x86/amd-iommu: Reimplement amd_iommu_flush_all_domains()
[deliverable/linux.git] / arch / x86 / kernel / amd_iommu.c
CommitLineData
b6c02715 1/*
bf3118c1 2 * Copyright (C) 2007-2009 Advanced Micro Devices, Inc.
b6c02715
JR
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/pci.h>
21#include <linux/gfp.h>
22#include <linux/bitops.h>
7f26508b 23#include <linux/debugfs.h>
b6c02715 24#include <linux/scatterlist.h>
51491367 25#include <linux/dma-mapping.h>
b6c02715 26#include <linux/iommu-helper.h>
c156e347 27#include <linux/iommu.h>
b6c02715 28#include <asm/proto.h>
46a7fa27 29#include <asm/iommu.h>
1d9b16d1 30#include <asm/gart.h>
6a9401a7 31#include <asm/amd_iommu_proto.h>
b6c02715 32#include <asm/amd_iommu_types.h>
c6da992e 33#include <asm/amd_iommu.h>
b6c02715
JR
34
35#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
36
136f78a1
JR
37#define EXIT_LOOP_COUNT 10000000
38
b6c02715
JR
39static DEFINE_RWLOCK(amd_iommu_devtable_lock);
40
bd60b735
JR
41/* A list of preallocated protection domains */
42static LIST_HEAD(iommu_pd_list);
43static DEFINE_SPINLOCK(iommu_pd_list_lock);
44
0feae533
JR
45/*
46 * Domain for untranslated devices - only allocated
47 * if iommu=pt passed on kernel cmd line.
48 */
49static struct protection_domain *pt_domain;
50
26961efe 51static struct iommu_ops amd_iommu_ops;
26961efe 52
431b2a20
JR
53/*
54 * general struct to manage commands send to an IOMMU
55 */
d6449536 56struct iommu_cmd {
b6c02715
JR
57 u32 data[4];
58};
59
bd0e5211
JR
60static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
61 struct unity_map_entry *e);
e275a2a0 62static struct dma_ops_domain *find_protection_domain(u16 devid);
8bc3e127 63static u64 *alloc_pte(struct protection_domain *domain,
abdc5eb3
JR
64 unsigned long address, int end_lvl,
65 u64 **pte_page, gfp_t gfp);
00cd122a
JR
66static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
67 unsigned long start_page,
68 unsigned int pages);
a345b23b 69static void reset_iommu_command_buffer(struct amd_iommu *iommu);
9355a081 70static u64 *fetch_pte(struct protection_domain *domain,
a6b256b4 71 unsigned long address, int map_size);
04bfdd84 72static void update_domain(struct protection_domain *domain);
c1eee67b 73
7f26508b
JR
74#ifdef CONFIG_AMD_IOMMU_STATS
75
76/*
77 * Initialization code for statistics collection
78 */
79
da49f6df 80DECLARE_STATS_COUNTER(compl_wait);
0f2a86f2 81DECLARE_STATS_COUNTER(cnt_map_single);
146a6917 82DECLARE_STATS_COUNTER(cnt_unmap_single);
d03f067a 83DECLARE_STATS_COUNTER(cnt_map_sg);
55877a6b 84DECLARE_STATS_COUNTER(cnt_unmap_sg);
c8f0fb36 85DECLARE_STATS_COUNTER(cnt_alloc_coherent);
5d31ee7e 86DECLARE_STATS_COUNTER(cnt_free_coherent);
c1858976 87DECLARE_STATS_COUNTER(cross_page);
f57d98ae 88DECLARE_STATS_COUNTER(domain_flush_single);
18811f55 89DECLARE_STATS_COUNTER(domain_flush_all);
5774f7c5 90DECLARE_STATS_COUNTER(alloced_io_mem);
8ecaf8f1 91DECLARE_STATS_COUNTER(total_map_requests);
da49f6df 92
7f26508b
JR
93static struct dentry *stats_dir;
94static struct dentry *de_isolate;
95static struct dentry *de_fflush;
96
97static void amd_iommu_stats_add(struct __iommu_counter *cnt)
98{
99 if (stats_dir == NULL)
100 return;
101
102 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
103 &cnt->value);
104}
105
106static void amd_iommu_stats_init(void)
107{
108 stats_dir = debugfs_create_dir("amd-iommu", NULL);
109 if (stats_dir == NULL)
110 return;
111
112 de_isolate = debugfs_create_bool("isolation", 0444, stats_dir,
113 (u32 *)&amd_iommu_isolate);
114
115 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
116 (u32 *)&amd_iommu_unmap_flush);
da49f6df
JR
117
118 amd_iommu_stats_add(&compl_wait);
0f2a86f2 119 amd_iommu_stats_add(&cnt_map_single);
146a6917 120 amd_iommu_stats_add(&cnt_unmap_single);
d03f067a 121 amd_iommu_stats_add(&cnt_map_sg);
55877a6b 122 amd_iommu_stats_add(&cnt_unmap_sg);
c8f0fb36 123 amd_iommu_stats_add(&cnt_alloc_coherent);
5d31ee7e 124 amd_iommu_stats_add(&cnt_free_coherent);
c1858976 125 amd_iommu_stats_add(&cross_page);
f57d98ae 126 amd_iommu_stats_add(&domain_flush_single);
18811f55 127 amd_iommu_stats_add(&domain_flush_all);
5774f7c5 128 amd_iommu_stats_add(&alloced_io_mem);
8ecaf8f1 129 amd_iommu_stats_add(&total_map_requests);
7f26508b
JR
130}
131
132#endif
133
431b2a20 134/* returns !0 if the IOMMU is caching non-present entries in its TLB */
4da70b9e
JR
135static int iommu_has_npcache(struct amd_iommu *iommu)
136{
ae9b9403 137 return iommu->cap & (1UL << IOMMU_CAP_NPCACHE);
4da70b9e
JR
138}
139
a80dc3e0
JR
140/****************************************************************************
141 *
142 * Interrupt handling functions
143 *
144 ****************************************************************************/
145
e3e59876
JR
146static void dump_dte_entry(u16 devid)
147{
148 int i;
149
150 for (i = 0; i < 8; ++i)
151 pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
152 amd_iommu_dev_table[devid].data[i]);
153}
154
945b4ac4
JR
155static void dump_command(unsigned long phys_addr)
156{
157 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
158 int i;
159
160 for (i = 0; i < 4; ++i)
161 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
162}
163
a345b23b 164static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
90008ee4
JR
165{
166 u32 *event = __evt;
167 int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
168 int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
169 int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
170 int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
171 u64 address = (u64)(((u64)event[3]) << 32) | event[2];
172
4c6f40d4 173 printk(KERN_ERR "AMD-Vi: Event logged [");
90008ee4
JR
174
175 switch (type) {
176 case EVENT_TYPE_ILL_DEV:
177 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
178 "address=0x%016llx flags=0x%04x]\n",
179 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
180 address, flags);
e3e59876 181 dump_dte_entry(devid);
90008ee4
JR
182 break;
183 case EVENT_TYPE_IO_FAULT:
184 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
185 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
186 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
187 domid, address, flags);
188 break;
189 case EVENT_TYPE_DEV_TAB_ERR:
190 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
191 "address=0x%016llx flags=0x%04x]\n",
192 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
193 address, flags);
194 break;
195 case EVENT_TYPE_PAGE_TAB_ERR:
196 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
197 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
198 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
199 domid, address, flags);
200 break;
201 case EVENT_TYPE_ILL_CMD:
202 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
a345b23b 203 reset_iommu_command_buffer(iommu);
945b4ac4 204 dump_command(address);
90008ee4
JR
205 break;
206 case EVENT_TYPE_CMD_HARD_ERR:
207 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
208 "flags=0x%04x]\n", address, flags);
209 break;
210 case EVENT_TYPE_IOTLB_INV_TO:
211 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
212 "address=0x%016llx]\n",
213 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
214 address);
215 break;
216 case EVENT_TYPE_INV_DEV_REQ:
217 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
218 "address=0x%016llx flags=0x%04x]\n",
219 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
220 address, flags);
221 break;
222 default:
223 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
224 }
225}
226
227static void iommu_poll_events(struct amd_iommu *iommu)
228{
229 u32 head, tail;
230 unsigned long flags;
231
232 spin_lock_irqsave(&iommu->lock, flags);
233
234 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
235 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
236
237 while (head != tail) {
a345b23b 238 iommu_print_event(iommu, iommu->evt_buf + head);
90008ee4
JR
239 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
240 }
241
242 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
243
244 spin_unlock_irqrestore(&iommu->lock, flags);
245}
246
a80dc3e0
JR
247irqreturn_t amd_iommu_int_handler(int irq, void *data)
248{
90008ee4
JR
249 struct amd_iommu *iommu;
250
3bd22172 251 for_each_iommu(iommu)
90008ee4
JR
252 iommu_poll_events(iommu);
253
254 return IRQ_HANDLED;
a80dc3e0
JR
255}
256
431b2a20
JR
257/****************************************************************************
258 *
259 * IOMMU command queuing functions
260 *
261 ****************************************************************************/
262
263/*
264 * Writes the command to the IOMMUs command buffer and informs the
265 * hardware about the new command. Must be called with iommu->lock held.
266 */
d6449536 267static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
268{
269 u32 tail, head;
270 u8 *target;
271
272 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
8a7c5ef3 273 target = iommu->cmd_buf + tail;
a19ae1ec
JR
274 memcpy_toio(target, cmd, sizeof(*cmd));
275 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
276 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
277 if (tail == head)
278 return -ENOMEM;
279 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
280
281 return 0;
282}
283
431b2a20
JR
284/*
285 * General queuing function for commands. Takes iommu->lock and calls
286 * __iommu_queue_command().
287 */
d6449536 288static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
289{
290 unsigned long flags;
291 int ret;
292
293 spin_lock_irqsave(&iommu->lock, flags);
294 ret = __iommu_queue_command(iommu, cmd);
09ee17eb 295 if (!ret)
0cfd7aa9 296 iommu->need_sync = true;
a19ae1ec
JR
297 spin_unlock_irqrestore(&iommu->lock, flags);
298
299 return ret;
300}
301
8d201968
JR
302/*
303 * This function waits until an IOMMU has completed a completion
304 * wait command
305 */
306static void __iommu_wait_for_completion(struct amd_iommu *iommu)
307{
308 int ready = 0;
309 unsigned status = 0;
310 unsigned long i = 0;
311
da49f6df
JR
312 INC_STATS_COUNTER(compl_wait);
313
8d201968
JR
314 while (!ready && (i < EXIT_LOOP_COUNT)) {
315 ++i;
316 /* wait for the bit to become one */
317 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
318 ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
319 }
320
321 /* set bit back to zero */
322 status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
323 writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);
324
6a1eddd2
JR
325 if (unlikely(i == EXIT_LOOP_COUNT)) {
326 spin_unlock(&iommu->lock);
327 reset_iommu_command_buffer(iommu);
328 spin_lock(&iommu->lock);
329 }
8d201968
JR
330}
331
332/*
333 * This function queues a completion wait command into the command
334 * buffer of an IOMMU
335 */
336static int __iommu_completion_wait(struct amd_iommu *iommu)
337{
338 struct iommu_cmd cmd;
339
340 memset(&cmd, 0, sizeof(cmd));
341 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
342 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);
343
344 return __iommu_queue_command(iommu, &cmd);
345}
346
431b2a20
JR
347/*
348 * This function is called whenever we need to ensure that the IOMMU has
349 * completed execution of all commands we sent. It sends a
350 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
351 * us about that by writing a value to a physical address we pass with
352 * the command.
353 */
a19ae1ec
JR
354static int iommu_completion_wait(struct amd_iommu *iommu)
355{
8d201968
JR
356 int ret = 0;
357 unsigned long flags;
a19ae1ec 358
7e4f88da
JR
359 spin_lock_irqsave(&iommu->lock, flags);
360
09ee17eb
JR
361 if (!iommu->need_sync)
362 goto out;
363
8d201968 364 ret = __iommu_completion_wait(iommu);
09ee17eb 365
0cfd7aa9 366 iommu->need_sync = false;
a19ae1ec
JR
367
368 if (ret)
7e4f88da 369 goto out;
a19ae1ec 370
8d201968 371 __iommu_wait_for_completion(iommu);
84df8175 372
7e4f88da
JR
373out:
374 spin_unlock_irqrestore(&iommu->lock, flags);
a19ae1ec
JR
375
376 return 0;
377}
378
0518a3a4
JR
379static void iommu_flush_complete(struct protection_domain *domain)
380{
381 int i;
382
383 for (i = 0; i < amd_iommus_present; ++i) {
384 if (!domain->dev_iommu[i])
385 continue;
386
387 /*
388 * Devices of this domain are behind this IOMMU
389 * We need to wait for completion of all commands.
390 */
391 iommu_completion_wait(amd_iommus[i]);
392 }
393}
394
431b2a20
JR
395/*
396 * Command send function for invalidating a device table entry
397 */
a19ae1ec
JR
398static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
399{
d6449536 400 struct iommu_cmd cmd;
ee2fa743 401 int ret;
a19ae1ec
JR
402
403 BUG_ON(iommu == NULL);
404
405 memset(&cmd, 0, sizeof(cmd));
406 CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
407 cmd.data[0] = devid;
408
ee2fa743
JR
409 ret = iommu_queue_command(iommu, &cmd);
410
ee2fa743 411 return ret;
a19ae1ec
JR
412}
413
237b6f33
JR
414static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
415 u16 domid, int pde, int s)
416{
417 memset(cmd, 0, sizeof(*cmd));
418 address &= PAGE_MASK;
419 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
420 cmd->data[1] |= domid;
421 cmd->data[2] = lower_32_bits(address);
422 cmd->data[3] = upper_32_bits(address);
423 if (s) /* size bit - we flush more than one 4kb page */
424 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
425 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
426 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
427}
428
431b2a20
JR
429/*
430 * Generic command send function for invalidaing TLB entries
431 */
a19ae1ec
JR
432static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
433 u64 address, u16 domid, int pde, int s)
434{
d6449536 435 struct iommu_cmd cmd;
ee2fa743 436 int ret;
a19ae1ec 437
237b6f33 438 __iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
a19ae1ec 439
ee2fa743
JR
440 ret = iommu_queue_command(iommu, &cmd);
441
ee2fa743 442 return ret;
a19ae1ec
JR
443}
444
431b2a20
JR
445/*
446 * TLB invalidation function which is called from the mapping functions.
447 * It invalidates a single PTE if the range to flush is within a single
448 * page. Otherwise it flushes the whole TLB of the IOMMU.
449 */
6de8ad9b
JR
450static void __iommu_flush_pages(struct protection_domain *domain,
451 u64 address, size_t size, int pde)
a19ae1ec 452{
6de8ad9b 453 int s = 0, i;
dcd1e92e 454 unsigned long pages = iommu_num_pages(address, size, PAGE_SIZE);
a19ae1ec
JR
455
456 address &= PAGE_MASK;
457
999ba417
JR
458 if (pages > 1) {
459 /*
460 * If we have to flush more than one page, flush all
461 * TLB entries for this domain
462 */
463 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
464 s = 1;
a19ae1ec
JR
465 }
466
999ba417 467
6de8ad9b
JR
468 for (i = 0; i < amd_iommus_present; ++i) {
469 if (!domain->dev_iommu[i])
470 continue;
471
472 /*
473 * Devices of this domain are behind this IOMMU
474 * We need a TLB flush
475 */
476 iommu_queue_inv_iommu_pages(amd_iommus[i], address,
477 domain->id, pde, s);
478 }
479
480 return;
481}
482
483static void iommu_flush_pages(struct protection_domain *domain,
484 u64 address, size_t size)
485{
486 __iommu_flush_pages(domain, address, size, 0);
a19ae1ec 487}
b6c02715 488
1c655773 489/* Flush the whole IO/TLB for a given protection domain */
dcd1e92e 490static void iommu_flush_tlb(struct protection_domain *domain)
1c655773 491{
dcd1e92e 492 __iommu_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1c655773
JR
493}
494
42a49f96 495/* Flush the whole IO/TLB for a given protection domain - including PDE */
dcd1e92e 496static void iommu_flush_tlb_pde(struct protection_domain *domain)
42a49f96 497{
dcd1e92e 498 __iommu_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
42a49f96
CW
499}
500
43f49609 501/*
e394d72a 502 * This function flushes one domain on one IOMMU
43f49609 503 */
e394d72a 504static void flush_domain_on_iommu(struct amd_iommu *iommu, u16 domid)
43f49609 505{
43f49609 506 struct iommu_cmd cmd;
e394d72a 507 unsigned long flags;
18811f55 508
43f49609
JR
509 __iommu_build_inv_iommu_pages(&cmd, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
510 domid, 1, 1);
511
e394d72a
JR
512 spin_lock_irqsave(&iommu->lock, flags);
513 __iommu_queue_command(iommu, &cmd);
514 __iommu_completion_wait(iommu);
515 __iommu_wait_for_completion(iommu);
516 spin_unlock_irqrestore(&iommu->lock, flags);
43f49609 517}
43f49609 518
e394d72a 519static void flush_all_domains_on_iommu(struct amd_iommu *iommu)
bfd1be18
JR
520{
521 int i;
522
523 for (i = 1; i < MAX_DOMAIN_ID; ++i) {
524 if (!test_bit(i, amd_iommu_pd_alloc_bitmap))
525 continue;
e394d72a 526 flush_domain_on_iommu(iommu, i);
bfd1be18 527 }
e394d72a
JR
528
529}
530
bfd1be18 531void amd_iommu_flush_all_domains(void)
e394d72a 532{
e3306664 533 struct protection_domain *domain;
e394d72a 534
e3306664
JR
535 list_for_each_entry(domain, &amd_iommu_pd_list, list) {
536 iommu_flush_tlb_pde(domain);
537 iommu_flush_complete(domain);
538 }
bfd1be18
JR
539}
540
d586d785 541static void flush_all_devices_for_iommu(struct amd_iommu *iommu)
bfd1be18
JR
542{
543 int i;
544
d586d785
JR
545 for (i = 0; i <= amd_iommu_last_bdf; ++i) {
546 if (iommu != amd_iommu_rlookup_table[i])
bfd1be18 547 continue;
d586d785
JR
548
549 iommu_queue_inv_dev_entry(iommu, i);
550 iommu_completion_wait(iommu);
bfd1be18
JR
551 }
552}
553
6a0dbcbe 554static void flush_devices_by_domain(struct protection_domain *domain)
7d7a110c
JR
555{
556 struct amd_iommu *iommu;
557 int i;
558
559 for (i = 0; i <= amd_iommu_last_bdf; ++i) {
6a0dbcbe
JR
560 if ((domain == NULL && amd_iommu_pd_table[i] == NULL) ||
561 (amd_iommu_pd_table[i] != domain))
7d7a110c
JR
562 continue;
563
564 iommu = amd_iommu_rlookup_table[i];
565 if (!iommu)
566 continue;
567
568 iommu_queue_inv_dev_entry(iommu, i);
569 iommu_completion_wait(iommu);
570 }
571}
572
a345b23b
JR
573static void reset_iommu_command_buffer(struct amd_iommu *iommu)
574{
575 pr_err("AMD-Vi: Resetting IOMMU command buffer\n");
576
b26e81b8
JR
577 if (iommu->reset_in_progress)
578 panic("AMD-Vi: ILLEGAL_COMMAND_ERROR while resetting command buffer\n");
579
580 iommu->reset_in_progress = true;
581
a345b23b
JR
582 amd_iommu_reset_cmd_buffer(iommu);
583 flush_all_devices_for_iommu(iommu);
584 flush_all_domains_on_iommu(iommu);
b26e81b8
JR
585
586 iommu->reset_in_progress = false;
a345b23b
JR
587}
588
6a0dbcbe
JR
589void amd_iommu_flush_all_devices(void)
590{
591 flush_devices_by_domain(NULL);
592}
593
431b2a20
JR
594/****************************************************************************
595 *
596 * The functions below are used the create the page table mappings for
597 * unity mapped regions.
598 *
599 ****************************************************************************/
600
601/*
602 * Generic mapping functions. It maps a physical address into a DMA
603 * address space. It allocates the page table pages if necessary.
604 * In the future it can be extended to a generic mapping function
605 * supporting all features of AMD IOMMU page tables like level skipping
606 * and full 64 bit address spaces.
607 */
38e817fe
JR
608static int iommu_map_page(struct protection_domain *dom,
609 unsigned long bus_addr,
610 unsigned long phys_addr,
abdc5eb3
JR
611 int prot,
612 int map_size)
bd0e5211 613{
8bda3092 614 u64 __pte, *pte;
bd0e5211
JR
615
616 bus_addr = PAGE_ALIGN(bus_addr);
bb9d4ff8 617 phys_addr = PAGE_ALIGN(phys_addr);
bd0e5211 618
abdc5eb3
JR
619 BUG_ON(!PM_ALIGNED(map_size, bus_addr));
620 BUG_ON(!PM_ALIGNED(map_size, phys_addr));
621
bad1cac2 622 if (!(prot & IOMMU_PROT_MASK))
bd0e5211
JR
623 return -EINVAL;
624
abdc5eb3 625 pte = alloc_pte(dom, bus_addr, map_size, NULL, GFP_KERNEL);
bd0e5211
JR
626
627 if (IOMMU_PTE_PRESENT(*pte))
628 return -EBUSY;
629
630 __pte = phys_addr | IOMMU_PTE_P;
631 if (prot & IOMMU_PROT_IR)
632 __pte |= IOMMU_PTE_IR;
633 if (prot & IOMMU_PROT_IW)
634 __pte |= IOMMU_PTE_IW;
635
636 *pte = __pte;
637
04bfdd84
JR
638 update_domain(dom);
639
bd0e5211
JR
640 return 0;
641}
642
eb74ff6c 643static void iommu_unmap_page(struct protection_domain *dom,
a6b256b4 644 unsigned long bus_addr, int map_size)
eb74ff6c 645{
a6b256b4 646 u64 *pte = fetch_pte(dom, bus_addr, map_size);
eb74ff6c 647
38a76eee
JR
648 if (pte)
649 *pte = 0;
eb74ff6c 650}
eb74ff6c 651
431b2a20
JR
652/*
653 * This function checks if a specific unity mapping entry is needed for
654 * this specific IOMMU.
655 */
bd0e5211
JR
656static int iommu_for_unity_map(struct amd_iommu *iommu,
657 struct unity_map_entry *entry)
658{
659 u16 bdf, i;
660
661 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
662 bdf = amd_iommu_alias_table[i];
663 if (amd_iommu_rlookup_table[bdf] == iommu)
664 return 1;
665 }
666
667 return 0;
668}
669
431b2a20
JR
670/*
671 * Init the unity mappings for a specific IOMMU in the system
672 *
673 * Basically iterates over all unity mapping entries and applies them to
674 * the default domain DMA of that IOMMU if necessary.
675 */
bd0e5211
JR
676static int iommu_init_unity_mappings(struct amd_iommu *iommu)
677{
678 struct unity_map_entry *entry;
679 int ret;
680
681 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
682 if (!iommu_for_unity_map(iommu, entry))
683 continue;
684 ret = dma_ops_unity_map(iommu->default_dom, entry);
685 if (ret)
686 return ret;
687 }
688
689 return 0;
690}
691
431b2a20
JR
692/*
693 * This function actually applies the mapping to the page table of the
694 * dma_ops domain.
695 */
bd0e5211
JR
696static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
697 struct unity_map_entry *e)
698{
699 u64 addr;
700 int ret;
701
702 for (addr = e->address_start; addr < e->address_end;
703 addr += PAGE_SIZE) {
abdc5eb3
JR
704 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
705 PM_MAP_4k);
bd0e5211
JR
706 if (ret)
707 return ret;
708 /*
709 * if unity mapping is in aperture range mark the page
710 * as allocated in the aperture
711 */
712 if (addr < dma_dom->aperture_size)
c3239567 713 __set_bit(addr >> PAGE_SHIFT,
384de729 714 dma_dom->aperture[0]->bitmap);
bd0e5211
JR
715 }
716
717 return 0;
718}
719
431b2a20
JR
720/*
721 * Inits the unity mappings required for a specific device
722 */
bd0e5211
JR
723static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
724 u16 devid)
725{
726 struct unity_map_entry *e;
727 int ret;
728
729 list_for_each_entry(e, &amd_iommu_unity_map, list) {
730 if (!(devid >= e->devid_start && devid <= e->devid_end))
731 continue;
732 ret = dma_ops_unity_map(dma_dom, e);
733 if (ret)
734 return ret;
735 }
736
737 return 0;
738}
739
431b2a20
JR
740/****************************************************************************
741 *
742 * The next functions belong to the address allocator for the dma_ops
743 * interface functions. They work like the allocators in the other IOMMU
744 * drivers. Its basically a bitmap which marks the allocated pages in
745 * the aperture. Maybe it could be enhanced in the future to a more
746 * efficient allocator.
747 *
748 ****************************************************************************/
d3086444 749
431b2a20 750/*
384de729 751 * The address allocator core functions.
431b2a20
JR
752 *
753 * called with domain->lock held
754 */
384de729 755
00cd122a
JR
756/*
757 * This function checks if there is a PTE for a given dma address. If
758 * there is one, it returns the pointer to it.
759 */
9355a081 760static u64 *fetch_pte(struct protection_domain *domain,
a6b256b4 761 unsigned long address, int map_size)
00cd122a 762{
9355a081 763 int level;
00cd122a
JR
764 u64 *pte;
765
9355a081
JR
766 level = domain->mode - 1;
767 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
00cd122a 768
a6b256b4 769 while (level > map_size) {
9355a081
JR
770 if (!IOMMU_PTE_PRESENT(*pte))
771 return NULL;
00cd122a 772
9355a081 773 level -= 1;
00cd122a 774
9355a081
JR
775 pte = IOMMU_PTE_PAGE(*pte);
776 pte = &pte[PM_LEVEL_INDEX(level, address)];
00cd122a 777
a6b256b4
JR
778 if ((PM_PTE_LEVEL(*pte) == 0) && level != map_size) {
779 pte = NULL;
780 break;
781 }
9355a081 782 }
00cd122a
JR
783
784 return pte;
785}
786
9cabe89b
JR
787/*
788 * This function is used to add a new aperture range to an existing
789 * aperture in case of dma_ops domain allocation or address allocation
790 * failure.
791 */
00cd122a
JR
792static int alloc_new_range(struct amd_iommu *iommu,
793 struct dma_ops_domain *dma_dom,
9cabe89b
JR
794 bool populate, gfp_t gfp)
795{
796 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
00cd122a 797 int i;
9cabe89b 798
f5e9705c
JR
799#ifdef CONFIG_IOMMU_STRESS
800 populate = false;
801#endif
802
9cabe89b
JR
803 if (index >= APERTURE_MAX_RANGES)
804 return -ENOMEM;
805
806 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
807 if (!dma_dom->aperture[index])
808 return -ENOMEM;
809
810 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
811 if (!dma_dom->aperture[index]->bitmap)
812 goto out_free;
813
814 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
815
816 if (populate) {
817 unsigned long address = dma_dom->aperture_size;
818 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
819 u64 *pte, *pte_page;
820
821 for (i = 0; i < num_ptes; ++i) {
abdc5eb3 822 pte = alloc_pte(&dma_dom->domain, address, PM_MAP_4k,
9cabe89b
JR
823 &pte_page, gfp);
824 if (!pte)
825 goto out_free;
826
827 dma_dom->aperture[index]->pte_pages[i] = pte_page;
828
829 address += APERTURE_RANGE_SIZE / 64;
830 }
831 }
832
833 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
834
00cd122a
JR
835 /* Intialize the exclusion range if necessary */
836 if (iommu->exclusion_start &&
837 iommu->exclusion_start >= dma_dom->aperture[index]->offset &&
838 iommu->exclusion_start < dma_dom->aperture_size) {
839 unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
840 int pages = iommu_num_pages(iommu->exclusion_start,
841 iommu->exclusion_length,
842 PAGE_SIZE);
843 dma_ops_reserve_addresses(dma_dom, startpage, pages);
844 }
845
846 /*
847 * Check for areas already mapped as present in the new aperture
848 * range and mark those pages as reserved in the allocator. Such
849 * mappings may already exist as a result of requested unity
850 * mappings for devices.
851 */
852 for (i = dma_dom->aperture[index]->offset;
853 i < dma_dom->aperture_size;
854 i += PAGE_SIZE) {
a6b256b4 855 u64 *pte = fetch_pte(&dma_dom->domain, i, PM_MAP_4k);
00cd122a
JR
856 if (!pte || !IOMMU_PTE_PRESENT(*pte))
857 continue;
858
859 dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
860 }
861
04bfdd84
JR
862 update_domain(&dma_dom->domain);
863
9cabe89b
JR
864 return 0;
865
866out_free:
04bfdd84
JR
867 update_domain(&dma_dom->domain);
868
9cabe89b
JR
869 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
870
871 kfree(dma_dom->aperture[index]);
872 dma_dom->aperture[index] = NULL;
873
874 return -ENOMEM;
875}
876
384de729
JR
877static unsigned long dma_ops_area_alloc(struct device *dev,
878 struct dma_ops_domain *dom,
879 unsigned int pages,
880 unsigned long align_mask,
881 u64 dma_mask,
882 unsigned long start)
883{
803b8cb4 884 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
384de729
JR
885 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
886 int i = start >> APERTURE_RANGE_SHIFT;
887 unsigned long boundary_size;
888 unsigned long address = -1;
889 unsigned long limit;
890
803b8cb4
JR
891 next_bit >>= PAGE_SHIFT;
892
384de729
JR
893 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
894 PAGE_SIZE) >> PAGE_SHIFT;
895
896 for (;i < max_index; ++i) {
897 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
898
899 if (dom->aperture[i]->offset >= dma_mask)
900 break;
901
902 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
903 dma_mask >> PAGE_SHIFT);
904
905 address = iommu_area_alloc(dom->aperture[i]->bitmap,
906 limit, next_bit, pages, 0,
907 boundary_size, align_mask);
908 if (address != -1) {
909 address = dom->aperture[i]->offset +
910 (address << PAGE_SHIFT);
803b8cb4 911 dom->next_address = address + (pages << PAGE_SHIFT);
384de729
JR
912 break;
913 }
914
915 next_bit = 0;
916 }
917
918 return address;
919}
920
d3086444
JR
921static unsigned long dma_ops_alloc_addresses(struct device *dev,
922 struct dma_ops_domain *dom,
6d4f343f 923 unsigned int pages,
832a90c3
JR
924 unsigned long align_mask,
925 u64 dma_mask)
d3086444 926{
d3086444 927 unsigned long address;
d3086444 928
fe16f088
JR
929#ifdef CONFIG_IOMMU_STRESS
930 dom->next_address = 0;
931 dom->need_flush = true;
932#endif
d3086444 933
384de729 934 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
803b8cb4 935 dma_mask, dom->next_address);
d3086444 936
1c655773 937 if (address == -1) {
803b8cb4 938 dom->next_address = 0;
384de729
JR
939 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
940 dma_mask, 0);
1c655773
JR
941 dom->need_flush = true;
942 }
d3086444 943
384de729 944 if (unlikely(address == -1))
8fd524b3 945 address = DMA_ERROR_CODE;
d3086444
JR
946
947 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
948
949 return address;
950}
951
431b2a20
JR
952/*
953 * The address free function.
954 *
955 * called with domain->lock held
956 */
d3086444
JR
957static void dma_ops_free_addresses(struct dma_ops_domain *dom,
958 unsigned long address,
959 unsigned int pages)
960{
384de729
JR
961 unsigned i = address >> APERTURE_RANGE_SHIFT;
962 struct aperture_range *range = dom->aperture[i];
80be308d 963
384de729
JR
964 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
965
47bccd6b
JR
966#ifdef CONFIG_IOMMU_STRESS
967 if (i < 4)
968 return;
969#endif
80be308d 970
803b8cb4 971 if (address >= dom->next_address)
80be308d 972 dom->need_flush = true;
384de729
JR
973
974 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
803b8cb4 975
384de729
JR
976 iommu_area_free(range->bitmap, address, pages);
977
d3086444
JR
978}
979
431b2a20
JR
980/****************************************************************************
981 *
982 * The next functions belong to the domain allocation. A domain is
983 * allocated for every IOMMU as the default domain. If device isolation
984 * is enabled, every device get its own domain. The most important thing
985 * about domains is the page table mapping the DMA address space they
986 * contain.
987 *
988 ****************************************************************************/
989
aeb26f55
JR
990/*
991 * This function adds a protection domain to the global protection domain list
992 */
993static void add_domain_to_list(struct protection_domain *domain)
994{
995 unsigned long flags;
996
997 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
998 list_add(&domain->list, &amd_iommu_pd_list);
999 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1000}
1001
1002/*
1003 * This function removes a protection domain to the global
1004 * protection domain list
1005 */
1006static void del_domain_from_list(struct protection_domain *domain)
1007{
1008 unsigned long flags;
1009
1010 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1011 list_del(&domain->list);
1012 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1013}
1014
ec487d1a
JR
1015static u16 domain_id_alloc(void)
1016{
1017 unsigned long flags;
1018 int id;
1019
1020 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1021 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1022 BUG_ON(id == 0);
1023 if (id > 0 && id < MAX_DOMAIN_ID)
1024 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1025 else
1026 id = 0;
1027 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1028
1029 return id;
1030}
1031
a2acfb75
JR
1032static void domain_id_free(int id)
1033{
1034 unsigned long flags;
1035
1036 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1037 if (id > 0 && id < MAX_DOMAIN_ID)
1038 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1039 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1040}
a2acfb75 1041
431b2a20
JR
1042/*
1043 * Used to reserve address ranges in the aperture (e.g. for exclusion
1044 * ranges.
1045 */
ec487d1a
JR
1046static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1047 unsigned long start_page,
1048 unsigned int pages)
1049{
384de729 1050 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
ec487d1a
JR
1051
1052 if (start_page + pages > last_page)
1053 pages = last_page - start_page;
1054
384de729
JR
1055 for (i = start_page; i < start_page + pages; ++i) {
1056 int index = i / APERTURE_RANGE_PAGES;
1057 int page = i % APERTURE_RANGE_PAGES;
1058 __set_bit(page, dom->aperture[index]->bitmap);
1059 }
ec487d1a
JR
1060}
1061
86db2e5d 1062static void free_pagetable(struct protection_domain *domain)
ec487d1a
JR
1063{
1064 int i, j;
1065 u64 *p1, *p2, *p3;
1066
86db2e5d 1067 p1 = domain->pt_root;
ec487d1a
JR
1068
1069 if (!p1)
1070 return;
1071
1072 for (i = 0; i < 512; ++i) {
1073 if (!IOMMU_PTE_PRESENT(p1[i]))
1074 continue;
1075
1076 p2 = IOMMU_PTE_PAGE(p1[i]);
3cc3d84b 1077 for (j = 0; j < 512; ++j) {
ec487d1a
JR
1078 if (!IOMMU_PTE_PRESENT(p2[j]))
1079 continue;
1080 p3 = IOMMU_PTE_PAGE(p2[j]);
1081 free_page((unsigned long)p3);
1082 }
1083
1084 free_page((unsigned long)p2);
1085 }
1086
1087 free_page((unsigned long)p1);
86db2e5d
JR
1088
1089 domain->pt_root = NULL;
ec487d1a
JR
1090}
1091
431b2a20
JR
1092/*
1093 * Free a domain, only used if something went wrong in the
1094 * allocation path and we need to free an already allocated page table
1095 */
ec487d1a
JR
1096static void dma_ops_domain_free(struct dma_ops_domain *dom)
1097{
384de729
JR
1098 int i;
1099
ec487d1a
JR
1100 if (!dom)
1101 return;
1102
aeb26f55
JR
1103 del_domain_from_list(&dom->domain);
1104
86db2e5d 1105 free_pagetable(&dom->domain);
ec487d1a 1106
384de729
JR
1107 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1108 if (!dom->aperture[i])
1109 continue;
1110 free_page((unsigned long)dom->aperture[i]->bitmap);
1111 kfree(dom->aperture[i]);
1112 }
ec487d1a
JR
1113
1114 kfree(dom);
1115}
1116
431b2a20
JR
1117/*
1118 * Allocates a new protection domain usable for the dma_ops functions.
1119 * It also intializes the page table and the address allocator data
1120 * structures required for the dma_ops interface
1121 */
d9cfed92 1122static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu)
ec487d1a
JR
1123{
1124 struct dma_ops_domain *dma_dom;
ec487d1a
JR
1125
1126 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1127 if (!dma_dom)
1128 return NULL;
1129
1130 spin_lock_init(&dma_dom->domain.lock);
1131
1132 dma_dom->domain.id = domain_id_alloc();
1133 if (dma_dom->domain.id == 0)
1134 goto free_dma_dom;
8f7a017c 1135 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
ec487d1a 1136 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
9fdb19d6 1137 dma_dom->domain.flags = PD_DMA_OPS_MASK;
ec487d1a
JR
1138 dma_dom->domain.priv = dma_dom;
1139 if (!dma_dom->domain.pt_root)
1140 goto free_dma_dom;
ec487d1a 1141
1c655773 1142 dma_dom->need_flush = false;
bd60b735 1143 dma_dom->target_dev = 0xffff;
1c655773 1144
aeb26f55
JR
1145 add_domain_to_list(&dma_dom->domain);
1146
00cd122a 1147 if (alloc_new_range(iommu, dma_dom, true, GFP_KERNEL))
ec487d1a 1148 goto free_dma_dom;
ec487d1a 1149
431b2a20 1150 /*
ec487d1a
JR
1151 * mark the first page as allocated so we never return 0 as
1152 * a valid dma-address. So we can use 0 as error value
431b2a20 1153 */
384de729 1154 dma_dom->aperture[0]->bitmap[0] = 1;
803b8cb4 1155 dma_dom->next_address = 0;
ec487d1a 1156
ec487d1a
JR
1157
1158 return dma_dom;
1159
1160free_dma_dom:
1161 dma_ops_domain_free(dma_dom);
1162
1163 return NULL;
1164}
1165
5b28df6f
JR
1166/*
1167 * little helper function to check whether a given protection domain is a
1168 * dma_ops domain
1169 */
1170static bool dma_ops_domain(struct protection_domain *domain)
1171{
1172 return domain->flags & PD_DMA_OPS_MASK;
1173}
1174
431b2a20
JR
1175/*
1176 * Find out the protection domain structure for a given PCI device. This
1177 * will give us the pointer to the page table root for example.
1178 */
b20ac0d4
JR
1179static struct protection_domain *domain_for_device(u16 devid)
1180{
1181 struct protection_domain *dom;
1182 unsigned long flags;
1183
1184 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
1185 dom = amd_iommu_pd_table[devid];
1186 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1187
1188 return dom;
1189}
1190
407d733e 1191static void set_dte_entry(u16 devid, struct protection_domain *domain)
b20ac0d4 1192{
b20ac0d4 1193 u64 pte_root = virt_to_phys(domain->pt_root);
863c74eb 1194
38ddf41b
JR
1195 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1196 << DEV_ENTRY_MODE_SHIFT;
1197 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4 1198
b20ac0d4 1199 amd_iommu_dev_table[devid].data[2] = domain->id;
aa879fff
JR
1200 amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
1201 amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
b20ac0d4
JR
1202
1203 amd_iommu_pd_table[devid] = domain;
2b681faf
JR
1204}
1205
1206/*
1207 * If a device is not yet associated with a domain, this function does
1208 * assigns it visible for the hardware
1209 */
1210static void __attach_device(struct amd_iommu *iommu,
1211 struct protection_domain *domain,
1212 u16 devid)
1213{
1214 /* lock domain */
1215 spin_lock(&domain->lock);
1216
1217 /* update DTE entry */
1218 set_dte_entry(devid, domain);
eba6ac60 1219
c4596114
JR
1220 /* Do reference counting */
1221 domain->dev_iommu[iommu->index] += 1;
1222 domain->dev_cnt += 1;
eba6ac60
JR
1223
1224 /* ready */
1225 spin_unlock(&domain->lock);
0feae533 1226}
b20ac0d4 1227
407d733e
JR
1228/*
1229 * If a device is not yet associated with a domain, this function does
1230 * assigns it visible for the hardware
1231 */
0feae533
JR
1232static void attach_device(struct amd_iommu *iommu,
1233 struct protection_domain *domain,
1234 u16 devid)
1235{
eba6ac60
JR
1236 unsigned long flags;
1237
1238 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
0feae533 1239 __attach_device(iommu, domain, devid);
b20ac0d4
JR
1240 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1241
0feae533
JR
1242 /*
1243 * We might boot into a crash-kernel here. The crashed kernel
1244 * left the caches in the IOMMU dirty. So we have to flush
1245 * here to evict all dirty stuff.
1246 */
b20ac0d4 1247 iommu_queue_inv_dev_entry(iommu, devid);
dcd1e92e 1248 iommu_flush_tlb_pde(domain);
b20ac0d4
JR
1249}
1250
355bf553
JR
1251/*
1252 * Removes a device from a protection domain (unlocked)
1253 */
1254static void __detach_device(struct protection_domain *domain, u16 devid)
1255{
c4596114
JR
1256 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1257
1258 BUG_ON(!iommu);
355bf553
JR
1259
1260 /* lock domain */
1261 spin_lock(&domain->lock);
1262
1263 /* remove domain from the lookup table */
1264 amd_iommu_pd_table[devid] = NULL;
1265
1266 /* remove entry from the device table seen by the hardware */
1267 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1268 amd_iommu_dev_table[devid].data[1] = 0;
1269 amd_iommu_dev_table[devid].data[2] = 0;
1270
c5cca146
JR
1271 amd_iommu_apply_erratum_63(devid);
1272
c4596114
JR
1273 /* decrease reference counters */
1274 domain->dev_iommu[iommu->index] -= 1;
1275 domain->dev_cnt -= 1;
355bf553
JR
1276
1277 /* ready */
1278 spin_unlock(&domain->lock);
21129f78
JR
1279
1280 /*
1281 * If we run in passthrough mode the device must be assigned to the
1282 * passthrough domain if it is detached from any other domain
1283 */
1284 if (iommu_pass_through) {
1285 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1286 __attach_device(iommu, pt_domain, devid);
1287 }
355bf553
JR
1288}
1289
1290/*
1291 * Removes a device from a protection domain (with devtable_lock held)
1292 */
1293static void detach_device(struct protection_domain *domain, u16 devid)
1294{
1295 unsigned long flags;
1296
1297 /* lock device table */
1298 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1299 __detach_device(domain, devid);
1300 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1301}
e275a2a0
JR
1302
1303static int device_change_notifier(struct notifier_block *nb,
1304 unsigned long action, void *data)
1305{
1306 struct device *dev = data;
1307 struct pci_dev *pdev = to_pci_dev(dev);
1308 u16 devid = calc_devid(pdev->bus->number, pdev->devfn);
1309 struct protection_domain *domain;
1310 struct dma_ops_domain *dma_domain;
1311 struct amd_iommu *iommu;
1ac4cbbc 1312 unsigned long flags;
e275a2a0
JR
1313
1314 if (devid > amd_iommu_last_bdf)
1315 goto out;
1316
1317 devid = amd_iommu_alias_table[devid];
1318
1319 iommu = amd_iommu_rlookup_table[devid];
1320 if (iommu == NULL)
1321 goto out;
1322
1323 domain = domain_for_device(devid);
1324
1325 if (domain && !dma_ops_domain(domain))
1326 WARN_ONCE(1, "AMD IOMMU WARNING: device %s already bound "
1327 "to a non-dma-ops domain\n", dev_name(dev));
1328
1329 switch (action) {
c1eee67b 1330 case BUS_NOTIFY_UNBOUND_DRIVER:
e275a2a0
JR
1331 if (!domain)
1332 goto out;
a1ca331c
JR
1333 if (iommu_pass_through)
1334 break;
e275a2a0 1335 detach_device(domain, devid);
1ac4cbbc
JR
1336 break;
1337 case BUS_NOTIFY_ADD_DEVICE:
1338 /* allocate a protection domain if a device is added */
1339 dma_domain = find_protection_domain(devid);
1340 if (dma_domain)
1341 goto out;
d9cfed92 1342 dma_domain = dma_ops_domain_alloc(iommu);
1ac4cbbc
JR
1343 if (!dma_domain)
1344 goto out;
1345 dma_domain->target_dev = devid;
1346
1347 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1348 list_add_tail(&dma_domain->list, &iommu_pd_list);
1349 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1350
e275a2a0
JR
1351 break;
1352 default:
1353 goto out;
1354 }
1355
1356 iommu_queue_inv_dev_entry(iommu, devid);
1357 iommu_completion_wait(iommu);
1358
1359out:
1360 return 0;
1361}
1362
b25ae679 1363static struct notifier_block device_nb = {
e275a2a0
JR
1364 .notifier_call = device_change_notifier,
1365};
355bf553 1366
431b2a20
JR
1367/*****************************************************************************
1368 *
1369 * The next functions belong to the dma_ops mapping/unmapping code.
1370 *
1371 *****************************************************************************/
1372
dbcc112e
JR
1373/*
1374 * This function checks if the driver got a valid device from the caller to
1375 * avoid dereferencing invalid pointers.
1376 */
1377static bool check_device(struct device *dev)
1378{
1379 if (!dev || !dev->dma_mask)
1380 return false;
1381
1382 return true;
1383}
1384
bd60b735
JR
1385/*
1386 * In this function the list of preallocated protection domains is traversed to
1387 * find the domain for a specific device
1388 */
1389static struct dma_ops_domain *find_protection_domain(u16 devid)
1390{
1391 struct dma_ops_domain *entry, *ret = NULL;
1392 unsigned long flags;
1393
1394 if (list_empty(&iommu_pd_list))
1395 return NULL;
1396
1397 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1398
1399 list_for_each_entry(entry, &iommu_pd_list, list) {
1400 if (entry->target_dev == devid) {
1401 ret = entry;
bd60b735
JR
1402 break;
1403 }
1404 }
1405
1406 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1407
1408 return ret;
1409}
1410
431b2a20
JR
1411/*
1412 * In the dma_ops path we only have the struct device. This function
1413 * finds the corresponding IOMMU, the protection domain and the
1414 * requestor id for a given device.
1415 * If the device is not yet associated with a domain this is also done
1416 * in this function.
1417 */
b20ac0d4
JR
1418static int get_device_resources(struct device *dev,
1419 struct amd_iommu **iommu,
1420 struct protection_domain **domain,
1421 u16 *bdf)
1422{
1423 struct dma_ops_domain *dma_dom;
1424 struct pci_dev *pcidev;
1425 u16 _bdf;
1426
dbcc112e
JR
1427 *iommu = NULL;
1428 *domain = NULL;
1429 *bdf = 0xffff;
1430
1431 if (dev->bus != &pci_bus_type)
1432 return 0;
b20ac0d4
JR
1433
1434 pcidev = to_pci_dev(dev);
d591b0a3 1435 _bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
b20ac0d4 1436
431b2a20 1437 /* device not translated by any IOMMU in the system? */
dbcc112e 1438 if (_bdf > amd_iommu_last_bdf)
b20ac0d4 1439 return 0;
b20ac0d4
JR
1440
1441 *bdf = amd_iommu_alias_table[_bdf];
1442
1443 *iommu = amd_iommu_rlookup_table[*bdf];
1444 if (*iommu == NULL)
1445 return 0;
b20ac0d4
JR
1446 *domain = domain_for_device(*bdf);
1447 if (*domain == NULL) {
bd60b735
JR
1448 dma_dom = find_protection_domain(*bdf);
1449 if (!dma_dom)
1450 dma_dom = (*iommu)->default_dom;
b20ac0d4 1451 *domain = &dma_dom->domain;
f1179dc0 1452 attach_device(*iommu, *domain, *bdf);
e9a22a13
JR
1453 DUMP_printk("Using protection domain %d for device %s\n",
1454 (*domain)->id, dev_name(dev));
b20ac0d4
JR
1455 }
1456
f91ba190 1457 if (domain_for_device(_bdf) == NULL)
f1179dc0 1458 attach_device(*iommu, *domain, _bdf);
f91ba190 1459
b20ac0d4
JR
1460 return 1;
1461}
1462
04bfdd84
JR
1463static void update_device_table(struct protection_domain *domain)
1464{
2b681faf 1465 unsigned long flags;
04bfdd84
JR
1466 int i;
1467
1468 for (i = 0; i <= amd_iommu_last_bdf; ++i) {
1469 if (amd_iommu_pd_table[i] != domain)
1470 continue;
2b681faf 1471 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
04bfdd84 1472 set_dte_entry(i, domain);
2b681faf 1473 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
04bfdd84
JR
1474 }
1475}
1476
1477static void update_domain(struct protection_domain *domain)
1478{
1479 if (!domain->updated)
1480 return;
1481
1482 update_device_table(domain);
1483 flush_devices_by_domain(domain);
601367d7 1484 iommu_flush_tlb_pde(domain);
04bfdd84
JR
1485
1486 domain->updated = false;
1487}
1488
8bda3092 1489/*
50020fb6
JR
1490 * This function is used to add another level to an IO page table. Adding
1491 * another level increases the size of the address space by 9 bits to a size up
1492 * to 64 bits.
8bda3092 1493 */
50020fb6
JR
1494static bool increase_address_space(struct protection_domain *domain,
1495 gfp_t gfp)
1496{
1497 u64 *pte;
1498
1499 if (domain->mode == PAGE_MODE_6_LEVEL)
1500 /* address space already 64 bit large */
1501 return false;
1502
1503 pte = (void *)get_zeroed_page(gfp);
1504 if (!pte)
1505 return false;
1506
1507 *pte = PM_LEVEL_PDE(domain->mode,
1508 virt_to_phys(domain->pt_root));
1509 domain->pt_root = pte;
1510 domain->mode += 1;
1511 domain->updated = true;
1512
1513 return true;
1514}
1515
8bc3e127 1516static u64 *alloc_pte(struct protection_domain *domain,
abdc5eb3
JR
1517 unsigned long address,
1518 int end_lvl,
1519 u64 **pte_page,
1520 gfp_t gfp)
8bda3092
JR
1521{
1522 u64 *pte, *page;
8bc3e127 1523 int level;
8bda3092 1524
8bc3e127
JR
1525 while (address > PM_LEVEL_SIZE(domain->mode))
1526 increase_address_space(domain, gfp);
8bda3092 1527
8bc3e127
JR
1528 level = domain->mode - 1;
1529 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
8bda3092 1530
abdc5eb3 1531 while (level > end_lvl) {
8bc3e127
JR
1532 if (!IOMMU_PTE_PRESENT(*pte)) {
1533 page = (u64 *)get_zeroed_page(gfp);
1534 if (!page)
1535 return NULL;
1536 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
1537 }
8bda3092 1538
8bc3e127 1539 level -= 1;
8bda3092 1540
8bc3e127 1541 pte = IOMMU_PTE_PAGE(*pte);
8bda3092 1542
abdc5eb3 1543 if (pte_page && level == end_lvl)
8bc3e127 1544 *pte_page = pte;
8bda3092 1545
8bc3e127
JR
1546 pte = &pte[PM_LEVEL_INDEX(level, address)];
1547 }
8bda3092
JR
1548
1549 return pte;
1550}
1551
1552/*
1553 * This function fetches the PTE for a given address in the aperture
1554 */
1555static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
1556 unsigned long address)
1557{
384de729 1558 struct aperture_range *aperture;
8bda3092
JR
1559 u64 *pte, *pte_page;
1560
384de729
JR
1561 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1562 if (!aperture)
1563 return NULL;
1564
1565 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
8bda3092 1566 if (!pte) {
abdc5eb3
JR
1567 pte = alloc_pte(&dom->domain, address, PM_MAP_4k, &pte_page,
1568 GFP_ATOMIC);
384de729
JR
1569 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
1570 } else
8c8c143c 1571 pte += PM_LEVEL_INDEX(0, address);
8bda3092 1572
04bfdd84 1573 update_domain(&dom->domain);
8bda3092
JR
1574
1575 return pte;
1576}
1577
431b2a20
JR
1578/*
1579 * This is the generic map function. It maps one 4kb page at paddr to
1580 * the given address in the DMA address space for the domain.
1581 */
cb76c322
JR
1582static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
1583 struct dma_ops_domain *dom,
1584 unsigned long address,
1585 phys_addr_t paddr,
1586 int direction)
1587{
1588 u64 *pte, __pte;
1589
1590 WARN_ON(address > dom->aperture_size);
1591
1592 paddr &= PAGE_MASK;
1593
8bda3092 1594 pte = dma_ops_get_pte(dom, address);
53812c11 1595 if (!pte)
8fd524b3 1596 return DMA_ERROR_CODE;
cb76c322
JR
1597
1598 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
1599
1600 if (direction == DMA_TO_DEVICE)
1601 __pte |= IOMMU_PTE_IR;
1602 else if (direction == DMA_FROM_DEVICE)
1603 __pte |= IOMMU_PTE_IW;
1604 else if (direction == DMA_BIDIRECTIONAL)
1605 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
1606
1607 WARN_ON(*pte);
1608
1609 *pte = __pte;
1610
1611 return (dma_addr_t)address;
1612}
1613
431b2a20
JR
1614/*
1615 * The generic unmapping function for on page in the DMA address space.
1616 */
cb76c322
JR
1617static void dma_ops_domain_unmap(struct amd_iommu *iommu,
1618 struct dma_ops_domain *dom,
1619 unsigned long address)
1620{
384de729 1621 struct aperture_range *aperture;
cb76c322
JR
1622 u64 *pte;
1623
1624 if (address >= dom->aperture_size)
1625 return;
1626
384de729
JR
1627 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1628 if (!aperture)
1629 return;
1630
1631 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1632 if (!pte)
1633 return;
cb76c322 1634
8c8c143c 1635 pte += PM_LEVEL_INDEX(0, address);
cb76c322
JR
1636
1637 WARN_ON(!*pte);
1638
1639 *pte = 0ULL;
1640}
1641
431b2a20
JR
1642/*
1643 * This function contains common code for mapping of a physically
24f81160
JR
1644 * contiguous memory region into DMA address space. It is used by all
1645 * mapping functions provided with this IOMMU driver.
431b2a20
JR
1646 * Must be called with the domain lock held.
1647 */
cb76c322
JR
1648static dma_addr_t __map_single(struct device *dev,
1649 struct amd_iommu *iommu,
1650 struct dma_ops_domain *dma_dom,
1651 phys_addr_t paddr,
1652 size_t size,
6d4f343f 1653 int dir,
832a90c3
JR
1654 bool align,
1655 u64 dma_mask)
cb76c322
JR
1656{
1657 dma_addr_t offset = paddr & ~PAGE_MASK;
53812c11 1658 dma_addr_t address, start, ret;
cb76c322 1659 unsigned int pages;
6d4f343f 1660 unsigned long align_mask = 0;
cb76c322
JR
1661 int i;
1662
e3c449f5 1663 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
1664 paddr &= PAGE_MASK;
1665
8ecaf8f1
JR
1666 INC_STATS_COUNTER(total_map_requests);
1667
c1858976
JR
1668 if (pages > 1)
1669 INC_STATS_COUNTER(cross_page);
1670
6d4f343f
JR
1671 if (align)
1672 align_mask = (1UL << get_order(size)) - 1;
1673
11b83888 1674retry:
832a90c3
JR
1675 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
1676 dma_mask);
8fd524b3 1677 if (unlikely(address == DMA_ERROR_CODE)) {
11b83888
JR
1678 /*
1679 * setting next_address here will let the address
1680 * allocator only scan the new allocated range in the
1681 * first run. This is a small optimization.
1682 */
1683 dma_dom->next_address = dma_dom->aperture_size;
1684
1685 if (alloc_new_range(iommu, dma_dom, false, GFP_ATOMIC))
1686 goto out;
1687
1688 /*
1689 * aperture was sucessfully enlarged by 128 MB, try
1690 * allocation again
1691 */
1692 goto retry;
1693 }
cb76c322
JR
1694
1695 start = address;
1696 for (i = 0; i < pages; ++i) {
53812c11 1697 ret = dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
8fd524b3 1698 if (ret == DMA_ERROR_CODE)
53812c11
JR
1699 goto out_unmap;
1700
cb76c322
JR
1701 paddr += PAGE_SIZE;
1702 start += PAGE_SIZE;
1703 }
1704 address += offset;
1705
5774f7c5
JR
1706 ADD_STATS_COUNTER(alloced_io_mem, size);
1707
afa9fdc2 1708 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
dcd1e92e 1709 iommu_flush_tlb(&dma_dom->domain);
1c655773
JR
1710 dma_dom->need_flush = false;
1711 } else if (unlikely(iommu_has_npcache(iommu)))
6de8ad9b 1712 iommu_flush_pages(&dma_dom->domain, address, size);
270cab24 1713
cb76c322
JR
1714out:
1715 return address;
53812c11
JR
1716
1717out_unmap:
1718
1719 for (--i; i >= 0; --i) {
1720 start -= PAGE_SIZE;
1721 dma_ops_domain_unmap(iommu, dma_dom, start);
1722 }
1723
1724 dma_ops_free_addresses(dma_dom, address, pages);
1725
8fd524b3 1726 return DMA_ERROR_CODE;
cb76c322
JR
1727}
1728
431b2a20
JR
1729/*
1730 * Does the reverse of the __map_single function. Must be called with
1731 * the domain lock held too
1732 */
cb76c322
JR
1733static void __unmap_single(struct amd_iommu *iommu,
1734 struct dma_ops_domain *dma_dom,
1735 dma_addr_t dma_addr,
1736 size_t size,
1737 int dir)
1738{
1739 dma_addr_t i, start;
1740 unsigned int pages;
1741
8fd524b3 1742 if ((dma_addr == DMA_ERROR_CODE) ||
b8d9905d 1743 (dma_addr + size > dma_dom->aperture_size))
cb76c322
JR
1744 return;
1745
e3c449f5 1746 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
1747 dma_addr &= PAGE_MASK;
1748 start = dma_addr;
1749
1750 for (i = 0; i < pages; ++i) {
1751 dma_ops_domain_unmap(iommu, dma_dom, start);
1752 start += PAGE_SIZE;
1753 }
1754
5774f7c5
JR
1755 SUB_STATS_COUNTER(alloced_io_mem, size);
1756
cb76c322 1757 dma_ops_free_addresses(dma_dom, dma_addr, pages);
270cab24 1758
80be308d 1759 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
6de8ad9b 1760 iommu_flush_pages(&dma_dom->domain, dma_addr, size);
80be308d
JR
1761 dma_dom->need_flush = false;
1762 }
cb76c322
JR
1763}
1764
431b2a20
JR
1765/*
1766 * The exported map_single function for dma_ops.
1767 */
51491367
FT
1768static dma_addr_t map_page(struct device *dev, struct page *page,
1769 unsigned long offset, size_t size,
1770 enum dma_data_direction dir,
1771 struct dma_attrs *attrs)
4da70b9e
JR
1772{
1773 unsigned long flags;
1774 struct amd_iommu *iommu;
1775 struct protection_domain *domain;
1776 u16 devid;
1777 dma_addr_t addr;
832a90c3 1778 u64 dma_mask;
51491367 1779 phys_addr_t paddr = page_to_phys(page) + offset;
4da70b9e 1780
0f2a86f2
JR
1781 INC_STATS_COUNTER(cnt_map_single);
1782
dbcc112e 1783 if (!check_device(dev))
8fd524b3 1784 return DMA_ERROR_CODE;
dbcc112e 1785
832a90c3 1786 dma_mask = *dev->dma_mask;
4da70b9e
JR
1787
1788 get_device_resources(dev, &iommu, &domain, &devid);
1789
1790 if (iommu == NULL || domain == NULL)
431b2a20 1791 /* device not handled by any AMD IOMMU */
4da70b9e
JR
1792 return (dma_addr_t)paddr;
1793
5b28df6f 1794 if (!dma_ops_domain(domain))
8fd524b3 1795 return DMA_ERROR_CODE;
5b28df6f 1796
4da70b9e 1797 spin_lock_irqsave(&domain->lock, flags);
832a90c3
JR
1798 addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false,
1799 dma_mask);
8fd524b3 1800 if (addr == DMA_ERROR_CODE)
4da70b9e
JR
1801 goto out;
1802
0518a3a4 1803 iommu_flush_complete(domain);
4da70b9e
JR
1804
1805out:
1806 spin_unlock_irqrestore(&domain->lock, flags);
1807
1808 return addr;
1809}
1810
431b2a20
JR
1811/*
1812 * The exported unmap_single function for dma_ops.
1813 */
51491367
FT
1814static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
1815 enum dma_data_direction dir, struct dma_attrs *attrs)
4da70b9e
JR
1816{
1817 unsigned long flags;
1818 struct amd_iommu *iommu;
1819 struct protection_domain *domain;
1820 u16 devid;
1821
146a6917
JR
1822 INC_STATS_COUNTER(cnt_unmap_single);
1823
dbcc112e
JR
1824 if (!check_device(dev) ||
1825 !get_device_resources(dev, &iommu, &domain, &devid))
431b2a20 1826 /* device not handled by any AMD IOMMU */
4da70b9e
JR
1827 return;
1828
5b28df6f
JR
1829 if (!dma_ops_domain(domain))
1830 return;
1831
4da70b9e
JR
1832 spin_lock_irqsave(&domain->lock, flags);
1833
1834 __unmap_single(iommu, domain->priv, dma_addr, size, dir);
1835
0518a3a4 1836 iommu_flush_complete(domain);
4da70b9e
JR
1837
1838 spin_unlock_irqrestore(&domain->lock, flags);
1839}
1840
431b2a20
JR
1841/*
1842 * This is a special map_sg function which is used if we should map a
1843 * device which is not handled by an AMD IOMMU in the system.
1844 */
65b050ad
JR
1845static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
1846 int nelems, int dir)
1847{
1848 struct scatterlist *s;
1849 int i;
1850
1851 for_each_sg(sglist, s, nelems, i) {
1852 s->dma_address = (dma_addr_t)sg_phys(s);
1853 s->dma_length = s->length;
1854 }
1855
1856 return nelems;
1857}
1858
431b2a20
JR
1859/*
1860 * The exported map_sg function for dma_ops (handles scatter-gather
1861 * lists).
1862 */
65b050ad 1863static int map_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
1864 int nelems, enum dma_data_direction dir,
1865 struct dma_attrs *attrs)
65b050ad
JR
1866{
1867 unsigned long flags;
1868 struct amd_iommu *iommu;
1869 struct protection_domain *domain;
1870 u16 devid;
1871 int i;
1872 struct scatterlist *s;
1873 phys_addr_t paddr;
1874 int mapped_elems = 0;
832a90c3 1875 u64 dma_mask;
65b050ad 1876
d03f067a
JR
1877 INC_STATS_COUNTER(cnt_map_sg);
1878
dbcc112e
JR
1879 if (!check_device(dev))
1880 return 0;
1881
832a90c3 1882 dma_mask = *dev->dma_mask;
65b050ad
JR
1883
1884 get_device_resources(dev, &iommu, &domain, &devid);
1885
1886 if (!iommu || !domain)
1887 return map_sg_no_iommu(dev, sglist, nelems, dir);
1888
5b28df6f
JR
1889 if (!dma_ops_domain(domain))
1890 return 0;
1891
65b050ad
JR
1892 spin_lock_irqsave(&domain->lock, flags);
1893
1894 for_each_sg(sglist, s, nelems, i) {
1895 paddr = sg_phys(s);
1896
1897 s->dma_address = __map_single(dev, iommu, domain->priv,
832a90c3
JR
1898 paddr, s->length, dir, false,
1899 dma_mask);
65b050ad
JR
1900
1901 if (s->dma_address) {
1902 s->dma_length = s->length;
1903 mapped_elems++;
1904 } else
1905 goto unmap;
65b050ad
JR
1906 }
1907
0518a3a4 1908 iommu_flush_complete(domain);
65b050ad
JR
1909
1910out:
1911 spin_unlock_irqrestore(&domain->lock, flags);
1912
1913 return mapped_elems;
1914unmap:
1915 for_each_sg(sglist, s, mapped_elems, i) {
1916 if (s->dma_address)
1917 __unmap_single(iommu, domain->priv, s->dma_address,
1918 s->dma_length, dir);
1919 s->dma_address = s->dma_length = 0;
1920 }
1921
1922 mapped_elems = 0;
1923
1924 goto out;
1925}
1926
431b2a20
JR
1927/*
1928 * The exported map_sg function for dma_ops (handles scatter-gather
1929 * lists).
1930 */
65b050ad 1931static void unmap_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
1932 int nelems, enum dma_data_direction dir,
1933 struct dma_attrs *attrs)
65b050ad
JR
1934{
1935 unsigned long flags;
1936 struct amd_iommu *iommu;
1937 struct protection_domain *domain;
1938 struct scatterlist *s;
1939 u16 devid;
1940 int i;
1941
55877a6b
JR
1942 INC_STATS_COUNTER(cnt_unmap_sg);
1943
dbcc112e
JR
1944 if (!check_device(dev) ||
1945 !get_device_resources(dev, &iommu, &domain, &devid))
65b050ad
JR
1946 return;
1947
5b28df6f
JR
1948 if (!dma_ops_domain(domain))
1949 return;
1950
65b050ad
JR
1951 spin_lock_irqsave(&domain->lock, flags);
1952
1953 for_each_sg(sglist, s, nelems, i) {
1954 __unmap_single(iommu, domain->priv, s->dma_address,
1955 s->dma_length, dir);
65b050ad
JR
1956 s->dma_address = s->dma_length = 0;
1957 }
1958
0518a3a4 1959 iommu_flush_complete(domain);
65b050ad
JR
1960
1961 spin_unlock_irqrestore(&domain->lock, flags);
1962}
1963
431b2a20
JR
1964/*
1965 * The exported alloc_coherent function for dma_ops.
1966 */
5d8b53cf
JR
1967static void *alloc_coherent(struct device *dev, size_t size,
1968 dma_addr_t *dma_addr, gfp_t flag)
1969{
1970 unsigned long flags;
1971 void *virt_addr;
1972 struct amd_iommu *iommu;
1973 struct protection_domain *domain;
1974 u16 devid;
1975 phys_addr_t paddr;
832a90c3 1976 u64 dma_mask = dev->coherent_dma_mask;
5d8b53cf 1977
c8f0fb36
JR
1978 INC_STATS_COUNTER(cnt_alloc_coherent);
1979
dbcc112e
JR
1980 if (!check_device(dev))
1981 return NULL;
5d8b53cf 1982
13d9fead
FT
1983 if (!get_device_resources(dev, &iommu, &domain, &devid))
1984 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
5d8b53cf 1985
c97ac535 1986 flag |= __GFP_ZERO;
5d8b53cf
JR
1987 virt_addr = (void *)__get_free_pages(flag, get_order(size));
1988 if (!virt_addr)
b25ae679 1989 return NULL;
5d8b53cf 1990
5d8b53cf
JR
1991 paddr = virt_to_phys(virt_addr);
1992
5d8b53cf
JR
1993 if (!iommu || !domain) {
1994 *dma_addr = (dma_addr_t)paddr;
1995 return virt_addr;
1996 }
1997
5b28df6f
JR
1998 if (!dma_ops_domain(domain))
1999 goto out_free;
2000
832a90c3
JR
2001 if (!dma_mask)
2002 dma_mask = *dev->dma_mask;
2003
5d8b53cf
JR
2004 spin_lock_irqsave(&domain->lock, flags);
2005
2006 *dma_addr = __map_single(dev, iommu, domain->priv, paddr,
832a90c3 2007 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf 2008
8fd524b3 2009 if (*dma_addr == DMA_ERROR_CODE) {
367d04c4 2010 spin_unlock_irqrestore(&domain->lock, flags);
5b28df6f 2011 goto out_free;
367d04c4 2012 }
5d8b53cf 2013
0518a3a4 2014 iommu_flush_complete(domain);
5d8b53cf 2015
5d8b53cf
JR
2016 spin_unlock_irqrestore(&domain->lock, flags);
2017
2018 return virt_addr;
5b28df6f
JR
2019
2020out_free:
2021
2022 free_pages((unsigned long)virt_addr, get_order(size));
2023
2024 return NULL;
5d8b53cf
JR
2025}
2026
431b2a20
JR
2027/*
2028 * The exported free_coherent function for dma_ops.
431b2a20 2029 */
5d8b53cf
JR
2030static void free_coherent(struct device *dev, size_t size,
2031 void *virt_addr, dma_addr_t dma_addr)
2032{
2033 unsigned long flags;
2034 struct amd_iommu *iommu;
2035 struct protection_domain *domain;
2036 u16 devid;
2037
5d31ee7e
JR
2038 INC_STATS_COUNTER(cnt_free_coherent);
2039
dbcc112e
JR
2040 if (!check_device(dev))
2041 return;
2042
5d8b53cf
JR
2043 get_device_resources(dev, &iommu, &domain, &devid);
2044
2045 if (!iommu || !domain)
2046 goto free_mem;
2047
5b28df6f
JR
2048 if (!dma_ops_domain(domain))
2049 goto free_mem;
2050
5d8b53cf
JR
2051 spin_lock_irqsave(&domain->lock, flags);
2052
2053 __unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 2054
0518a3a4 2055 iommu_flush_complete(domain);
5d8b53cf
JR
2056
2057 spin_unlock_irqrestore(&domain->lock, flags);
2058
2059free_mem:
2060 free_pages((unsigned long)virt_addr, get_order(size));
2061}
2062
b39ba6ad
JR
2063/*
2064 * This function is called by the DMA layer to find out if we can handle a
2065 * particular device. It is part of the dma_ops.
2066 */
2067static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2068{
2069 u16 bdf;
2070 struct pci_dev *pcidev;
2071
2072 /* No device or no PCI device */
2073 if (!dev || dev->bus != &pci_bus_type)
2074 return 0;
2075
2076 pcidev = to_pci_dev(dev);
2077
2078 bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
2079
2080 /* Out of our scope? */
2081 if (bdf > amd_iommu_last_bdf)
2082 return 0;
2083
2084 return 1;
2085}
2086
c432f3df 2087/*
431b2a20
JR
2088 * The function for pre-allocating protection domains.
2089 *
c432f3df
JR
2090 * If the driver core informs the DMA layer if a driver grabs a device
2091 * we don't need to preallocate the protection domains anymore.
2092 * For now we have to.
2093 */
0e93dd88 2094static void prealloc_protection_domains(void)
c432f3df
JR
2095{
2096 struct pci_dev *dev = NULL;
2097 struct dma_ops_domain *dma_dom;
2098 struct amd_iommu *iommu;
be831297 2099 u16 devid, __devid;
c432f3df
JR
2100
2101 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
be831297 2102 __devid = devid = calc_devid(dev->bus->number, dev->devfn);
3a61ec38 2103 if (devid > amd_iommu_last_bdf)
c432f3df
JR
2104 continue;
2105 devid = amd_iommu_alias_table[devid];
2106 if (domain_for_device(devid))
2107 continue;
2108 iommu = amd_iommu_rlookup_table[devid];
2109 if (!iommu)
2110 continue;
d9cfed92 2111 dma_dom = dma_ops_domain_alloc(iommu);
c432f3df
JR
2112 if (!dma_dom)
2113 continue;
2114 init_unity_mappings_for_device(dma_dom, devid);
bd60b735
JR
2115 dma_dom->target_dev = devid;
2116
be831297
JR
2117 attach_device(iommu, &dma_dom->domain, devid);
2118 if (__devid != devid)
2119 attach_device(iommu, &dma_dom->domain, __devid);
2120
bd60b735 2121 list_add_tail(&dma_dom->list, &iommu_pd_list);
c432f3df
JR
2122 }
2123}
2124
160c1d8e 2125static struct dma_map_ops amd_iommu_dma_ops = {
6631ee9d
JR
2126 .alloc_coherent = alloc_coherent,
2127 .free_coherent = free_coherent,
51491367
FT
2128 .map_page = map_page,
2129 .unmap_page = unmap_page,
6631ee9d
JR
2130 .map_sg = map_sg,
2131 .unmap_sg = unmap_sg,
b39ba6ad 2132 .dma_supported = amd_iommu_dma_supported,
6631ee9d
JR
2133};
2134
431b2a20
JR
2135/*
2136 * The function which clues the AMD IOMMU driver into dma_ops.
2137 */
6631ee9d
JR
2138int __init amd_iommu_init_dma_ops(void)
2139{
2140 struct amd_iommu *iommu;
6631ee9d
JR
2141 int ret;
2142
431b2a20
JR
2143 /*
2144 * first allocate a default protection domain for every IOMMU we
2145 * found in the system. Devices not assigned to any other
2146 * protection domain will be assigned to the default one.
2147 */
3bd22172 2148 for_each_iommu(iommu) {
d9cfed92 2149 iommu->default_dom = dma_ops_domain_alloc(iommu);
6631ee9d
JR
2150 if (iommu->default_dom == NULL)
2151 return -ENOMEM;
e2dc14a2 2152 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
6631ee9d
JR
2153 ret = iommu_init_unity_mappings(iommu);
2154 if (ret)
2155 goto free_domains;
2156 }
2157
431b2a20
JR
2158 /*
2159 * If device isolation is enabled, pre-allocate the protection
2160 * domains for each device.
2161 */
6631ee9d
JR
2162 if (amd_iommu_isolate)
2163 prealloc_protection_domains();
2164
2165 iommu_detected = 1;
75f1cdf1 2166 swiotlb = 0;
92af4e29 2167#ifdef CONFIG_GART_IOMMU
6631ee9d
JR
2168 gart_iommu_aperture_disabled = 1;
2169 gart_iommu_aperture = 0;
92af4e29 2170#endif
6631ee9d 2171
431b2a20 2172 /* Make the driver finally visible to the drivers */
6631ee9d
JR
2173 dma_ops = &amd_iommu_dma_ops;
2174
26961efe 2175 register_iommu(&amd_iommu_ops);
26961efe 2176
e275a2a0
JR
2177 bus_register_notifier(&pci_bus_type, &device_nb);
2178
7f26508b
JR
2179 amd_iommu_stats_init();
2180
6631ee9d
JR
2181 return 0;
2182
2183free_domains:
2184
3bd22172 2185 for_each_iommu(iommu) {
6631ee9d
JR
2186 if (iommu->default_dom)
2187 dma_ops_domain_free(iommu->default_dom);
2188 }
2189
2190 return ret;
2191}
6d98cd80
JR
2192
2193/*****************************************************************************
2194 *
2195 * The following functions belong to the exported interface of AMD IOMMU
2196 *
2197 * This interface allows access to lower level functions of the IOMMU
2198 * like protection domain handling and assignement of devices to domains
2199 * which is not possible with the dma_ops interface.
2200 *
2201 *****************************************************************************/
2202
6d98cd80
JR
2203static void cleanup_domain(struct protection_domain *domain)
2204{
2205 unsigned long flags;
2206 u16 devid;
2207
2208 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2209
2210 for (devid = 0; devid <= amd_iommu_last_bdf; ++devid)
2211 if (amd_iommu_pd_table[devid] == domain)
2212 __detach_device(domain, devid);
2213
2214 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2215}
2216
2650815f
JR
2217static void protection_domain_free(struct protection_domain *domain)
2218{
2219 if (!domain)
2220 return;
2221
aeb26f55
JR
2222 del_domain_from_list(domain);
2223
2650815f
JR
2224 if (domain->id)
2225 domain_id_free(domain->id);
2226
2227 kfree(domain);
2228}
2229
2230static struct protection_domain *protection_domain_alloc(void)
c156e347
JR
2231{
2232 struct protection_domain *domain;
2233
2234 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2235 if (!domain)
2650815f 2236 return NULL;
c156e347
JR
2237
2238 spin_lock_init(&domain->lock);
c156e347
JR
2239 domain->id = domain_id_alloc();
2240 if (!domain->id)
2650815f
JR
2241 goto out_err;
2242
aeb26f55
JR
2243 add_domain_to_list(domain);
2244
2650815f
JR
2245 return domain;
2246
2247out_err:
2248 kfree(domain);
2249
2250 return NULL;
2251}
2252
2253static int amd_iommu_domain_init(struct iommu_domain *dom)
2254{
2255 struct protection_domain *domain;
2256
2257 domain = protection_domain_alloc();
2258 if (!domain)
c156e347 2259 goto out_free;
2650815f
JR
2260
2261 domain->mode = PAGE_MODE_3_LEVEL;
c156e347
JR
2262 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2263 if (!domain->pt_root)
2264 goto out_free;
2265
2266 dom->priv = domain;
2267
2268 return 0;
2269
2270out_free:
2650815f 2271 protection_domain_free(domain);
c156e347
JR
2272
2273 return -ENOMEM;
2274}
2275
98383fc3
JR
2276static void amd_iommu_domain_destroy(struct iommu_domain *dom)
2277{
2278 struct protection_domain *domain = dom->priv;
2279
2280 if (!domain)
2281 return;
2282
2283 if (domain->dev_cnt > 0)
2284 cleanup_domain(domain);
2285
2286 BUG_ON(domain->dev_cnt != 0);
2287
2288 free_pagetable(domain);
2289
2290 domain_id_free(domain->id);
2291
2292 kfree(domain);
2293
2294 dom->priv = NULL;
2295}
2296
684f2888
JR
2297static void amd_iommu_detach_device(struct iommu_domain *dom,
2298 struct device *dev)
2299{
2300 struct protection_domain *domain = dom->priv;
2301 struct amd_iommu *iommu;
2302 struct pci_dev *pdev;
2303 u16 devid;
2304
2305 if (dev->bus != &pci_bus_type)
2306 return;
2307
2308 pdev = to_pci_dev(dev);
2309
2310 devid = calc_devid(pdev->bus->number, pdev->devfn);
2311
2312 if (devid > 0)
2313 detach_device(domain, devid);
2314
2315 iommu = amd_iommu_rlookup_table[devid];
2316 if (!iommu)
2317 return;
2318
2319 iommu_queue_inv_dev_entry(iommu, devid);
2320 iommu_completion_wait(iommu);
2321}
2322
01106066
JR
2323static int amd_iommu_attach_device(struct iommu_domain *dom,
2324 struct device *dev)
2325{
2326 struct protection_domain *domain = dom->priv;
2327 struct protection_domain *old_domain;
2328 struct amd_iommu *iommu;
2329 struct pci_dev *pdev;
2330 u16 devid;
2331
2332 if (dev->bus != &pci_bus_type)
2333 return -EINVAL;
2334
2335 pdev = to_pci_dev(dev);
2336
2337 devid = calc_devid(pdev->bus->number, pdev->devfn);
2338
2339 if (devid >= amd_iommu_last_bdf ||
2340 devid != amd_iommu_alias_table[devid])
2341 return -EINVAL;
2342
2343 iommu = amd_iommu_rlookup_table[devid];
2344 if (!iommu)
2345 return -EINVAL;
2346
2347 old_domain = domain_for_device(devid);
2348 if (old_domain)
71ff3bca 2349 detach_device(old_domain, devid);
01106066
JR
2350
2351 attach_device(iommu, domain, devid);
2352
2353 iommu_completion_wait(iommu);
2354
2355 return 0;
2356}
2357
c6229ca6
JR
2358static int amd_iommu_map_range(struct iommu_domain *dom,
2359 unsigned long iova, phys_addr_t paddr,
2360 size_t size, int iommu_prot)
2361{
2362 struct protection_domain *domain = dom->priv;
2363 unsigned long i, npages = iommu_num_pages(paddr, size, PAGE_SIZE);
2364 int prot = 0;
2365 int ret;
2366
2367 if (iommu_prot & IOMMU_READ)
2368 prot |= IOMMU_PROT_IR;
2369 if (iommu_prot & IOMMU_WRITE)
2370 prot |= IOMMU_PROT_IW;
2371
2372 iova &= PAGE_MASK;
2373 paddr &= PAGE_MASK;
2374
2375 for (i = 0; i < npages; ++i) {
abdc5eb3 2376 ret = iommu_map_page(domain, iova, paddr, prot, PM_MAP_4k);
c6229ca6
JR
2377 if (ret)
2378 return ret;
2379
2380 iova += PAGE_SIZE;
2381 paddr += PAGE_SIZE;
2382 }
2383
2384 return 0;
2385}
2386
eb74ff6c
JR
2387static void amd_iommu_unmap_range(struct iommu_domain *dom,
2388 unsigned long iova, size_t size)
2389{
2390
2391 struct protection_domain *domain = dom->priv;
2392 unsigned long i, npages = iommu_num_pages(iova, size, PAGE_SIZE);
2393
2394 iova &= PAGE_MASK;
2395
2396 for (i = 0; i < npages; ++i) {
a6b256b4 2397 iommu_unmap_page(domain, iova, PM_MAP_4k);
eb74ff6c
JR
2398 iova += PAGE_SIZE;
2399 }
2400
601367d7 2401 iommu_flush_tlb_pde(domain);
eb74ff6c
JR
2402}
2403
645c4c8d
JR
2404static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2405 unsigned long iova)
2406{
2407 struct protection_domain *domain = dom->priv;
2408 unsigned long offset = iova & ~PAGE_MASK;
2409 phys_addr_t paddr;
2410 u64 *pte;
2411
a6b256b4 2412 pte = fetch_pte(domain, iova, PM_MAP_4k);
645c4c8d 2413
a6d41a40 2414 if (!pte || !IOMMU_PTE_PRESENT(*pte))
645c4c8d
JR
2415 return 0;
2416
2417 paddr = *pte & IOMMU_PAGE_MASK;
2418 paddr |= offset;
2419
2420 return paddr;
2421}
2422
dbb9fd86
SY
2423static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
2424 unsigned long cap)
2425{
2426 return 0;
2427}
2428
26961efe
JR
2429static struct iommu_ops amd_iommu_ops = {
2430 .domain_init = amd_iommu_domain_init,
2431 .domain_destroy = amd_iommu_domain_destroy,
2432 .attach_dev = amd_iommu_attach_device,
2433 .detach_dev = amd_iommu_detach_device,
2434 .map = amd_iommu_map_range,
2435 .unmap = amd_iommu_unmap_range,
2436 .iova_to_phys = amd_iommu_iova_to_phys,
dbb9fd86 2437 .domain_has_cap = amd_iommu_domain_has_cap,
26961efe
JR
2438};
2439
0feae533
JR
2440/*****************************************************************************
2441 *
2442 * The next functions do a basic initialization of IOMMU for pass through
2443 * mode
2444 *
2445 * In passthrough mode the IOMMU is initialized and enabled but not used for
2446 * DMA-API translation.
2447 *
2448 *****************************************************************************/
2449
2450int __init amd_iommu_init_passthrough(void)
2451{
2452 struct pci_dev *dev = NULL;
2453 u16 devid, devid2;
2454
2455 /* allocate passthroug domain */
2456 pt_domain = protection_domain_alloc();
2457 if (!pt_domain)
2458 return -ENOMEM;
2459
2460 pt_domain->mode |= PAGE_MODE_NONE;
2461
2462 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
2463 struct amd_iommu *iommu;
2464
2465 devid = calc_devid(dev->bus->number, dev->devfn);
2466 if (devid > amd_iommu_last_bdf)
2467 continue;
2468
2469 devid2 = amd_iommu_alias_table[devid];
2470
2471 iommu = amd_iommu_rlookup_table[devid2];
2472 if (!iommu)
2473 continue;
2474
2475 __attach_device(iommu, pt_domain, devid);
2476 __attach_device(iommu, pt_domain, devid2);
2477 }
2478
2479 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
2480
2481 return 0;
2482}
This page took 0.357677 seconds and 5 git commands to generate.