x86/amd-iommu: replace "AMD IOMMU" by "AMD-Vi"
[deliverable/linux.git] / arch / x86 / kernel / amd_iommu_init.c
CommitLineData
f6e2e6b6
JR
1/*
2 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/pci.h>
21#include <linux/acpi.h>
22#include <linux/gfp.h>
23#include <linux/list.h>
7441e9cb 24#include <linux/sysdev.h>
a80dc3e0
JR
25#include <linux/interrupt.h>
26#include <linux/msi.h>
f6e2e6b6
JR
27#include <asm/pci-direct.h>
28#include <asm/amd_iommu_types.h>
c6da992e 29#include <asm/amd_iommu.h>
46a7fa27 30#include <asm/iommu.h>
1d9b16d1 31#include <asm/gart.h>
f6e2e6b6
JR
32
33/*
34 * definitions for the ACPI scanning code
35 */
f6e2e6b6 36#define IVRS_HEADER_LENGTH 48
f6e2e6b6
JR
37
38#define ACPI_IVHD_TYPE 0x10
39#define ACPI_IVMD_TYPE_ALL 0x20
40#define ACPI_IVMD_TYPE 0x21
41#define ACPI_IVMD_TYPE_RANGE 0x22
42
43#define IVHD_DEV_ALL 0x01
44#define IVHD_DEV_SELECT 0x02
45#define IVHD_DEV_SELECT_RANGE_START 0x03
46#define IVHD_DEV_RANGE_END 0x04
47#define IVHD_DEV_ALIAS 0x42
48#define IVHD_DEV_ALIAS_RANGE 0x43
49#define IVHD_DEV_EXT_SELECT 0x46
50#define IVHD_DEV_EXT_SELECT_RANGE 0x47
51
6da7342f
JR
52#define IVHD_FLAG_HT_TUN_EN_MASK 0x01
53#define IVHD_FLAG_PASSPW_EN_MASK 0x02
54#define IVHD_FLAG_RESPASSPW_EN_MASK 0x04
55#define IVHD_FLAG_ISOC_EN_MASK 0x08
f6e2e6b6
JR
56
57#define IVMD_FLAG_EXCL_RANGE 0x08
58#define IVMD_FLAG_UNITY_MAP 0x01
59
60#define ACPI_DEVFLAG_INITPASS 0x01
61#define ACPI_DEVFLAG_EXTINT 0x02
62#define ACPI_DEVFLAG_NMI 0x04
63#define ACPI_DEVFLAG_SYSMGT1 0x10
64#define ACPI_DEVFLAG_SYSMGT2 0x20
65#define ACPI_DEVFLAG_LINT0 0x40
66#define ACPI_DEVFLAG_LINT1 0x80
67#define ACPI_DEVFLAG_ATSDIS 0x10000000
68
b65233a9
JR
69/*
70 * ACPI table definitions
71 *
72 * These data structures are laid over the table to parse the important values
73 * out of it.
74 */
75
76/*
77 * structure describing one IOMMU in the ACPI table. Typically followed by one
78 * or more ivhd_entrys.
79 */
f6e2e6b6
JR
80struct ivhd_header {
81 u8 type;
82 u8 flags;
83 u16 length;
84 u16 devid;
85 u16 cap_ptr;
86 u64 mmio_phys;
87 u16 pci_seg;
88 u16 info;
89 u32 reserved;
90} __attribute__((packed));
91
b65233a9
JR
92/*
93 * A device entry describing which devices a specific IOMMU translates and
94 * which requestor ids they use.
95 */
f6e2e6b6
JR
96struct ivhd_entry {
97 u8 type;
98 u16 devid;
99 u8 flags;
100 u32 ext;
101} __attribute__((packed));
102
b65233a9
JR
103/*
104 * An AMD IOMMU memory definition structure. It defines things like exclusion
105 * ranges for devices and regions that should be unity mapped.
106 */
f6e2e6b6
JR
107struct ivmd_header {
108 u8 type;
109 u8 flags;
110 u16 length;
111 u16 devid;
112 u16 aux;
113 u64 resv;
114 u64 range_start;
115 u64 range_length;
116} __attribute__((packed));
117
fefda117
JR
118bool amd_iommu_dump;
119
c1cbebee
JR
120static int __initdata amd_iommu_detected;
121
b65233a9
JR
122u16 amd_iommu_last_bdf; /* largest PCI device id we have
123 to handle */
2e22847f 124LIST_HEAD(amd_iommu_unity_map); /* a list of required unity mappings
b65233a9 125 we find in ACPI */
2e8b5696
JR
126#ifdef CONFIG_IOMMU_STRESS
127bool amd_iommu_isolate = false;
128#else
c226f853
JR
129bool amd_iommu_isolate = true; /* if true, device isolation is
130 enabled */
2e8b5696
JR
131#endif
132
afa9fdc2 133bool amd_iommu_unmap_flush; /* if true, flush on every unmap */
928abd25 134
2e22847f 135LIST_HEAD(amd_iommu_list); /* list of all AMD IOMMUs in the
b65233a9 136 system */
928abd25 137
b65233a9
JR
138/*
139 * Pointer to the device table which is shared by all AMD IOMMUs
140 * it is indexed by the PCI device id or the HT unit id and contains
141 * information about the domain the device belongs to as well as the
142 * page table root pointer.
143 */
928abd25 144struct dev_table_entry *amd_iommu_dev_table;
b65233a9
JR
145
146/*
147 * The alias table is a driver specific data structure which contains the
148 * mappings of the PCI device ids to the actual requestor ids on the IOMMU.
149 * More than one device can share the same requestor id.
150 */
928abd25 151u16 *amd_iommu_alias_table;
b65233a9
JR
152
153/*
154 * The rlookup table is used to find the IOMMU which is responsible
155 * for a specific device. It is also indexed by the PCI device id.
156 */
928abd25 157struct amd_iommu **amd_iommu_rlookup_table;
b65233a9
JR
158
159/*
160 * The pd table (protection domain table) is used to find the protection domain
161 * data structure a device belongs to. Indexed with the PCI device id too.
162 */
928abd25 163struct protection_domain **amd_iommu_pd_table;
b65233a9
JR
164
165/*
166 * AMD IOMMU allows up to 2^16 differend protection domains. This is a bitmap
167 * to know which ones are already in use.
168 */
928abd25
JR
169unsigned long *amd_iommu_pd_alloc_bitmap;
170
b65233a9
JR
171static u32 dev_table_size; /* size of the device table */
172static u32 alias_table_size; /* size of the alias table */
173static u32 rlookup_table_size; /* size if the rlookup table */
3e8064ba 174
208ec8c9
JR
175static inline void update_last_devid(u16 devid)
176{
177 if (devid > amd_iommu_last_bdf)
178 amd_iommu_last_bdf = devid;
179}
180
c571484e
JR
181static inline unsigned long tbl_size(int entry_size)
182{
183 unsigned shift = PAGE_SHIFT +
421f909c 184 get_order(((int)amd_iommu_last_bdf + 1) * entry_size);
c571484e
JR
185
186 return 1UL << shift;
187}
188
b65233a9
JR
189/****************************************************************************
190 *
191 * AMD IOMMU MMIO register space handling functions
192 *
193 * These functions are used to program the IOMMU device registers in
194 * MMIO space required for that driver.
195 *
196 ****************************************************************************/
3e8064ba 197
b65233a9
JR
198/*
199 * This function set the exclusion range in the IOMMU. DMA accesses to the
200 * exclusion range are passed through untranslated
201 */
05f92db9 202static void iommu_set_exclusion_range(struct amd_iommu *iommu)
b2026aa2
JR
203{
204 u64 start = iommu->exclusion_start & PAGE_MASK;
205 u64 limit = (start + iommu->exclusion_length) & PAGE_MASK;
206 u64 entry;
207
208 if (!iommu->exclusion_start)
209 return;
210
211 entry = start | MMIO_EXCL_ENABLE_MASK;
212 memcpy_toio(iommu->mmio_base + MMIO_EXCL_BASE_OFFSET,
213 &entry, sizeof(entry));
214
215 entry = limit;
216 memcpy_toio(iommu->mmio_base + MMIO_EXCL_LIMIT_OFFSET,
217 &entry, sizeof(entry));
218}
219
b65233a9 220/* Programs the physical address of the device table into the IOMMU hardware */
b2026aa2
JR
221static void __init iommu_set_device_table(struct amd_iommu *iommu)
222{
f609891f 223 u64 entry;
b2026aa2
JR
224
225 BUG_ON(iommu->mmio_base == NULL);
226
227 entry = virt_to_phys(amd_iommu_dev_table);
228 entry |= (dev_table_size >> 12) - 1;
229 memcpy_toio(iommu->mmio_base + MMIO_DEV_TABLE_OFFSET,
230 &entry, sizeof(entry));
231}
232
b65233a9 233/* Generic functions to enable/disable certain features of the IOMMU. */
05f92db9 234static void iommu_feature_enable(struct amd_iommu *iommu, u8 bit)
b2026aa2
JR
235{
236 u32 ctrl;
237
238 ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
239 ctrl |= (1 << bit);
240 writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
241}
242
243static void __init iommu_feature_disable(struct amd_iommu *iommu, u8 bit)
244{
245 u32 ctrl;
246
199d0d50 247 ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
b2026aa2
JR
248 ctrl &= ~(1 << bit);
249 writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
250}
251
b65233a9 252/* Function to enable the hardware */
05f92db9 253static void iommu_enable(struct amd_iommu *iommu)
b2026aa2 254{
4c6f40d4 255 printk(KERN_INFO "AMD-Vi: Enabling IOMMU at %s cap 0x%hx\n",
a4e267c8 256 dev_name(&iommu->dev->dev), iommu->cap_ptr);
b2026aa2
JR
257
258 iommu_feature_enable(iommu, CONTROL_IOMMU_EN);
b2026aa2
JR
259}
260
92ac4320 261static void iommu_disable(struct amd_iommu *iommu)
126c52be 262{
a8c485bb
CW
263 /* Disable command buffer */
264 iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);
265
266 /* Disable event logging and event interrupts */
267 iommu_feature_disable(iommu, CONTROL_EVT_INT_EN);
268 iommu_feature_disable(iommu, CONTROL_EVT_LOG_EN);
269
270 /* Disable IOMMU hardware itself */
92ac4320 271 iommu_feature_disable(iommu, CONTROL_IOMMU_EN);
126c52be
JR
272}
273
b65233a9
JR
274/*
275 * mapping and unmapping functions for the IOMMU MMIO space. Each AMD IOMMU in
276 * the system has one.
277 */
6c56747b
JR
278static u8 * __init iommu_map_mmio_space(u64 address)
279{
280 u8 *ret;
281
282 if (!request_mem_region(address, MMIO_REGION_LENGTH, "amd_iommu"))
283 return NULL;
284
285 ret = ioremap_nocache(address, MMIO_REGION_LENGTH);
286 if (ret != NULL)
287 return ret;
288
289 release_mem_region(address, MMIO_REGION_LENGTH);
290
291 return NULL;
292}
293
294static void __init iommu_unmap_mmio_space(struct amd_iommu *iommu)
295{
296 if (iommu->mmio_base)
297 iounmap(iommu->mmio_base);
298 release_mem_region(iommu->mmio_phys, MMIO_REGION_LENGTH);
299}
300
b65233a9
JR
301/****************************************************************************
302 *
303 * The functions below belong to the first pass of AMD IOMMU ACPI table
304 * parsing. In this pass we try to find out the highest device id this
305 * code has to handle. Upon this information the size of the shared data
306 * structures is determined later.
307 *
308 ****************************************************************************/
309
b514e555
JR
310/*
311 * This function calculates the length of a given IVHD entry
312 */
313static inline int ivhd_entry_length(u8 *ivhd)
314{
315 return 0x04 << (*ivhd >> 6);
316}
317
b65233a9
JR
318/*
319 * This function reads the last device id the IOMMU has to handle from the PCI
320 * capability header for this IOMMU
321 */
3e8064ba
JR
322static int __init find_last_devid_on_pci(int bus, int dev, int fn, int cap_ptr)
323{
324 u32 cap;
325
326 cap = read_pci_config(bus, dev, fn, cap_ptr+MMIO_RANGE_OFFSET);
d591b0a3 327 update_last_devid(calc_devid(MMIO_GET_BUS(cap), MMIO_GET_LD(cap)));
3e8064ba
JR
328
329 return 0;
330}
331
b65233a9
JR
332/*
333 * After reading the highest device id from the IOMMU PCI capability header
334 * this function looks if there is a higher device id defined in the ACPI table
335 */
3e8064ba
JR
336static int __init find_last_devid_from_ivhd(struct ivhd_header *h)
337{
338 u8 *p = (void *)h, *end = (void *)h;
339 struct ivhd_entry *dev;
340
341 p += sizeof(*h);
342 end += h->length;
343
344 find_last_devid_on_pci(PCI_BUS(h->devid),
345 PCI_SLOT(h->devid),
346 PCI_FUNC(h->devid),
347 h->cap_ptr);
348
349 while (p < end) {
350 dev = (struct ivhd_entry *)p;
351 switch (dev->type) {
352 case IVHD_DEV_SELECT:
353 case IVHD_DEV_RANGE_END:
354 case IVHD_DEV_ALIAS:
355 case IVHD_DEV_EXT_SELECT:
b65233a9 356 /* all the above subfield types refer to device ids */
208ec8c9 357 update_last_devid(dev->devid);
3e8064ba
JR
358 break;
359 default:
360 break;
361 }
b514e555 362 p += ivhd_entry_length(p);
3e8064ba
JR
363 }
364
365 WARN_ON(p != end);
366
367 return 0;
368}
369
b65233a9
JR
370/*
371 * Iterate over all IVHD entries in the ACPI table and find the highest device
372 * id which we need to handle. This is the first of three functions which parse
373 * the ACPI table. So we check the checksum here.
374 */
3e8064ba
JR
375static int __init find_last_devid_acpi(struct acpi_table_header *table)
376{
377 int i;
378 u8 checksum = 0, *p = (u8 *)table, *end = (u8 *)table;
379 struct ivhd_header *h;
380
381 /*
382 * Validate checksum here so we don't need to do it when
383 * we actually parse the table
384 */
385 for (i = 0; i < table->length; ++i)
386 checksum += p[i];
387 if (checksum != 0)
388 /* ACPI table corrupt */
389 return -ENODEV;
390
391 p += IVRS_HEADER_LENGTH;
392
393 end += table->length;
394 while (p < end) {
395 h = (struct ivhd_header *)p;
396 switch (h->type) {
397 case ACPI_IVHD_TYPE:
398 find_last_devid_from_ivhd(h);
399 break;
400 default:
401 break;
402 }
403 p += h->length;
404 }
405 WARN_ON(p != end);
406
407 return 0;
408}
409
b65233a9
JR
410/****************************************************************************
411 *
412 * The following functions belong the the code path which parses the ACPI table
413 * the second time. In this ACPI parsing iteration we allocate IOMMU specific
414 * data structures, initialize the device/alias/rlookup table and also
415 * basically initialize the hardware.
416 *
417 ****************************************************************************/
418
419/*
420 * Allocates the command buffer. This buffer is per AMD IOMMU. We can
421 * write commands to that buffer later and the IOMMU will execute them
422 * asynchronously
423 */
b36ca91e
JR
424static u8 * __init alloc_command_buffer(struct amd_iommu *iommu)
425{
d0312b21 426 u8 *cmd_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
b36ca91e 427 get_order(CMD_BUFFER_SIZE));
b36ca91e
JR
428
429 if (cmd_buf == NULL)
430 return NULL;
431
432 iommu->cmd_buf_size = CMD_BUFFER_SIZE;
433
58492e12
JR
434 return cmd_buf;
435}
436
437/*
438 * This function writes the command buffer address to the hardware and
439 * enables it.
440 */
441static void iommu_enable_command_buffer(struct amd_iommu *iommu)
442{
443 u64 entry;
444
445 BUG_ON(iommu->cmd_buf == NULL);
446
447 entry = (u64)virt_to_phys(iommu->cmd_buf);
b36ca91e 448 entry |= MMIO_CMD_SIZE_512;
58492e12 449
b36ca91e 450 memcpy_toio(iommu->mmio_base + MMIO_CMD_BUF_OFFSET,
58492e12 451 &entry, sizeof(entry));
b36ca91e 452
cf558d25
JR
453 /* set head and tail to zero manually */
454 writel(0x00, iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
455 writel(0x00, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
456
b36ca91e 457 iommu_feature_enable(iommu, CONTROL_CMDBUF_EN);
b36ca91e
JR
458}
459
460static void __init free_command_buffer(struct amd_iommu *iommu)
461{
23c1713f
JR
462 free_pages((unsigned long)iommu->cmd_buf,
463 get_order(iommu->cmd_buf_size));
b36ca91e
JR
464}
465
335503e5
JR
466/* allocates the memory where the IOMMU will log its events to */
467static u8 * __init alloc_event_buffer(struct amd_iommu *iommu)
468{
335503e5
JR
469 iommu->evt_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
470 get_order(EVT_BUFFER_SIZE));
471
472 if (iommu->evt_buf == NULL)
473 return NULL;
474
1bc6f838
JR
475 iommu->evt_buf_size = EVT_BUFFER_SIZE;
476
58492e12
JR
477 return iommu->evt_buf;
478}
479
480static void iommu_enable_event_buffer(struct amd_iommu *iommu)
481{
482 u64 entry;
483
484 BUG_ON(iommu->evt_buf == NULL);
485
335503e5 486 entry = (u64)virt_to_phys(iommu->evt_buf) | EVT_LEN_MASK;
58492e12 487
335503e5
JR
488 memcpy_toio(iommu->mmio_base + MMIO_EVT_BUF_OFFSET,
489 &entry, sizeof(entry));
490
09067207
JR
491 /* set head and tail to zero manually */
492 writel(0x00, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
493 writel(0x00, iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
494
58492e12 495 iommu_feature_enable(iommu, CONTROL_EVT_LOG_EN);
335503e5
JR
496}
497
498static void __init free_event_buffer(struct amd_iommu *iommu)
499{
500 free_pages((unsigned long)iommu->evt_buf, get_order(EVT_BUFFER_SIZE));
501}
502
b65233a9 503/* sets a specific bit in the device table entry. */
3566b778
JR
504static void set_dev_entry_bit(u16 devid, u8 bit)
505{
506 int i = (bit >> 5) & 0x07;
507 int _bit = bit & 0x1f;
508
509 amd_iommu_dev_table[devid].data[i] |= (1 << _bit);
510}
511
5ff4789d
JR
512/* Writes the specific IOMMU for a device into the rlookup table */
513static void __init set_iommu_for_device(struct amd_iommu *iommu, u16 devid)
514{
515 amd_iommu_rlookup_table[devid] = iommu;
516}
517
b65233a9
JR
518/*
519 * This function takes the device specific flags read from the ACPI
520 * table and sets up the device table entry with that information
521 */
5ff4789d
JR
522static void __init set_dev_entry_from_acpi(struct amd_iommu *iommu,
523 u16 devid, u32 flags, u32 ext_flags)
3566b778
JR
524{
525 if (flags & ACPI_DEVFLAG_INITPASS)
526 set_dev_entry_bit(devid, DEV_ENTRY_INIT_PASS);
527 if (flags & ACPI_DEVFLAG_EXTINT)
528 set_dev_entry_bit(devid, DEV_ENTRY_EINT_PASS);
529 if (flags & ACPI_DEVFLAG_NMI)
530 set_dev_entry_bit(devid, DEV_ENTRY_NMI_PASS);
531 if (flags & ACPI_DEVFLAG_SYSMGT1)
532 set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1);
533 if (flags & ACPI_DEVFLAG_SYSMGT2)
534 set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2);
535 if (flags & ACPI_DEVFLAG_LINT0)
536 set_dev_entry_bit(devid, DEV_ENTRY_LINT0_PASS);
537 if (flags & ACPI_DEVFLAG_LINT1)
538 set_dev_entry_bit(devid, DEV_ENTRY_LINT1_PASS);
3566b778 539
5ff4789d 540 set_iommu_for_device(iommu, devid);
3566b778
JR
541}
542
b65233a9
JR
543/*
544 * Reads the device exclusion range from ACPI and initialize IOMMU with
545 * it
546 */
3566b778
JR
547static void __init set_device_exclusion_range(u16 devid, struct ivmd_header *m)
548{
549 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
550
551 if (!(m->flags & IVMD_FLAG_EXCL_RANGE))
552 return;
553
554 if (iommu) {
b65233a9
JR
555 /*
556 * We only can configure exclusion ranges per IOMMU, not
557 * per device. But we can enable the exclusion range per
558 * device. This is done here
559 */
3566b778
JR
560 set_dev_entry_bit(m->devid, DEV_ENTRY_EX);
561 iommu->exclusion_start = m->range_start;
562 iommu->exclusion_length = m->range_length;
563 }
564}
565
b65233a9
JR
566/*
567 * This function reads some important data from the IOMMU PCI space and
568 * initializes the driver data structure with it. It reads the hardware
569 * capabilities and the first/last device entries
570 */
5d0c8e49
JR
571static void __init init_iommu_from_pci(struct amd_iommu *iommu)
572{
5d0c8e49 573 int cap_ptr = iommu->cap_ptr;
a80dc3e0 574 u32 range, misc;
5d0c8e49 575
3eaf28a1
JR
576 pci_read_config_dword(iommu->dev, cap_ptr + MMIO_CAP_HDR_OFFSET,
577 &iommu->cap);
578 pci_read_config_dword(iommu->dev, cap_ptr + MMIO_RANGE_OFFSET,
579 &range);
a80dc3e0
JR
580 pci_read_config_dword(iommu->dev, cap_ptr + MMIO_MISC_OFFSET,
581 &misc);
5d0c8e49 582
d591b0a3
JR
583 iommu->first_device = calc_devid(MMIO_GET_BUS(range),
584 MMIO_GET_FD(range));
585 iommu->last_device = calc_devid(MMIO_GET_BUS(range),
586 MMIO_GET_LD(range));
a80dc3e0 587 iommu->evt_msi_num = MMIO_MSI_NUM(misc);
5d0c8e49
JR
588}
589
b65233a9
JR
590/*
591 * Takes a pointer to an AMD IOMMU entry in the ACPI table and
592 * initializes the hardware and our data structures with it.
593 */
5d0c8e49
JR
594static void __init init_iommu_from_acpi(struct amd_iommu *iommu,
595 struct ivhd_header *h)
596{
597 u8 *p = (u8 *)h;
598 u8 *end = p, flags = 0;
599 u16 dev_i, devid = 0, devid_start = 0, devid_to = 0;
600 u32 ext_flags = 0;
58a3bee5 601 bool alias = false;
5d0c8e49
JR
602 struct ivhd_entry *e;
603
604 /*
605 * First set the recommended feature enable bits from ACPI
606 * into the IOMMU control registers
607 */
6da7342f 608 h->flags & IVHD_FLAG_HT_TUN_EN_MASK ?
5d0c8e49
JR
609 iommu_feature_enable(iommu, CONTROL_HT_TUN_EN) :
610 iommu_feature_disable(iommu, CONTROL_HT_TUN_EN);
611
6da7342f 612 h->flags & IVHD_FLAG_PASSPW_EN_MASK ?
5d0c8e49
JR
613 iommu_feature_enable(iommu, CONTROL_PASSPW_EN) :
614 iommu_feature_disable(iommu, CONTROL_PASSPW_EN);
615
6da7342f 616 h->flags & IVHD_FLAG_RESPASSPW_EN_MASK ?
5d0c8e49
JR
617 iommu_feature_enable(iommu, CONTROL_RESPASSPW_EN) :
618 iommu_feature_disable(iommu, CONTROL_RESPASSPW_EN);
619
6da7342f 620 h->flags & IVHD_FLAG_ISOC_EN_MASK ?
5d0c8e49
JR
621 iommu_feature_enable(iommu, CONTROL_ISOC_EN) :
622 iommu_feature_disable(iommu, CONTROL_ISOC_EN);
623
624 /*
625 * make IOMMU memory accesses cache coherent
626 */
627 iommu_feature_enable(iommu, CONTROL_COHERENT_EN);
628
629 /*
630 * Done. Now parse the device entries
631 */
632 p += sizeof(struct ivhd_header);
633 end += h->length;
634
42a698f4 635
5d0c8e49
JR
636 while (p < end) {
637 e = (struct ivhd_entry *)p;
638 switch (e->type) {
639 case IVHD_DEV_ALL:
42a698f4
JR
640
641 DUMP_printk(" DEV_ALL\t\t\t first devid: %02x:%02x.%x"
642 " last device %02x:%02x.%x flags: %02x\n",
643 PCI_BUS(iommu->first_device),
644 PCI_SLOT(iommu->first_device),
645 PCI_FUNC(iommu->first_device),
646 PCI_BUS(iommu->last_device),
647 PCI_SLOT(iommu->last_device),
648 PCI_FUNC(iommu->last_device),
649 e->flags);
650
5d0c8e49
JR
651 for (dev_i = iommu->first_device;
652 dev_i <= iommu->last_device; ++dev_i)
5ff4789d
JR
653 set_dev_entry_from_acpi(iommu, dev_i,
654 e->flags, 0);
5d0c8e49
JR
655 break;
656 case IVHD_DEV_SELECT:
42a698f4
JR
657
658 DUMP_printk(" DEV_SELECT\t\t\t devid: %02x:%02x.%x "
659 "flags: %02x\n",
660 PCI_BUS(e->devid),
661 PCI_SLOT(e->devid),
662 PCI_FUNC(e->devid),
663 e->flags);
664
5d0c8e49 665 devid = e->devid;
5ff4789d 666 set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
5d0c8e49
JR
667 break;
668 case IVHD_DEV_SELECT_RANGE_START:
42a698f4
JR
669
670 DUMP_printk(" DEV_SELECT_RANGE_START\t "
671 "devid: %02x:%02x.%x flags: %02x\n",
672 PCI_BUS(e->devid),
673 PCI_SLOT(e->devid),
674 PCI_FUNC(e->devid),
675 e->flags);
676
5d0c8e49
JR
677 devid_start = e->devid;
678 flags = e->flags;
679 ext_flags = 0;
58a3bee5 680 alias = false;
5d0c8e49
JR
681 break;
682 case IVHD_DEV_ALIAS:
42a698f4
JR
683
684 DUMP_printk(" DEV_ALIAS\t\t\t devid: %02x:%02x.%x "
685 "flags: %02x devid_to: %02x:%02x.%x\n",
686 PCI_BUS(e->devid),
687 PCI_SLOT(e->devid),
688 PCI_FUNC(e->devid),
689 e->flags,
690 PCI_BUS(e->ext >> 8),
691 PCI_SLOT(e->ext >> 8),
692 PCI_FUNC(e->ext >> 8));
693
5d0c8e49
JR
694 devid = e->devid;
695 devid_to = e->ext >> 8;
7a6a3a08 696 set_dev_entry_from_acpi(iommu, devid , e->flags, 0);
7455aab1 697 set_dev_entry_from_acpi(iommu, devid_to, e->flags, 0);
5d0c8e49
JR
698 amd_iommu_alias_table[devid] = devid_to;
699 break;
700 case IVHD_DEV_ALIAS_RANGE:
42a698f4
JR
701
702 DUMP_printk(" DEV_ALIAS_RANGE\t\t "
703 "devid: %02x:%02x.%x flags: %02x "
704 "devid_to: %02x:%02x.%x\n",
705 PCI_BUS(e->devid),
706 PCI_SLOT(e->devid),
707 PCI_FUNC(e->devid),
708 e->flags,
709 PCI_BUS(e->ext >> 8),
710 PCI_SLOT(e->ext >> 8),
711 PCI_FUNC(e->ext >> 8));
712
5d0c8e49
JR
713 devid_start = e->devid;
714 flags = e->flags;
715 devid_to = e->ext >> 8;
716 ext_flags = 0;
58a3bee5 717 alias = true;
5d0c8e49
JR
718 break;
719 case IVHD_DEV_EXT_SELECT:
42a698f4
JR
720
721 DUMP_printk(" DEV_EXT_SELECT\t\t devid: %02x:%02x.%x "
722 "flags: %02x ext: %08x\n",
723 PCI_BUS(e->devid),
724 PCI_SLOT(e->devid),
725 PCI_FUNC(e->devid),
726 e->flags, e->ext);
727
5d0c8e49 728 devid = e->devid;
5ff4789d
JR
729 set_dev_entry_from_acpi(iommu, devid, e->flags,
730 e->ext);
5d0c8e49
JR
731 break;
732 case IVHD_DEV_EXT_SELECT_RANGE:
42a698f4
JR
733
734 DUMP_printk(" DEV_EXT_SELECT_RANGE\t devid: "
735 "%02x:%02x.%x flags: %02x ext: %08x\n",
736 PCI_BUS(e->devid),
737 PCI_SLOT(e->devid),
738 PCI_FUNC(e->devid),
739 e->flags, e->ext);
740
5d0c8e49
JR
741 devid_start = e->devid;
742 flags = e->flags;
743 ext_flags = e->ext;
58a3bee5 744 alias = false;
5d0c8e49
JR
745 break;
746 case IVHD_DEV_RANGE_END:
42a698f4
JR
747
748 DUMP_printk(" DEV_RANGE_END\t\t devid: %02x:%02x.%x\n",
749 PCI_BUS(e->devid),
750 PCI_SLOT(e->devid),
751 PCI_FUNC(e->devid));
752
5d0c8e49
JR
753 devid = e->devid;
754 for (dev_i = devid_start; dev_i <= devid; ++dev_i) {
7a6a3a08 755 if (alias) {
5d0c8e49 756 amd_iommu_alias_table[dev_i] = devid_to;
7a6a3a08
JR
757 set_dev_entry_from_acpi(iommu,
758 devid_to, flags, ext_flags);
759 }
760 set_dev_entry_from_acpi(iommu, dev_i,
761 flags, ext_flags);
5d0c8e49
JR
762 }
763 break;
764 default:
765 break;
766 }
767
b514e555 768 p += ivhd_entry_length(p);
5d0c8e49
JR
769 }
770}
771
b65233a9 772/* Initializes the device->iommu mapping for the driver */
5d0c8e49
JR
773static int __init init_iommu_devices(struct amd_iommu *iommu)
774{
775 u16 i;
776
777 for (i = iommu->first_device; i <= iommu->last_device; ++i)
778 set_iommu_for_device(iommu, i);
779
780 return 0;
781}
782
e47d402d
JR
783static void __init free_iommu_one(struct amd_iommu *iommu)
784{
785 free_command_buffer(iommu);
335503e5 786 free_event_buffer(iommu);
e47d402d
JR
787 iommu_unmap_mmio_space(iommu);
788}
789
790static void __init free_iommu_all(void)
791{
792 struct amd_iommu *iommu, *next;
793
3bd22172 794 for_each_iommu_safe(iommu, next) {
e47d402d
JR
795 list_del(&iommu->list);
796 free_iommu_one(iommu);
797 kfree(iommu);
798 }
799}
800
b65233a9
JR
801/*
802 * This function clues the initialization function for one IOMMU
803 * together and also allocates the command buffer and programs the
804 * hardware. It does NOT enable the IOMMU. This is done afterwards.
805 */
e47d402d
JR
806static int __init init_iommu_one(struct amd_iommu *iommu, struct ivhd_header *h)
807{
808 spin_lock_init(&iommu->lock);
809 list_add_tail(&iommu->list, &amd_iommu_list);
810
811 /*
812 * Copy data from ACPI table entry to the iommu struct
813 */
3eaf28a1
JR
814 iommu->dev = pci_get_bus_and_slot(PCI_BUS(h->devid), h->devid & 0xff);
815 if (!iommu->dev)
816 return 1;
817
e47d402d 818 iommu->cap_ptr = h->cap_ptr;
ee893c24 819 iommu->pci_seg = h->pci_seg;
e47d402d
JR
820 iommu->mmio_phys = h->mmio_phys;
821 iommu->mmio_base = iommu_map_mmio_space(h->mmio_phys);
822 if (!iommu->mmio_base)
823 return -ENOMEM;
824
e47d402d
JR
825 iommu->cmd_buf = alloc_command_buffer(iommu);
826 if (!iommu->cmd_buf)
827 return -ENOMEM;
828
335503e5
JR
829 iommu->evt_buf = alloc_event_buffer(iommu);
830 if (!iommu->evt_buf)
831 return -ENOMEM;
832
a80dc3e0
JR
833 iommu->int_enabled = false;
834
e47d402d
JR
835 init_iommu_from_pci(iommu);
836 init_iommu_from_acpi(iommu, h);
837 init_iommu_devices(iommu);
838
8a66712b 839 return pci_enable_device(iommu->dev);
e47d402d
JR
840}
841
b65233a9
JR
842/*
843 * Iterates over all IOMMU entries in the ACPI table, allocates the
844 * IOMMU structure and initializes it with init_iommu_one()
845 */
e47d402d
JR
846static int __init init_iommu_all(struct acpi_table_header *table)
847{
848 u8 *p = (u8 *)table, *end = (u8 *)table;
849 struct ivhd_header *h;
850 struct amd_iommu *iommu;
851 int ret;
852
e47d402d
JR
853 end += table->length;
854 p += IVRS_HEADER_LENGTH;
855
856 while (p < end) {
857 h = (struct ivhd_header *)p;
858 switch (*p) {
859 case ACPI_IVHD_TYPE:
9c72041f
JR
860
861 DUMP_printk("IOMMU: device: %02x:%02x.%01x cap: %04x "
862 "seg: %d flags: %01x info %04x\n",
863 PCI_BUS(h->devid), PCI_SLOT(h->devid),
864 PCI_FUNC(h->devid), h->cap_ptr,
865 h->pci_seg, h->flags, h->info);
866 DUMP_printk(" mmio-addr: %016llx\n",
867 h->mmio_phys);
868
e47d402d
JR
869 iommu = kzalloc(sizeof(struct amd_iommu), GFP_KERNEL);
870 if (iommu == NULL)
871 return -ENOMEM;
872 ret = init_iommu_one(iommu, h);
873 if (ret)
874 return ret;
875 break;
876 default:
877 break;
878 }
879 p += h->length;
880
881 }
882 WARN_ON(p != end);
883
884 return 0;
885}
886
a80dc3e0
JR
887/****************************************************************************
888 *
889 * The following functions initialize the MSI interrupts for all IOMMUs
890 * in the system. Its a bit challenging because there could be multiple
891 * IOMMUs per PCI BDF but we can call pci_enable_msi(x) only once per
892 * pci_dev.
893 *
894 ****************************************************************************/
895
a80dc3e0
JR
896static int __init iommu_setup_msi(struct amd_iommu *iommu)
897{
898 int r;
a80dc3e0
JR
899
900 if (pci_enable_msi(iommu->dev))
901 return 1;
902
903 r = request_irq(iommu->dev->irq, amd_iommu_int_handler,
904 IRQF_SAMPLE_RANDOM,
4c6f40d4 905 "AMD-Vi",
a80dc3e0
JR
906 NULL);
907
908 if (r) {
909 pci_disable_msi(iommu->dev);
910 return 1;
911 }
912
fab6afa3 913 iommu->int_enabled = true;
58492e12
JR
914 iommu_feature_enable(iommu, CONTROL_EVT_INT_EN);
915
a80dc3e0
JR
916 return 0;
917}
918
05f92db9 919static int iommu_init_msi(struct amd_iommu *iommu)
a80dc3e0
JR
920{
921 if (iommu->int_enabled)
922 return 0;
923
d91cecdd 924 if (pci_find_capability(iommu->dev, PCI_CAP_ID_MSI))
a80dc3e0
JR
925 return iommu_setup_msi(iommu);
926
927 return 1;
928}
929
b65233a9
JR
930/****************************************************************************
931 *
932 * The next functions belong to the third pass of parsing the ACPI
933 * table. In this last pass the memory mapping requirements are
934 * gathered (like exclusion and unity mapping reanges).
935 *
936 ****************************************************************************/
937
be2a022c
JR
938static void __init free_unity_maps(void)
939{
940 struct unity_map_entry *entry, *next;
941
942 list_for_each_entry_safe(entry, next, &amd_iommu_unity_map, list) {
943 list_del(&entry->list);
944 kfree(entry);
945 }
946}
947
b65233a9 948/* called when we find an exclusion range definition in ACPI */
be2a022c
JR
949static int __init init_exclusion_range(struct ivmd_header *m)
950{
951 int i;
952
953 switch (m->type) {
954 case ACPI_IVMD_TYPE:
955 set_device_exclusion_range(m->devid, m);
956 break;
957 case ACPI_IVMD_TYPE_ALL:
3a61ec38 958 for (i = 0; i <= amd_iommu_last_bdf; ++i)
be2a022c
JR
959 set_device_exclusion_range(i, m);
960 break;
961 case ACPI_IVMD_TYPE_RANGE:
962 for (i = m->devid; i <= m->aux; ++i)
963 set_device_exclusion_range(i, m);
964 break;
965 default:
966 break;
967 }
968
969 return 0;
970}
971
b65233a9 972/* called for unity map ACPI definition */
be2a022c
JR
973static int __init init_unity_map_range(struct ivmd_header *m)
974{
975 struct unity_map_entry *e = 0;
02acc43a 976 char *s;
be2a022c
JR
977
978 e = kzalloc(sizeof(*e), GFP_KERNEL);
979 if (e == NULL)
980 return -ENOMEM;
981
982 switch (m->type) {
983 default:
0bc252f4
JR
984 kfree(e);
985 return 0;
be2a022c 986 case ACPI_IVMD_TYPE:
02acc43a 987 s = "IVMD_TYPEi\t\t\t";
be2a022c
JR
988 e->devid_start = e->devid_end = m->devid;
989 break;
990 case ACPI_IVMD_TYPE_ALL:
02acc43a 991 s = "IVMD_TYPE_ALL\t\t";
be2a022c
JR
992 e->devid_start = 0;
993 e->devid_end = amd_iommu_last_bdf;
994 break;
995 case ACPI_IVMD_TYPE_RANGE:
02acc43a 996 s = "IVMD_TYPE_RANGE\t\t";
be2a022c
JR
997 e->devid_start = m->devid;
998 e->devid_end = m->aux;
999 break;
1000 }
1001 e->address_start = PAGE_ALIGN(m->range_start);
1002 e->address_end = e->address_start + PAGE_ALIGN(m->range_length);
1003 e->prot = m->flags >> 1;
1004
02acc43a
JR
1005 DUMP_printk("%s devid_start: %02x:%02x.%x devid_end: %02x:%02x.%x"
1006 " range_start: %016llx range_end: %016llx flags: %x\n", s,
1007 PCI_BUS(e->devid_start), PCI_SLOT(e->devid_start),
1008 PCI_FUNC(e->devid_start), PCI_BUS(e->devid_end),
1009 PCI_SLOT(e->devid_end), PCI_FUNC(e->devid_end),
1010 e->address_start, e->address_end, m->flags);
1011
be2a022c
JR
1012 list_add_tail(&e->list, &amd_iommu_unity_map);
1013
1014 return 0;
1015}
1016
b65233a9 1017/* iterates over all memory definitions we find in the ACPI table */
be2a022c
JR
1018static int __init init_memory_definitions(struct acpi_table_header *table)
1019{
1020 u8 *p = (u8 *)table, *end = (u8 *)table;
1021 struct ivmd_header *m;
1022
be2a022c
JR
1023 end += table->length;
1024 p += IVRS_HEADER_LENGTH;
1025
1026 while (p < end) {
1027 m = (struct ivmd_header *)p;
1028 if (m->flags & IVMD_FLAG_EXCL_RANGE)
1029 init_exclusion_range(m);
1030 else if (m->flags & IVMD_FLAG_UNITY_MAP)
1031 init_unity_map_range(m);
1032
1033 p += m->length;
1034 }
1035
1036 return 0;
1037}
1038
9f5f5fb3
JR
1039/*
1040 * Init the device table to not allow DMA access for devices and
1041 * suppress all page faults
1042 */
1043static void init_device_table(void)
1044{
1045 u16 devid;
1046
1047 for (devid = 0; devid <= amd_iommu_last_bdf; ++devid) {
1048 set_dev_entry_bit(devid, DEV_ENTRY_VALID);
1049 set_dev_entry_bit(devid, DEV_ENTRY_TRANSLATION);
9f5f5fb3
JR
1050 }
1051}
1052
b65233a9
JR
1053/*
1054 * This function finally enables all IOMMUs found in the system after
1055 * they have been initialized
1056 */
05f92db9 1057static void enable_iommus(void)
8736197b
JR
1058{
1059 struct amd_iommu *iommu;
1060
3bd22172 1061 for_each_iommu(iommu) {
a8c485bb 1062 iommu_disable(iommu);
58492e12
JR
1063 iommu_set_device_table(iommu);
1064 iommu_enable_command_buffer(iommu);
1065 iommu_enable_event_buffer(iommu);
8736197b 1066 iommu_set_exclusion_range(iommu);
a80dc3e0 1067 iommu_init_msi(iommu);
8736197b
JR
1068 iommu_enable(iommu);
1069 }
1070}
1071
92ac4320
JR
1072static void disable_iommus(void)
1073{
1074 struct amd_iommu *iommu;
1075
1076 for_each_iommu(iommu)
1077 iommu_disable(iommu);
1078}
1079
7441e9cb
JR
1080/*
1081 * Suspend/Resume support
1082 * disable suspend until real resume implemented
1083 */
1084
1085static int amd_iommu_resume(struct sys_device *dev)
1086{
736501ee
JR
1087 /* re-load the hardware */
1088 enable_iommus();
1089
1090 /*
1091 * we have to flush after the IOMMUs are enabled because a
1092 * disabled IOMMU will never execute the commands we send
1093 */
736501ee 1094 amd_iommu_flush_all_devices();
6a047d8b 1095 amd_iommu_flush_all_domains();
736501ee 1096
7441e9cb
JR
1097 return 0;
1098}
1099
1100static int amd_iommu_suspend(struct sys_device *dev, pm_message_t state)
1101{
736501ee
JR
1102 /* disable IOMMUs to go out of the way for BIOS */
1103 disable_iommus();
1104
1105 return 0;
7441e9cb
JR
1106}
1107
1108static struct sysdev_class amd_iommu_sysdev_class = {
1109 .name = "amd_iommu",
1110 .suspend = amd_iommu_suspend,
1111 .resume = amd_iommu_resume,
1112};
1113
1114static struct sys_device device_amd_iommu = {
1115 .id = 0,
1116 .cls = &amd_iommu_sysdev_class,
1117};
1118
b65233a9
JR
1119/*
1120 * This is the core init function for AMD IOMMU hardware in the system.
1121 * This function is called from the generic x86 DMA layer initialization
1122 * code.
1123 *
1124 * This function basically parses the ACPI table for AMD IOMMU (IVRS)
1125 * three times:
1126 *
1127 * 1 pass) Find the highest PCI device id the driver has to handle.
1128 * Upon this information the size of the data structures is
1129 * determined that needs to be allocated.
1130 *
1131 * 2 pass) Initialize the data structures just allocated with the
1132 * information in the ACPI table about available AMD IOMMUs
1133 * in the system. It also maps the PCI devices in the
1134 * system to specific IOMMUs
1135 *
1136 * 3 pass) After the basic data structures are allocated and
1137 * initialized we update them with information about memory
1138 * remapping requirements parsed out of the ACPI table in
1139 * this last pass.
1140 *
1141 * After that the hardware is initialized and ready to go. In the last
1142 * step we do some Linux specific things like registering the driver in
1143 * the dma_ops interface and initializing the suspend/resume support
1144 * functions. Finally it prints some information about AMD IOMMUs and
1145 * the driver state and enables the hardware.
1146 */
fe74c9cf
JR
1147int __init amd_iommu_init(void)
1148{
1149 int i, ret = 0;
1150
1151
8b14518f 1152 if (no_iommu) {
4c6f40d4 1153 printk(KERN_INFO "AMD-Vi disabled by kernel command line\n");
fe74c9cf
JR
1154 return 0;
1155 }
1156
c1cbebee
JR
1157 if (!amd_iommu_detected)
1158 return -ENODEV;
1159
fe74c9cf
JR
1160 /*
1161 * First parse ACPI tables to find the largest Bus/Dev/Func
1162 * we need to handle. Upon this information the shared data
1163 * structures for the IOMMUs in the system will be allocated
1164 */
1165 if (acpi_table_parse("IVRS", find_last_devid_acpi) != 0)
1166 return -ENODEV;
1167
c571484e
JR
1168 dev_table_size = tbl_size(DEV_TABLE_ENTRY_SIZE);
1169 alias_table_size = tbl_size(ALIAS_TABLE_ENTRY_SIZE);
1170 rlookup_table_size = tbl_size(RLOOKUP_TABLE_ENTRY_SIZE);
fe74c9cf
JR
1171
1172 ret = -ENOMEM;
1173
1174 /* Device table - directly used by all IOMMUs */
5dc8bff0 1175 amd_iommu_dev_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
fe74c9cf
JR
1176 get_order(dev_table_size));
1177 if (amd_iommu_dev_table == NULL)
1178 goto out;
1179
1180 /*
1181 * Alias table - map PCI Bus/Dev/Func to Bus/Dev/Func the
1182 * IOMMU see for that device
1183 */
1184 amd_iommu_alias_table = (void *)__get_free_pages(GFP_KERNEL,
1185 get_order(alias_table_size));
1186 if (amd_iommu_alias_table == NULL)
1187 goto free;
1188
1189 /* IOMMU rlookup table - find the IOMMU for a specific device */
83fd5cc6
JR
1190 amd_iommu_rlookup_table = (void *)__get_free_pages(
1191 GFP_KERNEL | __GFP_ZERO,
fe74c9cf
JR
1192 get_order(rlookup_table_size));
1193 if (amd_iommu_rlookup_table == NULL)
1194 goto free;
1195
1196 /*
1197 * Protection Domain table - maps devices to protection domains
1198 * This table has the same size as the rlookup_table
1199 */
5dc8bff0 1200 amd_iommu_pd_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
fe74c9cf
JR
1201 get_order(rlookup_table_size));
1202 if (amd_iommu_pd_table == NULL)
1203 goto free;
1204
5dc8bff0
JR
1205 amd_iommu_pd_alloc_bitmap = (void *)__get_free_pages(
1206 GFP_KERNEL | __GFP_ZERO,
fe74c9cf
JR
1207 get_order(MAX_DOMAIN_ID/8));
1208 if (amd_iommu_pd_alloc_bitmap == NULL)
1209 goto free;
1210
9f5f5fb3
JR
1211 /* init the device table */
1212 init_device_table();
1213
fe74c9cf 1214 /*
5dc8bff0 1215 * let all alias entries point to itself
fe74c9cf 1216 */
3a61ec38 1217 for (i = 0; i <= amd_iommu_last_bdf; ++i)
fe74c9cf
JR
1218 amd_iommu_alias_table[i] = i;
1219
fe74c9cf
JR
1220 /*
1221 * never allocate domain 0 because its used as the non-allocated and
1222 * error value placeholder
1223 */
1224 amd_iommu_pd_alloc_bitmap[0] = 1;
1225
1226 /*
1227 * now the data structures are allocated and basically initialized
1228 * start the real acpi table scan
1229 */
1230 ret = -ENODEV;
1231 if (acpi_table_parse("IVRS", init_iommu_all) != 0)
1232 goto free;
1233
1234 if (acpi_table_parse("IVRS", init_memory_definitions) != 0)
1235 goto free;
1236
129d6aba 1237 ret = sysdev_class_register(&amd_iommu_sysdev_class);
8736197b
JR
1238 if (ret)
1239 goto free;
1240
129d6aba 1241 ret = sysdev_register(&device_amd_iommu);
7441e9cb
JR
1242 if (ret)
1243 goto free;
1244
129d6aba 1245 ret = amd_iommu_init_dma_ops();
7441e9cb
JR
1246 if (ret)
1247 goto free;
1248
8736197b
JR
1249 enable_iommus();
1250
4c6f40d4 1251 printk(KERN_INFO "AMD-Vi: device isolation ");
fe74c9cf
JR
1252 if (amd_iommu_isolate)
1253 printk("enabled\n");
1254 else
1255 printk("disabled\n");
1256
afa9fdc2 1257 if (amd_iommu_unmap_flush)
4c6f40d4 1258 printk(KERN_INFO "AMD-Vi: IO/TLB flush on unmap enabled\n");
1c655773 1259 else
4c6f40d4 1260 printk(KERN_INFO "AMD-Vi: Lazy IO/TLB flushing enabled\n");
1c655773 1261
fe74c9cf
JR
1262out:
1263 return ret;
1264
1265free:
d58befd3
JR
1266 free_pages((unsigned long)amd_iommu_pd_alloc_bitmap,
1267 get_order(MAX_DOMAIN_ID/8));
fe74c9cf 1268
9a836de0
JR
1269 free_pages((unsigned long)amd_iommu_pd_table,
1270 get_order(rlookup_table_size));
fe74c9cf 1271
9a836de0
JR
1272 free_pages((unsigned long)amd_iommu_rlookup_table,
1273 get_order(rlookup_table_size));
fe74c9cf 1274
9a836de0
JR
1275 free_pages((unsigned long)amd_iommu_alias_table,
1276 get_order(alias_table_size));
fe74c9cf 1277
9a836de0
JR
1278 free_pages((unsigned long)amd_iommu_dev_table,
1279 get_order(dev_table_size));
fe74c9cf
JR
1280
1281 free_iommu_all();
1282
1283 free_unity_maps();
1284
1285 goto out;
1286}
1287
09759042
JR
1288void amd_iommu_shutdown(void)
1289{
1290 disable_iommus();
1291}
1292
b65233a9
JR
1293/****************************************************************************
1294 *
1295 * Early detect code. This code runs at IOMMU detection time in the DMA
1296 * layer. It just looks if there is an IVRS ACPI table to detect AMD
1297 * IOMMUs
1298 *
1299 ****************************************************************************/
ae7877de
JR
1300static int __init early_amd_iommu_detect(struct acpi_table_header *table)
1301{
1302 return 0;
1303}
1304
1305void __init amd_iommu_detect(void)
1306{
299a140d 1307 if (swiotlb || no_iommu || (iommu_detected && !gart_iommu_aperture))
ae7877de
JR
1308 return;
1309
ae7877de
JR
1310 if (acpi_table_parse("IVRS", early_amd_iommu_detect) == 0) {
1311 iommu_detected = 1;
c1cbebee 1312 amd_iommu_detected = 1;
92af4e29 1313#ifdef CONFIG_GART_IOMMU
ae7877de
JR
1314 gart_iommu_aperture_disabled = 1;
1315 gart_iommu_aperture = 0;
92af4e29 1316#endif
ae7877de
JR
1317 }
1318}
1319
b65233a9
JR
1320/****************************************************************************
1321 *
1322 * Parsing functions for the AMD IOMMU specific kernel command line
1323 * options.
1324 *
1325 ****************************************************************************/
1326
fefda117
JR
1327static int __init parse_amd_iommu_dump(char *str)
1328{
1329 amd_iommu_dump = true;
1330
1331 return 1;
1332}
1333
918ad6c5
JR
1334static int __init parse_amd_iommu_options(char *str)
1335{
1336 for (; *str; ++str) {
1c655773 1337 if (strncmp(str, "isolate", 7) == 0)
c226f853 1338 amd_iommu_isolate = true;
e5e1f606 1339 if (strncmp(str, "share", 5) == 0)
c226f853 1340 amd_iommu_isolate = false;
695b5676 1341 if (strncmp(str, "fullflush", 9) == 0)
afa9fdc2 1342 amd_iommu_unmap_flush = true;
918ad6c5
JR
1343 }
1344
1345 return 1;
1346}
1347
fefda117 1348__setup("amd_iommu_dump", parse_amd_iommu_dump);
918ad6c5 1349__setup("amd_iommu=", parse_amd_iommu_options);
This page took 0.298464 seconds and 5 git commands to generate.