perf/x86/intel: Add cross-HT counter exclusion infrastructure
[deliverable/linux.git] / arch / x86 / kernel / cpu / perf_event.c
CommitLineData
241771ef 1/*
cdd6c482 2 * Performance events x86 architecture code
241771ef 3 *
98144511
IM
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
30dd568c 9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
1da53e02 10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
241771ef
IM
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
cdd6c482 15#include <linux/perf_event.h>
241771ef
IM
16#include <linux/capability.h>
17#include <linux/notifier.h>
18#include <linux/hardirq.h>
19#include <linux/kprobes.h>
4ac13294 20#include <linux/module.h>
241771ef
IM
21#include <linux/kdebug.h>
22#include <linux/sched.h>
d7d59fb3 23#include <linux/uaccess.h>
5a0e3ad6 24#include <linux/slab.h>
30dd568c 25#include <linux/cpu.h>
272d30be 26#include <linux/bitops.h>
0c9d42ed 27#include <linux/device.h>
241771ef 28
241771ef 29#include <asm/apic.h>
d7d59fb3 30#include <asm/stacktrace.h>
4e935e47 31#include <asm/nmi.h>
69092624 32#include <asm/smp.h>
c8e5910e 33#include <asm/alternative.h>
7911d3f7 34#include <asm/mmu_context.h>
375074cc 35#include <asm/tlbflush.h>
e3f3541c 36#include <asm/timer.h>
d07bdfd3
PZ
37#include <asm/desc.h>
38#include <asm/ldt.h>
241771ef 39
de0428a7
KW
40#include "perf_event.h"
41
de0428a7 42struct x86_pmu x86_pmu __read_mostly;
efc9f05d 43
de0428a7 44DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
b0f3f28e
PZ
45 .enabled = 1,
46};
241771ef 47
a6673429
AL
48struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE;
49
de0428a7 50u64 __read_mostly hw_cache_event_ids
8326f44d
IM
51 [PERF_COUNT_HW_CACHE_MAX]
52 [PERF_COUNT_HW_CACHE_OP_MAX]
53 [PERF_COUNT_HW_CACHE_RESULT_MAX];
de0428a7 54u64 __read_mostly hw_cache_extra_regs
e994d7d2
AK
55 [PERF_COUNT_HW_CACHE_MAX]
56 [PERF_COUNT_HW_CACHE_OP_MAX]
57 [PERF_COUNT_HW_CACHE_RESULT_MAX];
8326f44d 58
ee06094f 59/*
cdd6c482
IM
60 * Propagate event elapsed time into the generic event.
61 * Can only be executed on the CPU where the event is active.
ee06094f
IM
62 * Returns the delta events processed.
63 */
de0428a7 64u64 x86_perf_event_update(struct perf_event *event)
ee06094f 65{
cc2ad4ba 66 struct hw_perf_event *hwc = &event->hw;
948b1bb8 67 int shift = 64 - x86_pmu.cntval_bits;
ec3232bd 68 u64 prev_raw_count, new_raw_count;
cc2ad4ba 69 int idx = hwc->idx;
ec3232bd 70 s64 delta;
ee06094f 71
15c7ad51 72 if (idx == INTEL_PMC_IDX_FIXED_BTS)
30dd568c
MM
73 return 0;
74
ee06094f 75 /*
cdd6c482 76 * Careful: an NMI might modify the previous event value.
ee06094f
IM
77 *
78 * Our tactic to handle this is to first atomically read and
79 * exchange a new raw count - then add that new-prev delta
cdd6c482 80 * count to the generic event atomically:
ee06094f
IM
81 */
82again:
e7850595 83 prev_raw_count = local64_read(&hwc->prev_count);
c48b6053 84 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
ee06094f 85
e7850595 86 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
ee06094f
IM
87 new_raw_count) != prev_raw_count)
88 goto again;
89
90 /*
91 * Now we have the new raw value and have updated the prev
92 * timestamp already. We can now calculate the elapsed delta
cdd6c482 93 * (event-)time and add that to the generic event.
ee06094f
IM
94 *
95 * Careful, not all hw sign-extends above the physical width
ec3232bd 96 * of the count.
ee06094f 97 */
ec3232bd
PZ
98 delta = (new_raw_count << shift) - (prev_raw_count << shift);
99 delta >>= shift;
ee06094f 100
e7850595
PZ
101 local64_add(delta, &event->count);
102 local64_sub(delta, &hwc->period_left);
4b7bfd0d
RR
103
104 return new_raw_count;
ee06094f
IM
105}
106
a7e3ed1e
AK
107/*
108 * Find and validate any extra registers to set up.
109 */
110static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
111{
efc9f05d 112 struct hw_perf_event_extra *reg;
a7e3ed1e
AK
113 struct extra_reg *er;
114
efc9f05d 115 reg = &event->hw.extra_reg;
a7e3ed1e
AK
116
117 if (!x86_pmu.extra_regs)
118 return 0;
119
120 for (er = x86_pmu.extra_regs; er->msr; er++) {
121 if (er->event != (config & er->config_mask))
122 continue;
123 if (event->attr.config1 & ~er->valid_mask)
124 return -EINVAL;
338b522c
KL
125 /* Check if the extra msrs can be safely accessed*/
126 if (!er->extra_msr_access)
127 return -ENXIO;
efc9f05d
SE
128
129 reg->idx = er->idx;
130 reg->config = event->attr.config1;
131 reg->reg = er->msr;
a7e3ed1e
AK
132 break;
133 }
134 return 0;
135}
136
cdd6c482 137static atomic_t active_events;
4e935e47
PZ
138static DEFINE_MUTEX(pmc_reserve_mutex);
139
b27ea29c
RR
140#ifdef CONFIG_X86_LOCAL_APIC
141
4e935e47
PZ
142static bool reserve_pmc_hardware(void)
143{
144 int i;
145
948b1bb8 146 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989 147 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
4e935e47
PZ
148 goto perfctr_fail;
149 }
150
948b1bb8 151 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989 152 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
4e935e47
PZ
153 goto eventsel_fail;
154 }
155
156 return true;
157
158eventsel_fail:
159 for (i--; i >= 0; i--)
41bf4989 160 release_evntsel_nmi(x86_pmu_config_addr(i));
4e935e47 161
948b1bb8 162 i = x86_pmu.num_counters;
4e935e47
PZ
163
164perfctr_fail:
165 for (i--; i >= 0; i--)
41bf4989 166 release_perfctr_nmi(x86_pmu_event_addr(i));
4e935e47 167
4e935e47
PZ
168 return false;
169}
170
171static void release_pmc_hardware(void)
172{
173 int i;
174
948b1bb8 175 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989
RR
176 release_perfctr_nmi(x86_pmu_event_addr(i));
177 release_evntsel_nmi(x86_pmu_config_addr(i));
4e935e47 178 }
4e935e47
PZ
179}
180
b27ea29c
RR
181#else
182
183static bool reserve_pmc_hardware(void) { return true; }
184static void release_pmc_hardware(void) {}
185
186#endif
187
33c6d6a7
DZ
188static bool check_hw_exists(void)
189{
a5ebe0ba
GD
190 u64 val, val_fail, val_new= ~0;
191 int i, reg, reg_fail, ret = 0;
192 int bios_fail = 0;
33c6d6a7 193
4407204c
PZ
194 /*
195 * Check to see if the BIOS enabled any of the counters, if so
196 * complain and bail.
197 */
198 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989 199 reg = x86_pmu_config_addr(i);
4407204c
PZ
200 ret = rdmsrl_safe(reg, &val);
201 if (ret)
202 goto msr_fail;
a5ebe0ba
GD
203 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
204 bios_fail = 1;
205 val_fail = val;
206 reg_fail = reg;
207 }
4407204c
PZ
208 }
209
210 if (x86_pmu.num_counters_fixed) {
211 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
212 ret = rdmsrl_safe(reg, &val);
213 if (ret)
214 goto msr_fail;
215 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
a5ebe0ba
GD
216 if (val & (0x03 << i*4)) {
217 bios_fail = 1;
218 val_fail = val;
219 reg_fail = reg;
220 }
4407204c
PZ
221 }
222 }
223
224 /*
bffd5fc2
AP
225 * Read the current value, change it and read it back to see if it
226 * matches, this is needed to detect certain hardware emulators
227 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
4407204c 228 */
f285f92f 229 reg = x86_pmu_event_addr(0);
bffd5fc2
AP
230 if (rdmsrl_safe(reg, &val))
231 goto msr_fail;
232 val ^= 0xffffUL;
f285f92f
RR
233 ret = wrmsrl_safe(reg, val);
234 ret |= rdmsrl_safe(reg, &val_new);
33c6d6a7 235 if (ret || val != val_new)
4407204c 236 goto msr_fail;
33c6d6a7 237
45daae57
IM
238 /*
239 * We still allow the PMU driver to operate:
240 */
a5ebe0ba
GD
241 if (bios_fail) {
242 printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
243 printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg_fail, val_fail);
244 }
45daae57
IM
245
246 return true;
4407204c
PZ
247
248msr_fail:
249 printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
65d71fe1
PZI
250 printk("%sFailed to access perfctr msr (MSR %x is %Lx)\n",
251 boot_cpu_has(X86_FEATURE_HYPERVISOR) ? KERN_INFO : KERN_ERR,
252 reg, val_new);
45daae57 253
4407204c 254 return false;
33c6d6a7
DZ
255}
256
cdd6c482 257static void hw_perf_event_destroy(struct perf_event *event)
4e935e47 258{
cdd6c482 259 if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
4e935e47 260 release_pmc_hardware();
ca037701 261 release_ds_buffers();
4e935e47
PZ
262 mutex_unlock(&pmc_reserve_mutex);
263 }
264}
265
48070342
AS
266void hw_perf_lbr_event_destroy(struct perf_event *event)
267{
268 hw_perf_event_destroy(event);
269
270 /* undo the lbr/bts event accounting */
271 x86_del_exclusive(x86_lbr_exclusive_lbr);
272}
273
85cf9dba
RR
274static inline int x86_pmu_initialized(void)
275{
276 return x86_pmu.handle_irq != NULL;
277}
278
8326f44d 279static inline int
e994d7d2 280set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
8326f44d 281{
e994d7d2 282 struct perf_event_attr *attr = &event->attr;
8326f44d
IM
283 unsigned int cache_type, cache_op, cache_result;
284 u64 config, val;
285
286 config = attr->config;
287
288 cache_type = (config >> 0) & 0xff;
289 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
290 return -EINVAL;
291
292 cache_op = (config >> 8) & 0xff;
293 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
294 return -EINVAL;
295
296 cache_result = (config >> 16) & 0xff;
297 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
298 return -EINVAL;
299
300 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
301
302 if (val == 0)
303 return -ENOENT;
304
305 if (val == -1)
306 return -EINVAL;
307
308 hwc->config |= val;
e994d7d2
AK
309 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
310 return x86_pmu_extra_regs(val, event);
8326f44d
IM
311}
312
48070342
AS
313/*
314 * Check if we can create event of a certain type (that no conflicting events
315 * are present).
316 */
317int x86_add_exclusive(unsigned int what)
318{
319 int ret = -EBUSY, i;
320
321 if (atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what]))
322 return 0;
323
324 mutex_lock(&pmc_reserve_mutex);
325 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++)
326 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
327 goto out;
328
329 atomic_inc(&x86_pmu.lbr_exclusive[what]);
330 ret = 0;
331
332out:
333 mutex_unlock(&pmc_reserve_mutex);
334 return ret;
335}
336
337void x86_del_exclusive(unsigned int what)
338{
339 atomic_dec(&x86_pmu.lbr_exclusive[what]);
340}
341
de0428a7 342int x86_setup_perfctr(struct perf_event *event)
c1726f34
RR
343{
344 struct perf_event_attr *attr = &event->attr;
345 struct hw_perf_event *hwc = &event->hw;
346 u64 config;
347
6c7e550f 348 if (!is_sampling_event(event)) {
c1726f34
RR
349 hwc->sample_period = x86_pmu.max_period;
350 hwc->last_period = hwc->sample_period;
e7850595 351 local64_set(&hwc->period_left, hwc->sample_period);
c1726f34
RR
352 }
353
354 if (attr->type == PERF_TYPE_RAW)
ed13ec58 355 return x86_pmu_extra_regs(event->attr.config, event);
c1726f34
RR
356
357 if (attr->type == PERF_TYPE_HW_CACHE)
e994d7d2 358 return set_ext_hw_attr(hwc, event);
c1726f34
RR
359
360 if (attr->config >= x86_pmu.max_events)
361 return -EINVAL;
362
363 /*
364 * The generic map:
365 */
366 config = x86_pmu.event_map(attr->config);
367
368 if (config == 0)
369 return -ENOENT;
370
371 if (config == -1LL)
372 return -EINVAL;
373
374 /*
375 * Branch tracing:
376 */
18a073a3
PZ
377 if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
378 !attr->freq && hwc->sample_period == 1) {
c1726f34 379 /* BTS is not supported by this architecture. */
6809b6ea 380 if (!x86_pmu.bts_active)
c1726f34
RR
381 return -EOPNOTSUPP;
382
383 /* BTS is currently only allowed for user-mode. */
384 if (!attr->exclude_kernel)
385 return -EOPNOTSUPP;
48070342
AS
386
387 /* disallow bts if conflicting events are present */
388 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
389 return -EBUSY;
390
391 event->destroy = hw_perf_lbr_event_destroy;
c1726f34
RR
392 }
393
394 hwc->config |= config;
395
396 return 0;
397}
4261e0e0 398
ff3fb511
SE
399/*
400 * check that branch_sample_type is compatible with
401 * settings needed for precise_ip > 1 which implies
402 * using the LBR to capture ALL taken branches at the
403 * priv levels of the measurement
404 */
405static inline int precise_br_compat(struct perf_event *event)
406{
407 u64 m = event->attr.branch_sample_type;
408 u64 b = 0;
409
410 /* must capture all branches */
411 if (!(m & PERF_SAMPLE_BRANCH_ANY))
412 return 0;
413
414 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
415
416 if (!event->attr.exclude_user)
417 b |= PERF_SAMPLE_BRANCH_USER;
418
419 if (!event->attr.exclude_kernel)
420 b |= PERF_SAMPLE_BRANCH_KERNEL;
421
422 /*
423 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
424 */
425
426 return m == b;
427}
428
de0428a7 429int x86_pmu_hw_config(struct perf_event *event)
a072738e 430{
ab608344
PZ
431 if (event->attr.precise_ip) {
432 int precise = 0;
433
434 /* Support for constant skid */
c93dc84c 435 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
ab608344
PZ
436 precise++;
437
5553be26 438 /* Support for IP fixup */
03de874a 439 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
5553be26
PZ
440 precise++;
441 }
ab608344
PZ
442
443 if (event->attr.precise_ip > precise)
444 return -EOPNOTSUPP;
4b854900
YZ
445 }
446 /*
447 * check that PEBS LBR correction does not conflict with
448 * whatever the user is asking with attr->branch_sample_type
449 */
450 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
451 u64 *br_type = &event->attr.branch_sample_type;
452
453 if (has_branch_stack(event)) {
454 if (!precise_br_compat(event))
455 return -EOPNOTSUPP;
456
457 /* branch_sample_type is compatible */
458
459 } else {
460 /*
461 * user did not specify branch_sample_type
462 *
463 * For PEBS fixups, we capture all
464 * the branches at the priv level of the
465 * event.
466 */
467 *br_type = PERF_SAMPLE_BRANCH_ANY;
468
469 if (!event->attr.exclude_user)
470 *br_type |= PERF_SAMPLE_BRANCH_USER;
471
472 if (!event->attr.exclude_kernel)
473 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
ff3fb511 474 }
ab608344
PZ
475 }
476
e18bf526
YZ
477 if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
478 event->attach_state |= PERF_ATTACH_TASK_DATA;
479
a072738e
CG
480 /*
481 * Generate PMC IRQs:
482 * (keep 'enabled' bit clear for now)
483 */
b4cdc5c2 484 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
a072738e
CG
485
486 /*
487 * Count user and OS events unless requested not to
488 */
b4cdc5c2
PZ
489 if (!event->attr.exclude_user)
490 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
491 if (!event->attr.exclude_kernel)
492 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
a072738e 493
b4cdc5c2
PZ
494 if (event->attr.type == PERF_TYPE_RAW)
495 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
a072738e 496
294fe0f5
AK
497 if (event->attr.sample_period && x86_pmu.limit_period) {
498 if (x86_pmu.limit_period(event, event->attr.sample_period) >
499 event->attr.sample_period)
500 return -EINVAL;
501 }
502
9d0fcba6 503 return x86_setup_perfctr(event);
a098f448
RR
504}
505
241771ef 506/*
0d48696f 507 * Setup the hardware configuration for a given attr_type
241771ef 508 */
b0a873eb 509static int __x86_pmu_event_init(struct perf_event *event)
241771ef 510{
4e935e47 511 int err;
241771ef 512
85cf9dba
RR
513 if (!x86_pmu_initialized())
514 return -ENODEV;
241771ef 515
4e935e47 516 err = 0;
cdd6c482 517 if (!atomic_inc_not_zero(&active_events)) {
4e935e47 518 mutex_lock(&pmc_reserve_mutex);
cdd6c482 519 if (atomic_read(&active_events) == 0) {
30dd568c
MM
520 if (!reserve_pmc_hardware())
521 err = -EBUSY;
f80c9e30
PZ
522 else
523 reserve_ds_buffers();
30dd568c
MM
524 }
525 if (!err)
cdd6c482 526 atomic_inc(&active_events);
4e935e47
PZ
527 mutex_unlock(&pmc_reserve_mutex);
528 }
529 if (err)
530 return err;
531
cdd6c482 532 event->destroy = hw_perf_event_destroy;
a1792cda 533
4261e0e0
RR
534 event->hw.idx = -1;
535 event->hw.last_cpu = -1;
536 event->hw.last_tag = ~0ULL;
b690081d 537
efc9f05d
SE
538 /* mark unused */
539 event->hw.extra_reg.idx = EXTRA_REG_NONE;
b36817e8
SE
540 event->hw.branch_reg.idx = EXTRA_REG_NONE;
541
9d0fcba6 542 return x86_pmu.hw_config(event);
4261e0e0
RR
543}
544
de0428a7 545void x86_pmu_disable_all(void)
f87ad35d 546{
89cbc767 547 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
9e35ad38
PZ
548 int idx;
549
948b1bb8 550 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
b0f3f28e
PZ
551 u64 val;
552
43f6201a 553 if (!test_bit(idx, cpuc->active_mask))
4295ee62 554 continue;
41bf4989 555 rdmsrl(x86_pmu_config_addr(idx), val);
bb1165d6 556 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
4295ee62 557 continue;
bb1165d6 558 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
41bf4989 559 wrmsrl(x86_pmu_config_addr(idx), val);
f87ad35d 560 }
f87ad35d
JSR
561}
562
a4eaf7f1 563static void x86_pmu_disable(struct pmu *pmu)
b56a3802 564{
89cbc767 565 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1da53e02 566
85cf9dba 567 if (!x86_pmu_initialized())
9e35ad38 568 return;
1da53e02 569
1a6e21f7
PZ
570 if (!cpuc->enabled)
571 return;
572
573 cpuc->n_added = 0;
574 cpuc->enabled = 0;
575 barrier();
1da53e02
SE
576
577 x86_pmu.disable_all();
b56a3802 578}
241771ef 579
de0428a7 580void x86_pmu_enable_all(int added)
f87ad35d 581{
89cbc767 582 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
f87ad35d
JSR
583 int idx;
584
948b1bb8 585 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
d45dd923 586 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
b0f3f28e 587
43f6201a 588 if (!test_bit(idx, cpuc->active_mask))
4295ee62 589 continue;
984b838c 590
d45dd923 591 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
f87ad35d
JSR
592 }
593}
594
51b0fe39 595static struct pmu pmu;
1da53e02
SE
596
597static inline int is_x86_event(struct perf_event *event)
598{
599 return event->pmu == &pmu;
600}
601
1e2ad28f
RR
602/*
603 * Event scheduler state:
604 *
605 * Assign events iterating over all events and counters, beginning
606 * with events with least weights first. Keep the current iterator
607 * state in struct sched_state.
608 */
609struct sched_state {
610 int weight;
611 int event; /* event index */
612 int counter; /* counter index */
613 int unassigned; /* number of events to be assigned left */
614 unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
615};
616
bc1738f6
RR
617/* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
618#define SCHED_STATES_MAX 2
619
1e2ad28f
RR
620struct perf_sched {
621 int max_weight;
622 int max_events;
43b45780 623 struct perf_event **events;
1e2ad28f 624 struct sched_state state;
bc1738f6
RR
625 int saved_states;
626 struct sched_state saved[SCHED_STATES_MAX];
1e2ad28f
RR
627};
628
629/*
630 * Initialize interator that runs through all events and counters.
631 */
43b45780 632static void perf_sched_init(struct perf_sched *sched, struct perf_event **events,
1e2ad28f
RR
633 int num, int wmin, int wmax)
634{
635 int idx;
636
637 memset(sched, 0, sizeof(*sched));
638 sched->max_events = num;
639 sched->max_weight = wmax;
43b45780 640 sched->events = events;
1e2ad28f
RR
641
642 for (idx = 0; idx < num; idx++) {
43b45780 643 if (events[idx]->hw.constraint->weight == wmin)
1e2ad28f
RR
644 break;
645 }
646
647 sched->state.event = idx; /* start with min weight */
648 sched->state.weight = wmin;
649 sched->state.unassigned = num;
650}
651
bc1738f6
RR
652static void perf_sched_save_state(struct perf_sched *sched)
653{
654 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
655 return;
656
657 sched->saved[sched->saved_states] = sched->state;
658 sched->saved_states++;
659}
660
661static bool perf_sched_restore_state(struct perf_sched *sched)
662{
663 if (!sched->saved_states)
664 return false;
665
666 sched->saved_states--;
667 sched->state = sched->saved[sched->saved_states];
668
669 /* continue with next counter: */
670 clear_bit(sched->state.counter++, sched->state.used);
671
672 return true;
673}
674
1e2ad28f
RR
675/*
676 * Select a counter for the current event to schedule. Return true on
677 * success.
678 */
bc1738f6 679static bool __perf_sched_find_counter(struct perf_sched *sched)
1e2ad28f
RR
680{
681 struct event_constraint *c;
682 int idx;
683
684 if (!sched->state.unassigned)
685 return false;
686
687 if (sched->state.event >= sched->max_events)
688 return false;
689
43b45780 690 c = sched->events[sched->state.event]->hw.constraint;
4defea85 691 /* Prefer fixed purpose counters */
15c7ad51
RR
692 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
693 idx = INTEL_PMC_IDX_FIXED;
307b1cd7 694 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
4defea85
PZ
695 if (!__test_and_set_bit(idx, sched->state.used))
696 goto done;
697 }
698 }
1e2ad28f
RR
699 /* Grab the first unused counter starting with idx */
700 idx = sched->state.counter;
15c7ad51 701 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
1e2ad28f 702 if (!__test_and_set_bit(idx, sched->state.used))
4defea85 703 goto done;
1e2ad28f 704 }
1e2ad28f 705
4defea85
PZ
706 return false;
707
708done:
709 sched->state.counter = idx;
1e2ad28f 710
bc1738f6
RR
711 if (c->overlap)
712 perf_sched_save_state(sched);
713
714 return true;
715}
716
717static bool perf_sched_find_counter(struct perf_sched *sched)
718{
719 while (!__perf_sched_find_counter(sched)) {
720 if (!perf_sched_restore_state(sched))
721 return false;
722 }
723
1e2ad28f
RR
724 return true;
725}
726
727/*
728 * Go through all unassigned events and find the next one to schedule.
729 * Take events with the least weight first. Return true on success.
730 */
731static bool perf_sched_next_event(struct perf_sched *sched)
732{
733 struct event_constraint *c;
734
735 if (!sched->state.unassigned || !--sched->state.unassigned)
736 return false;
737
738 do {
739 /* next event */
740 sched->state.event++;
741 if (sched->state.event >= sched->max_events) {
742 /* next weight */
743 sched->state.event = 0;
744 sched->state.weight++;
745 if (sched->state.weight > sched->max_weight)
746 return false;
747 }
43b45780 748 c = sched->events[sched->state.event]->hw.constraint;
1e2ad28f
RR
749 } while (c->weight != sched->state.weight);
750
751 sched->state.counter = 0; /* start with first counter */
752
753 return true;
754}
755
756/*
757 * Assign a counter for each event.
758 */
43b45780 759int perf_assign_events(struct perf_event **events, int n,
4b4969b1 760 int wmin, int wmax, int *assign)
1e2ad28f
RR
761{
762 struct perf_sched sched;
763
43b45780 764 perf_sched_init(&sched, events, n, wmin, wmax);
1e2ad28f
RR
765
766 do {
767 if (!perf_sched_find_counter(&sched))
768 break; /* failed */
769 if (assign)
770 assign[sched.state.event] = sched.state.counter;
771 } while (perf_sched_next_event(&sched));
772
773 return sched.state.unassigned;
774}
4a3dc121 775EXPORT_SYMBOL_GPL(perf_assign_events);
1e2ad28f 776
de0428a7 777int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
1da53e02 778{
43b45780 779 struct event_constraint *c;
1da53e02 780 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
2f7f73a5 781 struct perf_event *e;
1e2ad28f 782 int i, wmin, wmax, num = 0;
1da53e02
SE
783 struct hw_perf_event *hwc;
784
785 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
786
c5362c0c
MD
787 if (x86_pmu.start_scheduling)
788 x86_pmu.start_scheduling(cpuc);
789
1e2ad28f 790 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
43b45780 791 hwc = &cpuc->event_list[i]->hw;
79cba822 792 c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
43b45780
AH
793 hwc->constraint = c;
794
1e2ad28f
RR
795 wmin = min(wmin, c->weight);
796 wmax = max(wmax, c->weight);
1da53e02
SE
797 }
798
8113070d
SE
799 /*
800 * fastpath, try to reuse previous register
801 */
c933c1a6 802 for (i = 0; i < n; i++) {
8113070d 803 hwc = &cpuc->event_list[i]->hw;
43b45780 804 c = hwc->constraint;
8113070d
SE
805
806 /* never assigned */
807 if (hwc->idx == -1)
808 break;
809
810 /* constraint still honored */
63b14649 811 if (!test_bit(hwc->idx, c->idxmsk))
8113070d
SE
812 break;
813
814 /* not already used */
815 if (test_bit(hwc->idx, used_mask))
816 break;
817
34538ee7 818 __set_bit(hwc->idx, used_mask);
8113070d
SE
819 if (assign)
820 assign[i] = hwc->idx;
821 }
8113070d 822
1e2ad28f
RR
823 /* slow path */
824 if (i != n)
43b45780
AH
825 num = perf_assign_events(cpuc->event_list, n, wmin,
826 wmax, assign);
8113070d 827
2f7f73a5
SE
828 /*
829 * Mark the event as committed, so we do not put_constraint()
830 * in case new events are added and fail scheduling.
831 */
832 if (!num && assign) {
833 for (i = 0; i < n; i++) {
834 e = cpuc->event_list[i];
835 e->hw.flags |= PERF_X86_EVENT_COMMITTED;
c5362c0c
MD
836 if (x86_pmu.commit_scheduling)
837 x86_pmu.commit_scheduling(cpuc, e, assign[i]);
2f7f73a5
SE
838 }
839 }
1da53e02
SE
840 /*
841 * scheduling failed or is just a simulation,
842 * free resources if necessary
843 */
844 if (!assign || num) {
845 for (i = 0; i < n; i++) {
2f7f73a5
SE
846 e = cpuc->event_list[i];
847 /*
848 * do not put_constraint() on comitted events,
849 * because they are good to go
850 */
851 if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
852 continue;
853
1da53e02 854 if (x86_pmu.put_event_constraints)
2f7f73a5 855 x86_pmu.put_event_constraints(cpuc, e);
1da53e02
SE
856 }
857 }
c5362c0c
MD
858
859 if (x86_pmu.stop_scheduling)
860 x86_pmu.stop_scheduling(cpuc);
861
aa2bc1ad 862 return num ? -EINVAL : 0;
1da53e02
SE
863}
864
865/*
866 * dogrp: true if must collect siblings events (group)
867 * returns total number of events and error code
868 */
869static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
870{
871 struct perf_event *event;
872 int n, max_count;
873
948b1bb8 874 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
1da53e02
SE
875
876 /* current number of events already accepted */
877 n = cpuc->n_events;
878
879 if (is_x86_event(leader)) {
880 if (n >= max_count)
aa2bc1ad 881 return -EINVAL;
1da53e02
SE
882 cpuc->event_list[n] = leader;
883 n++;
884 }
885 if (!dogrp)
886 return n;
887
888 list_for_each_entry(event, &leader->sibling_list, group_entry) {
889 if (!is_x86_event(event) ||
8113070d 890 event->state <= PERF_EVENT_STATE_OFF)
1da53e02
SE
891 continue;
892
893 if (n >= max_count)
aa2bc1ad 894 return -EINVAL;
1da53e02
SE
895
896 cpuc->event_list[n] = event;
897 n++;
898 }
899 return n;
900}
901
1da53e02 902static inline void x86_assign_hw_event(struct perf_event *event,
447a194b 903 struct cpu_hw_events *cpuc, int i)
1da53e02 904{
447a194b
SE
905 struct hw_perf_event *hwc = &event->hw;
906
907 hwc->idx = cpuc->assign[i];
908 hwc->last_cpu = smp_processor_id();
909 hwc->last_tag = ++cpuc->tags[i];
1da53e02 910
15c7ad51 911 if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
1da53e02
SE
912 hwc->config_base = 0;
913 hwc->event_base = 0;
15c7ad51 914 } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1da53e02 915 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
15c7ad51
RR
916 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
917 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1da53e02 918 } else {
73d6e522
RR
919 hwc->config_base = x86_pmu_config_addr(hwc->idx);
920 hwc->event_base = x86_pmu_event_addr(hwc->idx);
0fbdad07 921 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1da53e02
SE
922 }
923}
924
447a194b
SE
925static inline int match_prev_assignment(struct hw_perf_event *hwc,
926 struct cpu_hw_events *cpuc,
927 int i)
928{
929 return hwc->idx == cpuc->assign[i] &&
930 hwc->last_cpu == smp_processor_id() &&
931 hwc->last_tag == cpuc->tags[i];
932}
933
a4eaf7f1 934static void x86_pmu_start(struct perf_event *event, int flags);
2e841873 935
a4eaf7f1 936static void x86_pmu_enable(struct pmu *pmu)
ee06094f 937{
89cbc767 938 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1da53e02
SE
939 struct perf_event *event;
940 struct hw_perf_event *hwc;
11164cd4 941 int i, added = cpuc->n_added;
1da53e02 942
85cf9dba 943 if (!x86_pmu_initialized())
2b9ff0db 944 return;
1a6e21f7
PZ
945
946 if (cpuc->enabled)
947 return;
948
1da53e02 949 if (cpuc->n_added) {
19925ce7 950 int n_running = cpuc->n_events - cpuc->n_added;
1da53e02
SE
951 /*
952 * apply assignment obtained either from
953 * hw_perf_group_sched_in() or x86_pmu_enable()
954 *
955 * step1: save events moving to new counters
1da53e02 956 */
19925ce7 957 for (i = 0; i < n_running; i++) {
1da53e02
SE
958 event = cpuc->event_list[i];
959 hwc = &event->hw;
960
447a194b
SE
961 /*
962 * we can avoid reprogramming counter if:
963 * - assigned same counter as last time
964 * - running on same CPU as last time
965 * - no other event has used the counter since
966 */
967 if (hwc->idx == -1 ||
968 match_prev_assignment(hwc, cpuc, i))
1da53e02
SE
969 continue;
970
a4eaf7f1
PZ
971 /*
972 * Ensure we don't accidentally enable a stopped
973 * counter simply because we rescheduled.
974 */
975 if (hwc->state & PERF_HES_STOPPED)
976 hwc->state |= PERF_HES_ARCH;
977
978 x86_pmu_stop(event, PERF_EF_UPDATE);
1da53e02
SE
979 }
980
c347a2f1
PZ
981 /*
982 * step2: reprogram moved events into new counters
983 */
1da53e02 984 for (i = 0; i < cpuc->n_events; i++) {
1da53e02
SE
985 event = cpuc->event_list[i];
986 hwc = &event->hw;
987
45e16a68 988 if (!match_prev_assignment(hwc, cpuc, i))
447a194b 989 x86_assign_hw_event(event, cpuc, i);
45e16a68
PZ
990 else if (i < n_running)
991 continue;
1da53e02 992
a4eaf7f1
PZ
993 if (hwc->state & PERF_HES_ARCH)
994 continue;
995
996 x86_pmu_start(event, PERF_EF_RELOAD);
1da53e02
SE
997 }
998 cpuc->n_added = 0;
999 perf_events_lapic_init();
1000 }
1a6e21f7
PZ
1001
1002 cpuc->enabled = 1;
1003 barrier();
1004
11164cd4 1005 x86_pmu.enable_all(added);
ee06094f 1006}
ee06094f 1007
245b2e70 1008static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
241771ef 1009
ee06094f
IM
1010/*
1011 * Set the next IRQ period, based on the hwc->period_left value.
cdd6c482 1012 * To be called with the event disabled in hw:
ee06094f 1013 */
de0428a7 1014int x86_perf_event_set_period(struct perf_event *event)
241771ef 1015{
07088edb 1016 struct hw_perf_event *hwc = &event->hw;
e7850595 1017 s64 left = local64_read(&hwc->period_left);
e4abb5d4 1018 s64 period = hwc->sample_period;
7645a24c 1019 int ret = 0, idx = hwc->idx;
ee06094f 1020
15c7ad51 1021 if (idx == INTEL_PMC_IDX_FIXED_BTS)
30dd568c
MM
1022 return 0;
1023
ee06094f 1024 /*
af901ca1 1025 * If we are way outside a reasonable range then just skip forward:
ee06094f
IM
1026 */
1027 if (unlikely(left <= -period)) {
1028 left = period;
e7850595 1029 local64_set(&hwc->period_left, left);
9e350de3 1030 hwc->last_period = period;
e4abb5d4 1031 ret = 1;
ee06094f
IM
1032 }
1033
1034 if (unlikely(left <= 0)) {
1035 left += period;
e7850595 1036 local64_set(&hwc->period_left, left);
9e350de3 1037 hwc->last_period = period;
e4abb5d4 1038 ret = 1;
ee06094f 1039 }
1c80f4b5 1040 /*
dfc65094 1041 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1c80f4b5
IM
1042 */
1043 if (unlikely(left < 2))
1044 left = 2;
241771ef 1045
e4abb5d4
PZ
1046 if (left > x86_pmu.max_period)
1047 left = x86_pmu.max_period;
1048
294fe0f5
AK
1049 if (x86_pmu.limit_period)
1050 left = x86_pmu.limit_period(event, left);
1051
245b2e70 1052 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
ee06094f
IM
1053
1054 /*
cdd6c482 1055 * The hw event starts counting from this event offset,
ee06094f
IM
1056 * mark it to be able to extra future deltas:
1057 */
e7850595 1058 local64_set(&hwc->prev_count, (u64)-left);
ee06094f 1059
73d6e522 1060 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
68aa00ac
CG
1061
1062 /*
1063 * Due to erratum on certan cpu we need
1064 * a second write to be sure the register
1065 * is updated properly
1066 */
1067 if (x86_pmu.perfctr_second_write) {
73d6e522 1068 wrmsrl(hwc->event_base,
948b1bb8 1069 (u64)(-left) & x86_pmu.cntval_mask);
68aa00ac 1070 }
e4abb5d4 1071
cdd6c482 1072 perf_event_update_userpage(event);
194002b2 1073
e4abb5d4 1074 return ret;
2f18d1e8
IM
1075}
1076
de0428a7 1077void x86_pmu_enable_event(struct perf_event *event)
7c90cc45 1078{
0a3aee0d 1079 if (__this_cpu_read(cpu_hw_events.enabled))
31fa58af
RR
1080 __x86_pmu_enable_event(&event->hw,
1081 ARCH_PERFMON_EVENTSEL_ENABLE);
241771ef
IM
1082}
1083
b690081d 1084/*
a4eaf7f1 1085 * Add a single event to the PMU.
1da53e02
SE
1086 *
1087 * The event is added to the group of enabled events
1088 * but only if it can be scehduled with existing events.
fe9081cc 1089 */
a4eaf7f1 1090static int x86_pmu_add(struct perf_event *event, int flags)
fe9081cc 1091{
89cbc767 1092 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1da53e02
SE
1093 struct hw_perf_event *hwc;
1094 int assign[X86_PMC_IDX_MAX];
1095 int n, n0, ret;
fe9081cc 1096
1da53e02 1097 hwc = &event->hw;
fe9081cc 1098
1da53e02 1099 n0 = cpuc->n_events;
24cd7f54
PZ
1100 ret = n = collect_events(cpuc, event, false);
1101 if (ret < 0)
1102 goto out;
53b441a5 1103
a4eaf7f1
PZ
1104 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1105 if (!(flags & PERF_EF_START))
1106 hwc->state |= PERF_HES_ARCH;
1107
4d1c52b0
LM
1108 /*
1109 * If group events scheduling transaction was started,
0d2eb44f 1110 * skip the schedulability test here, it will be performed
c347a2f1 1111 * at commit time (->commit_txn) as a whole.
4d1c52b0 1112 */
8d2cacbb 1113 if (cpuc->group_flag & PERF_EVENT_TXN)
24cd7f54 1114 goto done_collect;
4d1c52b0 1115
a072738e 1116 ret = x86_pmu.schedule_events(cpuc, n, assign);
1da53e02 1117 if (ret)
24cd7f54 1118 goto out;
1da53e02
SE
1119 /*
1120 * copy new assignment, now we know it is possible
1121 * will be used by hw_perf_enable()
1122 */
1123 memcpy(cpuc->assign, assign, n*sizeof(int));
7e2ae347 1124
24cd7f54 1125done_collect:
c347a2f1
PZ
1126 /*
1127 * Commit the collect_events() state. See x86_pmu_del() and
1128 * x86_pmu_*_txn().
1129 */
1da53e02 1130 cpuc->n_events = n;
356e1f2e 1131 cpuc->n_added += n - n0;
90151c35 1132 cpuc->n_txn += n - n0;
95cdd2e7 1133
24cd7f54
PZ
1134 ret = 0;
1135out:
24cd7f54 1136 return ret;
241771ef
IM
1137}
1138
a4eaf7f1 1139static void x86_pmu_start(struct perf_event *event, int flags)
d76a0812 1140{
89cbc767 1141 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
c08053e6
PZ
1142 int idx = event->hw.idx;
1143
a4eaf7f1
PZ
1144 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1145 return;
1146
1147 if (WARN_ON_ONCE(idx == -1))
1148 return;
1149
1150 if (flags & PERF_EF_RELOAD) {
1151 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1152 x86_perf_event_set_period(event);
1153 }
1154
1155 event->hw.state = 0;
d76a0812 1156
c08053e6
PZ
1157 cpuc->events[idx] = event;
1158 __set_bit(idx, cpuc->active_mask);
63e6be6d 1159 __set_bit(idx, cpuc->running);
aff3d91a 1160 x86_pmu.enable(event);
c08053e6 1161 perf_event_update_userpage(event);
a78ac325
PZ
1162}
1163
cdd6c482 1164void perf_event_print_debug(void)
241771ef 1165{
2f18d1e8 1166 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
ca037701 1167 u64 pebs;
cdd6c482 1168 struct cpu_hw_events *cpuc;
5bb9efe3 1169 unsigned long flags;
1e125676
IM
1170 int cpu, idx;
1171
948b1bb8 1172 if (!x86_pmu.num_counters)
1e125676 1173 return;
241771ef 1174
5bb9efe3 1175 local_irq_save(flags);
241771ef
IM
1176
1177 cpu = smp_processor_id();
cdd6c482 1178 cpuc = &per_cpu(cpu_hw_events, cpu);
241771ef 1179
faa28ae0 1180 if (x86_pmu.version >= 2) {
a1ef58f4
JSR
1181 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1182 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1183 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1184 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
ca037701 1185 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
a1ef58f4
JSR
1186
1187 pr_info("\n");
1188 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1189 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1190 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1191 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
ca037701 1192 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
f87ad35d 1193 }
7645a24c 1194 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
241771ef 1195
948b1bb8 1196 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
41bf4989
RR
1197 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1198 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
241771ef 1199
245b2e70 1200 prev_left = per_cpu(pmc_prev_left[idx], cpu);
241771ef 1201
a1ef58f4 1202 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
241771ef 1203 cpu, idx, pmc_ctrl);
a1ef58f4 1204 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
241771ef 1205 cpu, idx, pmc_count);
a1ef58f4 1206 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
ee06094f 1207 cpu, idx, prev_left);
241771ef 1208 }
948b1bb8 1209 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
2f18d1e8
IM
1210 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1211
a1ef58f4 1212 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
2f18d1e8
IM
1213 cpu, idx, pmc_count);
1214 }
5bb9efe3 1215 local_irq_restore(flags);
241771ef
IM
1216}
1217
de0428a7 1218void x86_pmu_stop(struct perf_event *event, int flags)
241771ef 1219{
89cbc767 1220 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
cdd6c482 1221 struct hw_perf_event *hwc = &event->hw;
241771ef 1222
a4eaf7f1
PZ
1223 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1224 x86_pmu.disable(event);
1225 cpuc->events[hwc->idx] = NULL;
1226 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1227 hwc->state |= PERF_HES_STOPPED;
1228 }
30dd568c 1229
a4eaf7f1
PZ
1230 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1231 /*
1232 * Drain the remaining delta count out of a event
1233 * that we are disabling:
1234 */
1235 x86_perf_event_update(event);
1236 hwc->state |= PERF_HES_UPTODATE;
1237 }
2e841873
PZ
1238}
1239
a4eaf7f1 1240static void x86_pmu_del(struct perf_event *event, int flags)
2e841873 1241{
89cbc767 1242 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2e841873
PZ
1243 int i;
1244
2f7f73a5
SE
1245 /*
1246 * event is descheduled
1247 */
1248 event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1249
90151c35
SE
1250 /*
1251 * If we're called during a txn, we don't need to do anything.
1252 * The events never got scheduled and ->cancel_txn will truncate
1253 * the event_list.
c347a2f1
PZ
1254 *
1255 * XXX assumes any ->del() called during a TXN will only be on
1256 * an event added during that same TXN.
90151c35 1257 */
8d2cacbb 1258 if (cpuc->group_flag & PERF_EVENT_TXN)
90151c35
SE
1259 return;
1260
c347a2f1
PZ
1261 /*
1262 * Not a TXN, therefore cleanup properly.
1263 */
a4eaf7f1 1264 x86_pmu_stop(event, PERF_EF_UPDATE);
194002b2 1265
1da53e02 1266 for (i = 0; i < cpuc->n_events; i++) {
c347a2f1
PZ
1267 if (event == cpuc->event_list[i])
1268 break;
1269 }
1da53e02 1270
c347a2f1
PZ
1271 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1272 return;
26e61e89 1273
c347a2f1
PZ
1274 /* If we have a newly added event; make sure to decrease n_added. */
1275 if (i >= cpuc->n_events - cpuc->n_added)
1276 --cpuc->n_added;
1da53e02 1277
c347a2f1
PZ
1278 if (x86_pmu.put_event_constraints)
1279 x86_pmu.put_event_constraints(cpuc, event);
1280
1281 /* Delete the array entry. */
1282 while (++i < cpuc->n_events)
1283 cpuc->event_list[i-1] = cpuc->event_list[i];
1284 --cpuc->n_events;
1da53e02 1285
cdd6c482 1286 perf_event_update_userpage(event);
241771ef
IM
1287}
1288
de0428a7 1289int x86_pmu_handle_irq(struct pt_regs *regs)
a29aa8a7 1290{
df1a132b 1291 struct perf_sample_data data;
cdd6c482
IM
1292 struct cpu_hw_events *cpuc;
1293 struct perf_event *event;
11d1578f 1294 int idx, handled = 0;
9029a5e3
IM
1295 u64 val;
1296
89cbc767 1297 cpuc = this_cpu_ptr(&cpu_hw_events);
962bf7a6 1298
2bce5dac
DZ
1299 /*
1300 * Some chipsets need to unmask the LVTPC in a particular spot
1301 * inside the nmi handler. As a result, the unmasking was pushed
1302 * into all the nmi handlers.
1303 *
1304 * This generic handler doesn't seem to have any issues where the
1305 * unmasking occurs so it was left at the top.
1306 */
1307 apic_write(APIC_LVTPC, APIC_DM_NMI);
1308
948b1bb8 1309 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
63e6be6d
RR
1310 if (!test_bit(idx, cpuc->active_mask)) {
1311 /*
1312 * Though we deactivated the counter some cpus
1313 * might still deliver spurious interrupts still
1314 * in flight. Catch them:
1315 */
1316 if (__test_and_clear_bit(idx, cpuc->running))
1317 handled++;
a29aa8a7 1318 continue;
63e6be6d 1319 }
962bf7a6 1320
cdd6c482 1321 event = cpuc->events[idx];
a4016a79 1322
cc2ad4ba 1323 val = x86_perf_event_update(event);
948b1bb8 1324 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
48e22d56 1325 continue;
962bf7a6 1326
9e350de3 1327 /*
cdd6c482 1328 * event overflow
9e350de3 1329 */
4177c42a 1330 handled++;
fd0d000b 1331 perf_sample_data_init(&data, 0, event->hw.last_period);
9e350de3 1332
07088edb 1333 if (!x86_perf_event_set_period(event))
e4abb5d4
PZ
1334 continue;
1335
a8b0ca17 1336 if (perf_event_overflow(event, &data, regs))
a4eaf7f1 1337 x86_pmu_stop(event, 0);
a29aa8a7 1338 }
962bf7a6 1339
9e350de3
PZ
1340 if (handled)
1341 inc_irq_stat(apic_perf_irqs);
1342
a29aa8a7
RR
1343 return handled;
1344}
39d81eab 1345
cdd6c482 1346void perf_events_lapic_init(void)
241771ef 1347{
04da8a43 1348 if (!x86_pmu.apic || !x86_pmu_initialized())
241771ef 1349 return;
85cf9dba 1350
241771ef 1351 /*
c323d95f 1352 * Always use NMI for PMU
241771ef 1353 */
c323d95f 1354 apic_write(APIC_LVTPC, APIC_DM_NMI);
241771ef
IM
1355}
1356
9326638c 1357static int
9c48f1c6 1358perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
241771ef 1359{
14c63f17
DH
1360 u64 start_clock;
1361 u64 finish_clock;
e8a923cc 1362 int ret;
14c63f17 1363
cdd6c482 1364 if (!atomic_read(&active_events))
9c48f1c6 1365 return NMI_DONE;
4177c42a 1366
e8a923cc 1367 start_clock = sched_clock();
14c63f17 1368 ret = x86_pmu.handle_irq(regs);
e8a923cc 1369 finish_clock = sched_clock();
14c63f17
DH
1370
1371 perf_sample_event_took(finish_clock - start_clock);
1372
1373 return ret;
241771ef 1374}
9326638c 1375NOKPROBE_SYMBOL(perf_event_nmi_handler);
241771ef 1376
de0428a7
KW
1377struct event_constraint emptyconstraint;
1378struct event_constraint unconstrained;
f87ad35d 1379
148f9bb8 1380static int
3f6da390
PZ
1381x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1382{
1383 unsigned int cpu = (long)hcpu;
7fdba1ca 1384 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
90413464 1385 int i, ret = NOTIFY_OK;
3f6da390
PZ
1386
1387 switch (action & ~CPU_TASKS_FROZEN) {
1388 case CPU_UP_PREPARE:
90413464
SE
1389 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1390 cpuc->kfree_on_online[i] = NULL;
3f6da390 1391 if (x86_pmu.cpu_prepare)
b38b24ea 1392 ret = x86_pmu.cpu_prepare(cpu);
3f6da390
PZ
1393 break;
1394
1395 case CPU_STARTING:
1396 if (x86_pmu.cpu_starting)
1397 x86_pmu.cpu_starting(cpu);
1398 break;
1399
7fdba1ca 1400 case CPU_ONLINE:
90413464
SE
1401 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1402 kfree(cpuc->kfree_on_online[i]);
1403 cpuc->kfree_on_online[i] = NULL;
1404 }
7fdba1ca
PZ
1405 break;
1406
3f6da390
PZ
1407 case CPU_DYING:
1408 if (x86_pmu.cpu_dying)
1409 x86_pmu.cpu_dying(cpu);
1410 break;
1411
b38b24ea 1412 case CPU_UP_CANCELED:
3f6da390
PZ
1413 case CPU_DEAD:
1414 if (x86_pmu.cpu_dead)
1415 x86_pmu.cpu_dead(cpu);
1416 break;
1417
1418 default:
1419 break;
1420 }
1421
b38b24ea 1422 return ret;
3f6da390
PZ
1423}
1424
12558038
CG
1425static void __init pmu_check_apic(void)
1426{
1427 if (cpu_has_apic)
1428 return;
1429
1430 x86_pmu.apic = 0;
1431 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1432 pr_info("no hardware sampling interrupt available.\n");
c184c980
VW
1433
1434 /*
1435 * If we have a PMU initialized but no APIC
1436 * interrupts, we cannot sample hardware
1437 * events (user-space has to fall back and
1438 * sample via a hrtimer based software event):
1439 */
1440 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1441
12558038
CG
1442}
1443
641cc938
JO
1444static struct attribute_group x86_pmu_format_group = {
1445 .name = "format",
1446 .attrs = NULL,
1447};
1448
8300daa2
JO
1449/*
1450 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1451 * out of events_attr attributes.
1452 */
1453static void __init filter_events(struct attribute **attrs)
1454{
3a54aaa0
SE
1455 struct device_attribute *d;
1456 struct perf_pmu_events_attr *pmu_attr;
8300daa2
JO
1457 int i, j;
1458
1459 for (i = 0; attrs[i]; i++) {
3a54aaa0
SE
1460 d = (struct device_attribute *)attrs[i];
1461 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1462 /* str trumps id */
1463 if (pmu_attr->event_str)
1464 continue;
8300daa2
JO
1465 if (x86_pmu.event_map(i))
1466 continue;
1467
1468 for (j = i; attrs[j]; j++)
1469 attrs[j] = attrs[j + 1];
1470
1471 /* Check the shifted attr. */
1472 i--;
1473 }
1474}
1475
1a6461b1
AK
1476/* Merge two pointer arrays */
1477static __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1478{
1479 struct attribute **new;
1480 int j, i;
1481
1482 for (j = 0; a[j]; j++)
1483 ;
1484 for (i = 0; b[i]; i++)
1485 j++;
1486 j++;
1487
1488 new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1489 if (!new)
1490 return NULL;
1491
1492 j = 0;
1493 for (i = 0; a[i]; i++)
1494 new[j++] = a[i];
1495 for (i = 0; b[i]; i++)
1496 new[j++] = b[i];
1497 new[j] = NULL;
1498
1499 return new;
1500}
1501
f20093ee 1502ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr,
a4747393
JO
1503 char *page)
1504{
1505 struct perf_pmu_events_attr *pmu_attr = \
1506 container_of(attr, struct perf_pmu_events_attr, attr);
a4747393 1507 u64 config = x86_pmu.event_map(pmu_attr->id);
a4747393 1508
3a54aaa0
SE
1509 /* string trumps id */
1510 if (pmu_attr->event_str)
1511 return sprintf(page, "%s", pmu_attr->event_str);
a4747393 1512
3a54aaa0
SE
1513 return x86_pmu.events_sysfs_show(page, config);
1514}
a4747393
JO
1515
1516EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1517EVENT_ATTR(instructions, INSTRUCTIONS );
1518EVENT_ATTR(cache-references, CACHE_REFERENCES );
1519EVENT_ATTR(cache-misses, CACHE_MISSES );
1520EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1521EVENT_ATTR(branch-misses, BRANCH_MISSES );
1522EVENT_ATTR(bus-cycles, BUS_CYCLES );
1523EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1524EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1525EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1526
1527static struct attribute *empty_attrs;
1528
95d18aa2 1529static struct attribute *events_attr[] = {
a4747393
JO
1530 EVENT_PTR(CPU_CYCLES),
1531 EVENT_PTR(INSTRUCTIONS),
1532 EVENT_PTR(CACHE_REFERENCES),
1533 EVENT_PTR(CACHE_MISSES),
1534 EVENT_PTR(BRANCH_INSTRUCTIONS),
1535 EVENT_PTR(BRANCH_MISSES),
1536 EVENT_PTR(BUS_CYCLES),
1537 EVENT_PTR(STALLED_CYCLES_FRONTEND),
1538 EVENT_PTR(STALLED_CYCLES_BACKEND),
1539 EVENT_PTR(REF_CPU_CYCLES),
1540 NULL,
1541};
1542
1543static struct attribute_group x86_pmu_events_group = {
1544 .name = "events",
1545 .attrs = events_attr,
1546};
1547
0bf79d44 1548ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
43c032fe 1549{
43c032fe
JO
1550 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1551 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1552 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1553 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1554 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
1555 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
1556 ssize_t ret;
1557
1558 /*
1559 * We have whole page size to spend and just little data
1560 * to write, so we can safely use sprintf.
1561 */
1562 ret = sprintf(page, "event=0x%02llx", event);
1563
1564 if (umask)
1565 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1566
1567 if (edge)
1568 ret += sprintf(page + ret, ",edge");
1569
1570 if (pc)
1571 ret += sprintf(page + ret, ",pc");
1572
1573 if (any)
1574 ret += sprintf(page + ret, ",any");
1575
1576 if (inv)
1577 ret += sprintf(page + ret, ",inv");
1578
1579 if (cmask)
1580 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1581
1582 ret += sprintf(page + ret, "\n");
1583
1584 return ret;
1585}
1586
dda99116 1587static int __init init_hw_perf_events(void)
b56a3802 1588{
c1d6f42f 1589 struct x86_pmu_quirk *quirk;
72eae04d
RR
1590 int err;
1591
cdd6c482 1592 pr_info("Performance Events: ");
1123e3ad 1593
b56a3802
JSR
1594 switch (boot_cpu_data.x86_vendor) {
1595 case X86_VENDOR_INTEL:
72eae04d 1596 err = intel_pmu_init();
b56a3802 1597 break;
f87ad35d 1598 case X86_VENDOR_AMD:
72eae04d 1599 err = amd_pmu_init();
f87ad35d 1600 break;
4138960a 1601 default:
8a3da6c7 1602 err = -ENOTSUPP;
b56a3802 1603 }
1123e3ad 1604 if (err != 0) {
cdd6c482 1605 pr_cont("no PMU driver, software events only.\n");
004417a6 1606 return 0;
1123e3ad 1607 }
b56a3802 1608
12558038
CG
1609 pmu_check_apic();
1610
33c6d6a7 1611 /* sanity check that the hardware exists or is emulated */
4407204c 1612 if (!check_hw_exists())
004417a6 1613 return 0;
33c6d6a7 1614
1123e3ad 1615 pr_cont("%s PMU driver.\n", x86_pmu.name);
faa28ae0 1616
e97df763
PZ
1617 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1618
c1d6f42f
PZ
1619 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1620 quirk->func();
3c44780b 1621
a1eac7ac
RR
1622 if (!x86_pmu.intel_ctrl)
1623 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
241771ef 1624
cdd6c482 1625 perf_events_lapic_init();
9c48f1c6 1626 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1123e3ad 1627
63b14649 1628 unconstrained = (struct event_constraint)
948b1bb8 1629 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
9fac2cf3 1630 0, x86_pmu.num_counters, 0, 0);
63b14649 1631
641cc938 1632 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
0c9d42ed 1633
f20093ee
SE
1634 if (x86_pmu.event_attrs)
1635 x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1636
a4747393
JO
1637 if (!x86_pmu.events_sysfs_show)
1638 x86_pmu_events_group.attrs = &empty_attrs;
8300daa2
JO
1639 else
1640 filter_events(x86_pmu_events_group.attrs);
a4747393 1641
1a6461b1
AK
1642 if (x86_pmu.cpu_events) {
1643 struct attribute **tmp;
1644
1645 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1646 if (!WARN_ON(!tmp))
1647 x86_pmu_events_group.attrs = tmp;
1648 }
1649
57c0c15b 1650 pr_info("... version: %d\n", x86_pmu.version);
948b1bb8
RR
1651 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1652 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1653 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
57c0c15b 1654 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
948b1bb8 1655 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
d6dc0b4e 1656 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
3f6da390 1657
2e80a82a 1658 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
3f6da390 1659 perf_cpu_notifier(x86_pmu_notifier);
004417a6
PZ
1660
1661 return 0;
241771ef 1662}
004417a6 1663early_initcall(init_hw_perf_events);
621a01ea 1664
cdd6c482 1665static inline void x86_pmu_read(struct perf_event *event)
ee06094f 1666{
cc2ad4ba 1667 x86_perf_event_update(event);
ee06094f
IM
1668}
1669
4d1c52b0
LM
1670/*
1671 * Start group events scheduling transaction
1672 * Set the flag to make pmu::enable() not perform the
1673 * schedulability test, it will be performed at commit time
1674 */
51b0fe39 1675static void x86_pmu_start_txn(struct pmu *pmu)
4d1c52b0 1676{
33696fc0 1677 perf_pmu_disable(pmu);
0a3aee0d
TH
1678 __this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
1679 __this_cpu_write(cpu_hw_events.n_txn, 0);
4d1c52b0
LM
1680}
1681
1682/*
1683 * Stop group events scheduling transaction
1684 * Clear the flag and pmu::enable() will perform the
1685 * schedulability test.
1686 */
51b0fe39 1687static void x86_pmu_cancel_txn(struct pmu *pmu)
4d1c52b0 1688{
0a3aee0d 1689 __this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
90151c35 1690 /*
c347a2f1
PZ
1691 * Truncate collected array by the number of events added in this
1692 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
90151c35 1693 */
0a3aee0d
TH
1694 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1695 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
33696fc0 1696 perf_pmu_enable(pmu);
4d1c52b0
LM
1697}
1698
1699/*
1700 * Commit group events scheduling transaction
1701 * Perform the group schedulability test as a whole
1702 * Return 0 if success
c347a2f1
PZ
1703 *
1704 * Does not cancel the transaction on failure; expects the caller to do this.
4d1c52b0 1705 */
51b0fe39 1706static int x86_pmu_commit_txn(struct pmu *pmu)
4d1c52b0 1707{
89cbc767 1708 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4d1c52b0
LM
1709 int assign[X86_PMC_IDX_MAX];
1710 int n, ret;
1711
1712 n = cpuc->n_events;
1713
1714 if (!x86_pmu_initialized())
1715 return -EAGAIN;
1716
1717 ret = x86_pmu.schedule_events(cpuc, n, assign);
1718 if (ret)
1719 return ret;
1720
1721 /*
1722 * copy new assignment, now we know it is possible
1723 * will be used by hw_perf_enable()
1724 */
1725 memcpy(cpuc->assign, assign, n*sizeof(int));
1726
8d2cacbb 1727 cpuc->group_flag &= ~PERF_EVENT_TXN;
33696fc0 1728 perf_pmu_enable(pmu);
4d1c52b0
LM
1729 return 0;
1730}
cd8a38d3
SE
1731/*
1732 * a fake_cpuc is used to validate event groups. Due to
1733 * the extra reg logic, we need to also allocate a fake
1734 * per_core and per_cpu structure. Otherwise, group events
1735 * using extra reg may conflict without the kernel being
1736 * able to catch this when the last event gets added to
1737 * the group.
1738 */
1739static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1740{
1741 kfree(cpuc->shared_regs);
1742 kfree(cpuc);
1743}
1744
1745static struct cpu_hw_events *allocate_fake_cpuc(void)
1746{
1747 struct cpu_hw_events *cpuc;
1748 int cpu = raw_smp_processor_id();
1749
1750 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1751 if (!cpuc)
1752 return ERR_PTR(-ENOMEM);
1753
1754 /* only needed, if we have extra_regs */
1755 if (x86_pmu.extra_regs) {
1756 cpuc->shared_regs = allocate_shared_regs(cpu);
1757 if (!cpuc->shared_regs)
1758 goto error;
1759 }
b430f7c4 1760 cpuc->is_fake = 1;
cd8a38d3
SE
1761 return cpuc;
1762error:
1763 free_fake_cpuc(cpuc);
1764 return ERR_PTR(-ENOMEM);
1765}
4d1c52b0 1766
ca037701
PZ
1767/*
1768 * validate that we can schedule this event
1769 */
1770static int validate_event(struct perf_event *event)
1771{
1772 struct cpu_hw_events *fake_cpuc;
1773 struct event_constraint *c;
1774 int ret = 0;
1775
cd8a38d3
SE
1776 fake_cpuc = allocate_fake_cpuc();
1777 if (IS_ERR(fake_cpuc))
1778 return PTR_ERR(fake_cpuc);
ca037701 1779
79cba822 1780 c = x86_pmu.get_event_constraints(fake_cpuc, -1, event);
ca037701
PZ
1781
1782 if (!c || !c->weight)
aa2bc1ad 1783 ret = -EINVAL;
ca037701
PZ
1784
1785 if (x86_pmu.put_event_constraints)
1786 x86_pmu.put_event_constraints(fake_cpuc, event);
1787
cd8a38d3 1788 free_fake_cpuc(fake_cpuc);
ca037701
PZ
1789
1790 return ret;
1791}
1792
1da53e02
SE
1793/*
1794 * validate a single event group
1795 *
1796 * validation include:
184f412c
IM
1797 * - check events are compatible which each other
1798 * - events do not compete for the same counter
1799 * - number of events <= number of counters
1da53e02
SE
1800 *
1801 * validation ensures the group can be loaded onto the
1802 * PMU if it was the only group available.
1803 */
fe9081cc
PZ
1804static int validate_group(struct perf_event *event)
1805{
1da53e02 1806 struct perf_event *leader = event->group_leader;
502568d5 1807 struct cpu_hw_events *fake_cpuc;
aa2bc1ad 1808 int ret = -EINVAL, n;
fe9081cc 1809
cd8a38d3
SE
1810 fake_cpuc = allocate_fake_cpuc();
1811 if (IS_ERR(fake_cpuc))
1812 return PTR_ERR(fake_cpuc);
1da53e02
SE
1813 /*
1814 * the event is not yet connected with its
1815 * siblings therefore we must first collect
1816 * existing siblings, then add the new event
1817 * before we can simulate the scheduling
1818 */
502568d5 1819 n = collect_events(fake_cpuc, leader, true);
1da53e02 1820 if (n < 0)
cd8a38d3 1821 goto out;
fe9081cc 1822
502568d5
PZ
1823 fake_cpuc->n_events = n;
1824 n = collect_events(fake_cpuc, event, false);
1da53e02 1825 if (n < 0)
cd8a38d3 1826 goto out;
fe9081cc 1827
502568d5 1828 fake_cpuc->n_events = n;
1da53e02 1829
a072738e 1830 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
502568d5 1831
502568d5 1832out:
cd8a38d3 1833 free_fake_cpuc(fake_cpuc);
502568d5 1834 return ret;
fe9081cc
PZ
1835}
1836
dda99116 1837static int x86_pmu_event_init(struct perf_event *event)
621a01ea 1838{
51b0fe39 1839 struct pmu *tmp;
621a01ea
IM
1840 int err;
1841
b0a873eb
PZ
1842 switch (event->attr.type) {
1843 case PERF_TYPE_RAW:
1844 case PERF_TYPE_HARDWARE:
1845 case PERF_TYPE_HW_CACHE:
1846 break;
1847
1848 default:
1849 return -ENOENT;
1850 }
1851
1852 err = __x86_pmu_event_init(event);
fe9081cc 1853 if (!err) {
8113070d
SE
1854 /*
1855 * we temporarily connect event to its pmu
1856 * such that validate_group() can classify
1857 * it as an x86 event using is_x86_event()
1858 */
1859 tmp = event->pmu;
1860 event->pmu = &pmu;
1861
fe9081cc
PZ
1862 if (event->group_leader != event)
1863 err = validate_group(event);
ca037701
PZ
1864 else
1865 err = validate_event(event);
8113070d
SE
1866
1867 event->pmu = tmp;
fe9081cc 1868 }
a1792cda 1869 if (err) {
cdd6c482
IM
1870 if (event->destroy)
1871 event->destroy(event);
a1792cda 1872 }
621a01ea 1873
7911d3f7
AL
1874 if (ACCESS_ONCE(x86_pmu.attr_rdpmc))
1875 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
1876
b0a873eb 1877 return err;
621a01ea 1878}
d7d59fb3 1879
7911d3f7
AL
1880static void refresh_pce(void *ignored)
1881{
1882 if (current->mm)
1883 load_mm_cr4(current->mm);
1884}
1885
1886static void x86_pmu_event_mapped(struct perf_event *event)
1887{
1888 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
1889 return;
1890
1891 if (atomic_inc_return(&current->mm->context.perf_rdpmc_allowed) == 1)
1892 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
1893}
1894
1895static void x86_pmu_event_unmapped(struct perf_event *event)
1896{
1897 if (!current->mm)
1898 return;
1899
1900 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
1901 return;
1902
1903 if (atomic_dec_and_test(&current->mm->context.perf_rdpmc_allowed))
1904 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
1905}
1906
fe4a3308
PZ
1907static int x86_pmu_event_idx(struct perf_event *event)
1908{
1909 int idx = event->hw.idx;
1910
7911d3f7 1911 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
c7206205
PZ
1912 return 0;
1913
15c7ad51
RR
1914 if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
1915 idx -= INTEL_PMC_IDX_FIXED;
fe4a3308
PZ
1916 idx |= 1 << 30;
1917 }
1918
1919 return idx + 1;
1920}
1921
0c9d42ed
PZ
1922static ssize_t get_attr_rdpmc(struct device *cdev,
1923 struct device_attribute *attr,
1924 char *buf)
1925{
1926 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
1927}
1928
0c9d42ed
PZ
1929static ssize_t set_attr_rdpmc(struct device *cdev,
1930 struct device_attribute *attr,
1931 const char *buf, size_t count)
1932{
e2b297fc
SK
1933 unsigned long val;
1934 ssize_t ret;
1935
1936 ret = kstrtoul(buf, 0, &val);
1937 if (ret)
1938 return ret;
e97df763 1939
a6673429
AL
1940 if (val > 2)
1941 return -EINVAL;
1942
e97df763
PZ
1943 if (x86_pmu.attr_rdpmc_broken)
1944 return -ENOTSUPP;
0c9d42ed 1945
a6673429
AL
1946 if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
1947 /*
1948 * Changing into or out of always available, aka
1949 * perf-event-bypassing mode. This path is extremely slow,
1950 * but only root can trigger it, so it's okay.
1951 */
1952 if (val == 2)
1953 static_key_slow_inc(&rdpmc_always_available);
1954 else
1955 static_key_slow_dec(&rdpmc_always_available);
1956 on_each_cpu(refresh_pce, NULL, 1);
1957 }
1958
1959 x86_pmu.attr_rdpmc = val;
1960
0c9d42ed
PZ
1961 return count;
1962}
1963
1964static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
1965
1966static struct attribute *x86_pmu_attrs[] = {
1967 &dev_attr_rdpmc.attr,
1968 NULL,
1969};
1970
1971static struct attribute_group x86_pmu_attr_group = {
1972 .attrs = x86_pmu_attrs,
1973};
1974
1975static const struct attribute_group *x86_pmu_attr_groups[] = {
1976 &x86_pmu_attr_group,
641cc938 1977 &x86_pmu_format_group,
a4747393 1978 &x86_pmu_events_group,
0c9d42ed
PZ
1979 NULL,
1980};
1981
ba532500
YZ
1982static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
1983{
1984 if (x86_pmu.sched_task)
1985 x86_pmu.sched_task(ctx, sched_in);
1986}
1987
c93dc84c
PZ
1988void perf_check_microcode(void)
1989{
1990 if (x86_pmu.check_microcode)
1991 x86_pmu.check_microcode();
1992}
1993EXPORT_SYMBOL_GPL(perf_check_microcode);
1994
b0a873eb 1995static struct pmu pmu = {
d010b332
SE
1996 .pmu_enable = x86_pmu_enable,
1997 .pmu_disable = x86_pmu_disable,
a4eaf7f1 1998
c93dc84c 1999 .attr_groups = x86_pmu_attr_groups,
0c9d42ed 2000
c93dc84c 2001 .event_init = x86_pmu_event_init,
a4eaf7f1 2002
7911d3f7
AL
2003 .event_mapped = x86_pmu_event_mapped,
2004 .event_unmapped = x86_pmu_event_unmapped,
2005
d010b332
SE
2006 .add = x86_pmu_add,
2007 .del = x86_pmu_del,
2008 .start = x86_pmu_start,
2009 .stop = x86_pmu_stop,
2010 .read = x86_pmu_read,
a4eaf7f1 2011
c93dc84c
PZ
2012 .start_txn = x86_pmu_start_txn,
2013 .cancel_txn = x86_pmu_cancel_txn,
2014 .commit_txn = x86_pmu_commit_txn,
fe4a3308 2015
c93dc84c 2016 .event_idx = x86_pmu_event_idx,
ba532500 2017 .sched_task = x86_pmu_sched_task,
e18bf526 2018 .task_ctx_size = sizeof(struct x86_perf_task_context),
b0a873eb
PZ
2019};
2020
c1317ec2
AL
2021void arch_perf_update_userpage(struct perf_event *event,
2022 struct perf_event_mmap_page *userpg, u64 now)
e3f3541c 2023{
20d1c86a
PZ
2024 struct cyc2ns_data *data;
2025
fa731587
PZ
2026 userpg->cap_user_time = 0;
2027 userpg->cap_user_time_zero = 0;
7911d3f7
AL
2028 userpg->cap_user_rdpmc =
2029 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
c7206205
PZ
2030 userpg->pmc_width = x86_pmu.cntval_bits;
2031
35af99e6 2032 if (!sched_clock_stable())
e3f3541c
PZ
2033 return;
2034
20d1c86a
PZ
2035 data = cyc2ns_read_begin();
2036
34f43927
PZ
2037 /*
2038 * Internal timekeeping for enabled/running/stopped times
2039 * is always in the local_clock domain.
2040 */
fa731587 2041 userpg->cap_user_time = 1;
20d1c86a
PZ
2042 userpg->time_mult = data->cyc2ns_mul;
2043 userpg->time_shift = data->cyc2ns_shift;
2044 userpg->time_offset = data->cyc2ns_offset - now;
c73deb6a 2045
34f43927
PZ
2046 /*
2047 * cap_user_time_zero doesn't make sense when we're using a different
2048 * time base for the records.
2049 */
2050 if (event->clock == &local_clock) {
2051 userpg->cap_user_time_zero = 1;
2052 userpg->time_zero = data->cyc2ns_offset;
2053 }
20d1c86a
PZ
2054
2055 cyc2ns_read_end(data);
e3f3541c
PZ
2056}
2057
d7d59fb3
PZ
2058/*
2059 * callchain support
2060 */
2061
d7d59fb3
PZ
2062static int backtrace_stack(void *data, char *name)
2063{
038e836e 2064 return 0;
d7d59fb3
PZ
2065}
2066
2067static void backtrace_address(void *data, unsigned long addr, int reliable)
2068{
2069 struct perf_callchain_entry *entry = data;
2070
70791ce9 2071 perf_callchain_store(entry, addr);
d7d59fb3
PZ
2072}
2073
2074static const struct stacktrace_ops backtrace_ops = {
d7d59fb3
PZ
2075 .stack = backtrace_stack,
2076 .address = backtrace_address,
06d65bda 2077 .walk_stack = print_context_stack_bp,
d7d59fb3
PZ
2078};
2079
56962b44
FW
2080void
2081perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
d7d59fb3 2082{
927c7a9e
FW
2083 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2084 /* TODO: We don't support guest os callchain now */
ed805261 2085 return;
927c7a9e
FW
2086 }
2087
70791ce9 2088 perf_callchain_store(entry, regs->ip);
d7d59fb3 2089
e8e999cf 2090 dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
d7d59fb3
PZ
2091}
2092
bc6ca7b3
AS
2093static inline int
2094valid_user_frame(const void __user *fp, unsigned long size)
2095{
2096 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2097}
2098
d07bdfd3
PZ
2099static unsigned long get_segment_base(unsigned int segment)
2100{
2101 struct desc_struct *desc;
2102 int idx = segment >> 3;
2103
2104 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2105 if (idx > LDT_ENTRIES)
2106 return 0;
2107
2108 if (idx > current->active_mm->context.size)
2109 return 0;
2110
2111 desc = current->active_mm->context.ldt;
2112 } else {
2113 if (idx > GDT_ENTRIES)
2114 return 0;
2115
89cbc767 2116 desc = raw_cpu_ptr(gdt_page.gdt);
d07bdfd3
PZ
2117 }
2118
2119 return get_desc_base(desc + idx);
2120}
2121
257ef9d2 2122#ifdef CONFIG_COMPAT
d1a797f3
PA
2123
2124#include <asm/compat.h>
2125
257ef9d2
TE
2126static inline int
2127perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
74193ef0 2128{
257ef9d2 2129 /* 32-bit process in 64-bit kernel. */
d07bdfd3 2130 unsigned long ss_base, cs_base;
257ef9d2
TE
2131 struct stack_frame_ia32 frame;
2132 const void __user *fp;
74193ef0 2133
257ef9d2
TE
2134 if (!test_thread_flag(TIF_IA32))
2135 return 0;
2136
d07bdfd3
PZ
2137 cs_base = get_segment_base(regs->cs);
2138 ss_base = get_segment_base(regs->ss);
2139
2140 fp = compat_ptr(ss_base + regs->bp);
257ef9d2
TE
2141 while (entry->nr < PERF_MAX_STACK_DEPTH) {
2142 unsigned long bytes;
2143 frame.next_frame = 0;
2144 frame.return_address = 0;
2145
2146 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
0a196848 2147 if (bytes != 0)
257ef9d2 2148 break;
74193ef0 2149
bc6ca7b3
AS
2150 if (!valid_user_frame(fp, sizeof(frame)))
2151 break;
2152
d07bdfd3
PZ
2153 perf_callchain_store(entry, cs_base + frame.return_address);
2154 fp = compat_ptr(ss_base + frame.next_frame);
257ef9d2
TE
2155 }
2156 return 1;
d7d59fb3 2157}
257ef9d2
TE
2158#else
2159static inline int
2160perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
2161{
2162 return 0;
2163}
2164#endif
d7d59fb3 2165
56962b44
FW
2166void
2167perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
d7d59fb3
PZ
2168{
2169 struct stack_frame frame;
2170 const void __user *fp;
2171
927c7a9e
FW
2172 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2173 /* TODO: We don't support guest os callchain now */
ed805261 2174 return;
927c7a9e 2175 }
5a6cec3a 2176
d07bdfd3
PZ
2177 /*
2178 * We don't know what to do with VM86 stacks.. ignore them for now.
2179 */
2180 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2181 return;
2182
74193ef0 2183 fp = (void __user *)regs->bp;
d7d59fb3 2184
70791ce9 2185 perf_callchain_store(entry, regs->ip);
d7d59fb3 2186
20afc60f
AV
2187 if (!current->mm)
2188 return;
2189
257ef9d2
TE
2190 if (perf_callchain_user32(regs, entry))
2191 return;
2192
f9188e02 2193 while (entry->nr < PERF_MAX_STACK_DEPTH) {
257ef9d2 2194 unsigned long bytes;
038e836e 2195 frame.next_frame = NULL;
d7d59fb3
PZ
2196 frame.return_address = 0;
2197
257ef9d2 2198 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
0a196848 2199 if (bytes != 0)
d7d59fb3
PZ
2200 break;
2201
bc6ca7b3
AS
2202 if (!valid_user_frame(fp, sizeof(frame)))
2203 break;
2204
70791ce9 2205 perf_callchain_store(entry, frame.return_address);
038e836e 2206 fp = frame.next_frame;
d7d59fb3
PZ
2207 }
2208}
2209
d07bdfd3
PZ
2210/*
2211 * Deal with code segment offsets for the various execution modes:
2212 *
2213 * VM86 - the good olde 16 bit days, where the linear address is
2214 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2215 *
2216 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2217 * to figure out what the 32bit base address is.
2218 *
2219 * X32 - has TIF_X32 set, but is running in x86_64
2220 *
2221 * X86_64 - CS,DS,SS,ES are all zero based.
2222 */
2223static unsigned long code_segment_base(struct pt_regs *regs)
39447b38 2224{
d07bdfd3
PZ
2225 /*
2226 * If we are in VM86 mode, add the segment offset to convert to a
2227 * linear address.
2228 */
2229 if (regs->flags & X86_VM_MASK)
2230 return 0x10 * regs->cs;
2231
2232 /*
2233 * For IA32 we look at the GDT/LDT segment base to convert the
2234 * effective IP to a linear address.
2235 */
2236#ifdef CONFIG_X86_32
2237 if (user_mode(regs) && regs->cs != __USER_CS)
2238 return get_segment_base(regs->cs);
2239#else
2240 if (test_thread_flag(TIF_IA32)) {
2241 if (user_mode(regs) && regs->cs != __USER32_CS)
2242 return get_segment_base(regs->cs);
2243 }
2244#endif
2245 return 0;
2246}
dcf46b94 2247
d07bdfd3
PZ
2248unsigned long perf_instruction_pointer(struct pt_regs *regs)
2249{
39447b38 2250 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
d07bdfd3 2251 return perf_guest_cbs->get_guest_ip();
dcf46b94 2252
d07bdfd3 2253 return regs->ip + code_segment_base(regs);
39447b38
ZY
2254}
2255
2256unsigned long perf_misc_flags(struct pt_regs *regs)
2257{
2258 int misc = 0;
dcf46b94 2259
39447b38 2260 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
dcf46b94
ZY
2261 if (perf_guest_cbs->is_user_mode())
2262 misc |= PERF_RECORD_MISC_GUEST_USER;
2263 else
2264 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2265 } else {
d07bdfd3 2266 if (user_mode(regs))
dcf46b94
ZY
2267 misc |= PERF_RECORD_MISC_USER;
2268 else
2269 misc |= PERF_RECORD_MISC_KERNEL;
2270 }
2271
39447b38 2272 if (regs->flags & PERF_EFLAGS_EXACT)
ab608344 2273 misc |= PERF_RECORD_MISC_EXACT_IP;
39447b38
ZY
2274
2275 return misc;
2276}
b3d9468a
GN
2277
2278void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2279{
2280 cap->version = x86_pmu.version;
2281 cap->num_counters_gp = x86_pmu.num_counters;
2282 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2283 cap->bit_width_gp = x86_pmu.cntval_bits;
2284 cap->bit_width_fixed = x86_pmu.cntval_bits;
2285 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
2286 cap->events_mask_len = x86_pmu.events_mask_len;
2287}
2288EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
This page took 0.666245 seconds and 5 git commands to generate.