x86/amd-iommu: Remove old page table handling macros
[deliverable/linux.git] / arch / x86 / kernel / amd_iommu.c
CommitLineData
b6c02715
JR
1/*
2 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/pci.h>
21#include <linux/gfp.h>
22#include <linux/bitops.h>
7f26508b 23#include <linux/debugfs.h>
b6c02715 24#include <linux/scatterlist.h>
51491367 25#include <linux/dma-mapping.h>
b6c02715 26#include <linux/iommu-helper.h>
c156e347 27#include <linux/iommu.h>
b6c02715 28#include <asm/proto.h>
46a7fa27 29#include <asm/iommu.h>
1d9b16d1 30#include <asm/gart.h>
b6c02715 31#include <asm/amd_iommu_types.h>
c6da992e 32#include <asm/amd_iommu.h>
b6c02715
JR
33
34#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
35
136f78a1
JR
36#define EXIT_LOOP_COUNT 10000000
37
b6c02715
JR
38static DEFINE_RWLOCK(amd_iommu_devtable_lock);
39
bd60b735
JR
40/* A list of preallocated protection domains */
41static LIST_HEAD(iommu_pd_list);
42static DEFINE_SPINLOCK(iommu_pd_list_lock);
43
26961efe
JR
44#ifdef CONFIG_IOMMU_API
45static struct iommu_ops amd_iommu_ops;
46#endif
47
431b2a20
JR
48/*
49 * general struct to manage commands send to an IOMMU
50 */
d6449536 51struct iommu_cmd {
b6c02715
JR
52 u32 data[4];
53};
54
bd0e5211
JR
55static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
56 struct unity_map_entry *e);
e275a2a0 57static struct dma_ops_domain *find_protection_domain(u16 devid);
8bc3e127 58static u64 *alloc_pte(struct protection_domain *domain,
8bda3092
JR
59 unsigned long address, u64
60 **pte_page, gfp_t gfp);
00cd122a
JR
61static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
62 unsigned long start_page,
63 unsigned int pages);
9355a081
JR
64static u64 *fetch_pte(struct protection_domain *domain,
65 unsigned long address);
04bfdd84 66static void update_domain(struct protection_domain *domain);
bd0e5211 67
c1eee67b
CW
68#ifndef BUS_NOTIFY_UNBOUND_DRIVER
69#define BUS_NOTIFY_UNBOUND_DRIVER 0x0005
70#endif
71
7f26508b
JR
72#ifdef CONFIG_AMD_IOMMU_STATS
73
74/*
75 * Initialization code for statistics collection
76 */
77
da49f6df 78DECLARE_STATS_COUNTER(compl_wait);
0f2a86f2 79DECLARE_STATS_COUNTER(cnt_map_single);
146a6917 80DECLARE_STATS_COUNTER(cnt_unmap_single);
d03f067a 81DECLARE_STATS_COUNTER(cnt_map_sg);
55877a6b 82DECLARE_STATS_COUNTER(cnt_unmap_sg);
c8f0fb36 83DECLARE_STATS_COUNTER(cnt_alloc_coherent);
5d31ee7e 84DECLARE_STATS_COUNTER(cnt_free_coherent);
c1858976 85DECLARE_STATS_COUNTER(cross_page);
f57d98ae 86DECLARE_STATS_COUNTER(domain_flush_single);
18811f55 87DECLARE_STATS_COUNTER(domain_flush_all);
5774f7c5 88DECLARE_STATS_COUNTER(alloced_io_mem);
8ecaf8f1 89DECLARE_STATS_COUNTER(total_map_requests);
da49f6df 90
7f26508b
JR
91static struct dentry *stats_dir;
92static struct dentry *de_isolate;
93static struct dentry *de_fflush;
94
95static void amd_iommu_stats_add(struct __iommu_counter *cnt)
96{
97 if (stats_dir == NULL)
98 return;
99
100 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
101 &cnt->value);
102}
103
104static void amd_iommu_stats_init(void)
105{
106 stats_dir = debugfs_create_dir("amd-iommu", NULL);
107 if (stats_dir == NULL)
108 return;
109
110 de_isolate = debugfs_create_bool("isolation", 0444, stats_dir,
111 (u32 *)&amd_iommu_isolate);
112
113 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
114 (u32 *)&amd_iommu_unmap_flush);
da49f6df
JR
115
116 amd_iommu_stats_add(&compl_wait);
0f2a86f2 117 amd_iommu_stats_add(&cnt_map_single);
146a6917 118 amd_iommu_stats_add(&cnt_unmap_single);
d03f067a 119 amd_iommu_stats_add(&cnt_map_sg);
55877a6b 120 amd_iommu_stats_add(&cnt_unmap_sg);
c8f0fb36 121 amd_iommu_stats_add(&cnt_alloc_coherent);
5d31ee7e 122 amd_iommu_stats_add(&cnt_free_coherent);
c1858976 123 amd_iommu_stats_add(&cross_page);
f57d98ae 124 amd_iommu_stats_add(&domain_flush_single);
18811f55 125 amd_iommu_stats_add(&domain_flush_all);
5774f7c5 126 amd_iommu_stats_add(&alloced_io_mem);
8ecaf8f1 127 amd_iommu_stats_add(&total_map_requests);
7f26508b
JR
128}
129
130#endif
131
431b2a20 132/* returns !0 if the IOMMU is caching non-present entries in its TLB */
4da70b9e
JR
133static int iommu_has_npcache(struct amd_iommu *iommu)
134{
ae9b9403 135 return iommu->cap & (1UL << IOMMU_CAP_NPCACHE);
4da70b9e
JR
136}
137
a80dc3e0
JR
138/****************************************************************************
139 *
140 * Interrupt handling functions
141 *
142 ****************************************************************************/
143
90008ee4
JR
144static void iommu_print_event(void *__evt)
145{
146 u32 *event = __evt;
147 int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
148 int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
149 int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
150 int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
151 u64 address = (u64)(((u64)event[3]) << 32) | event[2];
152
153 printk(KERN_ERR "AMD IOMMU: Event logged [");
154
155 switch (type) {
156 case EVENT_TYPE_ILL_DEV:
157 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
158 "address=0x%016llx flags=0x%04x]\n",
159 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
160 address, flags);
161 break;
162 case EVENT_TYPE_IO_FAULT:
163 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
164 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
165 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
166 domid, address, flags);
167 break;
168 case EVENT_TYPE_DEV_TAB_ERR:
169 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
170 "address=0x%016llx flags=0x%04x]\n",
171 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
172 address, flags);
173 break;
174 case EVENT_TYPE_PAGE_TAB_ERR:
175 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
176 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
177 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
178 domid, address, flags);
179 break;
180 case EVENT_TYPE_ILL_CMD:
181 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
182 break;
183 case EVENT_TYPE_CMD_HARD_ERR:
184 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
185 "flags=0x%04x]\n", address, flags);
186 break;
187 case EVENT_TYPE_IOTLB_INV_TO:
188 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
189 "address=0x%016llx]\n",
190 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
191 address);
192 break;
193 case EVENT_TYPE_INV_DEV_REQ:
194 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
195 "address=0x%016llx flags=0x%04x]\n",
196 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
197 address, flags);
198 break;
199 default:
200 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
201 }
202}
203
204static void iommu_poll_events(struct amd_iommu *iommu)
205{
206 u32 head, tail;
207 unsigned long flags;
208
209 spin_lock_irqsave(&iommu->lock, flags);
210
211 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
212 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
213
214 while (head != tail) {
215 iommu_print_event(iommu->evt_buf + head);
216 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
217 }
218
219 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
220
221 spin_unlock_irqrestore(&iommu->lock, flags);
222}
223
a80dc3e0
JR
224irqreturn_t amd_iommu_int_handler(int irq, void *data)
225{
90008ee4
JR
226 struct amd_iommu *iommu;
227
3bd22172 228 for_each_iommu(iommu)
90008ee4
JR
229 iommu_poll_events(iommu);
230
231 return IRQ_HANDLED;
a80dc3e0
JR
232}
233
431b2a20
JR
234/****************************************************************************
235 *
236 * IOMMU command queuing functions
237 *
238 ****************************************************************************/
239
240/*
241 * Writes the command to the IOMMUs command buffer and informs the
242 * hardware about the new command. Must be called with iommu->lock held.
243 */
d6449536 244static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
245{
246 u32 tail, head;
247 u8 *target;
248
249 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
8a7c5ef3 250 target = iommu->cmd_buf + tail;
a19ae1ec
JR
251 memcpy_toio(target, cmd, sizeof(*cmd));
252 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
253 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
254 if (tail == head)
255 return -ENOMEM;
256 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
257
258 return 0;
259}
260
431b2a20
JR
261/*
262 * General queuing function for commands. Takes iommu->lock and calls
263 * __iommu_queue_command().
264 */
d6449536 265static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
266{
267 unsigned long flags;
268 int ret;
269
270 spin_lock_irqsave(&iommu->lock, flags);
271 ret = __iommu_queue_command(iommu, cmd);
09ee17eb 272 if (!ret)
0cfd7aa9 273 iommu->need_sync = true;
a19ae1ec
JR
274 spin_unlock_irqrestore(&iommu->lock, flags);
275
276 return ret;
277}
278
8d201968
JR
279/*
280 * This function waits until an IOMMU has completed a completion
281 * wait command
282 */
283static void __iommu_wait_for_completion(struct amd_iommu *iommu)
284{
285 int ready = 0;
286 unsigned status = 0;
287 unsigned long i = 0;
288
da49f6df
JR
289 INC_STATS_COUNTER(compl_wait);
290
8d201968
JR
291 while (!ready && (i < EXIT_LOOP_COUNT)) {
292 ++i;
293 /* wait for the bit to become one */
294 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
295 ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
296 }
297
298 /* set bit back to zero */
299 status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
300 writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);
301
302 if (unlikely(i == EXIT_LOOP_COUNT))
303 panic("AMD IOMMU: Completion wait loop failed\n");
304}
305
306/*
307 * This function queues a completion wait command into the command
308 * buffer of an IOMMU
309 */
310static int __iommu_completion_wait(struct amd_iommu *iommu)
311{
312 struct iommu_cmd cmd;
313
314 memset(&cmd, 0, sizeof(cmd));
315 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
316 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);
317
318 return __iommu_queue_command(iommu, &cmd);
319}
320
431b2a20
JR
321/*
322 * This function is called whenever we need to ensure that the IOMMU has
323 * completed execution of all commands we sent. It sends a
324 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
325 * us about that by writing a value to a physical address we pass with
326 * the command.
327 */
a19ae1ec
JR
328static int iommu_completion_wait(struct amd_iommu *iommu)
329{
8d201968
JR
330 int ret = 0;
331 unsigned long flags;
a19ae1ec 332
7e4f88da
JR
333 spin_lock_irqsave(&iommu->lock, flags);
334
09ee17eb
JR
335 if (!iommu->need_sync)
336 goto out;
337
8d201968 338 ret = __iommu_completion_wait(iommu);
09ee17eb 339
0cfd7aa9 340 iommu->need_sync = false;
a19ae1ec
JR
341
342 if (ret)
7e4f88da 343 goto out;
a19ae1ec 344
8d201968 345 __iommu_wait_for_completion(iommu);
84df8175 346
7e4f88da
JR
347out:
348 spin_unlock_irqrestore(&iommu->lock, flags);
a19ae1ec
JR
349
350 return 0;
351}
352
431b2a20
JR
353/*
354 * Command send function for invalidating a device table entry
355 */
a19ae1ec
JR
356static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
357{
d6449536 358 struct iommu_cmd cmd;
ee2fa743 359 int ret;
a19ae1ec
JR
360
361 BUG_ON(iommu == NULL);
362
363 memset(&cmd, 0, sizeof(cmd));
364 CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
365 cmd.data[0] = devid;
366
ee2fa743
JR
367 ret = iommu_queue_command(iommu, &cmd);
368
ee2fa743 369 return ret;
a19ae1ec
JR
370}
371
237b6f33
JR
372static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
373 u16 domid, int pde, int s)
374{
375 memset(cmd, 0, sizeof(*cmd));
376 address &= PAGE_MASK;
377 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
378 cmd->data[1] |= domid;
379 cmd->data[2] = lower_32_bits(address);
380 cmd->data[3] = upper_32_bits(address);
381 if (s) /* size bit - we flush more than one 4kb page */
382 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
383 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
384 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
385}
386
431b2a20
JR
387/*
388 * Generic command send function for invalidaing TLB entries
389 */
a19ae1ec
JR
390static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
391 u64 address, u16 domid, int pde, int s)
392{
d6449536 393 struct iommu_cmd cmd;
ee2fa743 394 int ret;
a19ae1ec 395
237b6f33 396 __iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
a19ae1ec 397
ee2fa743
JR
398 ret = iommu_queue_command(iommu, &cmd);
399
ee2fa743 400 return ret;
a19ae1ec
JR
401}
402
431b2a20
JR
403/*
404 * TLB invalidation function which is called from the mapping functions.
405 * It invalidates a single PTE if the range to flush is within a single
406 * page. Otherwise it flushes the whole TLB of the IOMMU.
407 */
a19ae1ec
JR
408static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
409 u64 address, size_t size)
410{
999ba417 411 int s = 0;
e3c449f5 412 unsigned pages = iommu_num_pages(address, size, PAGE_SIZE);
a19ae1ec
JR
413
414 address &= PAGE_MASK;
415
999ba417
JR
416 if (pages > 1) {
417 /*
418 * If we have to flush more than one page, flush all
419 * TLB entries for this domain
420 */
421 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
422 s = 1;
a19ae1ec
JR
423 }
424
999ba417
JR
425 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s);
426
a19ae1ec
JR
427 return 0;
428}
b6c02715 429
1c655773
JR
430/* Flush the whole IO/TLB for a given protection domain */
431static void iommu_flush_tlb(struct amd_iommu *iommu, u16 domid)
432{
433 u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
434
f57d98ae
JR
435 INC_STATS_COUNTER(domain_flush_single);
436
1c655773
JR
437 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 1);
438}
439
42a49f96
CW
440/* Flush the whole IO/TLB for a given protection domain - including PDE */
441static void iommu_flush_tlb_pde(struct amd_iommu *iommu, u16 domid)
442{
443 u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
444
445 INC_STATS_COUNTER(domain_flush_single);
446
447 iommu_queue_inv_iommu_pages(iommu, address, domid, 1, 1);
448}
449
43f49609
JR
450/*
451 * This function is used to flush the IO/TLB for a given protection domain
452 * on every IOMMU in the system
453 */
454static void iommu_flush_domain(u16 domid)
455{
456 unsigned long flags;
457 struct amd_iommu *iommu;
458 struct iommu_cmd cmd;
459
18811f55
JR
460 INC_STATS_COUNTER(domain_flush_all);
461
43f49609
JR
462 __iommu_build_inv_iommu_pages(&cmd, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
463 domid, 1, 1);
464
3bd22172 465 for_each_iommu(iommu) {
43f49609
JR
466 spin_lock_irqsave(&iommu->lock, flags);
467 __iommu_queue_command(iommu, &cmd);
468 __iommu_completion_wait(iommu);
469 __iommu_wait_for_completion(iommu);
470 spin_unlock_irqrestore(&iommu->lock, flags);
471 }
472}
43f49609 473
bfd1be18
JR
474void amd_iommu_flush_all_domains(void)
475{
476 int i;
477
478 for (i = 1; i < MAX_DOMAIN_ID; ++i) {
479 if (!test_bit(i, amd_iommu_pd_alloc_bitmap))
480 continue;
481 iommu_flush_domain(i);
482 }
483}
484
6a0dbcbe 485static void flush_devices_by_domain(struct protection_domain *domain)
7d7a110c
JR
486{
487 struct amd_iommu *iommu;
488 int i;
489
490 for (i = 0; i <= amd_iommu_last_bdf; ++i) {
6a0dbcbe
JR
491 if ((domain == NULL && amd_iommu_pd_table[i] == NULL) ||
492 (amd_iommu_pd_table[i] != domain))
7d7a110c
JR
493 continue;
494
495 iommu = amd_iommu_rlookup_table[i];
496 if (!iommu)
497 continue;
498
499 iommu_queue_inv_dev_entry(iommu, i);
500 iommu_completion_wait(iommu);
501 }
502}
503
6a0dbcbe
JR
504void amd_iommu_flush_all_devices(void)
505{
506 flush_devices_by_domain(NULL);
507}
508
431b2a20
JR
509/****************************************************************************
510 *
511 * The functions below are used the create the page table mappings for
512 * unity mapped regions.
513 *
514 ****************************************************************************/
515
516/*
517 * Generic mapping functions. It maps a physical address into a DMA
518 * address space. It allocates the page table pages if necessary.
519 * In the future it can be extended to a generic mapping function
520 * supporting all features of AMD IOMMU page tables like level skipping
521 * and full 64 bit address spaces.
522 */
38e817fe
JR
523static int iommu_map_page(struct protection_domain *dom,
524 unsigned long bus_addr,
525 unsigned long phys_addr,
526 int prot)
bd0e5211 527{
8bda3092 528 u64 __pte, *pte;
bd0e5211
JR
529
530 bus_addr = PAGE_ALIGN(bus_addr);
bb9d4ff8 531 phys_addr = PAGE_ALIGN(phys_addr);
bd0e5211 532
bad1cac2 533 if (!(prot & IOMMU_PROT_MASK))
bd0e5211
JR
534 return -EINVAL;
535
8bda3092 536 pte = alloc_pte(dom, bus_addr, NULL, GFP_KERNEL);
bd0e5211
JR
537
538 if (IOMMU_PTE_PRESENT(*pte))
539 return -EBUSY;
540
541 __pte = phys_addr | IOMMU_PTE_P;
542 if (prot & IOMMU_PROT_IR)
543 __pte |= IOMMU_PTE_IR;
544 if (prot & IOMMU_PROT_IW)
545 __pte |= IOMMU_PTE_IW;
546
547 *pte = __pte;
548
04bfdd84
JR
549 update_domain(dom);
550
bd0e5211
JR
551 return 0;
552}
553
eb74ff6c
JR
554static void iommu_unmap_page(struct protection_domain *dom,
555 unsigned long bus_addr)
556{
38a76eee 557 u64 *pte = fetch_pte(dom, bus_addr);
eb74ff6c 558
38a76eee
JR
559 if (pte)
560 *pte = 0;
eb74ff6c 561}
eb74ff6c 562
431b2a20
JR
563/*
564 * This function checks if a specific unity mapping entry is needed for
565 * this specific IOMMU.
566 */
bd0e5211
JR
567static int iommu_for_unity_map(struct amd_iommu *iommu,
568 struct unity_map_entry *entry)
569{
570 u16 bdf, i;
571
572 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
573 bdf = amd_iommu_alias_table[i];
574 if (amd_iommu_rlookup_table[bdf] == iommu)
575 return 1;
576 }
577
578 return 0;
579}
580
431b2a20
JR
581/*
582 * Init the unity mappings for a specific IOMMU in the system
583 *
584 * Basically iterates over all unity mapping entries and applies them to
585 * the default domain DMA of that IOMMU if necessary.
586 */
bd0e5211
JR
587static int iommu_init_unity_mappings(struct amd_iommu *iommu)
588{
589 struct unity_map_entry *entry;
590 int ret;
591
592 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
593 if (!iommu_for_unity_map(iommu, entry))
594 continue;
595 ret = dma_ops_unity_map(iommu->default_dom, entry);
596 if (ret)
597 return ret;
598 }
599
600 return 0;
601}
602
431b2a20
JR
603/*
604 * This function actually applies the mapping to the page table of the
605 * dma_ops domain.
606 */
bd0e5211
JR
607static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
608 struct unity_map_entry *e)
609{
610 u64 addr;
611 int ret;
612
613 for (addr = e->address_start; addr < e->address_end;
614 addr += PAGE_SIZE) {
38e817fe 615 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot);
bd0e5211
JR
616 if (ret)
617 return ret;
618 /*
619 * if unity mapping is in aperture range mark the page
620 * as allocated in the aperture
621 */
622 if (addr < dma_dom->aperture_size)
c3239567 623 __set_bit(addr >> PAGE_SHIFT,
384de729 624 dma_dom->aperture[0]->bitmap);
bd0e5211
JR
625 }
626
627 return 0;
628}
629
431b2a20
JR
630/*
631 * Inits the unity mappings required for a specific device
632 */
bd0e5211
JR
633static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
634 u16 devid)
635{
636 struct unity_map_entry *e;
637 int ret;
638
639 list_for_each_entry(e, &amd_iommu_unity_map, list) {
640 if (!(devid >= e->devid_start && devid <= e->devid_end))
641 continue;
642 ret = dma_ops_unity_map(dma_dom, e);
643 if (ret)
644 return ret;
645 }
646
647 return 0;
648}
649
431b2a20
JR
650/****************************************************************************
651 *
652 * The next functions belong to the address allocator for the dma_ops
653 * interface functions. They work like the allocators in the other IOMMU
654 * drivers. Its basically a bitmap which marks the allocated pages in
655 * the aperture. Maybe it could be enhanced in the future to a more
656 * efficient allocator.
657 *
658 ****************************************************************************/
d3086444 659
431b2a20 660/*
384de729 661 * The address allocator core functions.
431b2a20
JR
662 *
663 * called with domain->lock held
664 */
384de729 665
00cd122a
JR
666/*
667 * This function checks if there is a PTE for a given dma address. If
668 * there is one, it returns the pointer to it.
669 */
9355a081 670static u64 *fetch_pte(struct protection_domain *domain,
00cd122a
JR
671 unsigned long address)
672{
9355a081 673 int level;
00cd122a
JR
674 u64 *pte;
675
9355a081
JR
676 level = domain->mode - 1;
677 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
00cd122a 678
9355a081
JR
679 while (level > 0) {
680 if (!IOMMU_PTE_PRESENT(*pte))
681 return NULL;
00cd122a 682
9355a081 683 level -= 1;
00cd122a 684
9355a081
JR
685 pte = IOMMU_PTE_PAGE(*pte);
686 pte = &pte[PM_LEVEL_INDEX(level, address)];
687 }
00cd122a
JR
688
689 return pte;
690}
691
9cabe89b
JR
692/*
693 * This function is used to add a new aperture range to an existing
694 * aperture in case of dma_ops domain allocation or address allocation
695 * failure.
696 */
00cd122a
JR
697static int alloc_new_range(struct amd_iommu *iommu,
698 struct dma_ops_domain *dma_dom,
9cabe89b
JR
699 bool populate, gfp_t gfp)
700{
701 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
00cd122a 702 int i;
9cabe89b 703
f5e9705c
JR
704#ifdef CONFIG_IOMMU_STRESS
705 populate = false;
706#endif
707
9cabe89b
JR
708 if (index >= APERTURE_MAX_RANGES)
709 return -ENOMEM;
710
711 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
712 if (!dma_dom->aperture[index])
713 return -ENOMEM;
714
715 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
716 if (!dma_dom->aperture[index]->bitmap)
717 goto out_free;
718
719 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
720
721 if (populate) {
722 unsigned long address = dma_dom->aperture_size;
723 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
724 u64 *pte, *pte_page;
725
726 for (i = 0; i < num_ptes; ++i) {
727 pte = alloc_pte(&dma_dom->domain, address,
728 &pte_page, gfp);
729 if (!pte)
730 goto out_free;
731
732 dma_dom->aperture[index]->pte_pages[i] = pte_page;
733
734 address += APERTURE_RANGE_SIZE / 64;
735 }
736 }
737
738 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
739
00cd122a
JR
740 /* Intialize the exclusion range if necessary */
741 if (iommu->exclusion_start &&
742 iommu->exclusion_start >= dma_dom->aperture[index]->offset &&
743 iommu->exclusion_start < dma_dom->aperture_size) {
744 unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
745 int pages = iommu_num_pages(iommu->exclusion_start,
746 iommu->exclusion_length,
747 PAGE_SIZE);
748 dma_ops_reserve_addresses(dma_dom, startpage, pages);
749 }
750
751 /*
752 * Check for areas already mapped as present in the new aperture
753 * range and mark those pages as reserved in the allocator. Such
754 * mappings may already exist as a result of requested unity
755 * mappings for devices.
756 */
757 for (i = dma_dom->aperture[index]->offset;
758 i < dma_dom->aperture_size;
759 i += PAGE_SIZE) {
760 u64 *pte = fetch_pte(&dma_dom->domain, i);
761 if (!pte || !IOMMU_PTE_PRESENT(*pte))
762 continue;
763
764 dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
765 }
766
04bfdd84
JR
767 update_domain(&dma_dom->domain);
768
9cabe89b
JR
769 return 0;
770
771out_free:
04bfdd84
JR
772 update_domain(&dma_dom->domain);
773
9cabe89b
JR
774 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
775
776 kfree(dma_dom->aperture[index]);
777 dma_dom->aperture[index] = NULL;
778
779 return -ENOMEM;
780}
781
384de729
JR
782static unsigned long dma_ops_area_alloc(struct device *dev,
783 struct dma_ops_domain *dom,
784 unsigned int pages,
785 unsigned long align_mask,
786 u64 dma_mask,
787 unsigned long start)
788{
803b8cb4 789 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
384de729
JR
790 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
791 int i = start >> APERTURE_RANGE_SHIFT;
792 unsigned long boundary_size;
793 unsigned long address = -1;
794 unsigned long limit;
795
803b8cb4
JR
796 next_bit >>= PAGE_SHIFT;
797
384de729
JR
798 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
799 PAGE_SIZE) >> PAGE_SHIFT;
800
801 for (;i < max_index; ++i) {
802 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
803
804 if (dom->aperture[i]->offset >= dma_mask)
805 break;
806
807 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
808 dma_mask >> PAGE_SHIFT);
809
810 address = iommu_area_alloc(dom->aperture[i]->bitmap,
811 limit, next_bit, pages, 0,
812 boundary_size, align_mask);
813 if (address != -1) {
814 address = dom->aperture[i]->offset +
815 (address << PAGE_SHIFT);
803b8cb4 816 dom->next_address = address + (pages << PAGE_SHIFT);
384de729
JR
817 break;
818 }
819
820 next_bit = 0;
821 }
822
823 return address;
824}
825
d3086444
JR
826static unsigned long dma_ops_alloc_addresses(struct device *dev,
827 struct dma_ops_domain *dom,
6d4f343f 828 unsigned int pages,
832a90c3
JR
829 unsigned long align_mask,
830 u64 dma_mask)
d3086444 831{
d3086444 832 unsigned long address;
d3086444 833
fe16f088
JR
834#ifdef CONFIG_IOMMU_STRESS
835 dom->next_address = 0;
836 dom->need_flush = true;
837#endif
d3086444 838
384de729 839 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
803b8cb4 840 dma_mask, dom->next_address);
d3086444 841
1c655773 842 if (address == -1) {
803b8cb4 843 dom->next_address = 0;
384de729
JR
844 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
845 dma_mask, 0);
1c655773
JR
846 dom->need_flush = true;
847 }
d3086444 848
384de729 849 if (unlikely(address == -1))
d3086444
JR
850 address = bad_dma_address;
851
852 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
853
854 return address;
855}
856
431b2a20
JR
857/*
858 * The address free function.
859 *
860 * called with domain->lock held
861 */
d3086444
JR
862static void dma_ops_free_addresses(struct dma_ops_domain *dom,
863 unsigned long address,
864 unsigned int pages)
865{
384de729
JR
866 unsigned i = address >> APERTURE_RANGE_SHIFT;
867 struct aperture_range *range = dom->aperture[i];
80be308d 868
384de729
JR
869 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
870
47bccd6b
JR
871#ifdef CONFIG_IOMMU_STRESS
872 if (i < 4)
873 return;
874#endif
80be308d 875
803b8cb4 876 if (address >= dom->next_address)
80be308d 877 dom->need_flush = true;
384de729
JR
878
879 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
803b8cb4 880
384de729
JR
881 iommu_area_free(range->bitmap, address, pages);
882
d3086444
JR
883}
884
431b2a20
JR
885/****************************************************************************
886 *
887 * The next functions belong to the domain allocation. A domain is
888 * allocated for every IOMMU as the default domain. If device isolation
889 * is enabled, every device get its own domain. The most important thing
890 * about domains is the page table mapping the DMA address space they
891 * contain.
892 *
893 ****************************************************************************/
894
ec487d1a
JR
895static u16 domain_id_alloc(void)
896{
897 unsigned long flags;
898 int id;
899
900 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
901 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
902 BUG_ON(id == 0);
903 if (id > 0 && id < MAX_DOMAIN_ID)
904 __set_bit(id, amd_iommu_pd_alloc_bitmap);
905 else
906 id = 0;
907 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
908
909 return id;
910}
911
a2acfb75
JR
912static void domain_id_free(int id)
913{
914 unsigned long flags;
915
916 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
917 if (id > 0 && id < MAX_DOMAIN_ID)
918 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
919 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
920}
a2acfb75 921
431b2a20
JR
922/*
923 * Used to reserve address ranges in the aperture (e.g. for exclusion
924 * ranges.
925 */
ec487d1a
JR
926static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
927 unsigned long start_page,
928 unsigned int pages)
929{
384de729 930 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
ec487d1a
JR
931
932 if (start_page + pages > last_page)
933 pages = last_page - start_page;
934
384de729
JR
935 for (i = start_page; i < start_page + pages; ++i) {
936 int index = i / APERTURE_RANGE_PAGES;
937 int page = i % APERTURE_RANGE_PAGES;
938 __set_bit(page, dom->aperture[index]->bitmap);
939 }
ec487d1a
JR
940}
941
86db2e5d 942static void free_pagetable(struct protection_domain *domain)
ec487d1a
JR
943{
944 int i, j;
945 u64 *p1, *p2, *p3;
946
86db2e5d 947 p1 = domain->pt_root;
ec487d1a
JR
948
949 if (!p1)
950 return;
951
952 for (i = 0; i < 512; ++i) {
953 if (!IOMMU_PTE_PRESENT(p1[i]))
954 continue;
955
956 p2 = IOMMU_PTE_PAGE(p1[i]);
3cc3d84b 957 for (j = 0; j < 512; ++j) {
ec487d1a
JR
958 if (!IOMMU_PTE_PRESENT(p2[j]))
959 continue;
960 p3 = IOMMU_PTE_PAGE(p2[j]);
961 free_page((unsigned long)p3);
962 }
963
964 free_page((unsigned long)p2);
965 }
966
967 free_page((unsigned long)p1);
86db2e5d
JR
968
969 domain->pt_root = NULL;
ec487d1a
JR
970}
971
431b2a20
JR
972/*
973 * Free a domain, only used if something went wrong in the
974 * allocation path and we need to free an already allocated page table
975 */
ec487d1a
JR
976static void dma_ops_domain_free(struct dma_ops_domain *dom)
977{
384de729
JR
978 int i;
979
ec487d1a
JR
980 if (!dom)
981 return;
982
86db2e5d 983 free_pagetable(&dom->domain);
ec487d1a 984
384de729
JR
985 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
986 if (!dom->aperture[i])
987 continue;
988 free_page((unsigned long)dom->aperture[i]->bitmap);
989 kfree(dom->aperture[i]);
990 }
ec487d1a
JR
991
992 kfree(dom);
993}
994
431b2a20
JR
995/*
996 * Allocates a new protection domain usable for the dma_ops functions.
997 * It also intializes the page table and the address allocator data
998 * structures required for the dma_ops interface
999 */
d9cfed92 1000static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu)
ec487d1a
JR
1001{
1002 struct dma_ops_domain *dma_dom;
ec487d1a
JR
1003
1004 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1005 if (!dma_dom)
1006 return NULL;
1007
1008 spin_lock_init(&dma_dom->domain.lock);
1009
1010 dma_dom->domain.id = domain_id_alloc();
1011 if (dma_dom->domain.id == 0)
1012 goto free_dma_dom;
8f7a017c 1013 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
ec487d1a 1014 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
9fdb19d6 1015 dma_dom->domain.flags = PD_DMA_OPS_MASK;
ec487d1a
JR
1016 dma_dom->domain.priv = dma_dom;
1017 if (!dma_dom->domain.pt_root)
1018 goto free_dma_dom;
ec487d1a 1019
1c655773 1020 dma_dom->need_flush = false;
bd60b735 1021 dma_dom->target_dev = 0xffff;
1c655773 1022
00cd122a 1023 if (alloc_new_range(iommu, dma_dom, true, GFP_KERNEL))
ec487d1a 1024 goto free_dma_dom;
ec487d1a 1025
431b2a20 1026 /*
ec487d1a
JR
1027 * mark the first page as allocated so we never return 0 as
1028 * a valid dma-address. So we can use 0 as error value
431b2a20 1029 */
384de729 1030 dma_dom->aperture[0]->bitmap[0] = 1;
803b8cb4 1031 dma_dom->next_address = 0;
ec487d1a 1032
ec487d1a
JR
1033
1034 return dma_dom;
1035
1036free_dma_dom:
1037 dma_ops_domain_free(dma_dom);
1038
1039 return NULL;
1040}
1041
5b28df6f
JR
1042/*
1043 * little helper function to check whether a given protection domain is a
1044 * dma_ops domain
1045 */
1046static bool dma_ops_domain(struct protection_domain *domain)
1047{
1048 return domain->flags & PD_DMA_OPS_MASK;
1049}
1050
431b2a20
JR
1051/*
1052 * Find out the protection domain structure for a given PCI device. This
1053 * will give us the pointer to the page table root for example.
1054 */
b20ac0d4
JR
1055static struct protection_domain *domain_for_device(u16 devid)
1056{
1057 struct protection_domain *dom;
1058 unsigned long flags;
1059
1060 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
1061 dom = amd_iommu_pd_table[devid];
1062 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1063
1064 return dom;
1065}
1066
407d733e 1067static void set_dte_entry(u16 devid, struct protection_domain *domain)
b20ac0d4 1068{
b20ac0d4 1069 u64 pte_root = virt_to_phys(domain->pt_root);
407d733e 1070 unsigned long flags;
863c74eb 1071
38ddf41b
JR
1072 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1073 << DEV_ENTRY_MODE_SHIFT;
1074 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4
JR
1075
1076 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
38ddf41b
JR
1077 amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
1078 amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
b20ac0d4
JR
1079 amd_iommu_dev_table[devid].data[2] = domain->id;
1080
1081 amd_iommu_pd_table[devid] = domain;
1082 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
407d733e
JR
1083}
1084
1085/*
1086 * If a device is not yet associated with a domain, this function does
1087 * assigns it visible for the hardware
1088 */
1089static void attach_device(struct amd_iommu *iommu,
1090 struct protection_domain *domain,
1091 u16 devid)
1092{
1093 /* set the DTE entry */
1094 set_dte_entry(devid, domain);
1095
1096 /* increase reference counter */
1097 domain->dev_cnt += 1;
b20ac0d4 1098
42a49f96
CW
1099 /*
1100 * We might boot into a crash-kernel here. The crashed kernel
1101 * left the caches in the IOMMU dirty. So we have to flush
1102 * here to evict all dirty stuff.
1103 */
b20ac0d4 1104 iommu_queue_inv_dev_entry(iommu, devid);
42a49f96 1105 iommu_flush_tlb_pde(iommu, domain->id);
b20ac0d4
JR
1106}
1107
355bf553
JR
1108/*
1109 * Removes a device from a protection domain (unlocked)
1110 */
1111static void __detach_device(struct protection_domain *domain, u16 devid)
1112{
1113
1114 /* lock domain */
1115 spin_lock(&domain->lock);
1116
1117 /* remove domain from the lookup table */
1118 amd_iommu_pd_table[devid] = NULL;
1119
1120 /* remove entry from the device table seen by the hardware */
1121 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1122 amd_iommu_dev_table[devid].data[1] = 0;
1123 amd_iommu_dev_table[devid].data[2] = 0;
1124
1125 /* decrease reference counter */
1126 domain->dev_cnt -= 1;
1127
1128 /* ready */
1129 spin_unlock(&domain->lock);
1130}
1131
1132/*
1133 * Removes a device from a protection domain (with devtable_lock held)
1134 */
1135static void detach_device(struct protection_domain *domain, u16 devid)
1136{
1137 unsigned long flags;
1138
1139 /* lock device table */
1140 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1141 __detach_device(domain, devid);
1142 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1143}
e275a2a0
JR
1144
1145static int device_change_notifier(struct notifier_block *nb,
1146 unsigned long action, void *data)
1147{
1148 struct device *dev = data;
1149 struct pci_dev *pdev = to_pci_dev(dev);
1150 u16 devid = calc_devid(pdev->bus->number, pdev->devfn);
1151 struct protection_domain *domain;
1152 struct dma_ops_domain *dma_domain;
1153 struct amd_iommu *iommu;
1ac4cbbc 1154 unsigned long flags;
e275a2a0
JR
1155
1156 if (devid > amd_iommu_last_bdf)
1157 goto out;
1158
1159 devid = amd_iommu_alias_table[devid];
1160
1161 iommu = amd_iommu_rlookup_table[devid];
1162 if (iommu == NULL)
1163 goto out;
1164
1165 domain = domain_for_device(devid);
1166
1167 if (domain && !dma_ops_domain(domain))
1168 WARN_ONCE(1, "AMD IOMMU WARNING: device %s already bound "
1169 "to a non-dma-ops domain\n", dev_name(dev));
1170
1171 switch (action) {
c1eee67b 1172 case BUS_NOTIFY_UNBOUND_DRIVER:
e275a2a0
JR
1173 if (!domain)
1174 goto out;
1175 detach_device(domain, devid);
1ac4cbbc
JR
1176 break;
1177 case BUS_NOTIFY_ADD_DEVICE:
1178 /* allocate a protection domain if a device is added */
1179 dma_domain = find_protection_domain(devid);
1180 if (dma_domain)
1181 goto out;
d9cfed92 1182 dma_domain = dma_ops_domain_alloc(iommu);
1ac4cbbc
JR
1183 if (!dma_domain)
1184 goto out;
1185 dma_domain->target_dev = devid;
1186
1187 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1188 list_add_tail(&dma_domain->list, &iommu_pd_list);
1189 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1190
e275a2a0
JR
1191 break;
1192 default:
1193 goto out;
1194 }
1195
1196 iommu_queue_inv_dev_entry(iommu, devid);
1197 iommu_completion_wait(iommu);
1198
1199out:
1200 return 0;
1201}
1202
b25ae679 1203static struct notifier_block device_nb = {
e275a2a0
JR
1204 .notifier_call = device_change_notifier,
1205};
355bf553 1206
431b2a20
JR
1207/*****************************************************************************
1208 *
1209 * The next functions belong to the dma_ops mapping/unmapping code.
1210 *
1211 *****************************************************************************/
1212
dbcc112e
JR
1213/*
1214 * This function checks if the driver got a valid device from the caller to
1215 * avoid dereferencing invalid pointers.
1216 */
1217static bool check_device(struct device *dev)
1218{
1219 if (!dev || !dev->dma_mask)
1220 return false;
1221
1222 return true;
1223}
1224
bd60b735
JR
1225/*
1226 * In this function the list of preallocated protection domains is traversed to
1227 * find the domain for a specific device
1228 */
1229static struct dma_ops_domain *find_protection_domain(u16 devid)
1230{
1231 struct dma_ops_domain *entry, *ret = NULL;
1232 unsigned long flags;
1233
1234 if (list_empty(&iommu_pd_list))
1235 return NULL;
1236
1237 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1238
1239 list_for_each_entry(entry, &iommu_pd_list, list) {
1240 if (entry->target_dev == devid) {
1241 ret = entry;
bd60b735
JR
1242 break;
1243 }
1244 }
1245
1246 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1247
1248 return ret;
1249}
1250
431b2a20
JR
1251/*
1252 * In the dma_ops path we only have the struct device. This function
1253 * finds the corresponding IOMMU, the protection domain and the
1254 * requestor id for a given device.
1255 * If the device is not yet associated with a domain this is also done
1256 * in this function.
1257 */
b20ac0d4
JR
1258static int get_device_resources(struct device *dev,
1259 struct amd_iommu **iommu,
1260 struct protection_domain **domain,
1261 u16 *bdf)
1262{
1263 struct dma_ops_domain *dma_dom;
1264 struct pci_dev *pcidev;
1265 u16 _bdf;
1266
dbcc112e
JR
1267 *iommu = NULL;
1268 *domain = NULL;
1269 *bdf = 0xffff;
1270
1271 if (dev->bus != &pci_bus_type)
1272 return 0;
b20ac0d4
JR
1273
1274 pcidev = to_pci_dev(dev);
d591b0a3 1275 _bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
b20ac0d4 1276
431b2a20 1277 /* device not translated by any IOMMU in the system? */
dbcc112e 1278 if (_bdf > amd_iommu_last_bdf)
b20ac0d4 1279 return 0;
b20ac0d4
JR
1280
1281 *bdf = amd_iommu_alias_table[_bdf];
1282
1283 *iommu = amd_iommu_rlookup_table[*bdf];
1284 if (*iommu == NULL)
1285 return 0;
b20ac0d4
JR
1286 *domain = domain_for_device(*bdf);
1287 if (*domain == NULL) {
bd60b735
JR
1288 dma_dom = find_protection_domain(*bdf);
1289 if (!dma_dom)
1290 dma_dom = (*iommu)->default_dom;
b20ac0d4 1291 *domain = &dma_dom->domain;
f1179dc0 1292 attach_device(*iommu, *domain, *bdf);
e9a22a13
JR
1293 DUMP_printk("Using protection domain %d for device %s\n",
1294 (*domain)->id, dev_name(dev));
b20ac0d4
JR
1295 }
1296
f91ba190 1297 if (domain_for_device(_bdf) == NULL)
f1179dc0 1298 attach_device(*iommu, *domain, _bdf);
f91ba190 1299
b20ac0d4
JR
1300 return 1;
1301}
1302
04bfdd84
JR
1303static void update_device_table(struct protection_domain *domain)
1304{
1305 int i;
1306
1307 for (i = 0; i <= amd_iommu_last_bdf; ++i) {
1308 if (amd_iommu_pd_table[i] != domain)
1309 continue;
1310 set_dte_entry(i, domain);
1311 }
1312}
1313
1314static void update_domain(struct protection_domain *domain)
1315{
1316 if (!domain->updated)
1317 return;
1318
1319 update_device_table(domain);
1320 flush_devices_by_domain(domain);
1321 iommu_flush_domain(domain->id);
1322
1323 domain->updated = false;
1324}
1325
50020fb6
JR
1326/*
1327 * This function is used to add another level to an IO page table. Adding
1328 * another level increases the size of the address space by 9 bits to a size up
1329 * to 64 bits.
1330 */
1331static bool increase_address_space(struct protection_domain *domain,
1332 gfp_t gfp)
1333{
1334 u64 *pte;
1335
1336 if (domain->mode == PAGE_MODE_6_LEVEL)
1337 /* address space already 64 bit large */
1338 return false;
1339
1340 pte = (void *)get_zeroed_page(gfp);
1341 if (!pte)
1342 return false;
1343
1344 *pte = PM_LEVEL_PDE(domain->mode,
1345 virt_to_phys(domain->pt_root));
1346 domain->pt_root = pte;
1347 domain->mode += 1;
1348 domain->updated = true;
1349
1350 return true;
1351}
1352
8bc3e127 1353static u64 *alloc_pte(struct protection_domain *domain,
8bda3092
JR
1354 unsigned long address, u64 **pte_page, gfp_t gfp)
1355{
1356 u64 *pte, *page;
8bc3e127 1357 int level;
8bda3092 1358
8bc3e127
JR
1359 while (address > PM_LEVEL_SIZE(domain->mode))
1360 increase_address_space(domain, gfp);
8bda3092 1361
8bc3e127
JR
1362 level = domain->mode - 1;
1363 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
8bda3092 1364
8bc3e127
JR
1365 while (level > 0) {
1366 if (!IOMMU_PTE_PRESENT(*pte)) {
1367 page = (u64 *)get_zeroed_page(gfp);
1368 if (!page)
1369 return NULL;
1370 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
1371 }
8bda3092 1372
8bc3e127 1373 level -= 1;
8bda3092 1374
8bc3e127 1375 pte = IOMMU_PTE_PAGE(*pte);
8bda3092 1376
8bc3e127
JR
1377 if (pte_page && level == 0)
1378 *pte_page = pte;
8bda3092 1379
8bc3e127
JR
1380 pte = &pte[PM_LEVEL_INDEX(level, address)];
1381 }
8bda3092
JR
1382
1383 return pte;
1384}
1385
1386/*
1387 * This function fetches the PTE for a given address in the aperture
1388 */
1389static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
1390 unsigned long address)
1391{
384de729 1392 struct aperture_range *aperture;
8bda3092
JR
1393 u64 *pte, *pte_page;
1394
384de729
JR
1395 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1396 if (!aperture)
1397 return NULL;
1398
1399 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
8bda3092
JR
1400 if (!pte) {
1401 pte = alloc_pte(&dom->domain, address, &pte_page, GFP_ATOMIC);
384de729
JR
1402 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
1403 } else
8c8c143c 1404 pte += PM_LEVEL_INDEX(0, address);
8bda3092 1405
04bfdd84
JR
1406 update_domain(&dom->domain);
1407
8bda3092
JR
1408 return pte;
1409}
1410
431b2a20
JR
1411/*
1412 * This is the generic map function. It maps one 4kb page at paddr to
1413 * the given address in the DMA address space for the domain.
1414 */
cb76c322
JR
1415static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
1416 struct dma_ops_domain *dom,
1417 unsigned long address,
1418 phys_addr_t paddr,
1419 int direction)
1420{
1421 u64 *pte, __pte;
1422
1423 WARN_ON(address > dom->aperture_size);
1424
1425 paddr &= PAGE_MASK;
1426
8bda3092 1427 pte = dma_ops_get_pte(dom, address);
53812c11
JR
1428 if (!pte)
1429 return bad_dma_address;
cb76c322
JR
1430
1431 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
1432
1433 if (direction == DMA_TO_DEVICE)
1434 __pte |= IOMMU_PTE_IR;
1435 else if (direction == DMA_FROM_DEVICE)
1436 __pte |= IOMMU_PTE_IW;
1437 else if (direction == DMA_BIDIRECTIONAL)
1438 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
1439
1440 WARN_ON(*pte);
1441
1442 *pte = __pte;
1443
1444 return (dma_addr_t)address;
1445}
1446
431b2a20
JR
1447/*
1448 * The generic unmapping function for on page in the DMA address space.
1449 */
cb76c322
JR
1450static void dma_ops_domain_unmap(struct amd_iommu *iommu,
1451 struct dma_ops_domain *dom,
1452 unsigned long address)
1453{
384de729 1454 struct aperture_range *aperture;
cb76c322
JR
1455 u64 *pte;
1456
1457 if (address >= dom->aperture_size)
1458 return;
1459
384de729
JR
1460 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1461 if (!aperture)
1462 return;
1463
1464 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1465 if (!pte)
1466 return;
cb76c322 1467
8c8c143c 1468 pte += PM_LEVEL_INDEX(0, address);
cb76c322
JR
1469
1470 WARN_ON(!*pte);
1471
1472 *pte = 0ULL;
1473}
1474
431b2a20
JR
1475/*
1476 * This function contains common code for mapping of a physically
24f81160
JR
1477 * contiguous memory region into DMA address space. It is used by all
1478 * mapping functions provided with this IOMMU driver.
431b2a20
JR
1479 * Must be called with the domain lock held.
1480 */
cb76c322
JR
1481static dma_addr_t __map_single(struct device *dev,
1482 struct amd_iommu *iommu,
1483 struct dma_ops_domain *dma_dom,
1484 phys_addr_t paddr,
1485 size_t size,
6d4f343f 1486 int dir,
832a90c3
JR
1487 bool align,
1488 u64 dma_mask)
cb76c322
JR
1489{
1490 dma_addr_t offset = paddr & ~PAGE_MASK;
53812c11 1491 dma_addr_t address, start, ret;
cb76c322 1492 unsigned int pages;
6d4f343f 1493 unsigned long align_mask = 0;
cb76c322
JR
1494 int i;
1495
e3c449f5 1496 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
1497 paddr &= PAGE_MASK;
1498
8ecaf8f1
JR
1499 INC_STATS_COUNTER(total_map_requests);
1500
c1858976
JR
1501 if (pages > 1)
1502 INC_STATS_COUNTER(cross_page);
1503
6d4f343f
JR
1504 if (align)
1505 align_mask = (1UL << get_order(size)) - 1;
1506
11b83888 1507retry:
832a90c3
JR
1508 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
1509 dma_mask);
11b83888
JR
1510 if (unlikely(address == bad_dma_address)) {
1511 /*
1512 * setting next_address here will let the address
1513 * allocator only scan the new allocated range in the
1514 * first run. This is a small optimization.
1515 */
1516 dma_dom->next_address = dma_dom->aperture_size;
1517
1518 if (alloc_new_range(iommu, dma_dom, false, GFP_ATOMIC))
1519 goto out;
1520
1521 /*
1522 * aperture was sucessfully enlarged by 128 MB, try
1523 * allocation again
1524 */
1525 goto retry;
1526 }
cb76c322
JR
1527
1528 start = address;
1529 for (i = 0; i < pages; ++i) {
53812c11
JR
1530 ret = dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
1531 if (ret == bad_dma_address)
1532 goto out_unmap;
1533
cb76c322
JR
1534 paddr += PAGE_SIZE;
1535 start += PAGE_SIZE;
1536 }
1537 address += offset;
1538
5774f7c5
JR
1539 ADD_STATS_COUNTER(alloced_io_mem, size);
1540
afa9fdc2 1541 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
1c655773
JR
1542 iommu_flush_tlb(iommu, dma_dom->domain.id);
1543 dma_dom->need_flush = false;
1544 } else if (unlikely(iommu_has_npcache(iommu)))
270cab24
JR
1545 iommu_flush_pages(iommu, dma_dom->domain.id, address, size);
1546
cb76c322
JR
1547out:
1548 return address;
53812c11
JR
1549
1550out_unmap:
1551
1552 for (--i; i >= 0; --i) {
1553 start -= PAGE_SIZE;
1554 dma_ops_domain_unmap(iommu, dma_dom, start);
1555 }
1556
1557 dma_ops_free_addresses(dma_dom, address, pages);
1558
1559 return bad_dma_address;
cb76c322
JR
1560}
1561
431b2a20
JR
1562/*
1563 * Does the reverse of the __map_single function. Must be called with
1564 * the domain lock held too
1565 */
cb76c322
JR
1566static void __unmap_single(struct amd_iommu *iommu,
1567 struct dma_ops_domain *dma_dom,
1568 dma_addr_t dma_addr,
1569 size_t size,
1570 int dir)
1571{
1572 dma_addr_t i, start;
1573 unsigned int pages;
1574
b8d9905d
JR
1575 if ((dma_addr == bad_dma_address) ||
1576 (dma_addr + size > dma_dom->aperture_size))
cb76c322
JR
1577 return;
1578
e3c449f5 1579 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
1580 dma_addr &= PAGE_MASK;
1581 start = dma_addr;
1582
1583 for (i = 0; i < pages; ++i) {
1584 dma_ops_domain_unmap(iommu, dma_dom, start);
1585 start += PAGE_SIZE;
1586 }
1587
5774f7c5
JR
1588 SUB_STATS_COUNTER(alloced_io_mem, size);
1589
cb76c322 1590 dma_ops_free_addresses(dma_dom, dma_addr, pages);
270cab24 1591
80be308d 1592 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
1c655773 1593 iommu_flush_pages(iommu, dma_dom->domain.id, dma_addr, size);
80be308d
JR
1594 dma_dom->need_flush = false;
1595 }
cb76c322
JR
1596}
1597
431b2a20
JR
1598/*
1599 * The exported map_single function for dma_ops.
1600 */
51491367
FT
1601static dma_addr_t map_page(struct device *dev, struct page *page,
1602 unsigned long offset, size_t size,
1603 enum dma_data_direction dir,
1604 struct dma_attrs *attrs)
4da70b9e
JR
1605{
1606 unsigned long flags;
1607 struct amd_iommu *iommu;
1608 struct protection_domain *domain;
1609 u16 devid;
1610 dma_addr_t addr;
832a90c3 1611 u64 dma_mask;
51491367 1612 phys_addr_t paddr = page_to_phys(page) + offset;
4da70b9e 1613
0f2a86f2
JR
1614 INC_STATS_COUNTER(cnt_map_single);
1615
dbcc112e
JR
1616 if (!check_device(dev))
1617 return bad_dma_address;
1618
832a90c3 1619 dma_mask = *dev->dma_mask;
4da70b9e
JR
1620
1621 get_device_resources(dev, &iommu, &domain, &devid);
1622
1623 if (iommu == NULL || domain == NULL)
431b2a20 1624 /* device not handled by any AMD IOMMU */
4da70b9e
JR
1625 return (dma_addr_t)paddr;
1626
5b28df6f
JR
1627 if (!dma_ops_domain(domain))
1628 return bad_dma_address;
1629
4da70b9e 1630 spin_lock_irqsave(&domain->lock, flags);
832a90c3
JR
1631 addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false,
1632 dma_mask);
4da70b9e
JR
1633 if (addr == bad_dma_address)
1634 goto out;
1635
09ee17eb 1636 iommu_completion_wait(iommu);
4da70b9e
JR
1637
1638out:
1639 spin_unlock_irqrestore(&domain->lock, flags);
1640
1641 return addr;
1642}
1643
431b2a20
JR
1644/*
1645 * The exported unmap_single function for dma_ops.
1646 */
51491367
FT
1647static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
1648 enum dma_data_direction dir, struct dma_attrs *attrs)
4da70b9e
JR
1649{
1650 unsigned long flags;
1651 struct amd_iommu *iommu;
1652 struct protection_domain *domain;
1653 u16 devid;
1654
146a6917
JR
1655 INC_STATS_COUNTER(cnt_unmap_single);
1656
dbcc112e
JR
1657 if (!check_device(dev) ||
1658 !get_device_resources(dev, &iommu, &domain, &devid))
431b2a20 1659 /* device not handled by any AMD IOMMU */
4da70b9e
JR
1660 return;
1661
5b28df6f
JR
1662 if (!dma_ops_domain(domain))
1663 return;
1664
4da70b9e
JR
1665 spin_lock_irqsave(&domain->lock, flags);
1666
1667 __unmap_single(iommu, domain->priv, dma_addr, size, dir);
1668
09ee17eb 1669 iommu_completion_wait(iommu);
4da70b9e
JR
1670
1671 spin_unlock_irqrestore(&domain->lock, flags);
1672}
1673
431b2a20
JR
1674/*
1675 * This is a special map_sg function which is used if we should map a
1676 * device which is not handled by an AMD IOMMU in the system.
1677 */
65b050ad
JR
1678static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
1679 int nelems, int dir)
1680{
1681 struct scatterlist *s;
1682 int i;
1683
1684 for_each_sg(sglist, s, nelems, i) {
1685 s->dma_address = (dma_addr_t)sg_phys(s);
1686 s->dma_length = s->length;
1687 }
1688
1689 return nelems;
1690}
1691
431b2a20
JR
1692/*
1693 * The exported map_sg function for dma_ops (handles scatter-gather
1694 * lists).
1695 */
65b050ad 1696static int map_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
1697 int nelems, enum dma_data_direction dir,
1698 struct dma_attrs *attrs)
65b050ad
JR
1699{
1700 unsigned long flags;
1701 struct amd_iommu *iommu;
1702 struct protection_domain *domain;
1703 u16 devid;
1704 int i;
1705 struct scatterlist *s;
1706 phys_addr_t paddr;
1707 int mapped_elems = 0;
832a90c3 1708 u64 dma_mask;
65b050ad 1709
d03f067a
JR
1710 INC_STATS_COUNTER(cnt_map_sg);
1711
dbcc112e
JR
1712 if (!check_device(dev))
1713 return 0;
1714
832a90c3 1715 dma_mask = *dev->dma_mask;
65b050ad
JR
1716
1717 get_device_resources(dev, &iommu, &domain, &devid);
1718
1719 if (!iommu || !domain)
1720 return map_sg_no_iommu(dev, sglist, nelems, dir);
1721
5b28df6f
JR
1722 if (!dma_ops_domain(domain))
1723 return 0;
1724
65b050ad
JR
1725 spin_lock_irqsave(&domain->lock, flags);
1726
1727 for_each_sg(sglist, s, nelems, i) {
1728 paddr = sg_phys(s);
1729
1730 s->dma_address = __map_single(dev, iommu, domain->priv,
832a90c3
JR
1731 paddr, s->length, dir, false,
1732 dma_mask);
65b050ad
JR
1733
1734 if (s->dma_address) {
1735 s->dma_length = s->length;
1736 mapped_elems++;
1737 } else
1738 goto unmap;
65b050ad
JR
1739 }
1740
09ee17eb 1741 iommu_completion_wait(iommu);
65b050ad
JR
1742
1743out:
1744 spin_unlock_irqrestore(&domain->lock, flags);
1745
1746 return mapped_elems;
1747unmap:
1748 for_each_sg(sglist, s, mapped_elems, i) {
1749 if (s->dma_address)
1750 __unmap_single(iommu, domain->priv, s->dma_address,
1751 s->dma_length, dir);
1752 s->dma_address = s->dma_length = 0;
1753 }
1754
1755 mapped_elems = 0;
1756
1757 goto out;
1758}
1759
431b2a20
JR
1760/*
1761 * The exported map_sg function for dma_ops (handles scatter-gather
1762 * lists).
1763 */
65b050ad 1764static void unmap_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
1765 int nelems, enum dma_data_direction dir,
1766 struct dma_attrs *attrs)
65b050ad
JR
1767{
1768 unsigned long flags;
1769 struct amd_iommu *iommu;
1770 struct protection_domain *domain;
1771 struct scatterlist *s;
1772 u16 devid;
1773 int i;
1774
55877a6b
JR
1775 INC_STATS_COUNTER(cnt_unmap_sg);
1776
dbcc112e
JR
1777 if (!check_device(dev) ||
1778 !get_device_resources(dev, &iommu, &domain, &devid))
65b050ad
JR
1779 return;
1780
5b28df6f
JR
1781 if (!dma_ops_domain(domain))
1782 return;
1783
65b050ad
JR
1784 spin_lock_irqsave(&domain->lock, flags);
1785
1786 for_each_sg(sglist, s, nelems, i) {
1787 __unmap_single(iommu, domain->priv, s->dma_address,
1788 s->dma_length, dir);
65b050ad
JR
1789 s->dma_address = s->dma_length = 0;
1790 }
1791
09ee17eb 1792 iommu_completion_wait(iommu);
65b050ad
JR
1793
1794 spin_unlock_irqrestore(&domain->lock, flags);
1795}
1796
431b2a20
JR
1797/*
1798 * The exported alloc_coherent function for dma_ops.
1799 */
5d8b53cf
JR
1800static void *alloc_coherent(struct device *dev, size_t size,
1801 dma_addr_t *dma_addr, gfp_t flag)
1802{
1803 unsigned long flags;
1804 void *virt_addr;
1805 struct amd_iommu *iommu;
1806 struct protection_domain *domain;
1807 u16 devid;
1808 phys_addr_t paddr;
832a90c3 1809 u64 dma_mask = dev->coherent_dma_mask;
5d8b53cf 1810
c8f0fb36
JR
1811 INC_STATS_COUNTER(cnt_alloc_coherent);
1812
dbcc112e
JR
1813 if (!check_device(dev))
1814 return NULL;
5d8b53cf 1815
13d9fead
FT
1816 if (!get_device_resources(dev, &iommu, &domain, &devid))
1817 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
5d8b53cf 1818
c97ac535 1819 flag |= __GFP_ZERO;
5d8b53cf
JR
1820 virt_addr = (void *)__get_free_pages(flag, get_order(size));
1821 if (!virt_addr)
b25ae679 1822 return NULL;
5d8b53cf 1823
5d8b53cf
JR
1824 paddr = virt_to_phys(virt_addr);
1825
5d8b53cf
JR
1826 if (!iommu || !domain) {
1827 *dma_addr = (dma_addr_t)paddr;
1828 return virt_addr;
1829 }
1830
5b28df6f
JR
1831 if (!dma_ops_domain(domain))
1832 goto out_free;
1833
832a90c3
JR
1834 if (!dma_mask)
1835 dma_mask = *dev->dma_mask;
1836
5d8b53cf
JR
1837 spin_lock_irqsave(&domain->lock, flags);
1838
1839 *dma_addr = __map_single(dev, iommu, domain->priv, paddr,
832a90c3 1840 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf 1841
367d04c4
JS
1842 if (*dma_addr == bad_dma_address) {
1843 spin_unlock_irqrestore(&domain->lock, flags);
5b28df6f 1844 goto out_free;
367d04c4 1845 }
5d8b53cf 1846
09ee17eb 1847 iommu_completion_wait(iommu);
5d8b53cf 1848
5d8b53cf
JR
1849 spin_unlock_irqrestore(&domain->lock, flags);
1850
1851 return virt_addr;
5b28df6f
JR
1852
1853out_free:
1854
1855 free_pages((unsigned long)virt_addr, get_order(size));
1856
1857 return NULL;
5d8b53cf
JR
1858}
1859
431b2a20
JR
1860/*
1861 * The exported free_coherent function for dma_ops.
431b2a20 1862 */
5d8b53cf
JR
1863static void free_coherent(struct device *dev, size_t size,
1864 void *virt_addr, dma_addr_t dma_addr)
1865{
1866 unsigned long flags;
1867 struct amd_iommu *iommu;
1868 struct protection_domain *domain;
1869 u16 devid;
1870
5d31ee7e
JR
1871 INC_STATS_COUNTER(cnt_free_coherent);
1872
dbcc112e
JR
1873 if (!check_device(dev))
1874 return;
1875
5d8b53cf
JR
1876 get_device_resources(dev, &iommu, &domain, &devid);
1877
1878 if (!iommu || !domain)
1879 goto free_mem;
1880
5b28df6f
JR
1881 if (!dma_ops_domain(domain))
1882 goto free_mem;
1883
5d8b53cf
JR
1884 spin_lock_irqsave(&domain->lock, flags);
1885
1886 __unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 1887
09ee17eb 1888 iommu_completion_wait(iommu);
5d8b53cf
JR
1889
1890 spin_unlock_irqrestore(&domain->lock, flags);
1891
1892free_mem:
1893 free_pages((unsigned long)virt_addr, get_order(size));
1894}
1895
b39ba6ad
JR
1896/*
1897 * This function is called by the DMA layer to find out if we can handle a
1898 * particular device. It is part of the dma_ops.
1899 */
1900static int amd_iommu_dma_supported(struct device *dev, u64 mask)
1901{
1902 u16 bdf;
1903 struct pci_dev *pcidev;
1904
1905 /* No device or no PCI device */
1906 if (!dev || dev->bus != &pci_bus_type)
1907 return 0;
1908
1909 pcidev = to_pci_dev(dev);
1910
1911 bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
1912
1913 /* Out of our scope? */
1914 if (bdf > amd_iommu_last_bdf)
1915 return 0;
1916
1917 return 1;
1918}
1919
c432f3df 1920/*
431b2a20
JR
1921 * The function for pre-allocating protection domains.
1922 *
c432f3df
JR
1923 * If the driver core informs the DMA layer if a driver grabs a device
1924 * we don't need to preallocate the protection domains anymore.
1925 * For now we have to.
1926 */
0e93dd88 1927static void prealloc_protection_domains(void)
c432f3df
JR
1928{
1929 struct pci_dev *dev = NULL;
1930 struct dma_ops_domain *dma_dom;
1931 struct amd_iommu *iommu;
c432f3df
JR
1932 u16 devid;
1933
1934 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
edcb34da 1935 devid = calc_devid(dev->bus->number, dev->devfn);
3a61ec38 1936 if (devid > amd_iommu_last_bdf)
c432f3df
JR
1937 continue;
1938 devid = amd_iommu_alias_table[devid];
1939 if (domain_for_device(devid))
1940 continue;
1941 iommu = amd_iommu_rlookup_table[devid];
1942 if (!iommu)
1943 continue;
d9cfed92 1944 dma_dom = dma_ops_domain_alloc(iommu);
c432f3df
JR
1945 if (!dma_dom)
1946 continue;
1947 init_unity_mappings_for_device(dma_dom, devid);
bd60b735
JR
1948 dma_dom->target_dev = devid;
1949
1950 list_add_tail(&dma_dom->list, &iommu_pd_list);
c432f3df
JR
1951 }
1952}
1953
160c1d8e 1954static struct dma_map_ops amd_iommu_dma_ops = {
6631ee9d
JR
1955 .alloc_coherent = alloc_coherent,
1956 .free_coherent = free_coherent,
51491367
FT
1957 .map_page = map_page,
1958 .unmap_page = unmap_page,
6631ee9d
JR
1959 .map_sg = map_sg,
1960 .unmap_sg = unmap_sg,
b39ba6ad 1961 .dma_supported = amd_iommu_dma_supported,
6631ee9d
JR
1962};
1963
431b2a20
JR
1964/*
1965 * The function which clues the AMD IOMMU driver into dma_ops.
1966 */
6631ee9d
JR
1967int __init amd_iommu_init_dma_ops(void)
1968{
1969 struct amd_iommu *iommu;
6631ee9d
JR
1970 int ret;
1971
431b2a20
JR
1972 /*
1973 * first allocate a default protection domain for every IOMMU we
1974 * found in the system. Devices not assigned to any other
1975 * protection domain will be assigned to the default one.
1976 */
3bd22172 1977 for_each_iommu(iommu) {
d9cfed92 1978 iommu->default_dom = dma_ops_domain_alloc(iommu);
6631ee9d
JR
1979 if (iommu->default_dom == NULL)
1980 return -ENOMEM;
e2dc14a2 1981 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
6631ee9d
JR
1982 ret = iommu_init_unity_mappings(iommu);
1983 if (ret)
1984 goto free_domains;
1985 }
1986
431b2a20
JR
1987 /*
1988 * If device isolation is enabled, pre-allocate the protection
1989 * domains for each device.
1990 */
6631ee9d
JR
1991 if (amd_iommu_isolate)
1992 prealloc_protection_domains();
1993
1994 iommu_detected = 1;
1995 force_iommu = 1;
1996 bad_dma_address = 0;
92af4e29 1997#ifdef CONFIG_GART_IOMMU
6631ee9d
JR
1998 gart_iommu_aperture_disabled = 1;
1999 gart_iommu_aperture = 0;
92af4e29 2000#endif
6631ee9d 2001
431b2a20 2002 /* Make the driver finally visible to the drivers */
6631ee9d
JR
2003 dma_ops = &amd_iommu_dma_ops;
2004
26961efe 2005 register_iommu(&amd_iommu_ops);
26961efe 2006
e275a2a0
JR
2007 bus_register_notifier(&pci_bus_type, &device_nb);
2008
7f26508b
JR
2009 amd_iommu_stats_init();
2010
6631ee9d
JR
2011 return 0;
2012
2013free_domains:
2014
3bd22172 2015 for_each_iommu(iommu) {
6631ee9d
JR
2016 if (iommu->default_dom)
2017 dma_ops_domain_free(iommu->default_dom);
2018 }
2019
2020 return ret;
2021}
6d98cd80
JR
2022
2023/*****************************************************************************
2024 *
2025 * The following functions belong to the exported interface of AMD IOMMU
2026 *
2027 * This interface allows access to lower level functions of the IOMMU
2028 * like protection domain handling and assignement of devices to domains
2029 * which is not possible with the dma_ops interface.
2030 *
2031 *****************************************************************************/
2032
6d98cd80
JR
2033static void cleanup_domain(struct protection_domain *domain)
2034{
2035 unsigned long flags;
2036 u16 devid;
2037
2038 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2039
2040 for (devid = 0; devid <= amd_iommu_last_bdf; ++devid)
2041 if (amd_iommu_pd_table[devid] == domain)
2042 __detach_device(domain, devid);
2043
2044 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2045}
2046
c156e347
JR
2047static int amd_iommu_domain_init(struct iommu_domain *dom)
2048{
2049 struct protection_domain *domain;
2050
2051 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2052 if (!domain)
2053 return -ENOMEM;
2054
2055 spin_lock_init(&domain->lock);
2056 domain->mode = PAGE_MODE_3_LEVEL;
2057 domain->id = domain_id_alloc();
2058 if (!domain->id)
2059 goto out_free;
2060 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2061 if (!domain->pt_root)
2062 goto out_free;
2063
2064 dom->priv = domain;
2065
2066 return 0;
2067
2068out_free:
2069 kfree(domain);
2070
2071 return -ENOMEM;
2072}
2073
98383fc3
JR
2074static void amd_iommu_domain_destroy(struct iommu_domain *dom)
2075{
2076 struct protection_domain *domain = dom->priv;
2077
2078 if (!domain)
2079 return;
2080
2081 if (domain->dev_cnt > 0)
2082 cleanup_domain(domain);
2083
2084 BUG_ON(domain->dev_cnt != 0);
2085
2086 free_pagetable(domain);
2087
2088 domain_id_free(domain->id);
2089
2090 kfree(domain);
2091
2092 dom->priv = NULL;
2093}
2094
684f2888
JR
2095static void amd_iommu_detach_device(struct iommu_domain *dom,
2096 struct device *dev)
2097{
2098 struct protection_domain *domain = dom->priv;
2099 struct amd_iommu *iommu;
2100 struct pci_dev *pdev;
2101 u16 devid;
2102
2103 if (dev->bus != &pci_bus_type)
2104 return;
2105
2106 pdev = to_pci_dev(dev);
2107
2108 devid = calc_devid(pdev->bus->number, pdev->devfn);
2109
2110 if (devid > 0)
2111 detach_device(domain, devid);
2112
2113 iommu = amd_iommu_rlookup_table[devid];
2114 if (!iommu)
2115 return;
2116
2117 iommu_queue_inv_dev_entry(iommu, devid);
2118 iommu_completion_wait(iommu);
2119}
2120
01106066
JR
2121static int amd_iommu_attach_device(struct iommu_domain *dom,
2122 struct device *dev)
2123{
2124 struct protection_domain *domain = dom->priv;
2125 struct protection_domain *old_domain;
2126 struct amd_iommu *iommu;
2127 struct pci_dev *pdev;
2128 u16 devid;
2129
2130 if (dev->bus != &pci_bus_type)
2131 return -EINVAL;
2132
2133 pdev = to_pci_dev(dev);
2134
2135 devid = calc_devid(pdev->bus->number, pdev->devfn);
2136
2137 if (devid >= amd_iommu_last_bdf ||
2138 devid != amd_iommu_alias_table[devid])
2139 return -EINVAL;
2140
2141 iommu = amd_iommu_rlookup_table[devid];
2142 if (!iommu)
2143 return -EINVAL;
2144
2145 old_domain = domain_for_device(devid);
2146 if (old_domain)
71ff3bca 2147 detach_device(old_domain, devid);
01106066
JR
2148
2149 attach_device(iommu, domain, devid);
2150
2151 iommu_completion_wait(iommu);
2152
2153 return 0;
2154}
2155
c6229ca6
JR
2156static int amd_iommu_map_range(struct iommu_domain *dom,
2157 unsigned long iova, phys_addr_t paddr,
2158 size_t size, int iommu_prot)
2159{
2160 struct protection_domain *domain = dom->priv;
2161 unsigned long i, npages = iommu_num_pages(paddr, size, PAGE_SIZE);
2162 int prot = 0;
2163 int ret;
2164
2165 if (iommu_prot & IOMMU_READ)
2166 prot |= IOMMU_PROT_IR;
2167 if (iommu_prot & IOMMU_WRITE)
2168 prot |= IOMMU_PROT_IW;
2169
2170 iova &= PAGE_MASK;
2171 paddr &= PAGE_MASK;
2172
2173 for (i = 0; i < npages; ++i) {
2174 ret = iommu_map_page(domain, iova, paddr, prot);
2175 if (ret)
2176 return ret;
2177
2178 iova += PAGE_SIZE;
2179 paddr += PAGE_SIZE;
2180 }
2181
2182 return 0;
2183}
2184
eb74ff6c
JR
2185static void amd_iommu_unmap_range(struct iommu_domain *dom,
2186 unsigned long iova, size_t size)
2187{
2188
2189 struct protection_domain *domain = dom->priv;
2190 unsigned long i, npages = iommu_num_pages(iova, size, PAGE_SIZE);
2191
2192 iova &= PAGE_MASK;
2193
2194 for (i = 0; i < npages; ++i) {
2195 iommu_unmap_page(domain, iova);
2196 iova += PAGE_SIZE;
2197 }
2198
2199 iommu_flush_domain(domain->id);
2200}
2201
645c4c8d
JR
2202static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2203 unsigned long iova)
2204{
2205 struct protection_domain *domain = dom->priv;
2206 unsigned long offset = iova & ~PAGE_MASK;
2207 phys_addr_t paddr;
2208 u64 *pte;
2209
a6d41a40 2210 pte = fetch_pte(domain, iova);
645c4c8d 2211
a6d41a40 2212 if (!pte || !IOMMU_PTE_PRESENT(*pte))
645c4c8d
JR
2213 return 0;
2214
2215 paddr = *pte & IOMMU_PAGE_MASK;
2216 paddr |= offset;
2217
2218 return paddr;
2219}
2220
dbb9fd86
SY
2221static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
2222 unsigned long cap)
2223{
2224 return 0;
2225}
2226
26961efe
JR
2227static struct iommu_ops amd_iommu_ops = {
2228 .domain_init = amd_iommu_domain_init,
2229 .domain_destroy = amd_iommu_domain_destroy,
2230 .attach_dev = amd_iommu_attach_device,
2231 .detach_dev = amd_iommu_detach_device,
2232 .map = amd_iommu_map_range,
2233 .unmap = amd_iommu_unmap_range,
2234 .iova_to_phys = amd_iommu_iova_to_phys,
dbb9fd86 2235 .domain_has_cap = amd_iommu_domain_has_cap,
26961efe
JR
2236};
2237
This page took 0.36578 seconds and 5 git commands to generate.