AMD IOMMU: fix detection of NP capable IOMMUs
[deliverable/linux.git] / arch / x86 / kernel / amd_iommu.c
CommitLineData
b6c02715
JR
1/*
2 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/pci.h>
21#include <linux/gfp.h>
22#include <linux/bitops.h>
23#include <linux/scatterlist.h>
24#include <linux/iommu-helper.h>
25#include <asm/proto.h>
46a7fa27 26#include <asm/iommu.h>
b6c02715 27#include <asm/amd_iommu_types.h>
c6da992e 28#include <asm/amd_iommu.h>
b6c02715
JR
29
30#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
31
136f78a1
JR
32#define EXIT_LOOP_COUNT 10000000
33
b6c02715
JR
34static DEFINE_RWLOCK(amd_iommu_devtable_lock);
35
bd60b735
JR
36/* A list of preallocated protection domains */
37static LIST_HEAD(iommu_pd_list);
38static DEFINE_SPINLOCK(iommu_pd_list_lock);
39
431b2a20
JR
40/*
41 * general struct to manage commands send to an IOMMU
42 */
d6449536 43struct iommu_cmd {
b6c02715
JR
44 u32 data[4];
45};
46
bd0e5211
JR
47static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
48 struct unity_map_entry *e);
49
431b2a20 50/* returns !0 if the IOMMU is caching non-present entries in its TLB */
4da70b9e
JR
51static int iommu_has_npcache(struct amd_iommu *iommu)
52{
ae9b9403 53 return iommu->cap & (1UL << IOMMU_CAP_NPCACHE);
4da70b9e
JR
54}
55
a80dc3e0
JR
56/****************************************************************************
57 *
58 * Interrupt handling functions
59 *
60 ****************************************************************************/
61
90008ee4
JR
62static void iommu_print_event(void *__evt)
63{
64 u32 *event = __evt;
65 int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
66 int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
67 int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
68 int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
69 u64 address = (u64)(((u64)event[3]) << 32) | event[2];
70
71 printk(KERN_ERR "AMD IOMMU: Event logged [");
72
73 switch (type) {
74 case EVENT_TYPE_ILL_DEV:
75 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
76 "address=0x%016llx flags=0x%04x]\n",
77 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
78 address, flags);
79 break;
80 case EVENT_TYPE_IO_FAULT:
81 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
82 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
83 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
84 domid, address, flags);
85 break;
86 case EVENT_TYPE_DEV_TAB_ERR:
87 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
88 "address=0x%016llx flags=0x%04x]\n",
89 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90 address, flags);
91 break;
92 case EVENT_TYPE_PAGE_TAB_ERR:
93 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
94 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
95 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
96 domid, address, flags);
97 break;
98 case EVENT_TYPE_ILL_CMD:
99 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
100 break;
101 case EVENT_TYPE_CMD_HARD_ERR:
102 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
103 "flags=0x%04x]\n", address, flags);
104 break;
105 case EVENT_TYPE_IOTLB_INV_TO:
106 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
107 "address=0x%016llx]\n",
108 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
109 address);
110 break;
111 case EVENT_TYPE_INV_DEV_REQ:
112 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
113 "address=0x%016llx flags=0x%04x]\n",
114 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
115 address, flags);
116 break;
117 default:
118 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
119 }
120}
121
122static void iommu_poll_events(struct amd_iommu *iommu)
123{
124 u32 head, tail;
125 unsigned long flags;
126
127 spin_lock_irqsave(&iommu->lock, flags);
128
129 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
130 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
131
132 while (head != tail) {
133 iommu_print_event(iommu->evt_buf + head);
134 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
135 }
136
137 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
138
139 spin_unlock_irqrestore(&iommu->lock, flags);
140}
141
a80dc3e0
JR
142irqreturn_t amd_iommu_int_handler(int irq, void *data)
143{
90008ee4
JR
144 struct amd_iommu *iommu;
145
146 list_for_each_entry(iommu, &amd_iommu_list, list)
147 iommu_poll_events(iommu);
148
149 return IRQ_HANDLED;
a80dc3e0
JR
150}
151
431b2a20
JR
152/****************************************************************************
153 *
154 * IOMMU command queuing functions
155 *
156 ****************************************************************************/
157
158/*
159 * Writes the command to the IOMMUs command buffer and informs the
160 * hardware about the new command. Must be called with iommu->lock held.
161 */
d6449536 162static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
163{
164 u32 tail, head;
165 u8 *target;
166
167 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
8a7c5ef3 168 target = iommu->cmd_buf + tail;
a19ae1ec
JR
169 memcpy_toio(target, cmd, sizeof(*cmd));
170 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
171 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
172 if (tail == head)
173 return -ENOMEM;
174 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
175
176 return 0;
177}
178
431b2a20
JR
179/*
180 * General queuing function for commands. Takes iommu->lock and calls
181 * __iommu_queue_command().
182 */
d6449536 183static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
184{
185 unsigned long flags;
186 int ret;
187
188 spin_lock_irqsave(&iommu->lock, flags);
189 ret = __iommu_queue_command(iommu, cmd);
190 spin_unlock_irqrestore(&iommu->lock, flags);
191
192 return ret;
193}
194
431b2a20
JR
195/*
196 * This function is called whenever we need to ensure that the IOMMU has
197 * completed execution of all commands we sent. It sends a
198 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
199 * us about that by writing a value to a physical address we pass with
200 * the command.
201 */
a19ae1ec
JR
202static int iommu_completion_wait(struct amd_iommu *iommu)
203{
519c31ba
JR
204 int ret, ready = 0;
205 unsigned status = 0;
d6449536 206 struct iommu_cmd cmd;
136f78a1 207 unsigned long i = 0;
a19ae1ec
JR
208
209 memset(&cmd, 0, sizeof(cmd));
519c31ba 210 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
a19ae1ec
JR
211 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);
212
213 iommu->need_sync = 0;
214
215 ret = iommu_queue_command(iommu, &cmd);
216
217 if (ret)
218 return ret;
219
136f78a1
JR
220 while (!ready && (i < EXIT_LOOP_COUNT)) {
221 ++i;
519c31ba
JR
222 /* wait for the bit to become one */
223 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
224 ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
136f78a1
JR
225 }
226
519c31ba
JR
227 /* set bit back to zero */
228 status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
229 writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);
230
136f78a1
JR
231 if (unlikely((i == EXIT_LOOP_COUNT) && printk_ratelimit()))
232 printk(KERN_WARNING "AMD IOMMU: Completion wait loop failed\n");
a19ae1ec
JR
233
234 return 0;
235}
236
431b2a20
JR
237/*
238 * Command send function for invalidating a device table entry
239 */
a19ae1ec
JR
240static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
241{
d6449536 242 struct iommu_cmd cmd;
a19ae1ec
JR
243
244 BUG_ON(iommu == NULL);
245
246 memset(&cmd, 0, sizeof(cmd));
247 CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
248 cmd.data[0] = devid;
249
250 iommu->need_sync = 1;
251
252 return iommu_queue_command(iommu, &cmd);
253}
254
431b2a20
JR
255/*
256 * Generic command send function for invalidaing TLB entries
257 */
a19ae1ec
JR
258static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
259 u64 address, u16 domid, int pde, int s)
260{
d6449536 261 struct iommu_cmd cmd;
a19ae1ec
JR
262
263 memset(&cmd, 0, sizeof(cmd));
264 address &= PAGE_MASK;
265 CMD_SET_TYPE(&cmd, CMD_INV_IOMMU_PAGES);
266 cmd.data[1] |= domid;
8a456695 267 cmd.data[2] = lower_32_bits(address);
8ea80d78 268 cmd.data[3] = upper_32_bits(address);
431b2a20 269 if (s) /* size bit - we flush more than one 4kb page */
a19ae1ec 270 cmd.data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
431b2a20 271 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
a19ae1ec
JR
272 cmd.data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
273
274 iommu->need_sync = 1;
275
276 return iommu_queue_command(iommu, &cmd);
277}
278
431b2a20
JR
279/*
280 * TLB invalidation function which is called from the mapping functions.
281 * It invalidates a single PTE if the range to flush is within a single
282 * page. Otherwise it flushes the whole TLB of the IOMMU.
283 */
a19ae1ec
JR
284static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
285 u64 address, size_t size)
286{
999ba417 287 int s = 0;
a8132e5f 288 unsigned pages = iommu_num_pages(address, size);
a19ae1ec
JR
289
290 address &= PAGE_MASK;
291
999ba417
JR
292 if (pages > 1) {
293 /*
294 * If we have to flush more than one page, flush all
295 * TLB entries for this domain
296 */
297 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
298 s = 1;
a19ae1ec
JR
299 }
300
999ba417
JR
301 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s);
302
a19ae1ec
JR
303 return 0;
304}
b6c02715 305
1c655773
JR
306/* Flush the whole IO/TLB for a given protection domain */
307static void iommu_flush_tlb(struct amd_iommu *iommu, u16 domid)
308{
309 u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
310
311 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 1);
312}
313
431b2a20
JR
314/****************************************************************************
315 *
316 * The functions below are used the create the page table mappings for
317 * unity mapped regions.
318 *
319 ****************************************************************************/
320
321/*
322 * Generic mapping functions. It maps a physical address into a DMA
323 * address space. It allocates the page table pages if necessary.
324 * In the future it can be extended to a generic mapping function
325 * supporting all features of AMD IOMMU page tables like level skipping
326 * and full 64 bit address spaces.
327 */
bd0e5211
JR
328static int iommu_map(struct protection_domain *dom,
329 unsigned long bus_addr,
330 unsigned long phys_addr,
331 int prot)
332{
333 u64 __pte, *pte, *page;
334
335 bus_addr = PAGE_ALIGN(bus_addr);
336 phys_addr = PAGE_ALIGN(bus_addr);
337
338 /* only support 512GB address spaces for now */
339 if (bus_addr > IOMMU_MAP_SIZE_L3 || !(prot & IOMMU_PROT_MASK))
340 return -EINVAL;
341
342 pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(bus_addr)];
343
344 if (!IOMMU_PTE_PRESENT(*pte)) {
345 page = (u64 *)get_zeroed_page(GFP_KERNEL);
346 if (!page)
347 return -ENOMEM;
348 *pte = IOMMU_L2_PDE(virt_to_phys(page));
349 }
350
351 pte = IOMMU_PTE_PAGE(*pte);
352 pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];
353
354 if (!IOMMU_PTE_PRESENT(*pte)) {
355 page = (u64 *)get_zeroed_page(GFP_KERNEL);
356 if (!page)
357 return -ENOMEM;
358 *pte = IOMMU_L1_PDE(virt_to_phys(page));
359 }
360
361 pte = IOMMU_PTE_PAGE(*pte);
362 pte = &pte[IOMMU_PTE_L0_INDEX(bus_addr)];
363
364 if (IOMMU_PTE_PRESENT(*pte))
365 return -EBUSY;
366
367 __pte = phys_addr | IOMMU_PTE_P;
368 if (prot & IOMMU_PROT_IR)
369 __pte |= IOMMU_PTE_IR;
370 if (prot & IOMMU_PROT_IW)
371 __pte |= IOMMU_PTE_IW;
372
373 *pte = __pte;
374
375 return 0;
376}
377
431b2a20
JR
378/*
379 * This function checks if a specific unity mapping entry is needed for
380 * this specific IOMMU.
381 */
bd0e5211
JR
382static int iommu_for_unity_map(struct amd_iommu *iommu,
383 struct unity_map_entry *entry)
384{
385 u16 bdf, i;
386
387 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
388 bdf = amd_iommu_alias_table[i];
389 if (amd_iommu_rlookup_table[bdf] == iommu)
390 return 1;
391 }
392
393 return 0;
394}
395
431b2a20
JR
396/*
397 * Init the unity mappings for a specific IOMMU in the system
398 *
399 * Basically iterates over all unity mapping entries and applies them to
400 * the default domain DMA of that IOMMU if necessary.
401 */
bd0e5211
JR
402static int iommu_init_unity_mappings(struct amd_iommu *iommu)
403{
404 struct unity_map_entry *entry;
405 int ret;
406
407 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
408 if (!iommu_for_unity_map(iommu, entry))
409 continue;
410 ret = dma_ops_unity_map(iommu->default_dom, entry);
411 if (ret)
412 return ret;
413 }
414
415 return 0;
416}
417
431b2a20
JR
418/*
419 * This function actually applies the mapping to the page table of the
420 * dma_ops domain.
421 */
bd0e5211
JR
422static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
423 struct unity_map_entry *e)
424{
425 u64 addr;
426 int ret;
427
428 for (addr = e->address_start; addr < e->address_end;
429 addr += PAGE_SIZE) {
430 ret = iommu_map(&dma_dom->domain, addr, addr, e->prot);
431 if (ret)
432 return ret;
433 /*
434 * if unity mapping is in aperture range mark the page
435 * as allocated in the aperture
436 */
437 if (addr < dma_dom->aperture_size)
438 __set_bit(addr >> PAGE_SHIFT, dma_dom->bitmap);
439 }
440
441 return 0;
442}
443
431b2a20
JR
444/*
445 * Inits the unity mappings required for a specific device
446 */
bd0e5211
JR
447static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
448 u16 devid)
449{
450 struct unity_map_entry *e;
451 int ret;
452
453 list_for_each_entry(e, &amd_iommu_unity_map, list) {
454 if (!(devid >= e->devid_start && devid <= e->devid_end))
455 continue;
456 ret = dma_ops_unity_map(dma_dom, e);
457 if (ret)
458 return ret;
459 }
460
461 return 0;
462}
463
431b2a20
JR
464/****************************************************************************
465 *
466 * The next functions belong to the address allocator for the dma_ops
467 * interface functions. They work like the allocators in the other IOMMU
468 * drivers. Its basically a bitmap which marks the allocated pages in
469 * the aperture. Maybe it could be enhanced in the future to a more
470 * efficient allocator.
471 *
472 ****************************************************************************/
d3086444 473
431b2a20
JR
474/*
475 * The address allocator core function.
476 *
477 * called with domain->lock held
478 */
d3086444
JR
479static unsigned long dma_ops_alloc_addresses(struct device *dev,
480 struct dma_ops_domain *dom,
6d4f343f 481 unsigned int pages,
832a90c3
JR
482 unsigned long align_mask,
483 u64 dma_mask)
d3086444 484{
40becd8d 485 unsigned long limit;
d3086444 486 unsigned long address;
d3086444
JR
487 unsigned long boundary_size;
488
489 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
490 PAGE_SIZE) >> PAGE_SHIFT;
40becd8d
FT
491 limit = iommu_device_max_index(dom->aperture_size >> PAGE_SHIFT, 0,
492 dma_mask >> PAGE_SHIFT);
d3086444 493
1c655773 494 if (dom->next_bit >= limit) {
d3086444 495 dom->next_bit = 0;
1c655773
JR
496 dom->need_flush = true;
497 }
d3086444
JR
498
499 address = iommu_area_alloc(dom->bitmap, limit, dom->next_bit, pages,
6d4f343f 500 0 , boundary_size, align_mask);
1c655773 501 if (address == -1) {
d3086444 502 address = iommu_area_alloc(dom->bitmap, limit, 0, pages,
6d4f343f 503 0, boundary_size, align_mask);
1c655773
JR
504 dom->need_flush = true;
505 }
d3086444
JR
506
507 if (likely(address != -1)) {
d3086444
JR
508 dom->next_bit = address + pages;
509 address <<= PAGE_SHIFT;
510 } else
511 address = bad_dma_address;
512
513 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
514
515 return address;
516}
517
431b2a20
JR
518/*
519 * The address free function.
520 *
521 * called with domain->lock held
522 */
d3086444
JR
523static void dma_ops_free_addresses(struct dma_ops_domain *dom,
524 unsigned long address,
525 unsigned int pages)
526{
527 address >>= PAGE_SHIFT;
528 iommu_area_free(dom->bitmap, address, pages);
529}
530
431b2a20
JR
531/****************************************************************************
532 *
533 * The next functions belong to the domain allocation. A domain is
534 * allocated for every IOMMU as the default domain. If device isolation
535 * is enabled, every device get its own domain. The most important thing
536 * about domains is the page table mapping the DMA address space they
537 * contain.
538 *
539 ****************************************************************************/
540
ec487d1a
JR
541static u16 domain_id_alloc(void)
542{
543 unsigned long flags;
544 int id;
545
546 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
547 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
548 BUG_ON(id == 0);
549 if (id > 0 && id < MAX_DOMAIN_ID)
550 __set_bit(id, amd_iommu_pd_alloc_bitmap);
551 else
552 id = 0;
553 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
554
555 return id;
556}
557
431b2a20
JR
558/*
559 * Used to reserve address ranges in the aperture (e.g. for exclusion
560 * ranges.
561 */
ec487d1a
JR
562static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
563 unsigned long start_page,
564 unsigned int pages)
565{
566 unsigned int last_page = dom->aperture_size >> PAGE_SHIFT;
567
568 if (start_page + pages > last_page)
569 pages = last_page - start_page;
570
d26dbc5c 571 iommu_area_reserve(dom->bitmap, start_page, pages);
ec487d1a
JR
572}
573
574static void dma_ops_free_pagetable(struct dma_ops_domain *dma_dom)
575{
576 int i, j;
577 u64 *p1, *p2, *p3;
578
579 p1 = dma_dom->domain.pt_root;
580
581 if (!p1)
582 return;
583
584 for (i = 0; i < 512; ++i) {
585 if (!IOMMU_PTE_PRESENT(p1[i]))
586 continue;
587
588 p2 = IOMMU_PTE_PAGE(p1[i]);
589 for (j = 0; j < 512; ++i) {
590 if (!IOMMU_PTE_PRESENT(p2[j]))
591 continue;
592 p3 = IOMMU_PTE_PAGE(p2[j]);
593 free_page((unsigned long)p3);
594 }
595
596 free_page((unsigned long)p2);
597 }
598
599 free_page((unsigned long)p1);
600}
601
431b2a20
JR
602/*
603 * Free a domain, only used if something went wrong in the
604 * allocation path and we need to free an already allocated page table
605 */
ec487d1a
JR
606static void dma_ops_domain_free(struct dma_ops_domain *dom)
607{
608 if (!dom)
609 return;
610
611 dma_ops_free_pagetable(dom);
612
613 kfree(dom->pte_pages);
614
615 kfree(dom->bitmap);
616
617 kfree(dom);
618}
619
431b2a20
JR
620/*
621 * Allocates a new protection domain usable for the dma_ops functions.
622 * It also intializes the page table and the address allocator data
623 * structures required for the dma_ops interface
624 */
ec487d1a
JR
625static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu,
626 unsigned order)
627{
628 struct dma_ops_domain *dma_dom;
629 unsigned i, num_pte_pages;
630 u64 *l2_pde;
631 u64 address;
632
633 /*
634 * Currently the DMA aperture must be between 32 MB and 1GB in size
635 */
636 if ((order < 25) || (order > 30))
637 return NULL;
638
639 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
640 if (!dma_dom)
641 return NULL;
642
643 spin_lock_init(&dma_dom->domain.lock);
644
645 dma_dom->domain.id = domain_id_alloc();
646 if (dma_dom->domain.id == 0)
647 goto free_dma_dom;
648 dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
649 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
650 dma_dom->domain.priv = dma_dom;
651 if (!dma_dom->domain.pt_root)
652 goto free_dma_dom;
653 dma_dom->aperture_size = (1ULL << order);
654 dma_dom->bitmap = kzalloc(dma_dom->aperture_size / (PAGE_SIZE * 8),
655 GFP_KERNEL);
656 if (!dma_dom->bitmap)
657 goto free_dma_dom;
658 /*
659 * mark the first page as allocated so we never return 0 as
660 * a valid dma-address. So we can use 0 as error value
661 */
662 dma_dom->bitmap[0] = 1;
663 dma_dom->next_bit = 0;
664
1c655773 665 dma_dom->need_flush = false;
bd60b735 666 dma_dom->target_dev = 0xffff;
1c655773 667
431b2a20 668 /* Intialize the exclusion range if necessary */
ec487d1a
JR
669 if (iommu->exclusion_start &&
670 iommu->exclusion_start < dma_dom->aperture_size) {
671 unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
a8132e5f
JR
672 int pages = iommu_num_pages(iommu->exclusion_start,
673 iommu->exclusion_length);
ec487d1a
JR
674 dma_ops_reserve_addresses(dma_dom, startpage, pages);
675 }
676
431b2a20
JR
677 /*
678 * At the last step, build the page tables so we don't need to
679 * allocate page table pages in the dma_ops mapping/unmapping
680 * path.
681 */
ec487d1a
JR
682 num_pte_pages = dma_dom->aperture_size / (PAGE_SIZE * 512);
683 dma_dom->pte_pages = kzalloc(num_pte_pages * sizeof(void *),
684 GFP_KERNEL);
685 if (!dma_dom->pte_pages)
686 goto free_dma_dom;
687
688 l2_pde = (u64 *)get_zeroed_page(GFP_KERNEL);
689 if (l2_pde == NULL)
690 goto free_dma_dom;
691
692 dma_dom->domain.pt_root[0] = IOMMU_L2_PDE(virt_to_phys(l2_pde));
693
694 for (i = 0; i < num_pte_pages; ++i) {
695 dma_dom->pte_pages[i] = (u64 *)get_zeroed_page(GFP_KERNEL);
696 if (!dma_dom->pte_pages[i])
697 goto free_dma_dom;
698 address = virt_to_phys(dma_dom->pte_pages[i]);
699 l2_pde[i] = IOMMU_L1_PDE(address);
700 }
701
702 return dma_dom;
703
704free_dma_dom:
705 dma_ops_domain_free(dma_dom);
706
707 return NULL;
708}
709
431b2a20
JR
710/*
711 * Find out the protection domain structure for a given PCI device. This
712 * will give us the pointer to the page table root for example.
713 */
b20ac0d4
JR
714static struct protection_domain *domain_for_device(u16 devid)
715{
716 struct protection_domain *dom;
717 unsigned long flags;
718
719 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
720 dom = amd_iommu_pd_table[devid];
721 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
722
723 return dom;
724}
725
431b2a20
JR
726/*
727 * If a device is not yet associated with a domain, this function does
728 * assigns it visible for the hardware
729 */
b20ac0d4
JR
730static void set_device_domain(struct amd_iommu *iommu,
731 struct protection_domain *domain,
732 u16 devid)
733{
734 unsigned long flags;
735
736 u64 pte_root = virt_to_phys(domain->pt_root);
737
38ddf41b
JR
738 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
739 << DEV_ENTRY_MODE_SHIFT;
740 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4
JR
741
742 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
38ddf41b
JR
743 amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
744 amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
b20ac0d4
JR
745 amd_iommu_dev_table[devid].data[2] = domain->id;
746
747 amd_iommu_pd_table[devid] = domain;
748 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
749
750 iommu_queue_inv_dev_entry(iommu, devid);
751
752 iommu->need_sync = 1;
753}
754
431b2a20
JR
755/*****************************************************************************
756 *
757 * The next functions belong to the dma_ops mapping/unmapping code.
758 *
759 *****************************************************************************/
760
dbcc112e
JR
761/*
762 * This function checks if the driver got a valid device from the caller to
763 * avoid dereferencing invalid pointers.
764 */
765static bool check_device(struct device *dev)
766{
767 if (!dev || !dev->dma_mask)
768 return false;
769
770 return true;
771}
772
bd60b735
JR
773/*
774 * In this function the list of preallocated protection domains is traversed to
775 * find the domain for a specific device
776 */
777static struct dma_ops_domain *find_protection_domain(u16 devid)
778{
779 struct dma_ops_domain *entry, *ret = NULL;
780 unsigned long flags;
781
782 if (list_empty(&iommu_pd_list))
783 return NULL;
784
785 spin_lock_irqsave(&iommu_pd_list_lock, flags);
786
787 list_for_each_entry(entry, &iommu_pd_list, list) {
788 if (entry->target_dev == devid) {
789 ret = entry;
790 list_del(&ret->list);
791 break;
792 }
793 }
794
795 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
796
797 return ret;
798}
799
431b2a20
JR
800/*
801 * In the dma_ops path we only have the struct device. This function
802 * finds the corresponding IOMMU, the protection domain and the
803 * requestor id for a given device.
804 * If the device is not yet associated with a domain this is also done
805 * in this function.
806 */
b20ac0d4
JR
807static int get_device_resources(struct device *dev,
808 struct amd_iommu **iommu,
809 struct protection_domain **domain,
810 u16 *bdf)
811{
812 struct dma_ops_domain *dma_dom;
813 struct pci_dev *pcidev;
814 u16 _bdf;
815
dbcc112e
JR
816 *iommu = NULL;
817 *domain = NULL;
818 *bdf = 0xffff;
819
820 if (dev->bus != &pci_bus_type)
821 return 0;
b20ac0d4
JR
822
823 pcidev = to_pci_dev(dev);
d591b0a3 824 _bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
b20ac0d4 825
431b2a20 826 /* device not translated by any IOMMU in the system? */
dbcc112e 827 if (_bdf > amd_iommu_last_bdf)
b20ac0d4 828 return 0;
b20ac0d4
JR
829
830 *bdf = amd_iommu_alias_table[_bdf];
831
832 *iommu = amd_iommu_rlookup_table[*bdf];
833 if (*iommu == NULL)
834 return 0;
b20ac0d4
JR
835 *domain = domain_for_device(*bdf);
836 if (*domain == NULL) {
bd60b735
JR
837 dma_dom = find_protection_domain(*bdf);
838 if (!dma_dom)
839 dma_dom = (*iommu)->default_dom;
b20ac0d4
JR
840 *domain = &dma_dom->domain;
841 set_device_domain(*iommu, *domain, *bdf);
842 printk(KERN_INFO "AMD IOMMU: Using protection domain %d for "
843 "device ", (*domain)->id);
844 print_devid(_bdf, 1);
845 }
846
847 return 1;
848}
849
431b2a20
JR
850/*
851 * This is the generic map function. It maps one 4kb page at paddr to
852 * the given address in the DMA address space for the domain.
853 */
cb76c322
JR
854static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
855 struct dma_ops_domain *dom,
856 unsigned long address,
857 phys_addr_t paddr,
858 int direction)
859{
860 u64 *pte, __pte;
861
862 WARN_ON(address > dom->aperture_size);
863
864 paddr &= PAGE_MASK;
865
866 pte = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
867 pte += IOMMU_PTE_L0_INDEX(address);
868
869 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
870
871 if (direction == DMA_TO_DEVICE)
872 __pte |= IOMMU_PTE_IR;
873 else if (direction == DMA_FROM_DEVICE)
874 __pte |= IOMMU_PTE_IW;
875 else if (direction == DMA_BIDIRECTIONAL)
876 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
877
878 WARN_ON(*pte);
879
880 *pte = __pte;
881
882 return (dma_addr_t)address;
883}
884
431b2a20
JR
885/*
886 * The generic unmapping function for on page in the DMA address space.
887 */
cb76c322
JR
888static void dma_ops_domain_unmap(struct amd_iommu *iommu,
889 struct dma_ops_domain *dom,
890 unsigned long address)
891{
892 u64 *pte;
893
894 if (address >= dom->aperture_size)
895 return;
896
897 WARN_ON(address & 0xfffULL || address > dom->aperture_size);
898
899 pte = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
900 pte += IOMMU_PTE_L0_INDEX(address);
901
902 WARN_ON(!*pte);
903
904 *pte = 0ULL;
905}
906
431b2a20
JR
907/*
908 * This function contains common code for mapping of a physically
909 * contiguous memory region into DMA address space. It is uses by all
910 * mapping functions provided by this IOMMU driver.
911 * Must be called with the domain lock held.
912 */
cb76c322
JR
913static dma_addr_t __map_single(struct device *dev,
914 struct amd_iommu *iommu,
915 struct dma_ops_domain *dma_dom,
916 phys_addr_t paddr,
917 size_t size,
6d4f343f 918 int dir,
832a90c3
JR
919 bool align,
920 u64 dma_mask)
cb76c322
JR
921{
922 dma_addr_t offset = paddr & ~PAGE_MASK;
923 dma_addr_t address, start;
924 unsigned int pages;
6d4f343f 925 unsigned long align_mask = 0;
cb76c322
JR
926 int i;
927
a8132e5f 928 pages = iommu_num_pages(paddr, size);
cb76c322
JR
929 paddr &= PAGE_MASK;
930
6d4f343f
JR
931 if (align)
932 align_mask = (1UL << get_order(size)) - 1;
933
832a90c3
JR
934 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
935 dma_mask);
cb76c322
JR
936 if (unlikely(address == bad_dma_address))
937 goto out;
938
939 start = address;
940 for (i = 0; i < pages; ++i) {
941 dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
942 paddr += PAGE_SIZE;
943 start += PAGE_SIZE;
944 }
945 address += offset;
946
afa9fdc2 947 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
1c655773
JR
948 iommu_flush_tlb(iommu, dma_dom->domain.id);
949 dma_dom->need_flush = false;
950 } else if (unlikely(iommu_has_npcache(iommu)))
270cab24
JR
951 iommu_flush_pages(iommu, dma_dom->domain.id, address, size);
952
cb76c322
JR
953out:
954 return address;
955}
956
431b2a20
JR
957/*
958 * Does the reverse of the __map_single function. Must be called with
959 * the domain lock held too
960 */
cb76c322
JR
961static void __unmap_single(struct amd_iommu *iommu,
962 struct dma_ops_domain *dma_dom,
963 dma_addr_t dma_addr,
964 size_t size,
965 int dir)
966{
967 dma_addr_t i, start;
968 unsigned int pages;
969
970 if ((dma_addr == 0) || (dma_addr + size > dma_dom->aperture_size))
971 return;
972
a8132e5f 973 pages = iommu_num_pages(dma_addr, size);
cb76c322
JR
974 dma_addr &= PAGE_MASK;
975 start = dma_addr;
976
977 for (i = 0; i < pages; ++i) {
978 dma_ops_domain_unmap(iommu, dma_dom, start);
979 start += PAGE_SIZE;
980 }
981
982 dma_ops_free_addresses(dma_dom, dma_addr, pages);
270cab24 983
afa9fdc2 984 if (amd_iommu_unmap_flush)
1c655773 985 iommu_flush_pages(iommu, dma_dom->domain.id, dma_addr, size);
cb76c322
JR
986}
987
431b2a20
JR
988/*
989 * The exported map_single function for dma_ops.
990 */
4da70b9e
JR
991static dma_addr_t map_single(struct device *dev, phys_addr_t paddr,
992 size_t size, int dir)
993{
994 unsigned long flags;
995 struct amd_iommu *iommu;
996 struct protection_domain *domain;
997 u16 devid;
998 dma_addr_t addr;
832a90c3 999 u64 dma_mask;
4da70b9e 1000
dbcc112e
JR
1001 if (!check_device(dev))
1002 return bad_dma_address;
1003
832a90c3
JR
1004 dma_mask = *dev->dma_mask;
1005
4da70b9e
JR
1006 get_device_resources(dev, &iommu, &domain, &devid);
1007
1008 if (iommu == NULL || domain == NULL)
431b2a20 1009 /* device not handled by any AMD IOMMU */
4da70b9e
JR
1010 return (dma_addr_t)paddr;
1011
1012 spin_lock_irqsave(&domain->lock, flags);
832a90c3
JR
1013 addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false,
1014 dma_mask);
4da70b9e
JR
1015 if (addr == bad_dma_address)
1016 goto out;
1017
5507eef8 1018 if (unlikely(iommu->need_sync))
4da70b9e
JR
1019 iommu_completion_wait(iommu);
1020
1021out:
1022 spin_unlock_irqrestore(&domain->lock, flags);
1023
1024 return addr;
1025}
1026
431b2a20
JR
1027/*
1028 * The exported unmap_single function for dma_ops.
1029 */
4da70b9e
JR
1030static void unmap_single(struct device *dev, dma_addr_t dma_addr,
1031 size_t size, int dir)
1032{
1033 unsigned long flags;
1034 struct amd_iommu *iommu;
1035 struct protection_domain *domain;
1036 u16 devid;
1037
dbcc112e
JR
1038 if (!check_device(dev) ||
1039 !get_device_resources(dev, &iommu, &domain, &devid))
431b2a20 1040 /* device not handled by any AMD IOMMU */
4da70b9e
JR
1041 return;
1042
1043 spin_lock_irqsave(&domain->lock, flags);
1044
1045 __unmap_single(iommu, domain->priv, dma_addr, size, dir);
1046
5507eef8 1047 if (unlikely(iommu->need_sync))
4da70b9e
JR
1048 iommu_completion_wait(iommu);
1049
1050 spin_unlock_irqrestore(&domain->lock, flags);
1051}
1052
431b2a20
JR
1053/*
1054 * This is a special map_sg function which is used if we should map a
1055 * device which is not handled by an AMD IOMMU in the system.
1056 */
65b050ad
JR
1057static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
1058 int nelems, int dir)
1059{
1060 struct scatterlist *s;
1061 int i;
1062
1063 for_each_sg(sglist, s, nelems, i) {
1064 s->dma_address = (dma_addr_t)sg_phys(s);
1065 s->dma_length = s->length;
1066 }
1067
1068 return nelems;
1069}
1070
431b2a20
JR
1071/*
1072 * The exported map_sg function for dma_ops (handles scatter-gather
1073 * lists).
1074 */
65b050ad
JR
1075static int map_sg(struct device *dev, struct scatterlist *sglist,
1076 int nelems, int dir)
1077{
1078 unsigned long flags;
1079 struct amd_iommu *iommu;
1080 struct protection_domain *domain;
1081 u16 devid;
1082 int i;
1083 struct scatterlist *s;
1084 phys_addr_t paddr;
1085 int mapped_elems = 0;
832a90c3 1086 u64 dma_mask;
65b050ad 1087
dbcc112e
JR
1088 if (!check_device(dev))
1089 return 0;
1090
832a90c3
JR
1091 dma_mask = *dev->dma_mask;
1092
65b050ad
JR
1093 get_device_resources(dev, &iommu, &domain, &devid);
1094
1095 if (!iommu || !domain)
1096 return map_sg_no_iommu(dev, sglist, nelems, dir);
1097
1098 spin_lock_irqsave(&domain->lock, flags);
1099
1100 for_each_sg(sglist, s, nelems, i) {
1101 paddr = sg_phys(s);
1102
1103 s->dma_address = __map_single(dev, iommu, domain->priv,
832a90c3
JR
1104 paddr, s->length, dir, false,
1105 dma_mask);
65b050ad
JR
1106
1107 if (s->dma_address) {
1108 s->dma_length = s->length;
1109 mapped_elems++;
1110 } else
1111 goto unmap;
65b050ad
JR
1112 }
1113
5507eef8 1114 if (unlikely(iommu->need_sync))
65b050ad
JR
1115 iommu_completion_wait(iommu);
1116
1117out:
1118 spin_unlock_irqrestore(&domain->lock, flags);
1119
1120 return mapped_elems;
1121unmap:
1122 for_each_sg(sglist, s, mapped_elems, i) {
1123 if (s->dma_address)
1124 __unmap_single(iommu, domain->priv, s->dma_address,
1125 s->dma_length, dir);
1126 s->dma_address = s->dma_length = 0;
1127 }
1128
1129 mapped_elems = 0;
1130
1131 goto out;
1132}
1133
431b2a20
JR
1134/*
1135 * The exported map_sg function for dma_ops (handles scatter-gather
1136 * lists).
1137 */
65b050ad
JR
1138static void unmap_sg(struct device *dev, struct scatterlist *sglist,
1139 int nelems, int dir)
1140{
1141 unsigned long flags;
1142 struct amd_iommu *iommu;
1143 struct protection_domain *domain;
1144 struct scatterlist *s;
1145 u16 devid;
1146 int i;
1147
dbcc112e
JR
1148 if (!check_device(dev) ||
1149 !get_device_resources(dev, &iommu, &domain, &devid))
65b050ad
JR
1150 return;
1151
1152 spin_lock_irqsave(&domain->lock, flags);
1153
1154 for_each_sg(sglist, s, nelems, i) {
1155 __unmap_single(iommu, domain->priv, s->dma_address,
1156 s->dma_length, dir);
65b050ad
JR
1157 s->dma_address = s->dma_length = 0;
1158 }
1159
5507eef8 1160 if (unlikely(iommu->need_sync))
65b050ad
JR
1161 iommu_completion_wait(iommu);
1162
1163 spin_unlock_irqrestore(&domain->lock, flags);
1164}
1165
431b2a20
JR
1166/*
1167 * The exported alloc_coherent function for dma_ops.
1168 */
5d8b53cf
JR
1169static void *alloc_coherent(struct device *dev, size_t size,
1170 dma_addr_t *dma_addr, gfp_t flag)
1171{
1172 unsigned long flags;
1173 void *virt_addr;
1174 struct amd_iommu *iommu;
1175 struct protection_domain *domain;
1176 u16 devid;
1177 phys_addr_t paddr;
832a90c3 1178 u64 dma_mask = dev->coherent_dma_mask;
5d8b53cf 1179
dbcc112e
JR
1180 if (!check_device(dev))
1181 return NULL;
1182
13d9fead
FT
1183 if (!get_device_resources(dev, &iommu, &domain, &devid))
1184 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
1185
c97ac535 1186 flag |= __GFP_ZERO;
5d8b53cf
JR
1187 virt_addr = (void *)__get_free_pages(flag, get_order(size));
1188 if (!virt_addr)
1189 return 0;
1190
5d8b53cf
JR
1191 paddr = virt_to_phys(virt_addr);
1192
5d8b53cf
JR
1193 if (!iommu || !domain) {
1194 *dma_addr = (dma_addr_t)paddr;
1195 return virt_addr;
1196 }
1197
832a90c3
JR
1198 if (!dma_mask)
1199 dma_mask = *dev->dma_mask;
1200
5d8b53cf
JR
1201 spin_lock_irqsave(&domain->lock, flags);
1202
1203 *dma_addr = __map_single(dev, iommu, domain->priv, paddr,
832a90c3 1204 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf
JR
1205
1206 if (*dma_addr == bad_dma_address) {
1207 free_pages((unsigned long)virt_addr, get_order(size));
1208 virt_addr = NULL;
1209 goto out;
1210 }
1211
5507eef8 1212 if (unlikely(iommu->need_sync))
5d8b53cf
JR
1213 iommu_completion_wait(iommu);
1214
1215out:
1216 spin_unlock_irqrestore(&domain->lock, flags);
1217
1218 return virt_addr;
1219}
1220
431b2a20
JR
1221/*
1222 * The exported free_coherent function for dma_ops.
431b2a20 1223 */
5d8b53cf
JR
1224static void free_coherent(struct device *dev, size_t size,
1225 void *virt_addr, dma_addr_t dma_addr)
1226{
1227 unsigned long flags;
1228 struct amd_iommu *iommu;
1229 struct protection_domain *domain;
1230 u16 devid;
1231
dbcc112e
JR
1232 if (!check_device(dev))
1233 return;
1234
5d8b53cf
JR
1235 get_device_resources(dev, &iommu, &domain, &devid);
1236
1237 if (!iommu || !domain)
1238 goto free_mem;
1239
1240 spin_lock_irqsave(&domain->lock, flags);
1241
1242 __unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 1243
5507eef8 1244 if (unlikely(iommu->need_sync))
5d8b53cf
JR
1245 iommu_completion_wait(iommu);
1246
1247 spin_unlock_irqrestore(&domain->lock, flags);
1248
1249free_mem:
1250 free_pages((unsigned long)virt_addr, get_order(size));
1251}
1252
b39ba6ad
JR
1253/*
1254 * This function is called by the DMA layer to find out if we can handle a
1255 * particular device. It is part of the dma_ops.
1256 */
1257static int amd_iommu_dma_supported(struct device *dev, u64 mask)
1258{
1259 u16 bdf;
1260 struct pci_dev *pcidev;
1261
1262 /* No device or no PCI device */
1263 if (!dev || dev->bus != &pci_bus_type)
1264 return 0;
1265
1266 pcidev = to_pci_dev(dev);
1267
1268 bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
1269
1270 /* Out of our scope? */
1271 if (bdf > amd_iommu_last_bdf)
1272 return 0;
1273
1274 return 1;
1275}
1276
c432f3df 1277/*
431b2a20
JR
1278 * The function for pre-allocating protection domains.
1279 *
c432f3df
JR
1280 * If the driver core informs the DMA layer if a driver grabs a device
1281 * we don't need to preallocate the protection domains anymore.
1282 * For now we have to.
1283 */
1284void prealloc_protection_domains(void)
1285{
1286 struct pci_dev *dev = NULL;
1287 struct dma_ops_domain *dma_dom;
1288 struct amd_iommu *iommu;
1289 int order = amd_iommu_aperture_order;
1290 u16 devid;
1291
1292 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
1293 devid = (dev->bus->number << 8) | dev->devfn;
3a61ec38 1294 if (devid > amd_iommu_last_bdf)
c432f3df
JR
1295 continue;
1296 devid = amd_iommu_alias_table[devid];
1297 if (domain_for_device(devid))
1298 continue;
1299 iommu = amd_iommu_rlookup_table[devid];
1300 if (!iommu)
1301 continue;
1302 dma_dom = dma_ops_domain_alloc(iommu, order);
1303 if (!dma_dom)
1304 continue;
1305 init_unity_mappings_for_device(dma_dom, devid);
bd60b735
JR
1306 dma_dom->target_dev = devid;
1307
1308 list_add_tail(&dma_dom->list, &iommu_pd_list);
c432f3df
JR
1309 }
1310}
1311
6631ee9d
JR
1312static struct dma_mapping_ops amd_iommu_dma_ops = {
1313 .alloc_coherent = alloc_coherent,
1314 .free_coherent = free_coherent,
1315 .map_single = map_single,
1316 .unmap_single = unmap_single,
1317 .map_sg = map_sg,
1318 .unmap_sg = unmap_sg,
b39ba6ad 1319 .dma_supported = amd_iommu_dma_supported,
6631ee9d
JR
1320};
1321
431b2a20
JR
1322/*
1323 * The function which clues the AMD IOMMU driver into dma_ops.
1324 */
6631ee9d
JR
1325int __init amd_iommu_init_dma_ops(void)
1326{
1327 struct amd_iommu *iommu;
1328 int order = amd_iommu_aperture_order;
1329 int ret;
1330
431b2a20
JR
1331 /*
1332 * first allocate a default protection domain for every IOMMU we
1333 * found in the system. Devices not assigned to any other
1334 * protection domain will be assigned to the default one.
1335 */
6631ee9d
JR
1336 list_for_each_entry(iommu, &amd_iommu_list, list) {
1337 iommu->default_dom = dma_ops_domain_alloc(iommu, order);
1338 if (iommu->default_dom == NULL)
1339 return -ENOMEM;
1340 ret = iommu_init_unity_mappings(iommu);
1341 if (ret)
1342 goto free_domains;
1343 }
1344
431b2a20
JR
1345 /*
1346 * If device isolation is enabled, pre-allocate the protection
1347 * domains for each device.
1348 */
6631ee9d
JR
1349 if (amd_iommu_isolate)
1350 prealloc_protection_domains();
1351
1352 iommu_detected = 1;
1353 force_iommu = 1;
1354 bad_dma_address = 0;
92af4e29 1355#ifdef CONFIG_GART_IOMMU
6631ee9d
JR
1356 gart_iommu_aperture_disabled = 1;
1357 gart_iommu_aperture = 0;
92af4e29 1358#endif
6631ee9d 1359
431b2a20 1360 /* Make the driver finally visible to the drivers */
6631ee9d
JR
1361 dma_ops = &amd_iommu_dma_ops;
1362
1363 return 0;
1364
1365free_domains:
1366
1367 list_for_each_entry(iommu, &amd_iommu_list, list) {
1368 if (iommu->default_dom)
1369 dma_ops_domain_free(iommu->default_dom);
1370 }
1371
1372 return ret;
1373}
This page took 0.221887 seconds and 5 git commands to generate.