x86/amd-iommu: Remove support for domain sharing
[deliverable/linux.git] / arch / x86 / kernel / amd_iommu.c
CommitLineData
b6c02715 1/*
bf3118c1 2 * Copyright (C) 2007-2009 Advanced Micro Devices, Inc.
b6c02715
JR
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/pci.h>
21#include <linux/gfp.h>
22#include <linux/bitops.h>
7f26508b 23#include <linux/debugfs.h>
b6c02715 24#include <linux/scatterlist.h>
51491367 25#include <linux/dma-mapping.h>
b6c02715 26#include <linux/iommu-helper.h>
c156e347 27#include <linux/iommu.h>
b6c02715 28#include <asm/proto.h>
46a7fa27 29#include <asm/iommu.h>
1d9b16d1 30#include <asm/gart.h>
6a9401a7 31#include <asm/amd_iommu_proto.h>
b6c02715 32#include <asm/amd_iommu_types.h>
c6da992e 33#include <asm/amd_iommu.h>
b6c02715
JR
34
35#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
36
136f78a1
JR
37#define EXIT_LOOP_COUNT 10000000
38
b6c02715
JR
39static DEFINE_RWLOCK(amd_iommu_devtable_lock);
40
bd60b735
JR
41/* A list of preallocated protection domains */
42static LIST_HEAD(iommu_pd_list);
43static DEFINE_SPINLOCK(iommu_pd_list_lock);
44
0feae533
JR
45/*
46 * Domain for untranslated devices - only allocated
47 * if iommu=pt passed on kernel cmd line.
48 */
49static struct protection_domain *pt_domain;
50
26961efe 51static struct iommu_ops amd_iommu_ops;
26961efe 52
431b2a20
JR
53/*
54 * general struct to manage commands send to an IOMMU
55 */
d6449536 56struct iommu_cmd {
b6c02715
JR
57 u32 data[4];
58};
59
a345b23b 60static void reset_iommu_command_buffer(struct amd_iommu *iommu);
04bfdd84 61static void update_domain(struct protection_domain *domain);
c1eee67b 62
15898bbc
JR
63/****************************************************************************
64 *
65 * Helper functions
66 *
67 ****************************************************************************/
68
69static inline u16 get_device_id(struct device *dev)
70{
71 struct pci_dev *pdev = to_pci_dev(dev);
72
73 return calc_devid(pdev->bus->number, pdev->devfn);
74}
75
71c70984
JR
76/*
77 * In this function the list of preallocated protection domains is traversed to
78 * find the domain for a specific device
79 */
80static struct dma_ops_domain *find_protection_domain(u16 devid)
81{
82 struct dma_ops_domain *entry, *ret = NULL;
83 unsigned long flags;
84 u16 alias = amd_iommu_alias_table[devid];
85
86 if (list_empty(&iommu_pd_list))
87 return NULL;
88
89 spin_lock_irqsave(&iommu_pd_list_lock, flags);
90
91 list_for_each_entry(entry, &iommu_pd_list, list) {
92 if (entry->target_dev == devid ||
93 entry->target_dev == alias) {
94 ret = entry;
95 break;
96 }
97 }
98
99 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
100
101 return ret;
102}
103
98fc5a69
JR
104/*
105 * This function checks if the driver got a valid device from the caller to
106 * avoid dereferencing invalid pointers.
107 */
108static bool check_device(struct device *dev)
109{
110 u16 devid;
111
112 if (!dev || !dev->dma_mask)
113 return false;
114
115 /* No device or no PCI device */
116 if (!dev || dev->bus != &pci_bus_type)
117 return false;
118
119 devid = get_device_id(dev);
120
121 /* Out of our scope? */
122 if (devid > amd_iommu_last_bdf)
123 return false;
124
125 if (amd_iommu_rlookup_table[devid] == NULL)
126 return false;
127
128 return true;
129}
130
7f26508b
JR
131#ifdef CONFIG_AMD_IOMMU_STATS
132
133/*
134 * Initialization code for statistics collection
135 */
136
da49f6df 137DECLARE_STATS_COUNTER(compl_wait);
0f2a86f2 138DECLARE_STATS_COUNTER(cnt_map_single);
146a6917 139DECLARE_STATS_COUNTER(cnt_unmap_single);
d03f067a 140DECLARE_STATS_COUNTER(cnt_map_sg);
55877a6b 141DECLARE_STATS_COUNTER(cnt_unmap_sg);
c8f0fb36 142DECLARE_STATS_COUNTER(cnt_alloc_coherent);
5d31ee7e 143DECLARE_STATS_COUNTER(cnt_free_coherent);
c1858976 144DECLARE_STATS_COUNTER(cross_page);
f57d98ae 145DECLARE_STATS_COUNTER(domain_flush_single);
18811f55 146DECLARE_STATS_COUNTER(domain_flush_all);
5774f7c5 147DECLARE_STATS_COUNTER(alloced_io_mem);
8ecaf8f1 148DECLARE_STATS_COUNTER(total_map_requests);
da49f6df 149
7f26508b 150static struct dentry *stats_dir;
7f26508b
JR
151static struct dentry *de_fflush;
152
153static void amd_iommu_stats_add(struct __iommu_counter *cnt)
154{
155 if (stats_dir == NULL)
156 return;
157
158 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
159 &cnt->value);
160}
161
162static void amd_iommu_stats_init(void)
163{
164 stats_dir = debugfs_create_dir("amd-iommu", NULL);
165 if (stats_dir == NULL)
166 return;
167
7f26508b
JR
168 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
169 (u32 *)&amd_iommu_unmap_flush);
da49f6df
JR
170
171 amd_iommu_stats_add(&compl_wait);
0f2a86f2 172 amd_iommu_stats_add(&cnt_map_single);
146a6917 173 amd_iommu_stats_add(&cnt_unmap_single);
d03f067a 174 amd_iommu_stats_add(&cnt_map_sg);
55877a6b 175 amd_iommu_stats_add(&cnt_unmap_sg);
c8f0fb36 176 amd_iommu_stats_add(&cnt_alloc_coherent);
5d31ee7e 177 amd_iommu_stats_add(&cnt_free_coherent);
c1858976 178 amd_iommu_stats_add(&cross_page);
f57d98ae 179 amd_iommu_stats_add(&domain_flush_single);
18811f55 180 amd_iommu_stats_add(&domain_flush_all);
5774f7c5 181 amd_iommu_stats_add(&alloced_io_mem);
8ecaf8f1 182 amd_iommu_stats_add(&total_map_requests);
7f26508b
JR
183}
184
185#endif
186
a80dc3e0
JR
187/****************************************************************************
188 *
189 * Interrupt handling functions
190 *
191 ****************************************************************************/
192
e3e59876
JR
193static void dump_dte_entry(u16 devid)
194{
195 int i;
196
197 for (i = 0; i < 8; ++i)
198 pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
199 amd_iommu_dev_table[devid].data[i]);
200}
201
945b4ac4
JR
202static void dump_command(unsigned long phys_addr)
203{
204 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
205 int i;
206
207 for (i = 0; i < 4; ++i)
208 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
209}
210
a345b23b 211static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
90008ee4
JR
212{
213 u32 *event = __evt;
214 int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
215 int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
216 int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
217 int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
218 u64 address = (u64)(((u64)event[3]) << 32) | event[2];
219
4c6f40d4 220 printk(KERN_ERR "AMD-Vi: Event logged [");
90008ee4
JR
221
222 switch (type) {
223 case EVENT_TYPE_ILL_DEV:
224 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
225 "address=0x%016llx flags=0x%04x]\n",
226 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
227 address, flags);
e3e59876 228 dump_dte_entry(devid);
90008ee4
JR
229 break;
230 case EVENT_TYPE_IO_FAULT:
231 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
232 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
233 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
234 domid, address, flags);
235 break;
236 case EVENT_TYPE_DEV_TAB_ERR:
237 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
238 "address=0x%016llx flags=0x%04x]\n",
239 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
240 address, flags);
241 break;
242 case EVENT_TYPE_PAGE_TAB_ERR:
243 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
244 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
245 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
246 domid, address, flags);
247 break;
248 case EVENT_TYPE_ILL_CMD:
249 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
a345b23b 250 reset_iommu_command_buffer(iommu);
945b4ac4 251 dump_command(address);
90008ee4
JR
252 break;
253 case EVENT_TYPE_CMD_HARD_ERR:
254 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
255 "flags=0x%04x]\n", address, flags);
256 break;
257 case EVENT_TYPE_IOTLB_INV_TO:
258 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
259 "address=0x%016llx]\n",
260 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
261 address);
262 break;
263 case EVENT_TYPE_INV_DEV_REQ:
264 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
265 "address=0x%016llx flags=0x%04x]\n",
266 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
267 address, flags);
268 break;
269 default:
270 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
271 }
272}
273
274static void iommu_poll_events(struct amd_iommu *iommu)
275{
276 u32 head, tail;
277 unsigned long flags;
278
279 spin_lock_irqsave(&iommu->lock, flags);
280
281 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
282 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
283
284 while (head != tail) {
a345b23b 285 iommu_print_event(iommu, iommu->evt_buf + head);
90008ee4
JR
286 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
287 }
288
289 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
290
291 spin_unlock_irqrestore(&iommu->lock, flags);
292}
293
a80dc3e0
JR
294irqreturn_t amd_iommu_int_handler(int irq, void *data)
295{
90008ee4
JR
296 struct amd_iommu *iommu;
297
3bd22172 298 for_each_iommu(iommu)
90008ee4
JR
299 iommu_poll_events(iommu);
300
301 return IRQ_HANDLED;
a80dc3e0
JR
302}
303
431b2a20
JR
304/****************************************************************************
305 *
306 * IOMMU command queuing functions
307 *
308 ****************************************************************************/
309
310/*
311 * Writes the command to the IOMMUs command buffer and informs the
312 * hardware about the new command. Must be called with iommu->lock held.
313 */
d6449536 314static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
315{
316 u32 tail, head;
317 u8 *target;
318
319 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
8a7c5ef3 320 target = iommu->cmd_buf + tail;
a19ae1ec
JR
321 memcpy_toio(target, cmd, sizeof(*cmd));
322 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
323 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
324 if (tail == head)
325 return -ENOMEM;
326 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
327
328 return 0;
329}
330
431b2a20
JR
331/*
332 * General queuing function for commands. Takes iommu->lock and calls
333 * __iommu_queue_command().
334 */
d6449536 335static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
336{
337 unsigned long flags;
338 int ret;
339
340 spin_lock_irqsave(&iommu->lock, flags);
341 ret = __iommu_queue_command(iommu, cmd);
09ee17eb 342 if (!ret)
0cfd7aa9 343 iommu->need_sync = true;
a19ae1ec
JR
344 spin_unlock_irqrestore(&iommu->lock, flags);
345
346 return ret;
347}
348
8d201968
JR
349/*
350 * This function waits until an IOMMU has completed a completion
351 * wait command
352 */
353static void __iommu_wait_for_completion(struct amd_iommu *iommu)
354{
355 int ready = 0;
356 unsigned status = 0;
357 unsigned long i = 0;
358
da49f6df
JR
359 INC_STATS_COUNTER(compl_wait);
360
8d201968
JR
361 while (!ready && (i < EXIT_LOOP_COUNT)) {
362 ++i;
363 /* wait for the bit to become one */
364 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
365 ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
366 }
367
368 /* set bit back to zero */
369 status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
370 writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);
371
6a1eddd2
JR
372 if (unlikely(i == EXIT_LOOP_COUNT)) {
373 spin_unlock(&iommu->lock);
374 reset_iommu_command_buffer(iommu);
375 spin_lock(&iommu->lock);
376 }
8d201968
JR
377}
378
379/*
380 * This function queues a completion wait command into the command
381 * buffer of an IOMMU
382 */
383static int __iommu_completion_wait(struct amd_iommu *iommu)
384{
385 struct iommu_cmd cmd;
386
387 memset(&cmd, 0, sizeof(cmd));
388 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
389 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);
390
391 return __iommu_queue_command(iommu, &cmd);
392}
393
431b2a20
JR
394/*
395 * This function is called whenever we need to ensure that the IOMMU has
396 * completed execution of all commands we sent. It sends a
397 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
398 * us about that by writing a value to a physical address we pass with
399 * the command.
400 */
a19ae1ec
JR
401static int iommu_completion_wait(struct amd_iommu *iommu)
402{
8d201968
JR
403 int ret = 0;
404 unsigned long flags;
a19ae1ec 405
7e4f88da
JR
406 spin_lock_irqsave(&iommu->lock, flags);
407
09ee17eb
JR
408 if (!iommu->need_sync)
409 goto out;
410
8d201968 411 ret = __iommu_completion_wait(iommu);
09ee17eb 412
0cfd7aa9 413 iommu->need_sync = false;
a19ae1ec
JR
414
415 if (ret)
7e4f88da 416 goto out;
a19ae1ec 417
8d201968 418 __iommu_wait_for_completion(iommu);
84df8175 419
7e4f88da
JR
420out:
421 spin_unlock_irqrestore(&iommu->lock, flags);
a19ae1ec
JR
422
423 return 0;
424}
425
0518a3a4
JR
426static void iommu_flush_complete(struct protection_domain *domain)
427{
428 int i;
429
430 for (i = 0; i < amd_iommus_present; ++i) {
431 if (!domain->dev_iommu[i])
432 continue;
433
434 /*
435 * Devices of this domain are behind this IOMMU
436 * We need to wait for completion of all commands.
437 */
438 iommu_completion_wait(amd_iommus[i]);
439 }
440}
441
431b2a20
JR
442/*
443 * Command send function for invalidating a device table entry
444 */
a19ae1ec
JR
445static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
446{
d6449536 447 struct iommu_cmd cmd;
ee2fa743 448 int ret;
a19ae1ec
JR
449
450 BUG_ON(iommu == NULL);
451
452 memset(&cmd, 0, sizeof(cmd));
453 CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
454 cmd.data[0] = devid;
455
ee2fa743
JR
456 ret = iommu_queue_command(iommu, &cmd);
457
ee2fa743 458 return ret;
a19ae1ec
JR
459}
460
237b6f33
JR
461static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
462 u16 domid, int pde, int s)
463{
464 memset(cmd, 0, sizeof(*cmd));
465 address &= PAGE_MASK;
466 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
467 cmd->data[1] |= domid;
468 cmd->data[2] = lower_32_bits(address);
469 cmd->data[3] = upper_32_bits(address);
470 if (s) /* size bit - we flush more than one 4kb page */
471 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
472 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
473 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
474}
475
431b2a20
JR
476/*
477 * Generic command send function for invalidaing TLB entries
478 */
a19ae1ec
JR
479static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
480 u64 address, u16 domid, int pde, int s)
481{
d6449536 482 struct iommu_cmd cmd;
ee2fa743 483 int ret;
a19ae1ec 484
237b6f33 485 __iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
a19ae1ec 486
ee2fa743
JR
487 ret = iommu_queue_command(iommu, &cmd);
488
ee2fa743 489 return ret;
a19ae1ec
JR
490}
491
431b2a20
JR
492/*
493 * TLB invalidation function which is called from the mapping functions.
494 * It invalidates a single PTE if the range to flush is within a single
495 * page. Otherwise it flushes the whole TLB of the IOMMU.
496 */
6de8ad9b
JR
497static void __iommu_flush_pages(struct protection_domain *domain,
498 u64 address, size_t size, int pde)
a19ae1ec 499{
6de8ad9b 500 int s = 0, i;
dcd1e92e 501 unsigned long pages = iommu_num_pages(address, size, PAGE_SIZE);
a19ae1ec
JR
502
503 address &= PAGE_MASK;
504
999ba417
JR
505 if (pages > 1) {
506 /*
507 * If we have to flush more than one page, flush all
508 * TLB entries for this domain
509 */
510 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
511 s = 1;
a19ae1ec
JR
512 }
513
999ba417 514
6de8ad9b
JR
515 for (i = 0; i < amd_iommus_present; ++i) {
516 if (!domain->dev_iommu[i])
517 continue;
518
519 /*
520 * Devices of this domain are behind this IOMMU
521 * We need a TLB flush
522 */
523 iommu_queue_inv_iommu_pages(amd_iommus[i], address,
524 domain->id, pde, s);
525 }
526
527 return;
528}
529
530static void iommu_flush_pages(struct protection_domain *domain,
531 u64 address, size_t size)
532{
533 __iommu_flush_pages(domain, address, size, 0);
a19ae1ec 534}
b6c02715 535
1c655773 536/* Flush the whole IO/TLB for a given protection domain */
dcd1e92e 537static void iommu_flush_tlb(struct protection_domain *domain)
1c655773 538{
dcd1e92e 539 __iommu_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1c655773
JR
540}
541
42a49f96 542/* Flush the whole IO/TLB for a given protection domain - including PDE */
dcd1e92e 543static void iommu_flush_tlb_pde(struct protection_domain *domain)
42a49f96 544{
dcd1e92e 545 __iommu_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
42a49f96
CW
546}
547
43f49609 548/*
09b42804 549 * This function flushes all domains that have devices on the given IOMMU
43f49609 550 */
09b42804 551static void flush_all_domains_on_iommu(struct amd_iommu *iommu)
43f49609 552{
09b42804
JR
553 u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
554 struct protection_domain *domain;
e394d72a 555 unsigned long flags;
18811f55 556
09b42804 557 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
bfd1be18 558
09b42804
JR
559 list_for_each_entry(domain, &amd_iommu_pd_list, list) {
560 if (domain->dev_iommu[iommu->index] == 0)
bfd1be18 561 continue;
09b42804
JR
562
563 spin_lock(&domain->lock);
564 iommu_queue_inv_iommu_pages(iommu, address, domain->id, 1, 1);
565 iommu_flush_complete(domain);
566 spin_unlock(&domain->lock);
bfd1be18 567 }
e394d72a 568
09b42804 569 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
e394d72a
JR
570}
571
09b42804
JR
572/*
573 * This function uses heavy locking and may disable irqs for some time. But
574 * this is no issue because it is only called during resume.
575 */
bfd1be18 576void amd_iommu_flush_all_domains(void)
e394d72a 577{
e3306664 578 struct protection_domain *domain;
09b42804
JR
579 unsigned long flags;
580
581 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
e394d72a 582
e3306664 583 list_for_each_entry(domain, &amd_iommu_pd_list, list) {
09b42804 584 spin_lock(&domain->lock);
e3306664
JR
585 iommu_flush_tlb_pde(domain);
586 iommu_flush_complete(domain);
09b42804 587 spin_unlock(&domain->lock);
e3306664 588 }
09b42804
JR
589
590 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
bfd1be18
JR
591}
592
d586d785 593static void flush_all_devices_for_iommu(struct amd_iommu *iommu)
bfd1be18
JR
594{
595 int i;
596
d586d785
JR
597 for (i = 0; i <= amd_iommu_last_bdf; ++i) {
598 if (iommu != amd_iommu_rlookup_table[i])
bfd1be18 599 continue;
d586d785
JR
600
601 iommu_queue_inv_dev_entry(iommu, i);
602 iommu_completion_wait(iommu);
bfd1be18
JR
603 }
604}
605
6a0dbcbe 606static void flush_devices_by_domain(struct protection_domain *domain)
7d7a110c
JR
607{
608 struct amd_iommu *iommu;
609 int i;
610
611 for (i = 0; i <= amd_iommu_last_bdf; ++i) {
6a0dbcbe
JR
612 if ((domain == NULL && amd_iommu_pd_table[i] == NULL) ||
613 (amd_iommu_pd_table[i] != domain))
7d7a110c
JR
614 continue;
615
616 iommu = amd_iommu_rlookup_table[i];
617 if (!iommu)
618 continue;
619
620 iommu_queue_inv_dev_entry(iommu, i);
621 iommu_completion_wait(iommu);
622 }
623}
624
a345b23b
JR
625static void reset_iommu_command_buffer(struct amd_iommu *iommu)
626{
627 pr_err("AMD-Vi: Resetting IOMMU command buffer\n");
628
b26e81b8
JR
629 if (iommu->reset_in_progress)
630 panic("AMD-Vi: ILLEGAL_COMMAND_ERROR while resetting command buffer\n");
631
632 iommu->reset_in_progress = true;
633
a345b23b
JR
634 amd_iommu_reset_cmd_buffer(iommu);
635 flush_all_devices_for_iommu(iommu);
636 flush_all_domains_on_iommu(iommu);
b26e81b8
JR
637
638 iommu->reset_in_progress = false;
a345b23b
JR
639}
640
6a0dbcbe
JR
641void amd_iommu_flush_all_devices(void)
642{
643 flush_devices_by_domain(NULL);
644}
645
431b2a20
JR
646/****************************************************************************
647 *
648 * The functions below are used the create the page table mappings for
649 * unity mapped regions.
650 *
651 ****************************************************************************/
652
308973d3
JR
653/*
654 * This function is used to add another level to an IO page table. Adding
655 * another level increases the size of the address space by 9 bits to a size up
656 * to 64 bits.
657 */
658static bool increase_address_space(struct protection_domain *domain,
659 gfp_t gfp)
660{
661 u64 *pte;
662
663 if (domain->mode == PAGE_MODE_6_LEVEL)
664 /* address space already 64 bit large */
665 return false;
666
667 pte = (void *)get_zeroed_page(gfp);
668 if (!pte)
669 return false;
670
671 *pte = PM_LEVEL_PDE(domain->mode,
672 virt_to_phys(domain->pt_root));
673 domain->pt_root = pte;
674 domain->mode += 1;
675 domain->updated = true;
676
677 return true;
678}
679
680static u64 *alloc_pte(struct protection_domain *domain,
681 unsigned long address,
682 int end_lvl,
683 u64 **pte_page,
684 gfp_t gfp)
685{
686 u64 *pte, *page;
687 int level;
688
689 while (address > PM_LEVEL_SIZE(domain->mode))
690 increase_address_space(domain, gfp);
691
692 level = domain->mode - 1;
693 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
694
695 while (level > end_lvl) {
696 if (!IOMMU_PTE_PRESENT(*pte)) {
697 page = (u64 *)get_zeroed_page(gfp);
698 if (!page)
699 return NULL;
700 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
701 }
702
703 level -= 1;
704
705 pte = IOMMU_PTE_PAGE(*pte);
706
707 if (pte_page && level == end_lvl)
708 *pte_page = pte;
709
710 pte = &pte[PM_LEVEL_INDEX(level, address)];
711 }
712
713 return pte;
714}
715
716/*
717 * This function checks if there is a PTE for a given dma address. If
718 * there is one, it returns the pointer to it.
719 */
720static u64 *fetch_pte(struct protection_domain *domain,
721 unsigned long address, int map_size)
722{
723 int level;
724 u64 *pte;
725
726 level = domain->mode - 1;
727 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
728
729 while (level > map_size) {
730 if (!IOMMU_PTE_PRESENT(*pte))
731 return NULL;
732
733 level -= 1;
734
735 pte = IOMMU_PTE_PAGE(*pte);
736 pte = &pte[PM_LEVEL_INDEX(level, address)];
737
738 if ((PM_PTE_LEVEL(*pte) == 0) && level != map_size) {
739 pte = NULL;
740 break;
741 }
742 }
743
744 return pte;
745}
746
431b2a20
JR
747/*
748 * Generic mapping functions. It maps a physical address into a DMA
749 * address space. It allocates the page table pages if necessary.
750 * In the future it can be extended to a generic mapping function
751 * supporting all features of AMD IOMMU page tables like level skipping
752 * and full 64 bit address spaces.
753 */
38e817fe
JR
754static int iommu_map_page(struct protection_domain *dom,
755 unsigned long bus_addr,
756 unsigned long phys_addr,
abdc5eb3
JR
757 int prot,
758 int map_size)
bd0e5211 759{
8bda3092 760 u64 __pte, *pte;
bd0e5211
JR
761
762 bus_addr = PAGE_ALIGN(bus_addr);
bb9d4ff8 763 phys_addr = PAGE_ALIGN(phys_addr);
bd0e5211 764
abdc5eb3
JR
765 BUG_ON(!PM_ALIGNED(map_size, bus_addr));
766 BUG_ON(!PM_ALIGNED(map_size, phys_addr));
767
bad1cac2 768 if (!(prot & IOMMU_PROT_MASK))
bd0e5211
JR
769 return -EINVAL;
770
abdc5eb3 771 pte = alloc_pte(dom, bus_addr, map_size, NULL, GFP_KERNEL);
bd0e5211
JR
772
773 if (IOMMU_PTE_PRESENT(*pte))
774 return -EBUSY;
775
776 __pte = phys_addr | IOMMU_PTE_P;
777 if (prot & IOMMU_PROT_IR)
778 __pte |= IOMMU_PTE_IR;
779 if (prot & IOMMU_PROT_IW)
780 __pte |= IOMMU_PTE_IW;
781
782 *pte = __pte;
783
04bfdd84
JR
784 update_domain(dom);
785
bd0e5211
JR
786 return 0;
787}
788
eb74ff6c 789static void iommu_unmap_page(struct protection_domain *dom,
a6b256b4 790 unsigned long bus_addr, int map_size)
eb74ff6c 791{
a6b256b4 792 u64 *pte = fetch_pte(dom, bus_addr, map_size);
eb74ff6c 793
38a76eee
JR
794 if (pte)
795 *pte = 0;
eb74ff6c 796}
eb74ff6c 797
431b2a20
JR
798/*
799 * This function checks if a specific unity mapping entry is needed for
800 * this specific IOMMU.
801 */
bd0e5211
JR
802static int iommu_for_unity_map(struct amd_iommu *iommu,
803 struct unity_map_entry *entry)
804{
805 u16 bdf, i;
806
807 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
808 bdf = amd_iommu_alias_table[i];
809 if (amd_iommu_rlookup_table[bdf] == iommu)
810 return 1;
811 }
812
813 return 0;
814}
815
431b2a20
JR
816/*
817 * This function actually applies the mapping to the page table of the
818 * dma_ops domain.
819 */
bd0e5211
JR
820static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
821 struct unity_map_entry *e)
822{
823 u64 addr;
824 int ret;
825
826 for (addr = e->address_start; addr < e->address_end;
827 addr += PAGE_SIZE) {
abdc5eb3
JR
828 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
829 PM_MAP_4k);
bd0e5211
JR
830 if (ret)
831 return ret;
832 /*
833 * if unity mapping is in aperture range mark the page
834 * as allocated in the aperture
835 */
836 if (addr < dma_dom->aperture_size)
c3239567 837 __set_bit(addr >> PAGE_SHIFT,
384de729 838 dma_dom->aperture[0]->bitmap);
bd0e5211
JR
839 }
840
841 return 0;
842}
843
171e7b37
JR
844/*
845 * Init the unity mappings for a specific IOMMU in the system
846 *
847 * Basically iterates over all unity mapping entries and applies them to
848 * the default domain DMA of that IOMMU if necessary.
849 */
850static int iommu_init_unity_mappings(struct amd_iommu *iommu)
851{
852 struct unity_map_entry *entry;
853 int ret;
854
855 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
856 if (!iommu_for_unity_map(iommu, entry))
857 continue;
858 ret = dma_ops_unity_map(iommu->default_dom, entry);
859 if (ret)
860 return ret;
861 }
862
863 return 0;
864}
865
431b2a20
JR
866/*
867 * Inits the unity mappings required for a specific device
868 */
bd0e5211
JR
869static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
870 u16 devid)
871{
872 struct unity_map_entry *e;
873 int ret;
874
875 list_for_each_entry(e, &amd_iommu_unity_map, list) {
876 if (!(devid >= e->devid_start && devid <= e->devid_end))
877 continue;
878 ret = dma_ops_unity_map(dma_dom, e);
879 if (ret)
880 return ret;
881 }
882
883 return 0;
884}
885
431b2a20
JR
886/****************************************************************************
887 *
888 * The next functions belong to the address allocator for the dma_ops
889 * interface functions. They work like the allocators in the other IOMMU
890 * drivers. Its basically a bitmap which marks the allocated pages in
891 * the aperture. Maybe it could be enhanced in the future to a more
892 * efficient allocator.
893 *
894 ****************************************************************************/
d3086444 895
431b2a20 896/*
384de729 897 * The address allocator core functions.
431b2a20
JR
898 *
899 * called with domain->lock held
900 */
384de729 901
171e7b37
JR
902/*
903 * Used to reserve address ranges in the aperture (e.g. for exclusion
904 * ranges.
905 */
906static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
907 unsigned long start_page,
908 unsigned int pages)
909{
910 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
911
912 if (start_page + pages > last_page)
913 pages = last_page - start_page;
914
915 for (i = start_page; i < start_page + pages; ++i) {
916 int index = i / APERTURE_RANGE_PAGES;
917 int page = i % APERTURE_RANGE_PAGES;
918 __set_bit(page, dom->aperture[index]->bitmap);
919 }
920}
921
9cabe89b
JR
922/*
923 * This function is used to add a new aperture range to an existing
924 * aperture in case of dma_ops domain allocation or address allocation
925 * failure.
926 */
576175c2 927static int alloc_new_range(struct dma_ops_domain *dma_dom,
9cabe89b
JR
928 bool populate, gfp_t gfp)
929{
930 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
576175c2 931 struct amd_iommu *iommu;
00cd122a 932 int i;
9cabe89b 933
f5e9705c
JR
934#ifdef CONFIG_IOMMU_STRESS
935 populate = false;
936#endif
937
9cabe89b
JR
938 if (index >= APERTURE_MAX_RANGES)
939 return -ENOMEM;
940
941 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
942 if (!dma_dom->aperture[index])
943 return -ENOMEM;
944
945 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
946 if (!dma_dom->aperture[index]->bitmap)
947 goto out_free;
948
949 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
950
951 if (populate) {
952 unsigned long address = dma_dom->aperture_size;
953 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
954 u64 *pte, *pte_page;
955
956 for (i = 0; i < num_ptes; ++i) {
abdc5eb3 957 pte = alloc_pte(&dma_dom->domain, address, PM_MAP_4k,
9cabe89b
JR
958 &pte_page, gfp);
959 if (!pte)
960 goto out_free;
961
962 dma_dom->aperture[index]->pte_pages[i] = pte_page;
963
964 address += APERTURE_RANGE_SIZE / 64;
965 }
966 }
967
968 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
969
00cd122a 970 /* Intialize the exclusion range if necessary */
576175c2
JR
971 for_each_iommu(iommu) {
972 if (iommu->exclusion_start &&
973 iommu->exclusion_start >= dma_dom->aperture[index]->offset
974 && iommu->exclusion_start < dma_dom->aperture_size) {
975 unsigned long startpage;
976 int pages = iommu_num_pages(iommu->exclusion_start,
977 iommu->exclusion_length,
978 PAGE_SIZE);
979 startpage = iommu->exclusion_start >> PAGE_SHIFT;
980 dma_ops_reserve_addresses(dma_dom, startpage, pages);
981 }
00cd122a
JR
982 }
983
984 /*
985 * Check for areas already mapped as present in the new aperture
986 * range and mark those pages as reserved in the allocator. Such
987 * mappings may already exist as a result of requested unity
988 * mappings for devices.
989 */
990 for (i = dma_dom->aperture[index]->offset;
991 i < dma_dom->aperture_size;
992 i += PAGE_SIZE) {
a6b256b4 993 u64 *pte = fetch_pte(&dma_dom->domain, i, PM_MAP_4k);
00cd122a
JR
994 if (!pte || !IOMMU_PTE_PRESENT(*pte))
995 continue;
996
997 dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
998 }
999
04bfdd84
JR
1000 update_domain(&dma_dom->domain);
1001
9cabe89b
JR
1002 return 0;
1003
1004out_free:
04bfdd84
JR
1005 update_domain(&dma_dom->domain);
1006
9cabe89b
JR
1007 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1008
1009 kfree(dma_dom->aperture[index]);
1010 dma_dom->aperture[index] = NULL;
1011
1012 return -ENOMEM;
1013}
1014
384de729
JR
1015static unsigned long dma_ops_area_alloc(struct device *dev,
1016 struct dma_ops_domain *dom,
1017 unsigned int pages,
1018 unsigned long align_mask,
1019 u64 dma_mask,
1020 unsigned long start)
1021{
803b8cb4 1022 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
384de729
JR
1023 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1024 int i = start >> APERTURE_RANGE_SHIFT;
1025 unsigned long boundary_size;
1026 unsigned long address = -1;
1027 unsigned long limit;
1028
803b8cb4
JR
1029 next_bit >>= PAGE_SHIFT;
1030
384de729
JR
1031 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1032 PAGE_SIZE) >> PAGE_SHIFT;
1033
1034 for (;i < max_index; ++i) {
1035 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1036
1037 if (dom->aperture[i]->offset >= dma_mask)
1038 break;
1039
1040 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1041 dma_mask >> PAGE_SHIFT);
1042
1043 address = iommu_area_alloc(dom->aperture[i]->bitmap,
1044 limit, next_bit, pages, 0,
1045 boundary_size, align_mask);
1046 if (address != -1) {
1047 address = dom->aperture[i]->offset +
1048 (address << PAGE_SHIFT);
803b8cb4 1049 dom->next_address = address + (pages << PAGE_SHIFT);
384de729
JR
1050 break;
1051 }
1052
1053 next_bit = 0;
1054 }
1055
1056 return address;
1057}
1058
d3086444
JR
1059static unsigned long dma_ops_alloc_addresses(struct device *dev,
1060 struct dma_ops_domain *dom,
6d4f343f 1061 unsigned int pages,
832a90c3
JR
1062 unsigned long align_mask,
1063 u64 dma_mask)
d3086444 1064{
d3086444 1065 unsigned long address;
d3086444 1066
fe16f088
JR
1067#ifdef CONFIG_IOMMU_STRESS
1068 dom->next_address = 0;
1069 dom->need_flush = true;
1070#endif
d3086444 1071
384de729 1072 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
803b8cb4 1073 dma_mask, dom->next_address);
d3086444 1074
1c655773 1075 if (address == -1) {
803b8cb4 1076 dom->next_address = 0;
384de729
JR
1077 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1078 dma_mask, 0);
1c655773
JR
1079 dom->need_flush = true;
1080 }
d3086444 1081
384de729 1082 if (unlikely(address == -1))
8fd524b3 1083 address = DMA_ERROR_CODE;
d3086444
JR
1084
1085 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1086
1087 return address;
1088}
1089
431b2a20
JR
1090/*
1091 * The address free function.
1092 *
1093 * called with domain->lock held
1094 */
d3086444
JR
1095static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1096 unsigned long address,
1097 unsigned int pages)
1098{
384de729
JR
1099 unsigned i = address >> APERTURE_RANGE_SHIFT;
1100 struct aperture_range *range = dom->aperture[i];
80be308d 1101
384de729
JR
1102 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1103
47bccd6b
JR
1104#ifdef CONFIG_IOMMU_STRESS
1105 if (i < 4)
1106 return;
1107#endif
80be308d 1108
803b8cb4 1109 if (address >= dom->next_address)
80be308d 1110 dom->need_flush = true;
384de729
JR
1111
1112 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
803b8cb4 1113
384de729
JR
1114 iommu_area_free(range->bitmap, address, pages);
1115
d3086444
JR
1116}
1117
431b2a20
JR
1118/****************************************************************************
1119 *
1120 * The next functions belong to the domain allocation. A domain is
1121 * allocated for every IOMMU as the default domain. If device isolation
1122 * is enabled, every device get its own domain. The most important thing
1123 * about domains is the page table mapping the DMA address space they
1124 * contain.
1125 *
1126 ****************************************************************************/
1127
aeb26f55
JR
1128/*
1129 * This function adds a protection domain to the global protection domain list
1130 */
1131static void add_domain_to_list(struct protection_domain *domain)
1132{
1133 unsigned long flags;
1134
1135 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1136 list_add(&domain->list, &amd_iommu_pd_list);
1137 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1138}
1139
1140/*
1141 * This function removes a protection domain to the global
1142 * protection domain list
1143 */
1144static void del_domain_from_list(struct protection_domain *domain)
1145{
1146 unsigned long flags;
1147
1148 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1149 list_del(&domain->list);
1150 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1151}
1152
ec487d1a
JR
1153static u16 domain_id_alloc(void)
1154{
1155 unsigned long flags;
1156 int id;
1157
1158 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1159 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1160 BUG_ON(id == 0);
1161 if (id > 0 && id < MAX_DOMAIN_ID)
1162 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1163 else
1164 id = 0;
1165 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1166
1167 return id;
1168}
1169
a2acfb75
JR
1170static void domain_id_free(int id)
1171{
1172 unsigned long flags;
1173
1174 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1175 if (id > 0 && id < MAX_DOMAIN_ID)
1176 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1177 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1178}
a2acfb75 1179
86db2e5d 1180static void free_pagetable(struct protection_domain *domain)
ec487d1a
JR
1181{
1182 int i, j;
1183 u64 *p1, *p2, *p3;
1184
86db2e5d 1185 p1 = domain->pt_root;
ec487d1a
JR
1186
1187 if (!p1)
1188 return;
1189
1190 for (i = 0; i < 512; ++i) {
1191 if (!IOMMU_PTE_PRESENT(p1[i]))
1192 continue;
1193
1194 p2 = IOMMU_PTE_PAGE(p1[i]);
3cc3d84b 1195 for (j = 0; j < 512; ++j) {
ec487d1a
JR
1196 if (!IOMMU_PTE_PRESENT(p2[j]))
1197 continue;
1198 p3 = IOMMU_PTE_PAGE(p2[j]);
1199 free_page((unsigned long)p3);
1200 }
1201
1202 free_page((unsigned long)p2);
1203 }
1204
1205 free_page((unsigned long)p1);
86db2e5d
JR
1206
1207 domain->pt_root = NULL;
ec487d1a
JR
1208}
1209
431b2a20
JR
1210/*
1211 * Free a domain, only used if something went wrong in the
1212 * allocation path and we need to free an already allocated page table
1213 */
ec487d1a
JR
1214static void dma_ops_domain_free(struct dma_ops_domain *dom)
1215{
384de729
JR
1216 int i;
1217
ec487d1a
JR
1218 if (!dom)
1219 return;
1220
aeb26f55
JR
1221 del_domain_from_list(&dom->domain);
1222
86db2e5d 1223 free_pagetable(&dom->domain);
ec487d1a 1224
384de729
JR
1225 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1226 if (!dom->aperture[i])
1227 continue;
1228 free_page((unsigned long)dom->aperture[i]->bitmap);
1229 kfree(dom->aperture[i]);
1230 }
ec487d1a
JR
1231
1232 kfree(dom);
1233}
1234
431b2a20
JR
1235/*
1236 * Allocates a new protection domain usable for the dma_ops functions.
1237 * It also intializes the page table and the address allocator data
1238 * structures required for the dma_ops interface
1239 */
87a64d52 1240static struct dma_ops_domain *dma_ops_domain_alloc(void)
ec487d1a
JR
1241{
1242 struct dma_ops_domain *dma_dom;
ec487d1a
JR
1243
1244 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1245 if (!dma_dom)
1246 return NULL;
1247
1248 spin_lock_init(&dma_dom->domain.lock);
1249
1250 dma_dom->domain.id = domain_id_alloc();
1251 if (dma_dom->domain.id == 0)
1252 goto free_dma_dom;
8f7a017c 1253 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
ec487d1a 1254 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
9fdb19d6 1255 dma_dom->domain.flags = PD_DMA_OPS_MASK;
ec487d1a
JR
1256 dma_dom->domain.priv = dma_dom;
1257 if (!dma_dom->domain.pt_root)
1258 goto free_dma_dom;
ec487d1a 1259
1c655773 1260 dma_dom->need_flush = false;
bd60b735 1261 dma_dom->target_dev = 0xffff;
1c655773 1262
aeb26f55
JR
1263 add_domain_to_list(&dma_dom->domain);
1264
576175c2 1265 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
ec487d1a 1266 goto free_dma_dom;
ec487d1a 1267
431b2a20 1268 /*
ec487d1a
JR
1269 * mark the first page as allocated so we never return 0 as
1270 * a valid dma-address. So we can use 0 as error value
431b2a20 1271 */
384de729 1272 dma_dom->aperture[0]->bitmap[0] = 1;
803b8cb4 1273 dma_dom->next_address = 0;
ec487d1a 1274
ec487d1a
JR
1275
1276 return dma_dom;
1277
1278free_dma_dom:
1279 dma_ops_domain_free(dma_dom);
1280
1281 return NULL;
1282}
1283
5b28df6f
JR
1284/*
1285 * little helper function to check whether a given protection domain is a
1286 * dma_ops domain
1287 */
1288static bool dma_ops_domain(struct protection_domain *domain)
1289{
1290 return domain->flags & PD_DMA_OPS_MASK;
1291}
1292
407d733e 1293static void set_dte_entry(u16 devid, struct protection_domain *domain)
b20ac0d4 1294{
15898bbc 1295 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
b20ac0d4 1296 u64 pte_root = virt_to_phys(domain->pt_root);
863c74eb 1297
15898bbc
JR
1298 BUG_ON(amd_iommu_pd_table[devid] != NULL);
1299
38ddf41b
JR
1300 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1301 << DEV_ENTRY_MODE_SHIFT;
1302 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4 1303
b20ac0d4 1304 amd_iommu_dev_table[devid].data[2] = domain->id;
aa879fff
JR
1305 amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
1306 amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
b20ac0d4
JR
1307
1308 amd_iommu_pd_table[devid] = domain;
15898bbc
JR
1309
1310 /* Do reference counting */
1311 domain->dev_iommu[iommu->index] += 1;
1312 domain->dev_cnt += 1;
1313
1314 /* Flush the changes DTE entry */
1315 iommu_queue_inv_dev_entry(iommu, devid);
1316}
1317
1318static void clear_dte_entry(u16 devid)
1319{
1320 struct protection_domain *domain = amd_iommu_pd_table[devid];
1321 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1322
1323 BUG_ON(domain == NULL);
1324
1325 /* remove domain from the lookup table */
1326 amd_iommu_pd_table[devid] = NULL;
1327
1328 /* remove entry from the device table seen by the hardware */
1329 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1330 amd_iommu_dev_table[devid].data[1] = 0;
1331 amd_iommu_dev_table[devid].data[2] = 0;
1332
1333 amd_iommu_apply_erratum_63(devid);
1334
1335 /* decrease reference counters */
1336 domain->dev_iommu[iommu->index] -= 1;
1337 domain->dev_cnt -= 1;
1338
1339 iommu_queue_inv_dev_entry(iommu, devid);
2b681faf
JR
1340}
1341
1342/*
1343 * If a device is not yet associated with a domain, this function does
1344 * assigns it visible for the hardware
1345 */
15898bbc
JR
1346static int __attach_device(struct device *dev,
1347 struct protection_domain *domain)
2b681faf 1348{
15898bbc
JR
1349 u16 devid = get_device_id(dev);
1350 u16 alias = amd_iommu_alias_table[devid];
1351
2b681faf
JR
1352 /* lock domain */
1353 spin_lock(&domain->lock);
1354
15898bbc
JR
1355 /* Some sanity checks */
1356 if (amd_iommu_pd_table[alias] != NULL &&
1357 amd_iommu_pd_table[alias] != domain)
1358 return -EBUSY;
eba6ac60 1359
15898bbc
JR
1360 if (amd_iommu_pd_table[devid] != NULL &&
1361 amd_iommu_pd_table[devid] != domain)
1362 return -EBUSY;
1363
1364 /* Do real assignment */
1365 if (alias != devid &&
1366 amd_iommu_pd_table[alias] == NULL)
1367 set_dte_entry(alias, domain);
1368
1369 if (amd_iommu_pd_table[devid] == NULL)
1370 set_dte_entry(devid, domain);
eba6ac60
JR
1371
1372 /* ready */
1373 spin_unlock(&domain->lock);
15898bbc
JR
1374
1375 return 0;
0feae533 1376}
b20ac0d4 1377
407d733e
JR
1378/*
1379 * If a device is not yet associated with a domain, this function does
1380 * assigns it visible for the hardware
1381 */
15898bbc
JR
1382static int attach_device(struct device *dev,
1383 struct protection_domain *domain)
0feae533 1384{
eba6ac60 1385 unsigned long flags;
15898bbc 1386 int ret;
eba6ac60
JR
1387
1388 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
15898bbc 1389 ret = __attach_device(dev, domain);
b20ac0d4
JR
1390 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1391
0feae533
JR
1392 /*
1393 * We might boot into a crash-kernel here. The crashed kernel
1394 * left the caches in the IOMMU dirty. So we have to flush
1395 * here to evict all dirty stuff.
1396 */
dcd1e92e 1397 iommu_flush_tlb_pde(domain);
15898bbc
JR
1398
1399 return ret;
b20ac0d4
JR
1400}
1401
355bf553
JR
1402/*
1403 * Removes a device from a protection domain (unlocked)
1404 */
15898bbc 1405static void __detach_device(struct device *dev)
355bf553 1406{
15898bbc 1407 u16 devid = get_device_id(dev);
c4596114
JR
1408 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1409
1410 BUG_ON(!iommu);
355bf553 1411
15898bbc 1412 clear_dte_entry(devid);
21129f78
JR
1413
1414 /*
1415 * If we run in passthrough mode the device must be assigned to the
1416 * passthrough domain if it is detached from any other domain
1417 */
15898bbc
JR
1418 if (iommu_pass_through)
1419 __attach_device(dev, pt_domain);
355bf553
JR
1420}
1421
1422/*
1423 * Removes a device from a protection domain (with devtable_lock held)
1424 */
15898bbc 1425static void detach_device(struct device *dev)
355bf553
JR
1426{
1427 unsigned long flags;
1428
1429 /* lock device table */
1430 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
15898bbc 1431 __detach_device(dev);
355bf553
JR
1432 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1433}
e275a2a0 1434
15898bbc
JR
1435/*
1436 * Find out the protection domain structure for a given PCI device. This
1437 * will give us the pointer to the page table root for example.
1438 */
1439static struct protection_domain *domain_for_device(struct device *dev)
1440{
1441 struct protection_domain *dom;
1442 unsigned long flags;
1443 u16 devid, alias;
1444
1445 devid = get_device_id(dev);
1446 alias = amd_iommu_alias_table[devid];
1447
1448 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
1449 dom = amd_iommu_pd_table[devid];
1450 if (dom == NULL &&
1451 amd_iommu_pd_table[alias] != NULL) {
1452 __attach_device(dev, amd_iommu_pd_table[alias]);
1453 dom = amd_iommu_pd_table[devid];
1454 }
1455
1456 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1457
1458 return dom;
1459}
1460
e275a2a0
JR
1461static int device_change_notifier(struct notifier_block *nb,
1462 unsigned long action, void *data)
1463{
1464 struct device *dev = data;
98fc5a69 1465 u16 devid;
e275a2a0
JR
1466 struct protection_domain *domain;
1467 struct dma_ops_domain *dma_domain;
1468 struct amd_iommu *iommu;
1ac4cbbc 1469 unsigned long flags;
e275a2a0 1470
98fc5a69
JR
1471 if (!check_device(dev))
1472 return 0;
e275a2a0 1473
98fc5a69
JR
1474 devid = get_device_id(dev);
1475 iommu = amd_iommu_rlookup_table[devid];
15898bbc 1476 domain = domain_for_device(dev);
e275a2a0
JR
1477
1478 if (domain && !dma_ops_domain(domain))
1479 WARN_ONCE(1, "AMD IOMMU WARNING: device %s already bound "
1480 "to a non-dma-ops domain\n", dev_name(dev));
1481
1482 switch (action) {
c1eee67b 1483 case BUS_NOTIFY_UNBOUND_DRIVER:
e275a2a0
JR
1484 if (!domain)
1485 goto out;
a1ca331c
JR
1486 if (iommu_pass_through)
1487 break;
15898bbc 1488 detach_device(dev);
1ac4cbbc
JR
1489 break;
1490 case BUS_NOTIFY_ADD_DEVICE:
1491 /* allocate a protection domain if a device is added */
1492 dma_domain = find_protection_domain(devid);
1493 if (dma_domain)
1494 goto out;
87a64d52 1495 dma_domain = dma_ops_domain_alloc();
1ac4cbbc
JR
1496 if (!dma_domain)
1497 goto out;
1498 dma_domain->target_dev = devid;
1499
1500 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1501 list_add_tail(&dma_domain->list, &iommu_pd_list);
1502 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1503
e275a2a0
JR
1504 break;
1505 default:
1506 goto out;
1507 }
1508
1509 iommu_queue_inv_dev_entry(iommu, devid);
1510 iommu_completion_wait(iommu);
1511
1512out:
1513 return 0;
1514}
1515
b25ae679 1516static struct notifier_block device_nb = {
e275a2a0
JR
1517 .notifier_call = device_change_notifier,
1518};
355bf553 1519
431b2a20
JR
1520/*****************************************************************************
1521 *
1522 * The next functions belong to the dma_ops mapping/unmapping code.
1523 *
1524 *****************************************************************************/
1525
1526/*
1527 * In the dma_ops path we only have the struct device. This function
1528 * finds the corresponding IOMMU, the protection domain and the
1529 * requestor id for a given device.
1530 * If the device is not yet associated with a domain this is also done
1531 * in this function.
1532 */
94f6d190 1533static struct protection_domain *get_domain(struct device *dev)
b20ac0d4 1534{
94f6d190 1535 struct protection_domain *domain;
b20ac0d4 1536 struct dma_ops_domain *dma_dom;
94f6d190 1537 u16 devid = get_device_id(dev);
b20ac0d4 1538
f99c0f1c 1539 if (!check_device(dev))
94f6d190 1540 return ERR_PTR(-EINVAL);
b20ac0d4 1541
94f6d190
JR
1542 domain = domain_for_device(dev);
1543 if (domain != NULL && !dma_ops_domain(domain))
1544 return ERR_PTR(-EBUSY);
f99c0f1c 1545
94f6d190
JR
1546 if (domain != NULL)
1547 return domain;
b20ac0d4 1548
15898bbc 1549 /* Device not bount yet - bind it */
94f6d190 1550 dma_dom = find_protection_domain(devid);
15898bbc 1551 if (!dma_dom)
94f6d190
JR
1552 dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
1553 attach_device(dev, &dma_dom->domain);
15898bbc 1554 DUMP_printk("Using protection domain %d for device %s\n",
94f6d190 1555 dma_dom->domain.id, dev_name(dev));
f91ba190 1556
94f6d190 1557 return &dma_dom->domain;
b20ac0d4
JR
1558}
1559
04bfdd84
JR
1560static void update_device_table(struct protection_domain *domain)
1561{
2b681faf 1562 unsigned long flags;
04bfdd84
JR
1563 int i;
1564
1565 for (i = 0; i <= amd_iommu_last_bdf; ++i) {
1566 if (amd_iommu_pd_table[i] != domain)
1567 continue;
2b681faf 1568 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
04bfdd84 1569 set_dte_entry(i, domain);
2b681faf 1570 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
04bfdd84
JR
1571 }
1572}
1573
1574static void update_domain(struct protection_domain *domain)
1575{
1576 if (!domain->updated)
1577 return;
1578
1579 update_device_table(domain);
1580 flush_devices_by_domain(domain);
601367d7 1581 iommu_flush_tlb_pde(domain);
04bfdd84
JR
1582
1583 domain->updated = false;
1584}
1585
8bda3092
JR
1586/*
1587 * This function fetches the PTE for a given address in the aperture
1588 */
1589static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
1590 unsigned long address)
1591{
384de729 1592 struct aperture_range *aperture;
8bda3092
JR
1593 u64 *pte, *pte_page;
1594
384de729
JR
1595 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1596 if (!aperture)
1597 return NULL;
1598
1599 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
8bda3092 1600 if (!pte) {
abdc5eb3
JR
1601 pte = alloc_pte(&dom->domain, address, PM_MAP_4k, &pte_page,
1602 GFP_ATOMIC);
384de729
JR
1603 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
1604 } else
8c8c143c 1605 pte += PM_LEVEL_INDEX(0, address);
8bda3092 1606
04bfdd84 1607 update_domain(&dom->domain);
8bda3092
JR
1608
1609 return pte;
1610}
1611
431b2a20
JR
1612/*
1613 * This is the generic map function. It maps one 4kb page at paddr to
1614 * the given address in the DMA address space for the domain.
1615 */
680525e0 1616static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
cb76c322
JR
1617 unsigned long address,
1618 phys_addr_t paddr,
1619 int direction)
1620{
1621 u64 *pte, __pte;
1622
1623 WARN_ON(address > dom->aperture_size);
1624
1625 paddr &= PAGE_MASK;
1626
8bda3092 1627 pte = dma_ops_get_pte(dom, address);
53812c11 1628 if (!pte)
8fd524b3 1629 return DMA_ERROR_CODE;
cb76c322
JR
1630
1631 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
1632
1633 if (direction == DMA_TO_DEVICE)
1634 __pte |= IOMMU_PTE_IR;
1635 else if (direction == DMA_FROM_DEVICE)
1636 __pte |= IOMMU_PTE_IW;
1637 else if (direction == DMA_BIDIRECTIONAL)
1638 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
1639
1640 WARN_ON(*pte);
1641
1642 *pte = __pte;
1643
1644 return (dma_addr_t)address;
1645}
1646
431b2a20
JR
1647/*
1648 * The generic unmapping function for on page in the DMA address space.
1649 */
680525e0 1650static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
cb76c322
JR
1651 unsigned long address)
1652{
384de729 1653 struct aperture_range *aperture;
cb76c322
JR
1654 u64 *pte;
1655
1656 if (address >= dom->aperture_size)
1657 return;
1658
384de729
JR
1659 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1660 if (!aperture)
1661 return;
1662
1663 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1664 if (!pte)
1665 return;
cb76c322 1666
8c8c143c 1667 pte += PM_LEVEL_INDEX(0, address);
cb76c322
JR
1668
1669 WARN_ON(!*pte);
1670
1671 *pte = 0ULL;
1672}
1673
431b2a20
JR
1674/*
1675 * This function contains common code for mapping of a physically
24f81160
JR
1676 * contiguous memory region into DMA address space. It is used by all
1677 * mapping functions provided with this IOMMU driver.
431b2a20
JR
1678 * Must be called with the domain lock held.
1679 */
cb76c322 1680static dma_addr_t __map_single(struct device *dev,
cb76c322
JR
1681 struct dma_ops_domain *dma_dom,
1682 phys_addr_t paddr,
1683 size_t size,
6d4f343f 1684 int dir,
832a90c3
JR
1685 bool align,
1686 u64 dma_mask)
cb76c322
JR
1687{
1688 dma_addr_t offset = paddr & ~PAGE_MASK;
53812c11 1689 dma_addr_t address, start, ret;
cb76c322 1690 unsigned int pages;
6d4f343f 1691 unsigned long align_mask = 0;
cb76c322
JR
1692 int i;
1693
e3c449f5 1694 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
1695 paddr &= PAGE_MASK;
1696
8ecaf8f1
JR
1697 INC_STATS_COUNTER(total_map_requests);
1698
c1858976
JR
1699 if (pages > 1)
1700 INC_STATS_COUNTER(cross_page);
1701
6d4f343f
JR
1702 if (align)
1703 align_mask = (1UL << get_order(size)) - 1;
1704
11b83888 1705retry:
832a90c3
JR
1706 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
1707 dma_mask);
8fd524b3 1708 if (unlikely(address == DMA_ERROR_CODE)) {
11b83888
JR
1709 /*
1710 * setting next_address here will let the address
1711 * allocator only scan the new allocated range in the
1712 * first run. This is a small optimization.
1713 */
1714 dma_dom->next_address = dma_dom->aperture_size;
1715
576175c2 1716 if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
11b83888
JR
1717 goto out;
1718
1719 /*
1720 * aperture was sucessfully enlarged by 128 MB, try
1721 * allocation again
1722 */
1723 goto retry;
1724 }
cb76c322
JR
1725
1726 start = address;
1727 for (i = 0; i < pages; ++i) {
680525e0 1728 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
8fd524b3 1729 if (ret == DMA_ERROR_CODE)
53812c11
JR
1730 goto out_unmap;
1731
cb76c322
JR
1732 paddr += PAGE_SIZE;
1733 start += PAGE_SIZE;
1734 }
1735 address += offset;
1736
5774f7c5
JR
1737 ADD_STATS_COUNTER(alloced_io_mem, size);
1738
afa9fdc2 1739 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
dcd1e92e 1740 iommu_flush_tlb(&dma_dom->domain);
1c655773 1741 dma_dom->need_flush = false;
318afd41 1742 } else if (unlikely(amd_iommu_np_cache))
6de8ad9b 1743 iommu_flush_pages(&dma_dom->domain, address, size);
270cab24 1744
cb76c322
JR
1745out:
1746 return address;
53812c11
JR
1747
1748out_unmap:
1749
1750 for (--i; i >= 0; --i) {
1751 start -= PAGE_SIZE;
680525e0 1752 dma_ops_domain_unmap(dma_dom, start);
53812c11
JR
1753 }
1754
1755 dma_ops_free_addresses(dma_dom, address, pages);
1756
8fd524b3 1757 return DMA_ERROR_CODE;
cb76c322
JR
1758}
1759
431b2a20
JR
1760/*
1761 * Does the reverse of the __map_single function. Must be called with
1762 * the domain lock held too
1763 */
cd8c82e8 1764static void __unmap_single(struct dma_ops_domain *dma_dom,
cb76c322
JR
1765 dma_addr_t dma_addr,
1766 size_t size,
1767 int dir)
1768{
1769 dma_addr_t i, start;
1770 unsigned int pages;
1771
8fd524b3 1772 if ((dma_addr == DMA_ERROR_CODE) ||
b8d9905d 1773 (dma_addr + size > dma_dom->aperture_size))
cb76c322
JR
1774 return;
1775
e3c449f5 1776 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
1777 dma_addr &= PAGE_MASK;
1778 start = dma_addr;
1779
1780 for (i = 0; i < pages; ++i) {
680525e0 1781 dma_ops_domain_unmap(dma_dom, start);
cb76c322
JR
1782 start += PAGE_SIZE;
1783 }
1784
5774f7c5
JR
1785 SUB_STATS_COUNTER(alloced_io_mem, size);
1786
cb76c322 1787 dma_ops_free_addresses(dma_dom, dma_addr, pages);
270cab24 1788
80be308d 1789 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
6de8ad9b 1790 iommu_flush_pages(&dma_dom->domain, dma_addr, size);
80be308d
JR
1791 dma_dom->need_flush = false;
1792 }
cb76c322
JR
1793}
1794
431b2a20
JR
1795/*
1796 * The exported map_single function for dma_ops.
1797 */
51491367
FT
1798static dma_addr_t map_page(struct device *dev, struct page *page,
1799 unsigned long offset, size_t size,
1800 enum dma_data_direction dir,
1801 struct dma_attrs *attrs)
4da70b9e
JR
1802{
1803 unsigned long flags;
4da70b9e 1804 struct protection_domain *domain;
4da70b9e 1805 dma_addr_t addr;
832a90c3 1806 u64 dma_mask;
51491367 1807 phys_addr_t paddr = page_to_phys(page) + offset;
4da70b9e 1808
0f2a86f2
JR
1809 INC_STATS_COUNTER(cnt_map_single);
1810
94f6d190
JR
1811 domain = get_domain(dev);
1812 if (PTR_ERR(domain) == -EINVAL)
4da70b9e 1813 return (dma_addr_t)paddr;
94f6d190
JR
1814 else if (IS_ERR(domain))
1815 return DMA_ERROR_CODE;
4da70b9e 1816
f99c0f1c
JR
1817 dma_mask = *dev->dma_mask;
1818
4da70b9e 1819 spin_lock_irqsave(&domain->lock, flags);
94f6d190 1820
cd8c82e8 1821 addr = __map_single(dev, domain->priv, paddr, size, dir, false,
832a90c3 1822 dma_mask);
8fd524b3 1823 if (addr == DMA_ERROR_CODE)
4da70b9e
JR
1824 goto out;
1825
0518a3a4 1826 iommu_flush_complete(domain);
4da70b9e
JR
1827
1828out:
1829 spin_unlock_irqrestore(&domain->lock, flags);
1830
1831 return addr;
1832}
1833
431b2a20
JR
1834/*
1835 * The exported unmap_single function for dma_ops.
1836 */
51491367
FT
1837static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
1838 enum dma_data_direction dir, struct dma_attrs *attrs)
4da70b9e
JR
1839{
1840 unsigned long flags;
4da70b9e 1841 struct protection_domain *domain;
4da70b9e 1842
146a6917
JR
1843 INC_STATS_COUNTER(cnt_unmap_single);
1844
94f6d190
JR
1845 domain = get_domain(dev);
1846 if (IS_ERR(domain))
5b28df6f
JR
1847 return;
1848
4da70b9e
JR
1849 spin_lock_irqsave(&domain->lock, flags);
1850
cd8c82e8 1851 __unmap_single(domain->priv, dma_addr, size, dir);
4da70b9e 1852
0518a3a4 1853 iommu_flush_complete(domain);
4da70b9e
JR
1854
1855 spin_unlock_irqrestore(&domain->lock, flags);
1856}
1857
431b2a20
JR
1858/*
1859 * This is a special map_sg function which is used if we should map a
1860 * device which is not handled by an AMD IOMMU in the system.
1861 */
65b050ad
JR
1862static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
1863 int nelems, int dir)
1864{
1865 struct scatterlist *s;
1866 int i;
1867
1868 for_each_sg(sglist, s, nelems, i) {
1869 s->dma_address = (dma_addr_t)sg_phys(s);
1870 s->dma_length = s->length;
1871 }
1872
1873 return nelems;
1874}
1875
431b2a20
JR
1876/*
1877 * The exported map_sg function for dma_ops (handles scatter-gather
1878 * lists).
1879 */
65b050ad 1880static int map_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
1881 int nelems, enum dma_data_direction dir,
1882 struct dma_attrs *attrs)
65b050ad
JR
1883{
1884 unsigned long flags;
65b050ad 1885 struct protection_domain *domain;
65b050ad
JR
1886 int i;
1887 struct scatterlist *s;
1888 phys_addr_t paddr;
1889 int mapped_elems = 0;
832a90c3 1890 u64 dma_mask;
65b050ad 1891
d03f067a
JR
1892 INC_STATS_COUNTER(cnt_map_sg);
1893
94f6d190
JR
1894 domain = get_domain(dev);
1895 if (PTR_ERR(domain) == -EINVAL)
f99c0f1c 1896 return map_sg_no_iommu(dev, sglist, nelems, dir);
94f6d190
JR
1897 else if (IS_ERR(domain))
1898 return 0;
dbcc112e 1899
832a90c3 1900 dma_mask = *dev->dma_mask;
65b050ad 1901
65b050ad
JR
1902 spin_lock_irqsave(&domain->lock, flags);
1903
1904 for_each_sg(sglist, s, nelems, i) {
1905 paddr = sg_phys(s);
1906
cd8c82e8 1907 s->dma_address = __map_single(dev, domain->priv,
832a90c3
JR
1908 paddr, s->length, dir, false,
1909 dma_mask);
65b050ad
JR
1910
1911 if (s->dma_address) {
1912 s->dma_length = s->length;
1913 mapped_elems++;
1914 } else
1915 goto unmap;
65b050ad
JR
1916 }
1917
0518a3a4 1918 iommu_flush_complete(domain);
65b050ad
JR
1919
1920out:
1921 spin_unlock_irqrestore(&domain->lock, flags);
1922
1923 return mapped_elems;
1924unmap:
1925 for_each_sg(sglist, s, mapped_elems, i) {
1926 if (s->dma_address)
cd8c82e8 1927 __unmap_single(domain->priv, s->dma_address,
65b050ad
JR
1928 s->dma_length, dir);
1929 s->dma_address = s->dma_length = 0;
1930 }
1931
1932 mapped_elems = 0;
1933
1934 goto out;
1935}
1936
431b2a20
JR
1937/*
1938 * The exported map_sg function for dma_ops (handles scatter-gather
1939 * lists).
1940 */
65b050ad 1941static void unmap_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
1942 int nelems, enum dma_data_direction dir,
1943 struct dma_attrs *attrs)
65b050ad
JR
1944{
1945 unsigned long flags;
65b050ad
JR
1946 struct protection_domain *domain;
1947 struct scatterlist *s;
65b050ad
JR
1948 int i;
1949
55877a6b
JR
1950 INC_STATS_COUNTER(cnt_unmap_sg);
1951
94f6d190
JR
1952 domain = get_domain(dev);
1953 if (IS_ERR(domain))
5b28df6f
JR
1954 return;
1955
65b050ad
JR
1956 spin_lock_irqsave(&domain->lock, flags);
1957
1958 for_each_sg(sglist, s, nelems, i) {
cd8c82e8 1959 __unmap_single(domain->priv, s->dma_address,
65b050ad 1960 s->dma_length, dir);
65b050ad
JR
1961 s->dma_address = s->dma_length = 0;
1962 }
1963
0518a3a4 1964 iommu_flush_complete(domain);
65b050ad
JR
1965
1966 spin_unlock_irqrestore(&domain->lock, flags);
1967}
1968
431b2a20
JR
1969/*
1970 * The exported alloc_coherent function for dma_ops.
1971 */
5d8b53cf
JR
1972static void *alloc_coherent(struct device *dev, size_t size,
1973 dma_addr_t *dma_addr, gfp_t flag)
1974{
1975 unsigned long flags;
1976 void *virt_addr;
5d8b53cf 1977 struct protection_domain *domain;
5d8b53cf 1978 phys_addr_t paddr;
832a90c3 1979 u64 dma_mask = dev->coherent_dma_mask;
5d8b53cf 1980
c8f0fb36
JR
1981 INC_STATS_COUNTER(cnt_alloc_coherent);
1982
94f6d190
JR
1983 domain = get_domain(dev);
1984 if (PTR_ERR(domain) == -EINVAL) {
f99c0f1c
JR
1985 virt_addr = (void *)__get_free_pages(flag, get_order(size));
1986 *dma_addr = __pa(virt_addr);
1987 return virt_addr;
94f6d190
JR
1988 } else if (IS_ERR(domain))
1989 return NULL;
5d8b53cf 1990
f99c0f1c
JR
1991 dma_mask = dev->coherent_dma_mask;
1992 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
1993 flag |= __GFP_ZERO;
5d8b53cf
JR
1994
1995 virt_addr = (void *)__get_free_pages(flag, get_order(size));
1996 if (!virt_addr)
b25ae679 1997 return NULL;
5d8b53cf 1998
5d8b53cf
JR
1999 paddr = virt_to_phys(virt_addr);
2000
832a90c3
JR
2001 if (!dma_mask)
2002 dma_mask = *dev->dma_mask;
2003
5d8b53cf
JR
2004 spin_lock_irqsave(&domain->lock, flags);
2005
cd8c82e8 2006 *dma_addr = __map_single(dev, domain->priv, paddr,
832a90c3 2007 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf 2008
8fd524b3 2009 if (*dma_addr == DMA_ERROR_CODE) {
367d04c4 2010 spin_unlock_irqrestore(&domain->lock, flags);
5b28df6f 2011 goto out_free;
367d04c4 2012 }
5d8b53cf 2013
0518a3a4 2014 iommu_flush_complete(domain);
5d8b53cf 2015
5d8b53cf
JR
2016 spin_unlock_irqrestore(&domain->lock, flags);
2017
2018 return virt_addr;
5b28df6f
JR
2019
2020out_free:
2021
2022 free_pages((unsigned long)virt_addr, get_order(size));
2023
2024 return NULL;
5d8b53cf
JR
2025}
2026
431b2a20
JR
2027/*
2028 * The exported free_coherent function for dma_ops.
431b2a20 2029 */
5d8b53cf
JR
2030static void free_coherent(struct device *dev, size_t size,
2031 void *virt_addr, dma_addr_t dma_addr)
2032{
2033 unsigned long flags;
5d8b53cf 2034 struct protection_domain *domain;
5d8b53cf 2035
5d31ee7e
JR
2036 INC_STATS_COUNTER(cnt_free_coherent);
2037
94f6d190
JR
2038 domain = get_domain(dev);
2039 if (IS_ERR(domain))
5b28df6f
JR
2040 goto free_mem;
2041
5d8b53cf
JR
2042 spin_lock_irqsave(&domain->lock, flags);
2043
cd8c82e8 2044 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 2045
0518a3a4 2046 iommu_flush_complete(domain);
5d8b53cf
JR
2047
2048 spin_unlock_irqrestore(&domain->lock, flags);
2049
2050free_mem:
2051 free_pages((unsigned long)virt_addr, get_order(size));
2052}
2053
b39ba6ad
JR
2054/*
2055 * This function is called by the DMA layer to find out if we can handle a
2056 * particular device. It is part of the dma_ops.
2057 */
2058static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2059{
420aef8a 2060 return check_device(dev);
b39ba6ad
JR
2061}
2062
c432f3df 2063/*
431b2a20
JR
2064 * The function for pre-allocating protection domains.
2065 *
c432f3df
JR
2066 * If the driver core informs the DMA layer if a driver grabs a device
2067 * we don't need to preallocate the protection domains anymore.
2068 * For now we have to.
2069 */
0e93dd88 2070static void prealloc_protection_domains(void)
c432f3df
JR
2071{
2072 struct pci_dev *dev = NULL;
2073 struct dma_ops_domain *dma_dom;
98fc5a69 2074 u16 devid;
c432f3df
JR
2075
2076 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
98fc5a69
JR
2077
2078 /* Do we handle this device? */
2079 if (!check_device(&dev->dev))
c432f3df 2080 continue;
98fc5a69
JR
2081
2082 /* Is there already any domain for it? */
15898bbc 2083 if (domain_for_device(&dev->dev))
c432f3df 2084 continue;
98fc5a69
JR
2085
2086 devid = get_device_id(&dev->dev);
2087
87a64d52 2088 dma_dom = dma_ops_domain_alloc();
c432f3df
JR
2089 if (!dma_dom)
2090 continue;
2091 init_unity_mappings_for_device(dma_dom, devid);
bd60b735
JR
2092 dma_dom->target_dev = devid;
2093
15898bbc 2094 attach_device(&dev->dev, &dma_dom->domain);
be831297 2095
bd60b735 2096 list_add_tail(&dma_dom->list, &iommu_pd_list);
c432f3df
JR
2097 }
2098}
2099
160c1d8e 2100static struct dma_map_ops amd_iommu_dma_ops = {
6631ee9d
JR
2101 .alloc_coherent = alloc_coherent,
2102 .free_coherent = free_coherent,
51491367
FT
2103 .map_page = map_page,
2104 .unmap_page = unmap_page,
6631ee9d
JR
2105 .map_sg = map_sg,
2106 .unmap_sg = unmap_sg,
b39ba6ad 2107 .dma_supported = amd_iommu_dma_supported,
6631ee9d
JR
2108};
2109
431b2a20
JR
2110/*
2111 * The function which clues the AMD IOMMU driver into dma_ops.
2112 */
6631ee9d
JR
2113int __init amd_iommu_init_dma_ops(void)
2114{
2115 struct amd_iommu *iommu;
6631ee9d
JR
2116 int ret;
2117
431b2a20
JR
2118 /*
2119 * first allocate a default protection domain for every IOMMU we
2120 * found in the system. Devices not assigned to any other
2121 * protection domain will be assigned to the default one.
2122 */
3bd22172 2123 for_each_iommu(iommu) {
87a64d52 2124 iommu->default_dom = dma_ops_domain_alloc();
6631ee9d
JR
2125 if (iommu->default_dom == NULL)
2126 return -ENOMEM;
e2dc14a2 2127 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
6631ee9d
JR
2128 ret = iommu_init_unity_mappings(iommu);
2129 if (ret)
2130 goto free_domains;
2131 }
2132
431b2a20 2133 /*
8793abeb 2134 * Pre-allocate the protection domains for each device.
431b2a20 2135 */
8793abeb 2136 prealloc_protection_domains();
6631ee9d
JR
2137
2138 iommu_detected = 1;
75f1cdf1 2139 swiotlb = 0;
92af4e29 2140#ifdef CONFIG_GART_IOMMU
6631ee9d
JR
2141 gart_iommu_aperture_disabled = 1;
2142 gart_iommu_aperture = 0;
92af4e29 2143#endif
6631ee9d 2144
431b2a20 2145 /* Make the driver finally visible to the drivers */
6631ee9d
JR
2146 dma_ops = &amd_iommu_dma_ops;
2147
26961efe 2148 register_iommu(&amd_iommu_ops);
26961efe 2149
e275a2a0
JR
2150 bus_register_notifier(&pci_bus_type, &device_nb);
2151
7f26508b
JR
2152 amd_iommu_stats_init();
2153
6631ee9d
JR
2154 return 0;
2155
2156free_domains:
2157
3bd22172 2158 for_each_iommu(iommu) {
6631ee9d
JR
2159 if (iommu->default_dom)
2160 dma_ops_domain_free(iommu->default_dom);
2161 }
2162
2163 return ret;
2164}
6d98cd80
JR
2165
2166/*****************************************************************************
2167 *
2168 * The following functions belong to the exported interface of AMD IOMMU
2169 *
2170 * This interface allows access to lower level functions of the IOMMU
2171 * like protection domain handling and assignement of devices to domains
2172 * which is not possible with the dma_ops interface.
2173 *
2174 *****************************************************************************/
2175
6d98cd80
JR
2176static void cleanup_domain(struct protection_domain *domain)
2177{
2178 unsigned long flags;
2179 u16 devid;
2180
2181 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2182
2183 for (devid = 0; devid <= amd_iommu_last_bdf; ++devid)
2184 if (amd_iommu_pd_table[devid] == domain)
15898bbc 2185 clear_dte_entry(devid);
6d98cd80
JR
2186
2187 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2188}
2189
2650815f
JR
2190static void protection_domain_free(struct protection_domain *domain)
2191{
2192 if (!domain)
2193 return;
2194
aeb26f55
JR
2195 del_domain_from_list(domain);
2196
2650815f
JR
2197 if (domain->id)
2198 domain_id_free(domain->id);
2199
2200 kfree(domain);
2201}
2202
2203static struct protection_domain *protection_domain_alloc(void)
c156e347
JR
2204{
2205 struct protection_domain *domain;
2206
2207 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2208 if (!domain)
2650815f 2209 return NULL;
c156e347
JR
2210
2211 spin_lock_init(&domain->lock);
c156e347
JR
2212 domain->id = domain_id_alloc();
2213 if (!domain->id)
2650815f
JR
2214 goto out_err;
2215
aeb26f55
JR
2216 add_domain_to_list(domain);
2217
2650815f
JR
2218 return domain;
2219
2220out_err:
2221 kfree(domain);
2222
2223 return NULL;
2224}
2225
2226static int amd_iommu_domain_init(struct iommu_domain *dom)
2227{
2228 struct protection_domain *domain;
2229
2230 domain = protection_domain_alloc();
2231 if (!domain)
c156e347 2232 goto out_free;
2650815f
JR
2233
2234 domain->mode = PAGE_MODE_3_LEVEL;
c156e347
JR
2235 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2236 if (!domain->pt_root)
2237 goto out_free;
2238
2239 dom->priv = domain;
2240
2241 return 0;
2242
2243out_free:
2650815f 2244 protection_domain_free(domain);
c156e347
JR
2245
2246 return -ENOMEM;
2247}
2248
98383fc3
JR
2249static void amd_iommu_domain_destroy(struct iommu_domain *dom)
2250{
2251 struct protection_domain *domain = dom->priv;
2252
2253 if (!domain)
2254 return;
2255
2256 if (domain->dev_cnt > 0)
2257 cleanup_domain(domain);
2258
2259 BUG_ON(domain->dev_cnt != 0);
2260
2261 free_pagetable(domain);
2262
2263 domain_id_free(domain->id);
2264
2265 kfree(domain);
2266
2267 dom->priv = NULL;
2268}
2269
684f2888
JR
2270static void amd_iommu_detach_device(struct iommu_domain *dom,
2271 struct device *dev)
2272{
684f2888 2273 struct amd_iommu *iommu;
684f2888
JR
2274 u16 devid;
2275
98fc5a69 2276 if (!check_device(dev))
684f2888
JR
2277 return;
2278
98fc5a69 2279 devid = get_device_id(dev);
684f2888 2280
98fc5a69 2281 if (amd_iommu_pd_table[devid] != NULL)
15898bbc 2282 detach_device(dev);
684f2888
JR
2283
2284 iommu = amd_iommu_rlookup_table[devid];
2285 if (!iommu)
2286 return;
2287
2288 iommu_queue_inv_dev_entry(iommu, devid);
2289 iommu_completion_wait(iommu);
2290}
2291
01106066
JR
2292static int amd_iommu_attach_device(struct iommu_domain *dom,
2293 struct device *dev)
2294{
2295 struct protection_domain *domain = dom->priv;
2296 struct protection_domain *old_domain;
2297 struct amd_iommu *iommu;
15898bbc 2298 int ret;
01106066
JR
2299 u16 devid;
2300
98fc5a69 2301 if (!check_device(dev))
01106066
JR
2302 return -EINVAL;
2303
98fc5a69 2304 devid = get_device_id(dev);
01106066
JR
2305
2306 iommu = amd_iommu_rlookup_table[devid];
2307 if (!iommu)
2308 return -EINVAL;
2309
15898bbc 2310 old_domain = amd_iommu_pd_table[devid];
01106066 2311 if (old_domain)
15898bbc 2312 detach_device(dev);
01106066 2313
15898bbc 2314 ret = attach_device(dev, domain);
01106066
JR
2315
2316 iommu_completion_wait(iommu);
2317
15898bbc 2318 return ret;
01106066
JR
2319}
2320
c6229ca6
JR
2321static int amd_iommu_map_range(struct iommu_domain *dom,
2322 unsigned long iova, phys_addr_t paddr,
2323 size_t size, int iommu_prot)
2324{
2325 struct protection_domain *domain = dom->priv;
2326 unsigned long i, npages = iommu_num_pages(paddr, size, PAGE_SIZE);
2327 int prot = 0;
2328 int ret;
2329
2330 if (iommu_prot & IOMMU_READ)
2331 prot |= IOMMU_PROT_IR;
2332 if (iommu_prot & IOMMU_WRITE)
2333 prot |= IOMMU_PROT_IW;
2334
2335 iova &= PAGE_MASK;
2336 paddr &= PAGE_MASK;
2337
2338 for (i = 0; i < npages; ++i) {
abdc5eb3 2339 ret = iommu_map_page(domain, iova, paddr, prot, PM_MAP_4k);
c6229ca6
JR
2340 if (ret)
2341 return ret;
2342
2343 iova += PAGE_SIZE;
2344 paddr += PAGE_SIZE;
2345 }
2346
2347 return 0;
2348}
2349
eb74ff6c
JR
2350static void amd_iommu_unmap_range(struct iommu_domain *dom,
2351 unsigned long iova, size_t size)
2352{
2353
2354 struct protection_domain *domain = dom->priv;
2355 unsigned long i, npages = iommu_num_pages(iova, size, PAGE_SIZE);
2356
2357 iova &= PAGE_MASK;
2358
2359 for (i = 0; i < npages; ++i) {
a6b256b4 2360 iommu_unmap_page(domain, iova, PM_MAP_4k);
eb74ff6c
JR
2361 iova += PAGE_SIZE;
2362 }
2363
601367d7 2364 iommu_flush_tlb_pde(domain);
eb74ff6c
JR
2365}
2366
645c4c8d
JR
2367static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2368 unsigned long iova)
2369{
2370 struct protection_domain *domain = dom->priv;
2371 unsigned long offset = iova & ~PAGE_MASK;
2372 phys_addr_t paddr;
2373 u64 *pte;
2374
a6b256b4 2375 pte = fetch_pte(domain, iova, PM_MAP_4k);
645c4c8d 2376
a6d41a40 2377 if (!pte || !IOMMU_PTE_PRESENT(*pte))
645c4c8d
JR
2378 return 0;
2379
2380 paddr = *pte & IOMMU_PAGE_MASK;
2381 paddr |= offset;
2382
2383 return paddr;
2384}
2385
dbb9fd86
SY
2386static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
2387 unsigned long cap)
2388{
2389 return 0;
2390}
2391
26961efe
JR
2392static struct iommu_ops amd_iommu_ops = {
2393 .domain_init = amd_iommu_domain_init,
2394 .domain_destroy = amd_iommu_domain_destroy,
2395 .attach_dev = amd_iommu_attach_device,
2396 .detach_dev = amd_iommu_detach_device,
2397 .map = amd_iommu_map_range,
2398 .unmap = amd_iommu_unmap_range,
2399 .iova_to_phys = amd_iommu_iova_to_phys,
dbb9fd86 2400 .domain_has_cap = amd_iommu_domain_has_cap,
26961efe
JR
2401};
2402
0feae533
JR
2403/*****************************************************************************
2404 *
2405 * The next functions do a basic initialization of IOMMU for pass through
2406 * mode
2407 *
2408 * In passthrough mode the IOMMU is initialized and enabled but not used for
2409 * DMA-API translation.
2410 *
2411 *****************************************************************************/
2412
2413int __init amd_iommu_init_passthrough(void)
2414{
15898bbc 2415 struct amd_iommu *iommu;
0feae533 2416 struct pci_dev *dev = NULL;
15898bbc 2417 u16 devid;
0feae533
JR
2418
2419 /* allocate passthroug domain */
2420 pt_domain = protection_domain_alloc();
2421 if (!pt_domain)
2422 return -ENOMEM;
2423
2424 pt_domain->mode |= PAGE_MODE_NONE;
2425
2426 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
0feae533 2427
98fc5a69 2428 if (!check_device(&dev->dev))
0feae533
JR
2429 continue;
2430
98fc5a69
JR
2431 devid = get_device_id(&dev->dev);
2432
15898bbc 2433 iommu = amd_iommu_rlookup_table[devid];
0feae533
JR
2434 if (!iommu)
2435 continue;
2436
15898bbc 2437 attach_device(&dev->dev, pt_domain);
0feae533
JR
2438 }
2439
2440 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
2441
2442 return 0;
2443}
This page took 0.407345 seconds and 5 git commands to generate.