the unity mappings for a specific IOMMU in the system
298 *
299 * Basically iterates over all unity mapping entries and applies them to
300 * the default domain DMA of that IOMMU if necessary.
301 */
bd0e5211
JR
302static int iommu_init_unity_mappings(struct amd_iommu *iommu)
303{
304 struct unity_map_entry *entry;
305 int ret;
306
307 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
308 if (!iommu_for_unity_map(iommu, entry))
309 continue;
310 ret = dma_ops_unity_map(iommu->default_dom, entry);
311 if (ret)
312 return ret;
313 }
314
315 return 0;
316}
317
431b2a20
JR
318/*
319 * This function actually applies the mapping to the page table of the
320 * dma_ops domain.
321 */
bd0e5211
JR
322static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
323 struct unity_map_entry *e)
324{
325 u64 addr;
326 int ret;
327
328 for (addr = e->address_start; addr < e->address_end;
329 addr += PAGE_SIZE) {
330 ret = iommu_map(&dma_dom->domain, addr, addr, e->prot);
331 if (ret)
332 return ret;
333 /*
334 * if unity mapping is in aperture range mark the page
335 * as allocated in the aperture
336 */
337 if (addr < dma_dom->aperture_size)
338 __set_bit(addr >> PAGE_SHIFT, dma_dom->bitmap);
339 }
340
341 return 0;
342}
343
431b2a20
JR
344/*
345 * Inits the unity mappings required for a specific device
346 */
bd0e5211
JR
347static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
348 u16 devid)
349{
350 struct unity_map_entry *e;
351 int ret;
352
353 list_for_each_entry(e, &amd_iommu_unity_map, list) {
354 if (!(devid >= e->devid_start && devid <= e->devid_end))
355 continue;
356 ret = dma_ops_unity_map(dma_dom, e);
357 if (ret)
358 return ret;
359 }
360
361 return 0;
362}
363
431b2a20
JR
364/****************************************************************************
365 *
366 * The next functions belong to the address allocator for the dma_ops
367 * interface functions. They work like the allocators in the other IOMMU
368 * drivers. Its basically a bitmap which marks the allocated pages in
369 * the aperture. Maybe it could be enhanced in the future to a more
370 * efficient allocator.
371 *
372 ****************************************************************************/
d3086444
JR
373static unsigned long dma_mask_to_pages(unsigned long mask)
374{
375 return (mask >> PAGE_SHIFT) +
376 (PAGE_ALIGN(mask & ~PAGE_MASK) >> PAGE_SHIFT);
377}
378
431b2a20
JR
379/*
380 * The address allocator core function.
381 *
382 * called with domain->lock held
383 */
d3086444
JR
384static unsigned long dma_ops_alloc_addresses(struct device *dev,
385 struct dma_ops_domain *dom,
6d4f343f
JR
386 unsigned int pages,
387 unsigned long align_mask)
d3086444
JR
388{
389 unsigned long limit = dma_mask_to_pages(*dev->dma_mask);
390 unsigned long address;
391 unsigned long size = dom->aperture_size >> PAGE_SHIFT;
392 unsigned long boundary_size;
393
394 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
395 PAGE_SIZE) >> PAGE_SHIFT;
396 limit = limit < size ? limit : size;
397
1c655773 398 if (dom->next_bit >= limit) {
d3086444 399 dom->next_bit = 0;
1c655773
JR
400 dom->need_flush = true;
401 }
d3086444
JR
402
403 address = iommu_area_alloc(dom->bitmap, limit, dom->next_bit, pages,
6d4f343f 404 0 , boundary_size, align_mask);
1c655773 405 if (address == -1) {
d3086444 406 address = iommu_area_alloc(dom->bitmap, limit, 0, pages,
6d4f343f 407 0, boundary_size, align_mask);
1c655773
JR
408 dom->need_flush = true;
409 }
d3086444
JR
410
411 if (likely(address != -1)) {
d3086444
JR
412 dom->next_bit = address + pages;
413 address <<= PAGE_SHIFT;
414 } else
415 address = bad_dma_address;
416
417 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
418
419 return address;
420}
421
431b2a20
JR
422/*
423 * The address free function.
424 *
425 * called with domain->lock held
426 */
d3086444
JR
427static void dma_ops_free_addresses(struct dma_ops_domain *dom,
428 unsigned long address,
429 unsigned int pages)
430{
431 address >>= PAGE_SHIFT;
432 iommu_area_free(dom->bitmap, address, pages);
433}
434
431b2a20
JR
435/****************************************************************************
436 *
437 * The next functions belong to the domain allocation. A domain is
438 * allocated for every IOMMU as the default domain. If device isolation
439 * is enabled, every device get its own domain. The most important thing
440 * about domains is the page table mapping the DMA address space they
441 * contain.
442 *
443 ****************************************************************************/
444
ec487d1a
JR
445static u16 domain_id_alloc(void)
446{
447 unsigned long flags;
448 int id;
449
450 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
451 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
452 BUG_ON(id == 0);
453 if (id > 0 && id < MAX_DOMAIN_ID)
454 __set_bit(id, amd_iommu_pd_alloc_bitmap);
455 else
456 id = 0;
457 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
458
459 return id;
460}
461
431b2a20
JR
462/*
463 * Used to reserve address ranges in the aperture (e.g. for exclusion
464 * ranges.
465 */
ec487d1a
JR
466static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
467 unsigned long start_page,
468 unsigned int pages)
469{
470 unsigned int last_page = dom->aperture_size >> PAGE_SHIFT;
471
472 if (start_page + pages > last_page)
473 pages = last_page - start_page;
474
475 set_bit_string(dom->bitmap, start_page, pages);
476}
477
478static void dma_ops_free_pagetable(struct dma_ops_domain *dma_dom)
479{
480 int i, j;
481 u64 *p1, *p2, *p3;
482
483 p1 = dma_dom->domain.pt_root;
484
485 if (!p1)
486 return;
487
488 for (i = 0; i < 512; ++i) {
489 if (!IOMMU_PTE_PRESENT(p1[i]))
490 continue;
491
492 p2 = IOMMU_PTE_PAGE(p1[i]);
493 for (j = 0; j < 512; ++i) {
494 if (!IOMMU_PTE_PRESENT(p2[j]))
495 continue;
496 p3 = IOMMU_PTE_PAGE(p2[j]);
497 free_page((unsigned long)p3);
498 }
499
500 free_page((unsigned long)p2);
501 }
502
503 free_page((unsigned long)p1);
504}
505
431b2a20
JR
506/*
507 * Free a domain, only used if something went wrong in the
508 * allocation path and we need to free an already allocated page table
509 */
ec487d1a
JR
510static void dma_ops_domain_free(struct dma_ops_domain *dom)
511{
512 if (!dom)
513 return;
514
515 dma_ops_free_pagetable(dom);
516
517 kfree(dom->pte_pages);
518
519 kfree(dom->bitmap);
520
521 kfree(dom);
522}
523
431b2a20
JR
524/*
525 * Allocates a new protection domain usable for the dma_ops functions.
526 * It also intializes the page table and the address allocator data
527 * structures required for the dma_ops interface
528 */
ec487d1a
JR
529static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu,
530 unsigned order)
531{
532 struct dma_ops_domain *dma_dom;
533 unsigned i, num_pte_pages;
534 u64 *l2_pde;
535 u64 address;
536
537 /*
538 * Currently the DMA aperture must be between 32 MB and 1GB in size
539 */
540 if ((order < 25) || (order > 30))
541 return NULL;
542
543 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
544 if (!dma_dom)
545 return NULL;
546
547 spin_lock_init(&dma_dom->domain.lock);
548
549 dma_dom->domain.id = domain_id_alloc();
550 if (dma_dom->domain.id == 0)
551 goto free_dma_dom;
552 dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
553 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
554 dma_dom->domain.priv = dma_dom;
555 if (!dma_dom->domain.pt_root)
556 goto free_dma_dom;
557 dma_dom->aperture_size = (1ULL << order);
558 dma_dom->bitmap = kzalloc(dma_dom->aperture_size / (PAGE_SIZE * 8),
559 GFP_KERNEL);
560 if (!dma_dom->bitmap)
561 goto free_dma_dom;
562 /*
563 * mark the first page as allocated so we never return 0 as
564 * a valid dma-address. So we can use 0 as error value
565 */
566 dma_dom->bitmap[0] = 1;
567 dma_dom->next_bit = 0;
568
1c655773
JR
569 dma_dom->need_flush = false;
570
431b2a20 571 /* Intialize the exclusion range if necessary */
ec487d1a
JR
572 if (iommu->exclusion_start &&
573 iommu->exclusion_start < dma_dom->aperture_size) {
574 unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
a8132e5f
JR
575 int pages = iommu_num_pages(iommu->exclusion_start,
576 iommu->exclusion_length);
ec487d1a
JR
577 dma_ops_reserve_addresses(dma_dom, startpage, pages);
578 }
579
431b2a20
JR
580 /*
581 * At the last step, build the page tables so we don't need to
582 * allocate page table pages in the dma_ops mapping/unmapping
583 * path.
584 */
ec487d1a
JR
585 num_pte_pages = dma_dom->aperture_size / (PAGE_SIZE * 512);
586 dma_dom->pte_pages = kzalloc(num_pte_pages * sizeof(void *),
587 GFP_KERNEL);
588 if (!dma_dom->pte_pages)
589 goto free_dma_dom;
590
591 l2_pde = (u64 *)get_zeroed_page(GFP_KERNEL);
592 if (l2_pde == NULL)
593 goto free_dma_dom;
594
595 dma_dom->domain.pt_root[0] = IOMMU_L2_PDE(virt_to_phys(l2_pde));
596
597 for (i = 0; i < num_pte_pages; ++i) {
598 dma_dom->pte_pages[i] = (u64 *)get_zeroed_page(GFP_KERNEL);
599 if (!dma_dom->pte_pages[i])
600 goto free_dma_dom;
601 address = virt_to_phys(dma_dom->pte_pages[i]);
602 l2_pde[i] = IOMMU_L1_PDE(address);
603 }
604
605 return dma_dom;
606
607free_dma_dom:
608 dma_ops_domain_free(dma_dom);
609
610 return NULL;
611}
612
431b2a20
JR
613/*
614 * Find out the protection domain structure for a given PCI device. This
615 * will give us the pointer to the page table root for example.
616 */
b20ac0d4
JR
617static struct protection_domain *domain_for_device(u16 devid)
618{
619 struct protection_domain *dom;
620 unsigned long flags;
621
622 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
623 dom = amd_iommu_pd_table[devid];
624 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
625
626 return dom;
627}
628
431b2a20
JR
629/*
630 * If a device is not yet associated with a domain, this function does
631 * assigns it visible for the hardware
632 */
b20ac0d4
JR
633static void set_device_domain(struct amd_iommu *iommu,
634 struct protection_domain *domain,
635 u16 devid)
636{
637 unsigned long flags;
638
639 u64 pte_root = virt_to_phys(domain->pt_root);
640
641 pte_root |= (domain->mode & 0x07) << 9;
642 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | 2;
643
644 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
645 amd_iommu_dev_table[devid].data[0] = pte_root;
646 amd_iommu_dev_table[devid].data[1] = pte_root >> 32;
647 amd_iommu_dev_table[devid].data[2] = domain->id;
648
649 amd_iommu_pd_table[devid] = domain;
650 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
651
652 iommu_queue_inv_dev_entry(iommu, devid);
653
654 iommu->need_sync = 1;
655}
656
431b2a20
JR
657/*****************************************************************************
658 *
659 * The next functions belong to the dma_ops mapping/unmapping code.
660 *
661 *****************************************************************************/
662
dbcc112e
JR
663/*
664 * This function checks if the driver got a valid device from the caller to
665 * avoid dereferencing invalid pointers.
666 */
667static bool check_device(struct device *dev)
668{
669 if (!dev || !dev->dma_mask)
670 return false;
671
672 return true;
673}
674
431b2a20
JR
675/*
676 * In the dma_ops path we only have the struct device. This function
677 * finds the corresponding IOMMU, the protection domain and the
678 * requestor id for a given device.
679 * If the device is not yet associated with a domain this is also done
680 * in this function.
681 */
b20ac0d4
JR
682static int get_device_resources(struct device *dev,
683 struct amd_iommu **iommu,
684 struct protection_domain **domain,
685 u16 *bdf)
686{
687 struct dma_ops_domain *dma_dom;
688 struct pci_dev *pcidev;
689 u16 _bdf;
690
dbcc112e
JR
691 *iommu = NULL;
692 *domain = NULL;
693 *bdf = 0xffff;
694
695 if (dev->bus != &pci_bus_type)
696 return 0;
b20ac0d4
JR
697
698 pcidev = to_pci_dev(dev);
d591b0a3 699 _bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
b20ac0d4 700
431b2a20 701 /* device not translated by any IOMMU in the system? */
dbcc112e 702 if (_bdf > amd_iommu_last_bdf)
b20ac0d4 703 return 0;
b20ac0d4
JR
704
705 *bdf = amd_iommu_alias_table[_bdf];
706
707 *iommu = amd_iommu_rlookup_table[*bdf];
708 if (*iommu == NULL)
709 return 0;
710 dma_dom = (*iommu)->default_dom;
711 *domain = domain_for_device(*bdf);
712 if (*domain == NULL) {
713 *domain = &dma_dom->domain;
714 set_device_domain(*iommu, *domain, *bdf);
715 printk(KERN_INFO "AMD IOMMU: Using protection domain %d for "
716 "device ", (*domain)->id);
717 print_devid(_bdf, 1);
718 }
719
720 return 1;
721}
722
431b2a20
JR
723/*
724 * This is the generic map function. It maps one 4kb page at paddr to
725 * the given address in the DMA address space for the domain.
726 */
cb76c322
JR
727static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
728 struct dma_ops_domain *dom,
729 unsigned long address,
730 phys_addr_t paddr,
731 int direction)
732{
733 u64 *pte, __pte;
734
735 WARN_ON(address > dom->aperture_size);
736
737 paddr &= PAGE_MASK;
738
739 pte = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
740 pte += IOMMU_PTE_L0_INDEX(address);
741
742 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
743
744 if (direction == DMA_TO_DEVICE)
745 __pte |= IOMMU_PTE_IR;
746 else if (direction == DMA_FROM_DEVICE)
747 __pte |= IOMMU_PTE_IW;
748 else if (direction == DMA_BIDIRECTIONAL)
749 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
750
751 WARN_ON(*pte);
752
753 *pte = __pte;
754
755 return (dma_addr_t)address;
756}
757
431b2a20
JR
758/*
759 * The generic unmapping function for on page in the DMA address space.
760 */
cb76c322
JR
761static void dma_ops_domain_unmap(struct amd_iommu *iommu,
762 struct dma_ops_domain *dom,
763 unsigned long address)
764{
765 u64 *pte;
766
767 if (address >= dom->aperture_size)
768 return;
769
770 WARN_ON(address & 0xfffULL || address > dom->aperture_size);
771
772 pte = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
773 pte += IOMMU_PTE_L0_INDEX(address);
774
775 WARN_ON(!*pte);
776
777 *pte = 0ULL;
778}
779
431b2a20
JR
780/*
781 * This function contains common code for mapping of a physically
782 * contiguous memory region into DMA address space. It is uses by all
783 * mapping functions provided by this IOMMU driver.
784 * Must be called with the domain lock held.
785 */
cb76c322
JR
786static dma_addr_t __map_single(struct device *dev,
787 struct amd_iommu *iommu,
788 struct dma_ops_domain *dma_dom,
789 phys_addr_t paddr,
790 size_t size,
6d4f343f
JR
791 int dir,
792 bool align)
cb76c322
JR
793{
794 dma_addr_t offset = paddr & ~PAGE_MASK;
795 dma_addr_t address, start;
796 unsigned int pages;
6d4f343f 797 unsigned long align_mask = 0;
cb76c322
JR
798 int i;
799
a8132e5f 800 pages = iommu_num_pages(paddr, size);
cb76c322
JR
801 paddr &= PAGE_MASK;
802
6d4f343f
JR
803 if (align)
804 align_mask = (1UL << get_order(size)) - 1;
805
806 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask);
cb76c322
JR
807 if (unlikely(address == bad_dma_address))
808 goto out;
809
810 start = address;
811 for (i = 0; i < pages; ++i) {
812 dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
813 paddr += PAGE_SIZE;
814 start += PAGE_SIZE;
815 }
816 address += offset;
817
1c655773
JR
818 if (unlikely(dma_dom->need_flush && !iommu_fullflush)) {
819 iommu_flush_tlb(iommu, dma_dom->domain.id);
820 dma_dom->need_flush = false;
821 } else if (unlikely(iommu_has_npcache(iommu)))
270cab24
JR
822 iommu_flush_pages(iommu, dma_dom->domain.id, address, size);
823
cb76c322
JR
824out:
825 return address;
826}
827
431b2a20
JR
828/*
829 * Does the reverse of the __map_single function. Must be called with
830 * the domain lock held too
831 */
cb76c322
JR
832static void __unmap_single(struct amd_iommu *iommu,
833 struct dma_ops_domain *dma_dom,
834 dma_addr_t dma_addr,
835 size_t size,
836 int dir)
837{
838 dma_addr_t i, start;
839 unsigned int pages;
840
841 if ((dma_addr == 0) || (dma_addr + size > dma_dom->aperture_size))
842 return;
843
a8132e5f 844 pages = iommu_num_pages(dma_addr, size);
cb76c322
JR
845 dma_addr &= PAGE_MASK;
846 start = dma_addr;
847
848 for (i = 0; i < pages; ++i) {
849 dma_ops_domain_unmap(iommu, dma_dom, start);
850 start += PAGE_SIZE;
851 }
852
853 dma_ops_free_addresses(dma_dom, dma_addr, pages);
270cab24 854
1c655773
JR
855 if (iommu_fullflush)
856 iommu_flush_pages(iommu, dma_dom->domain.id, dma_addr, size);
cb76c322
JR
857}
858
431b2a20
JR
859/*
860 * The exported map_single function for dma_ops.
861 */
4da70b9e
JR
862static dma_addr_t map_single(struct device *dev, phys_addr_t paddr,
863 size_t size, int dir)
864{
865 unsigned long flags;
866 struct amd_iommu *iommu;
867 struct protection_domain *domain;
868 u16 devid;
869 dma_addr_t addr;
870
dbcc112e
JR
871 if (!check_device(dev))
872 return bad_dma_address;
873
4da70b9e
JR
874 get_device_resources(dev, &iommu, &domain, &devid);
875
876 if (iommu == NULL || domain == NULL)
431b2a20 877 /* device not handled by any AMD IOMMU */
4da70b9e
JR
878 return (dma_addr_t)paddr;
879
880 spin_lock_irqsave(&domain->lock, flags);
6d4f343f 881 addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false);
4da70b9e
JR
882 if (addr == bad_dma_address)
883 goto out;
884
5507eef8 885 if (unlikely(iommu->need_sync))
4da70b9e
JR
886 iommu_completion_wait(iommu);
887
888out:
889 spin_unlock_irqrestore(&domain->lock, flags);
890
891 return addr;
892}
893
431b2a20
JR
894/*
895 * The exported unmap_single function for dma_ops.
896 */
4da70b9e
JR
897static void unmap_single(struct device *dev, dma_addr_t dma_addr,
898 size_t size, int dir)
899{
900 unsigned long flags;
901 struct amd_iommu *iommu;
902 struct protection_domain *domain;
903 u16 devid;
904
dbcc112e
JR
905 if (!check_device(dev) ||
906 !get_device_resources(dev, &iommu, &domain, &devid))
431b2a20 907 /* device not handled by any AMD IOMMU */
4da70b9e
JR
908 return;
909
910 spin_lock_irqsave(&domain->lock, flags);
911
912 __unmap_single(iommu, domain->priv, dma_addr, size, dir);
913
5507eef8 914 if (unlikely(iommu->need_sync))
4da70b9e
JR
915 iommu_completion_wait(iommu);
916
917 spin_unlock_irqrestore(&domain->lock, flags);
918}
919
431b2a20
JR
920/*
921 * This is a special map_sg function which is used if we should map a
922 * device which is not handled by an AMD IOMMU in the system.
923 */
65b050ad
JR
924static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
925 int nelems, int dir)
926{
927 struct scatterlist *s;
928 int i;
929
930 for_each_sg(sglist, s, nelems, i) {
931 s->dma_address = (dma_addr_t)sg_phys(s);
932 s->dma_length = s->length;
933 }
934
935 return nelems;
936}
937
431b2a20
JR
938/*
939 * The exported map_sg function for dma_ops (handles scatter-gather
940 * lists).
941 */
65b050ad
JR
942static int map_sg(struct device *dev, struct scatterlist *sglist,
943 int nelems, int dir)
944{
945 unsigned long flags;
946 struct amd_iommu *iommu;
947 struct protection_domain *domain;
948 u16 devid;
949 int i;
950 struct scatterlist *s;
951 phys_addr_t paddr;
952 int mapped_elems = 0;
953
dbcc112e
JR
954 if (!check_device(dev))
955 return 0;
956
65b050ad
JR
957 get_device_resources(dev, &iommu, &domain, &devid);
958
959 if (!iommu || !domain)
960 return map_sg_no_iommu(dev, sglist, nelems, dir);
961
962 spin_lock_irqsave(&domain->lock, flags);
963
964 for_each_sg(sglist, s, nelems, i) {
965 paddr = sg_phys(s);
966
967 s->dma_address = __map_single(dev, iommu, domain->priv,
6d4f343f 968 paddr, s->length, dir, false);
65b050ad
JR
969
970 if (s->dma_address) {
971 s->dma_length = s->length;
972 mapped_elems++;
973 } else
974 goto unmap;
65b050ad
JR
975 }
976
5507eef8 977 if (unlikely(iommu->need_sync))
65b050ad
JR
978 iommu_completion_wait(iommu);
979
980out:
981 spin_unlock_irqrestore(&domain->lock, flags);
982
983 return mapped_elems;
984unmap:
985 for_each_sg(sglist, s, mapped_elems, i) {
986 if (s->dma_address)
987 __unmap_single(iommu, domain->priv, s->dma_address,
988 s->dma_length, dir);
989 s->dma_address = s->dma_length = 0;
990 }
991
992 mapped_elems = 0;
993
994 goto out;
995}
996
431b2a20
JR
997/*
998 * The exported map_sg function for dma_ops (handles scatter-gather
999 * lists).
1000 */
65b050ad
JR
1001static void unmap_sg(struct device *dev, struct scatterlist *sglist,
1002 int nelems, int dir)
1003{
1004 unsigned long flags;
1005 struct amd_iommu *iommu;
1006 struct protection_domain *domain;
1007 struct scatterlist *s;
1008 u16 devid;
1009 int i;
1010
dbcc112e
JR
1011 if (!check_device(dev) ||
1012 !get_device_resources(dev, &iommu, &domain, &devid))
65b050ad
JR
1013 return;
1014
1015 spin_lock_irqsave(&domain->lock, flags);
1016
1017 for_each_sg(sglist, s, nelems, i) {
1018 __unmap_single(iommu, domain->priv, s->dma_address,
1019 s->dma_length, dir);
65b050ad
JR
1020 s->dma_address = s->dma_length = 0;
1021 }
1022
5507eef8 1023 if (unlikely(iommu->need_sync))
65b050ad
JR
1024 iommu_completion_wait(iommu);
1025
1026 spin_unlock_irqrestore(&domain->lock, flags);
1027}
1028
431b2a20
JR
1029/*
1030 * The exported alloc_coherent function for dma_ops.
1031 */
5d8b53cf
JR
1032static void *alloc_coherent(struct device *dev, size_t size,
1033 dma_addr_t *dma_addr, gfp_t flag)
1034{
1035 unsigned long flags;
1036 void *virt_addr;
1037 struct amd_iommu *iommu;
1038 struct protection_domain *domain;
1039 u16 devid;
1040 phys_addr_t paddr;
1041
dbcc112e
JR
1042 if (!check_device(dev))
1043 return NULL;
1044
5d8b53cf
JR
1045 virt_addr = (void *)__get_free_pages(flag, get_order(size));
1046 if (!virt_addr)
1047 return 0;
1048
1049 memset(virt_addr, 0, size);
1050 paddr = virt_to_phys(virt_addr);
1051
1052 get_device_resources(dev, &iommu, &domain, &devid);
1053
1054 if (!iommu || !domain) {
1055 *dma_addr = (dma_addr_t)paddr;
1056 return virt_addr;
1057 }
1058
1059 spin_lock_irqsave(&domain->lock, flags);
1060
1061 *dma_addr = __map_single(dev, iommu, domain->priv, paddr,
6d4f343f 1062 size, DMA_BIDIRECTIONAL, true);
5d8b53cf
JR
1063
1064 if (*dma_addr == bad_dma_address) {
1065 free_pages((unsigned long)virt_addr, get_order(size));
1066 virt_addr = NULL;
1067 goto out;
1068 }
1069
5507eef8 1070 if (unlikely(iommu->need_sync))
5d8b53cf
JR
1071 iommu_completion_wait(iommu);
1072
1073out:
1074 spin_unlock_irqrestore(&domain->lock, flags);
1075
1076 return virt_addr;
1077}
1078
431b2a20
JR
1079/*
1080 * The exported free_coherent function for dma_ops.
431b2a20 1081 */
5d8b53cf
JR
1082static void free_coherent(struct device *dev, size_t size,
1083 void *virt_addr, dma_addr_t dma_addr)
1084{
1085 unsigned long flags;
1086 struct amd_iommu *iommu;
1087 struct protection_domain *domain;
1088 u16 devid;
1089
dbcc112e
JR
1090 if (!check_device(dev))
1091 return;
1092
5d8b53cf
JR
1093 get_device_resources(dev, &iommu, &domain, &devid);
1094
1095 if (!iommu || !domain)
1096 goto free_mem;
1097
1098 spin_lock_irqsave(&domain->lock, flags);
1099
1100 __unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 1101
5507eef8 1102 if (unlikely(iommu->need_sync))
5d8b53cf
JR
1103 iommu_completion_wait(iommu);
1104
1105 spin_unlock_irqrestore(&domain->lock, flags);
1106
1107free_mem:
1108 free_pages((unsigned long)virt_addr, get_order(size));
1109}
1110
c432f3df 1111/*
431b2a20
JR
1112 * The function for pre-allocating protection domains.
1113 *
c432f3df
JR
1114 * If the driver core informs the DMA layer if a driver grabs a device
1115 * we don't need to preallocate the protection domains anymore.
1116 * For now we have to.
1117 */
1118void prealloc_protection_domains(void)
1119{
1120 struct pci_dev *dev = NULL;
1121 struct dma_ops_domain *dma_dom;
1122 struct amd_iommu *iommu;
1123 int order = amd_iommu_aperture_order;
1124 u16 devid;
1125
1126 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
1127 devid = (dev->bus->number << 8) | dev->devfn;
3a61ec38 1128 if (devid > amd_iommu_last_bdf)
c432f3df
JR
1129 continue;
1130 devid = amd_iommu_alias_table[devid];
1131 if (domain_for_device(devid))
1132 continue;
1133 iommu = amd_iommu_rlookup_table[devid];
1134 if (!iommu)
1135 continue;
1136 dma_dom = dma_ops_domain_alloc(iommu, order);
1137 if (!dma_dom)
1138 continue;
1139 init_unity_mappings_for_device(dma_dom, devid);
1140 set_device_domain(iommu, &dma_dom->domain, devid);
1141 printk(KERN_INFO "AMD IOMMU: Allocated domain %d for device ",
1142 dma_dom->domain.id);
1143 print_devid(devid, 1);
1144 }
1145}
1146
6631ee9d
JR
1147static struct dma_mapping_ops amd_iommu_dma_ops = {
1148 .alloc_coherent = alloc_coherent,
1149 .free_coherent = free_coherent,
1150 .map_single = map_single,
1151 .unmap_single = unmap_single,
1152 .map_sg = map_sg,
1153 .unmap_sg = unmap_sg,
1154};
1155
431b2a20
JR
1156/*
1157 * The function which clues the AMD IOMMU driver into dma_ops.
1158 */
6631ee9d
JR
1159int __init amd_iommu_init_dma_ops(void)
1160{
1161 struct amd_iommu *iommu;
1162 int order = amd_iommu_aperture_order;
1163 int ret;
1164
431b2a20
JR
1165 /*
1166 * first allocate a default protection domain for every IOMMU we
1167 * found in the system. Devices not assigned to any other
1168 * protection domain will be assigned to the default one.
1169 */
6631ee9d
JR
1170 list_for_each_entry(iommu, &amd_iommu_list, list) {
1171 iommu->default_dom = dma_ops_domain_alloc(iommu, order);
1172 if (iommu->default_dom == NULL)
1173 return -ENOMEM;
1174 ret = iommu_init_unity_mappings(iommu);
1175 if (ret)
1176 goto free_domains;
1177 }
1178
431b2a20
JR
1179 /*
1180 * If device isolation is enabled, pre-allocate the protection
1181 * domains for each device.
1182 */
6631ee9d
JR
1183 if (amd_iommu_isolate)
1184 prealloc_protection_domains();
1185
1186 iommu_detected = 1;
1187 force_iommu = 1;
1188 bad_dma_address = 0;
92af4e29 1189#ifdef CONFIG_GART_IOMMU
6631ee9d
JR
1190 gart_iommu_aperture_disabled = 1;
1191 gart_iommu_aperture = 0;
92af4e29 1192#endif
6631ee9d 1193
431b2a20 1194 /* Make the driver finally visible to the drivers */
6631ee9d
JR
1195 dma_ops = &amd_iommu_dma_ops;
1196
1197 return 0;
1198
1199free_domains:
1200
1201 list_for_each_entry(iommu, &amd_iommu_list, list) {
1202 if (iommu->default_dom)
1203 dma_ops_domain_free(iommu->default_dom);
1204 }
1205
1206 return ret;
1207}
This page took 0.181231 seconds and 5 git commands to generate.