x86: Move notify_cpu_starting() callback to a later stage
[deliverable/linux.git] / arch / x86 / kernel / cpu / perf_event.c
CommitLineData
241771ef 1/*
cdd6c482 2 * Performance events x86 architecture code
241771ef 3 *
98144511
IM
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
30dd568c 9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
1da53e02 10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
241771ef
IM
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
cdd6c482 15#include <linux/perf_event.h>
241771ef
IM
16#include <linux/capability.h>
17#include <linux/notifier.h>
18#include <linux/hardirq.h>
19#include <linux/kprobes.h>
4ac13294 20#include <linux/module.h>
241771ef
IM
21#include <linux/kdebug.h>
22#include <linux/sched.h>
d7d59fb3 23#include <linux/uaccess.h>
74193ef0 24#include <linux/highmem.h>
30dd568c 25#include <linux/cpu.h>
272d30be 26#include <linux/bitops.h>
241771ef 27
241771ef 28#include <asm/apic.h>
d7d59fb3 29#include <asm/stacktrace.h>
4e935e47 30#include <asm/nmi.h>
241771ef 31
cdd6c482 32static u64 perf_event_mask __read_mostly;
703e937c 33
cdd6c482
IM
34/* The maximal number of PEBS events: */
35#define MAX_PEBS_EVENTS 4
30dd568c
MM
36
37/* The size of a BTS record in bytes: */
38#define BTS_RECORD_SIZE 24
39
40/* The size of a per-cpu BTS buffer in bytes: */
5622f295 41#define BTS_BUFFER_SIZE (BTS_RECORD_SIZE * 2048)
30dd568c
MM
42
43/* The BTS overflow threshold in bytes from the end of the buffer: */
5622f295 44#define BTS_OVFL_TH (BTS_RECORD_SIZE * 128)
30dd568c
MM
45
46
47/*
48 * Bits in the debugctlmsr controlling branch tracing.
49 */
50#define X86_DEBUGCTL_TR (1 << 6)
51#define X86_DEBUGCTL_BTS (1 << 7)
52#define X86_DEBUGCTL_BTINT (1 << 8)
53#define X86_DEBUGCTL_BTS_OFF_OS (1 << 9)
54#define X86_DEBUGCTL_BTS_OFF_USR (1 << 10)
55
56/*
57 * A debug store configuration.
58 *
59 * We only support architectures that use 64bit fields.
60 */
61struct debug_store {
62 u64 bts_buffer_base;
63 u64 bts_index;
64 u64 bts_absolute_maximum;
65 u64 bts_interrupt_threshold;
66 u64 pebs_buffer_base;
67 u64 pebs_index;
68 u64 pebs_absolute_maximum;
69 u64 pebs_interrupt_threshold;
cdd6c482 70 u64 pebs_event_reset[MAX_PEBS_EVENTS];
30dd568c
MM
71};
72
1da53e02 73struct event_constraint {
c91e0f5d
PZ
74 union {
75 unsigned long idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
b622d644 76 u64 idxmsk64;
c91e0f5d 77 };
b622d644
PZ
78 u64 code;
79 u64 cmask;
272d30be 80 int weight;
1da53e02
SE
81};
82
38331f62
SE
83struct amd_nb {
84 int nb_id; /* NorthBridge id */
85 int refcnt; /* reference count */
86 struct perf_event *owners[X86_PMC_IDX_MAX];
87 struct event_constraint event_constraints[X86_PMC_IDX_MAX];
88};
89
cdd6c482 90struct cpu_hw_events {
1da53e02 91 struct perf_event *events[X86_PMC_IDX_MAX]; /* in counter order */
43f6201a 92 unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
4b39fd96 93 unsigned long interrupts;
b0f3f28e 94 int enabled;
30dd568c 95 struct debug_store *ds;
241771ef 96
1da53e02
SE
97 int n_events;
98 int n_added;
99 int assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
447a194b 100 u64 tags[X86_PMC_IDX_MAX];
1da53e02 101 struct perf_event *event_list[X86_PMC_IDX_MAX]; /* in enabled order */
38331f62 102 struct amd_nb *amd_nb;
b690081d
SE
103};
104
fce877e3 105#define __EVENT_CONSTRAINT(c, n, m, w) {\
b622d644 106 { .idxmsk64 = (n) }, \
c91e0f5d
PZ
107 .code = (c), \
108 .cmask = (m), \
fce877e3 109 .weight = (w), \
c91e0f5d 110}
b690081d 111
fce877e3
PZ
112#define EVENT_CONSTRAINT(c, n, m) \
113 __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n))
114
ed8777fc
PZ
115#define INTEL_EVENT_CONSTRAINT(c, n) \
116 EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVTSEL_MASK)
8433be11 117
ed8777fc 118#define FIXED_EVENT_CONSTRAINT(c, n) \
b622d644 119 EVENT_CONSTRAINT(c, (1ULL << (32+n)), INTEL_ARCH_FIXED_MASK)
8433be11 120
ed8777fc
PZ
121#define EVENT_CONSTRAINT_END \
122 EVENT_CONSTRAINT(0, 0, 0)
123
124#define for_each_event_constraint(e, c) \
125 for ((e) = (c); (e)->cmask; (e)++)
b690081d 126
241771ef 127/*
5f4ec28f 128 * struct x86_pmu - generic x86 pmu
241771ef 129 */
5f4ec28f 130struct x86_pmu {
faa28ae0
RR
131 const char *name;
132 int version;
a3288106 133 int (*handle_irq)(struct pt_regs *);
9e35ad38
PZ
134 void (*disable_all)(void);
135 void (*enable_all)(void);
aff3d91a
PZ
136 void (*enable)(struct perf_event *);
137 void (*disable)(struct perf_event *);
169e41eb
JSR
138 unsigned eventsel;
139 unsigned perfctr;
b0f3f28e
PZ
140 u64 (*event_map)(int);
141 u64 (*raw_event)(u64);
169e41eb 142 int max_events;
cdd6c482
IM
143 int num_events;
144 int num_events_fixed;
145 int event_bits;
146 u64 event_mask;
04da8a43 147 int apic;
c619b8ff 148 u64 max_period;
9e35ad38 149 u64 intel_ctrl;
30dd568c
MM
150 void (*enable_bts)(u64 config);
151 void (*disable_bts)(void);
63b14649
PZ
152
153 struct event_constraint *
154 (*get_event_constraints)(struct cpu_hw_events *cpuc,
155 struct perf_event *event);
156
c91e0f5d
PZ
157 void (*put_event_constraints)(struct cpu_hw_events *cpuc,
158 struct perf_event *event);
63b14649 159 struct event_constraint *event_constraints;
3f6da390
PZ
160
161 void (*cpu_prepare)(int cpu);
162 void (*cpu_starting)(int cpu);
163 void (*cpu_dying)(int cpu);
164 void (*cpu_dead)(int cpu);
b56a3802
JSR
165};
166
4a06bd85 167static struct x86_pmu x86_pmu __read_mostly;
b56a3802 168
cdd6c482 169static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
b0f3f28e
PZ
170 .enabled = 1,
171};
241771ef 172
07088edb 173static int x86_perf_event_set_period(struct perf_event *event);
b690081d 174
8326f44d 175/*
dfc65094 176 * Generalized hw caching related hw_event table, filled
8326f44d 177 * in on a per model basis. A value of 0 means
dfc65094
IM
178 * 'not supported', -1 means 'hw_event makes no sense on
179 * this CPU', any other value means the raw hw_event
8326f44d
IM
180 * ID.
181 */
182
183#define C(x) PERF_COUNT_HW_CACHE_##x
184
185static u64 __read_mostly hw_cache_event_ids
186 [PERF_COUNT_HW_CACHE_MAX]
187 [PERF_COUNT_HW_CACHE_OP_MAX]
188 [PERF_COUNT_HW_CACHE_RESULT_MAX];
189
ee06094f 190/*
cdd6c482
IM
191 * Propagate event elapsed time into the generic event.
192 * Can only be executed on the CPU where the event is active.
ee06094f
IM
193 * Returns the delta events processed.
194 */
4b7bfd0d 195static u64
cc2ad4ba 196x86_perf_event_update(struct perf_event *event)
ee06094f 197{
cc2ad4ba 198 struct hw_perf_event *hwc = &event->hw;
cdd6c482 199 int shift = 64 - x86_pmu.event_bits;
ec3232bd 200 u64 prev_raw_count, new_raw_count;
cc2ad4ba 201 int idx = hwc->idx;
ec3232bd 202 s64 delta;
ee06094f 203
30dd568c
MM
204 if (idx == X86_PMC_IDX_FIXED_BTS)
205 return 0;
206
ee06094f 207 /*
cdd6c482 208 * Careful: an NMI might modify the previous event value.
ee06094f
IM
209 *
210 * Our tactic to handle this is to first atomically read and
211 * exchange a new raw count - then add that new-prev delta
cdd6c482 212 * count to the generic event atomically:
ee06094f
IM
213 */
214again:
215 prev_raw_count = atomic64_read(&hwc->prev_count);
cdd6c482 216 rdmsrl(hwc->event_base + idx, new_raw_count);
ee06094f
IM
217
218 if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
219 new_raw_count) != prev_raw_count)
220 goto again;
221
222 /*
223 * Now we have the new raw value and have updated the prev
224 * timestamp already. We can now calculate the elapsed delta
cdd6c482 225 * (event-)time and add that to the generic event.
ee06094f
IM
226 *
227 * Careful, not all hw sign-extends above the physical width
ec3232bd 228 * of the count.
ee06094f 229 */
ec3232bd
PZ
230 delta = (new_raw_count << shift) - (prev_raw_count << shift);
231 delta >>= shift;
ee06094f 232
cdd6c482 233 atomic64_add(delta, &event->count);
ee06094f 234 atomic64_sub(delta, &hwc->period_left);
4b7bfd0d
RR
235
236 return new_raw_count;
ee06094f
IM
237}
238
cdd6c482 239static atomic_t active_events;
4e935e47
PZ
240static DEFINE_MUTEX(pmc_reserve_mutex);
241
242static bool reserve_pmc_hardware(void)
243{
04da8a43 244#ifdef CONFIG_X86_LOCAL_APIC
4e935e47
PZ
245 int i;
246
247 if (nmi_watchdog == NMI_LOCAL_APIC)
248 disable_lapic_nmi_watchdog();
249
cdd6c482 250 for (i = 0; i < x86_pmu.num_events; i++) {
4a06bd85 251 if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
4e935e47
PZ
252 goto perfctr_fail;
253 }
254
cdd6c482 255 for (i = 0; i < x86_pmu.num_events; i++) {
4a06bd85 256 if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
4e935e47
PZ
257 goto eventsel_fail;
258 }
04da8a43 259#endif
4e935e47
PZ
260
261 return true;
262
04da8a43 263#ifdef CONFIG_X86_LOCAL_APIC
4e935e47
PZ
264eventsel_fail:
265 for (i--; i >= 0; i--)
4a06bd85 266 release_evntsel_nmi(x86_pmu.eventsel + i);
4e935e47 267
cdd6c482 268 i = x86_pmu.num_events;
4e935e47
PZ
269
270perfctr_fail:
271 for (i--; i >= 0; i--)
4a06bd85 272 release_perfctr_nmi(x86_pmu.perfctr + i);
4e935e47
PZ
273
274 if (nmi_watchdog == NMI_LOCAL_APIC)
275 enable_lapic_nmi_watchdog();
276
277 return false;
04da8a43 278#endif
4e935e47
PZ
279}
280
281static void release_pmc_hardware(void)
282{
04da8a43 283#ifdef CONFIG_X86_LOCAL_APIC
4e935e47
PZ
284 int i;
285
cdd6c482 286 for (i = 0; i < x86_pmu.num_events; i++) {
4a06bd85
RR
287 release_perfctr_nmi(x86_pmu.perfctr + i);
288 release_evntsel_nmi(x86_pmu.eventsel + i);
4e935e47
PZ
289 }
290
291 if (nmi_watchdog == NMI_LOCAL_APIC)
292 enable_lapic_nmi_watchdog();
04da8a43 293#endif
4e935e47
PZ
294}
295
30dd568c
MM
296static inline bool bts_available(void)
297{
298 return x86_pmu.enable_bts != NULL;
299}
300
3f6da390 301static void init_debug_store_on_cpu(int cpu)
30dd568c 302{
cdd6c482 303 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
30dd568c
MM
304
305 if (!ds)
306 return;
307
308 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
596da17f 309 (u32)((u64)(unsigned long)ds),
310 (u32)((u64)(unsigned long)ds >> 32));
30dd568c
MM
311}
312
3f6da390 313static void fini_debug_store_on_cpu(int cpu)
30dd568c 314{
cdd6c482 315 if (!per_cpu(cpu_hw_events, cpu).ds)
30dd568c
MM
316 return;
317
318 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
319}
320
321static void release_bts_hardware(void)
322{
323 int cpu;
324
325 if (!bts_available())
326 return;
327
328 get_online_cpus();
329
330 for_each_online_cpu(cpu)
331 fini_debug_store_on_cpu(cpu);
332
333 for_each_possible_cpu(cpu) {
cdd6c482 334 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
30dd568c
MM
335
336 if (!ds)
337 continue;
338
cdd6c482 339 per_cpu(cpu_hw_events, cpu).ds = NULL;
30dd568c 340
596da17f 341 kfree((void *)(unsigned long)ds->bts_buffer_base);
30dd568c
MM
342 kfree(ds);
343 }
344
345 put_online_cpus();
346}
347
348static int reserve_bts_hardware(void)
349{
350 int cpu, err = 0;
351
352 if (!bts_available())
747b50aa 353 return 0;
30dd568c
MM
354
355 get_online_cpus();
356
357 for_each_possible_cpu(cpu) {
358 struct debug_store *ds;
359 void *buffer;
360
361 err = -ENOMEM;
362 buffer = kzalloc(BTS_BUFFER_SIZE, GFP_KERNEL);
363 if (unlikely(!buffer))
364 break;
365
366 ds = kzalloc(sizeof(*ds), GFP_KERNEL);
367 if (unlikely(!ds)) {
368 kfree(buffer);
369 break;
370 }
371
596da17f 372 ds->bts_buffer_base = (u64)(unsigned long)buffer;
30dd568c
MM
373 ds->bts_index = ds->bts_buffer_base;
374 ds->bts_absolute_maximum =
375 ds->bts_buffer_base + BTS_BUFFER_SIZE;
376 ds->bts_interrupt_threshold =
377 ds->bts_absolute_maximum - BTS_OVFL_TH;
378
cdd6c482 379 per_cpu(cpu_hw_events, cpu).ds = ds;
30dd568c
MM
380 err = 0;
381 }
382
383 if (err)
384 release_bts_hardware();
385 else {
386 for_each_online_cpu(cpu)
387 init_debug_store_on_cpu(cpu);
388 }
389
390 put_online_cpus();
391
392 return err;
393}
394
cdd6c482 395static void hw_perf_event_destroy(struct perf_event *event)
4e935e47 396{
cdd6c482 397 if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
4e935e47 398 release_pmc_hardware();
30dd568c 399 release_bts_hardware();
4e935e47
PZ
400 mutex_unlock(&pmc_reserve_mutex);
401 }
402}
403
85cf9dba
RR
404static inline int x86_pmu_initialized(void)
405{
406 return x86_pmu.handle_irq != NULL;
407}
408
8326f44d 409static inline int
cdd6c482 410set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event_attr *attr)
8326f44d
IM
411{
412 unsigned int cache_type, cache_op, cache_result;
413 u64 config, val;
414
415 config = attr->config;
416
417 cache_type = (config >> 0) & 0xff;
418 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
419 return -EINVAL;
420
421 cache_op = (config >> 8) & 0xff;
422 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
423 return -EINVAL;
424
425 cache_result = (config >> 16) & 0xff;
426 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
427 return -EINVAL;
428
429 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
430
431 if (val == 0)
432 return -ENOENT;
433
434 if (val == -1)
435 return -EINVAL;
436
437 hwc->config |= val;
438
439 return 0;
440}
441
241771ef 442/*
0d48696f 443 * Setup the hardware configuration for a given attr_type
241771ef 444 */
cdd6c482 445static int __hw_perf_event_init(struct perf_event *event)
241771ef 446{
cdd6c482
IM
447 struct perf_event_attr *attr = &event->attr;
448 struct hw_perf_event *hwc = &event->hw;
9c74fb50 449 u64 config;
4e935e47 450 int err;
241771ef 451
85cf9dba
RR
452 if (!x86_pmu_initialized())
453 return -ENODEV;
241771ef 454
4e935e47 455 err = 0;
cdd6c482 456 if (!atomic_inc_not_zero(&active_events)) {
4e935e47 457 mutex_lock(&pmc_reserve_mutex);
cdd6c482 458 if (atomic_read(&active_events) == 0) {
30dd568c
MM
459 if (!reserve_pmc_hardware())
460 err = -EBUSY;
461 else
747b50aa 462 err = reserve_bts_hardware();
30dd568c
MM
463 }
464 if (!err)
cdd6c482 465 atomic_inc(&active_events);
4e935e47
PZ
466 mutex_unlock(&pmc_reserve_mutex);
467 }
468 if (err)
469 return err;
470
cdd6c482 471 event->destroy = hw_perf_event_destroy;
a1792cda 472
241771ef 473 /*
0475f9ea 474 * Generate PMC IRQs:
241771ef
IM
475 * (keep 'enabled' bit clear for now)
476 */
0475f9ea 477 hwc->config = ARCH_PERFMON_EVENTSEL_INT;
241771ef 478
b690081d 479 hwc->idx = -1;
447a194b
SE
480 hwc->last_cpu = -1;
481 hwc->last_tag = ~0ULL;
b690081d 482
241771ef 483 /*
0475f9ea 484 * Count user and OS events unless requested not to.
241771ef 485 */
0d48696f 486 if (!attr->exclude_user)
0475f9ea 487 hwc->config |= ARCH_PERFMON_EVENTSEL_USR;
0d48696f 488 if (!attr->exclude_kernel)
241771ef 489 hwc->config |= ARCH_PERFMON_EVENTSEL_OS;
0475f9ea 490
bd2b5b12 491 if (!hwc->sample_period) {
b23f3325 492 hwc->sample_period = x86_pmu.max_period;
9e350de3 493 hwc->last_period = hwc->sample_period;
bd2b5b12 494 atomic64_set(&hwc->period_left, hwc->sample_period);
04da8a43
IM
495 } else {
496 /*
497 * If we have a PMU initialized but no APIC
498 * interrupts, we cannot sample hardware
cdd6c482
IM
499 * events (user-space has to fall back and
500 * sample via a hrtimer based software event):
04da8a43
IM
501 */
502 if (!x86_pmu.apic)
503 return -EOPNOTSUPP;
bd2b5b12 504 }
d2517a49 505
241771ef 506 /*
dfc65094 507 * Raw hw_event type provide the config in the hw_event structure
241771ef 508 */
a21ca2ca
IM
509 if (attr->type == PERF_TYPE_RAW) {
510 hwc->config |= x86_pmu.raw_event(attr->config);
320ebf09
PZ
511 if ((hwc->config & ARCH_PERFMON_EVENTSEL_ANY) &&
512 perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
513 return -EACCES;
8326f44d 514 return 0;
241771ef 515 }
241771ef 516
8326f44d
IM
517 if (attr->type == PERF_TYPE_HW_CACHE)
518 return set_ext_hw_attr(hwc, attr);
519
520 if (attr->config >= x86_pmu.max_events)
521 return -EINVAL;
9c74fb50 522
8326f44d
IM
523 /*
524 * The generic map:
525 */
9c74fb50
PZ
526 config = x86_pmu.event_map(attr->config);
527
528 if (config == 0)
529 return -ENOENT;
530
531 if (config == -1LL)
532 return -EINVAL;
533
747b50aa 534 /*
535 * Branch tracing:
536 */
537 if ((attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) &&
1653192f 538 (hwc->sample_period == 1)) {
539 /* BTS is not supported by this architecture. */
540 if (!bts_available())
541 return -EOPNOTSUPP;
542
543 /* BTS is currently only allowed for user-mode. */
544 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
545 return -EOPNOTSUPP;
546 }
747b50aa 547
9c74fb50 548 hwc->config |= config;
4e935e47 549
241771ef
IM
550 return 0;
551}
552
8c48e444 553static void x86_pmu_disable_all(void)
f87ad35d 554{
cdd6c482 555 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
9e35ad38
PZ
556 int idx;
557
cdd6c482 558 for (idx = 0; idx < x86_pmu.num_events; idx++) {
b0f3f28e
PZ
559 u64 val;
560
43f6201a 561 if (!test_bit(idx, cpuc->active_mask))
4295ee62 562 continue;
8c48e444 563 rdmsrl(x86_pmu.eventsel + idx, val);
bb1165d6 564 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
4295ee62 565 continue;
bb1165d6 566 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
8c48e444 567 wrmsrl(x86_pmu.eventsel + idx, val);
f87ad35d 568 }
f87ad35d
JSR
569}
570
9e35ad38 571void hw_perf_disable(void)
b56a3802 572{
1da53e02
SE
573 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
574
85cf9dba 575 if (!x86_pmu_initialized())
9e35ad38 576 return;
1da53e02 577
1a6e21f7
PZ
578 if (!cpuc->enabled)
579 return;
580
581 cpuc->n_added = 0;
582 cpuc->enabled = 0;
583 barrier();
1da53e02
SE
584
585 x86_pmu.disable_all();
b56a3802 586}
241771ef 587
8c48e444 588static void x86_pmu_enable_all(void)
f87ad35d 589{
cdd6c482 590 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
f87ad35d
JSR
591 int idx;
592
cdd6c482
IM
593 for (idx = 0; idx < x86_pmu.num_events; idx++) {
594 struct perf_event *event = cpuc->events[idx];
4295ee62 595 u64 val;
b0f3f28e 596
43f6201a 597 if (!test_bit(idx, cpuc->active_mask))
4295ee62 598 continue;
984b838c 599
cdd6c482 600 val = event->hw.config;
bb1165d6 601 val |= ARCH_PERFMON_EVENTSEL_ENABLE;
8c48e444 602 wrmsrl(x86_pmu.eventsel + idx, val);
f87ad35d
JSR
603 }
604}
605
1da53e02
SE
606static const struct pmu pmu;
607
608static inline int is_x86_event(struct perf_event *event)
609{
610 return event->pmu == &pmu;
611}
612
613static int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
614{
63b14649 615 struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
1da53e02 616 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
c933c1a6 617 int i, j, w, wmax, num = 0;
1da53e02
SE
618 struct hw_perf_event *hwc;
619
620 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
621
622 for (i = 0; i < n; i++) {
b622d644
PZ
623 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
624 constraints[i] = c;
1da53e02
SE
625 }
626
8113070d
SE
627 /*
628 * fastpath, try to reuse previous register
629 */
c933c1a6 630 for (i = 0; i < n; i++) {
8113070d 631 hwc = &cpuc->event_list[i]->hw;
81269a08 632 c = constraints[i];
8113070d
SE
633
634 /* never assigned */
635 if (hwc->idx == -1)
636 break;
637
638 /* constraint still honored */
63b14649 639 if (!test_bit(hwc->idx, c->idxmsk))
8113070d
SE
640 break;
641
642 /* not already used */
643 if (test_bit(hwc->idx, used_mask))
644 break;
645
34538ee7 646 __set_bit(hwc->idx, used_mask);
8113070d
SE
647 if (assign)
648 assign[i] = hwc->idx;
649 }
c933c1a6 650 if (i == n)
8113070d
SE
651 goto done;
652
653 /*
654 * begin slow path
655 */
656
657 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
658
1da53e02
SE
659 /*
660 * weight = number of possible counters
661 *
662 * 1 = most constrained, only works on one counter
663 * wmax = least constrained, works on any counter
664 *
665 * assign events to counters starting with most
666 * constrained events.
667 */
668 wmax = x86_pmu.num_events;
669
670 /*
671 * when fixed event counters are present,
672 * wmax is incremented by 1 to account
673 * for one more choice
674 */
675 if (x86_pmu.num_events_fixed)
676 wmax++;
677
8113070d 678 for (w = 1, num = n; num && w <= wmax; w++) {
1da53e02 679 /* for each event */
8113070d 680 for (i = 0; num && i < n; i++) {
81269a08 681 c = constraints[i];
1da53e02
SE
682 hwc = &cpuc->event_list[i]->hw;
683
272d30be 684 if (c->weight != w)
1da53e02
SE
685 continue;
686
984b3f57 687 for_each_set_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
1da53e02
SE
688 if (!test_bit(j, used_mask))
689 break;
690 }
691
692 if (j == X86_PMC_IDX_MAX)
693 break;
1da53e02 694
34538ee7 695 __set_bit(j, used_mask);
8113070d 696
1da53e02
SE
697 if (assign)
698 assign[i] = j;
699 num--;
700 }
701 }
8113070d 702done:
1da53e02
SE
703 /*
704 * scheduling failed or is just a simulation,
705 * free resources if necessary
706 */
707 if (!assign || num) {
708 for (i = 0; i < n; i++) {
709 if (x86_pmu.put_event_constraints)
710 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
711 }
712 }
713 return num ? -ENOSPC : 0;
714}
715
716/*
717 * dogrp: true if must collect siblings events (group)
718 * returns total number of events and error code
719 */
720static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
721{
722 struct perf_event *event;
723 int n, max_count;
724
725 max_count = x86_pmu.num_events + x86_pmu.num_events_fixed;
726
727 /* current number of events already accepted */
728 n = cpuc->n_events;
729
730 if (is_x86_event(leader)) {
731 if (n >= max_count)
732 return -ENOSPC;
733 cpuc->event_list[n] = leader;
734 n++;
735 }
736 if (!dogrp)
737 return n;
738
739 list_for_each_entry(event, &leader->sibling_list, group_entry) {
740 if (!is_x86_event(event) ||
8113070d 741 event->state <= PERF_EVENT_STATE_OFF)
1da53e02
SE
742 continue;
743
744 if (n >= max_count)
745 return -ENOSPC;
746
747 cpuc->event_list[n] = event;
748 n++;
749 }
750 return n;
751}
752
1da53e02 753static inline void x86_assign_hw_event(struct perf_event *event,
447a194b 754 struct cpu_hw_events *cpuc, int i)
1da53e02 755{
447a194b
SE
756 struct hw_perf_event *hwc = &event->hw;
757
758 hwc->idx = cpuc->assign[i];
759 hwc->last_cpu = smp_processor_id();
760 hwc->last_tag = ++cpuc->tags[i];
1da53e02
SE
761
762 if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
763 hwc->config_base = 0;
764 hwc->event_base = 0;
765 } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
766 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
767 /*
768 * We set it so that event_base + idx in wrmsr/rdmsr maps to
769 * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
770 */
771 hwc->event_base =
772 MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
773 } else {
774 hwc->config_base = x86_pmu.eventsel;
775 hwc->event_base = x86_pmu.perfctr;
776 }
777}
778
447a194b
SE
779static inline int match_prev_assignment(struct hw_perf_event *hwc,
780 struct cpu_hw_events *cpuc,
781 int i)
782{
783 return hwc->idx == cpuc->assign[i] &&
784 hwc->last_cpu == smp_processor_id() &&
785 hwc->last_tag == cpuc->tags[i];
786}
787
c08053e6 788static int x86_pmu_start(struct perf_event *event);
d76a0812 789static void x86_pmu_stop(struct perf_event *event);
2e841873 790
9e35ad38 791void hw_perf_enable(void)
ee06094f 792{
1da53e02
SE
793 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
794 struct perf_event *event;
795 struct hw_perf_event *hwc;
796 int i;
797
85cf9dba 798 if (!x86_pmu_initialized())
2b9ff0db 799 return;
1a6e21f7
PZ
800
801 if (cpuc->enabled)
802 return;
803
1da53e02 804 if (cpuc->n_added) {
19925ce7 805 int n_running = cpuc->n_events - cpuc->n_added;
1da53e02
SE
806 /*
807 * apply assignment obtained either from
808 * hw_perf_group_sched_in() or x86_pmu_enable()
809 *
810 * step1: save events moving to new counters
811 * step2: reprogram moved events into new counters
812 */
19925ce7 813 for (i = 0; i < n_running; i++) {
1da53e02
SE
814 event = cpuc->event_list[i];
815 hwc = &event->hw;
816
447a194b
SE
817 /*
818 * we can avoid reprogramming counter if:
819 * - assigned same counter as last time
820 * - running on same CPU as last time
821 * - no other event has used the counter since
822 */
823 if (hwc->idx == -1 ||
824 match_prev_assignment(hwc, cpuc, i))
1da53e02
SE
825 continue;
826
d76a0812 827 x86_pmu_stop(event);
1da53e02
SE
828 }
829
830 for (i = 0; i < cpuc->n_events; i++) {
1da53e02
SE
831 event = cpuc->event_list[i];
832 hwc = &event->hw;
833
45e16a68 834 if (!match_prev_assignment(hwc, cpuc, i))
447a194b 835 x86_assign_hw_event(event, cpuc, i);
45e16a68
PZ
836 else if (i < n_running)
837 continue;
1da53e02 838
c08053e6 839 x86_pmu_start(event);
1da53e02
SE
840 }
841 cpuc->n_added = 0;
842 perf_events_lapic_init();
843 }
1a6e21f7
PZ
844
845 cpuc->enabled = 1;
846 barrier();
847
9e35ad38 848 x86_pmu.enable_all();
ee06094f 849}
ee06094f 850
aff3d91a 851static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc)
b0f3f28e 852{
aff3d91a 853 (void)checking_wrmsrl(hwc->config_base + hwc->idx,
bb1165d6 854 hwc->config | ARCH_PERFMON_EVENTSEL_ENABLE);
b0f3f28e
PZ
855}
856
aff3d91a 857static inline void x86_pmu_disable_event(struct perf_event *event)
b0f3f28e 858{
aff3d91a
PZ
859 struct hw_perf_event *hwc = &event->hw;
860 (void)checking_wrmsrl(hwc->config_base + hwc->idx, hwc->config);
b0f3f28e
PZ
861}
862
245b2e70 863static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
241771ef 864
ee06094f
IM
865/*
866 * Set the next IRQ period, based on the hwc->period_left value.
cdd6c482 867 * To be called with the event disabled in hw:
ee06094f 868 */
e4abb5d4 869static int
07088edb 870x86_perf_event_set_period(struct perf_event *event)
241771ef 871{
07088edb 872 struct hw_perf_event *hwc = &event->hw;
2f18d1e8 873 s64 left = atomic64_read(&hwc->period_left);
e4abb5d4 874 s64 period = hwc->sample_period;
07088edb 875 int err, ret = 0, idx = hwc->idx;
ee06094f 876
30dd568c
MM
877 if (idx == X86_PMC_IDX_FIXED_BTS)
878 return 0;
879
ee06094f 880 /*
af901ca1 881 * If we are way outside a reasonable range then just skip forward:
ee06094f
IM
882 */
883 if (unlikely(left <= -period)) {
884 left = period;
885 atomic64_set(&hwc->period_left, left);
9e350de3 886 hwc->last_period = period;
e4abb5d4 887 ret = 1;
ee06094f
IM
888 }
889
890 if (unlikely(left <= 0)) {
891 left += period;
892 atomic64_set(&hwc->period_left, left);
9e350de3 893 hwc->last_period = period;
e4abb5d4 894 ret = 1;
ee06094f 895 }
1c80f4b5 896 /*
dfc65094 897 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1c80f4b5
IM
898 */
899 if (unlikely(left < 2))
900 left = 2;
241771ef 901
e4abb5d4
PZ
902 if (left > x86_pmu.max_period)
903 left = x86_pmu.max_period;
904
245b2e70 905 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
ee06094f
IM
906
907 /*
cdd6c482 908 * The hw event starts counting from this event offset,
ee06094f
IM
909 * mark it to be able to extra future deltas:
910 */
2f18d1e8 911 atomic64_set(&hwc->prev_count, (u64)-left);
ee06094f 912
cdd6c482
IM
913 err = checking_wrmsrl(hwc->event_base + idx,
914 (u64)(-left) & x86_pmu.event_mask);
e4abb5d4 915
cdd6c482 916 perf_event_update_userpage(event);
194002b2 917
e4abb5d4 918 return ret;
2f18d1e8
IM
919}
920
aff3d91a 921static void x86_pmu_enable_event(struct perf_event *event)
7c90cc45 922{
cdd6c482 923 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
7c90cc45 924 if (cpuc->enabled)
aff3d91a 925 __x86_pmu_enable_event(&event->hw);
241771ef
IM
926}
927
b690081d 928/*
1da53e02
SE
929 * activate a single event
930 *
931 * The event is added to the group of enabled events
932 * but only if it can be scehduled with existing events.
933 *
934 * Called with PMU disabled. If successful and return value 1,
935 * then guaranteed to call perf_enable() and hw_perf_enable()
fe9081cc
PZ
936 */
937static int x86_pmu_enable(struct perf_event *event)
938{
939 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1da53e02
SE
940 struct hw_perf_event *hwc;
941 int assign[X86_PMC_IDX_MAX];
942 int n, n0, ret;
fe9081cc 943
1da53e02 944 hwc = &event->hw;
fe9081cc 945
1da53e02
SE
946 n0 = cpuc->n_events;
947 n = collect_events(cpuc, event, false);
948 if (n < 0)
949 return n;
53b441a5 950
1da53e02
SE
951 ret = x86_schedule_events(cpuc, n, assign);
952 if (ret)
953 return ret;
954 /*
955 * copy new assignment, now we know it is possible
956 * will be used by hw_perf_enable()
957 */
958 memcpy(cpuc->assign, assign, n*sizeof(int));
7e2ae347 959
1da53e02 960 cpuc->n_events = n;
356e1f2e 961 cpuc->n_added += n - n0;
95cdd2e7
IM
962
963 return 0;
241771ef
IM
964}
965
d76a0812
SE
966static int x86_pmu_start(struct perf_event *event)
967{
c08053e6
PZ
968 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
969 int idx = event->hw.idx;
970
971 if (idx == -1)
d76a0812
SE
972 return -EAGAIN;
973
07088edb 974 x86_perf_event_set_period(event);
c08053e6
PZ
975 cpuc->events[idx] = event;
976 __set_bit(idx, cpuc->active_mask);
aff3d91a 977 x86_pmu.enable(event);
c08053e6 978 perf_event_update_userpage(event);
d76a0812
SE
979
980 return 0;
981}
982
cdd6c482 983static void x86_pmu_unthrottle(struct perf_event *event)
a78ac325 984{
71e2d282
PZ
985 int ret = x86_pmu_start(event);
986 WARN_ON_ONCE(ret);
a78ac325
PZ
987}
988
cdd6c482 989void perf_event_print_debug(void)
241771ef 990{
2f18d1e8 991 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
cdd6c482 992 struct cpu_hw_events *cpuc;
5bb9efe3 993 unsigned long flags;
1e125676
IM
994 int cpu, idx;
995
cdd6c482 996 if (!x86_pmu.num_events)
1e125676 997 return;
241771ef 998
5bb9efe3 999 local_irq_save(flags);
241771ef
IM
1000
1001 cpu = smp_processor_id();
cdd6c482 1002 cpuc = &per_cpu(cpu_hw_events, cpu);
241771ef 1003
faa28ae0 1004 if (x86_pmu.version >= 2) {
a1ef58f4
JSR
1005 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1006 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1007 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1008 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1009
1010 pr_info("\n");
1011 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1012 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1013 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1014 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
f87ad35d 1015 }
1da53e02 1016 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
241771ef 1017
cdd6c482 1018 for (idx = 0; idx < x86_pmu.num_events; idx++) {
4a06bd85
RR
1019 rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
1020 rdmsrl(x86_pmu.perfctr + idx, pmc_count);
241771ef 1021
245b2e70 1022 prev_left = per_cpu(pmc_prev_left[idx], cpu);
241771ef 1023
a1ef58f4 1024 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
241771ef 1025 cpu, idx, pmc_ctrl);
a1ef58f4 1026 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
241771ef 1027 cpu, idx, pmc_count);
a1ef58f4 1028 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
ee06094f 1029 cpu, idx, prev_left);
241771ef 1030 }
cdd6c482 1031 for (idx = 0; idx < x86_pmu.num_events_fixed; idx++) {
2f18d1e8
IM
1032 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1033
a1ef58f4 1034 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
2f18d1e8
IM
1035 cpu, idx, pmc_count);
1036 }
5bb9efe3 1037 local_irq_restore(flags);
241771ef
IM
1038}
1039
d76a0812 1040static void x86_pmu_stop(struct perf_event *event)
241771ef 1041{
d76a0812 1042 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
cdd6c482 1043 struct hw_perf_event *hwc = &event->hw;
2e841873 1044 int idx = hwc->idx;
241771ef 1045
71e2d282
PZ
1046 if (!__test_and_clear_bit(idx, cpuc->active_mask))
1047 return;
1048
aff3d91a 1049 x86_pmu.disable(event);
241771ef 1050
ee06094f 1051 /*
cdd6c482 1052 * Drain the remaining delta count out of a event
ee06094f
IM
1053 * that we are disabling:
1054 */
cc2ad4ba 1055 x86_perf_event_update(event);
30dd568c 1056
cdd6c482 1057 cpuc->events[idx] = NULL;
2e841873
PZ
1058}
1059
1060static void x86_pmu_disable(struct perf_event *event)
1061{
1062 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1063 int i;
1064
d76a0812 1065 x86_pmu_stop(event);
194002b2 1066
1da53e02
SE
1067 for (i = 0; i < cpuc->n_events; i++) {
1068 if (event == cpuc->event_list[i]) {
1069
1070 if (x86_pmu.put_event_constraints)
1071 x86_pmu.put_event_constraints(cpuc, event);
1072
1073 while (++i < cpuc->n_events)
1074 cpuc->event_list[i-1] = cpuc->event_list[i];
1075
1076 --cpuc->n_events;
6c9687ab 1077 break;
1da53e02
SE
1078 }
1079 }
cdd6c482 1080 perf_event_update_userpage(event);
241771ef
IM
1081}
1082
8c48e444 1083static int x86_pmu_handle_irq(struct pt_regs *regs)
a29aa8a7 1084{
df1a132b 1085 struct perf_sample_data data;
cdd6c482
IM
1086 struct cpu_hw_events *cpuc;
1087 struct perf_event *event;
1088 struct hw_perf_event *hwc;
11d1578f 1089 int idx, handled = 0;
9029a5e3
IM
1090 u64 val;
1091
dc1d628a 1092 perf_sample_data_init(&data, 0);
df1a132b 1093
cdd6c482 1094 cpuc = &__get_cpu_var(cpu_hw_events);
962bf7a6 1095
cdd6c482 1096 for (idx = 0; idx < x86_pmu.num_events; idx++) {
43f6201a 1097 if (!test_bit(idx, cpuc->active_mask))
a29aa8a7 1098 continue;
962bf7a6 1099
cdd6c482
IM
1100 event = cpuc->events[idx];
1101 hwc = &event->hw;
a4016a79 1102
cc2ad4ba 1103 val = x86_perf_event_update(event);
cdd6c482 1104 if (val & (1ULL << (x86_pmu.event_bits - 1)))
48e22d56 1105 continue;
962bf7a6 1106
9e350de3 1107 /*
cdd6c482 1108 * event overflow
9e350de3
PZ
1109 */
1110 handled = 1;
cdd6c482 1111 data.period = event->hw.last_period;
9e350de3 1112
07088edb 1113 if (!x86_perf_event_set_period(event))
e4abb5d4
PZ
1114 continue;
1115
cdd6c482 1116 if (perf_event_overflow(event, 1, &data, regs))
71e2d282 1117 x86_pmu_stop(event);
a29aa8a7 1118 }
962bf7a6 1119
9e350de3
PZ
1120 if (handled)
1121 inc_irq_stat(apic_perf_irqs);
1122
a29aa8a7
RR
1123 return handled;
1124}
39d81eab 1125
b6276f35
PZ
1126void smp_perf_pending_interrupt(struct pt_regs *regs)
1127{
1128 irq_enter();
1129 ack_APIC_irq();
1130 inc_irq_stat(apic_pending_irqs);
cdd6c482 1131 perf_event_do_pending();
b6276f35
PZ
1132 irq_exit();
1133}
1134
cdd6c482 1135void set_perf_event_pending(void)
b6276f35 1136{
04da8a43 1137#ifdef CONFIG_X86_LOCAL_APIC
7d428966
PZ
1138 if (!x86_pmu.apic || !x86_pmu_initialized())
1139 return;
1140
b6276f35 1141 apic->send_IPI_self(LOCAL_PENDING_VECTOR);
04da8a43 1142#endif
b6276f35
PZ
1143}
1144
cdd6c482 1145void perf_events_lapic_init(void)
241771ef 1146{
04da8a43
IM
1147#ifdef CONFIG_X86_LOCAL_APIC
1148 if (!x86_pmu.apic || !x86_pmu_initialized())
241771ef 1149 return;
85cf9dba 1150
241771ef 1151 /*
c323d95f 1152 * Always use NMI for PMU
241771ef 1153 */
c323d95f 1154 apic_write(APIC_LVTPC, APIC_DM_NMI);
04da8a43 1155#endif
241771ef
IM
1156}
1157
1158static int __kprobes
cdd6c482 1159perf_event_nmi_handler(struct notifier_block *self,
241771ef
IM
1160 unsigned long cmd, void *__args)
1161{
1162 struct die_args *args = __args;
1163 struct pt_regs *regs;
b0f3f28e 1164
cdd6c482 1165 if (!atomic_read(&active_events))
63a809a2
PZ
1166 return NOTIFY_DONE;
1167
b0f3f28e
PZ
1168 switch (cmd) {
1169 case DIE_NMI:
1170 case DIE_NMI_IPI:
1171 break;
241771ef 1172
b0f3f28e 1173 default:
241771ef 1174 return NOTIFY_DONE;
b0f3f28e 1175 }
241771ef
IM
1176
1177 regs = args->regs;
1178
04da8a43 1179#ifdef CONFIG_X86_LOCAL_APIC
241771ef 1180 apic_write(APIC_LVTPC, APIC_DM_NMI);
04da8a43 1181#endif
a4016a79
PZ
1182 /*
1183 * Can't rely on the handled return value to say it was our NMI, two
cdd6c482 1184 * events could trigger 'simultaneously' raising two back-to-back NMIs.
a4016a79
PZ
1185 *
1186 * If the first NMI handles both, the latter will be empty and daze
1187 * the CPU.
1188 */
a3288106 1189 x86_pmu.handle_irq(regs);
241771ef 1190
a4016a79 1191 return NOTIFY_STOP;
241771ef
IM
1192}
1193
f22f54f4
PZ
1194static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1195 .notifier_call = perf_event_nmi_handler,
1196 .next = NULL,
1197 .priority = 1
1198};
1199
63b14649 1200static struct event_constraint unconstrained;
38331f62 1201static struct event_constraint emptyconstraint;
63b14649 1202
63b14649 1203static struct event_constraint *
f22f54f4 1204x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1da53e02 1205{
63b14649 1206 struct event_constraint *c;
1da53e02 1207
1da53e02
SE
1208 if (x86_pmu.event_constraints) {
1209 for_each_event_constraint(c, x86_pmu.event_constraints) {
63b14649
PZ
1210 if ((event->hw.config & c->cmask) == c->code)
1211 return c;
1da53e02
SE
1212 }
1213 }
63b14649
PZ
1214
1215 return &unconstrained;
1da53e02
SE
1216}
1217
1da53e02 1218static int x86_event_sched_in(struct perf_event *event,
6e37738a 1219 struct perf_cpu_context *cpuctx)
1da53e02
SE
1220{
1221 int ret = 0;
1222
1223 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1224 event->oncpu = smp_processor_id();
1da53e02
SE
1225 event->tstamp_running += event->ctx->time - event->tstamp_stopped;
1226
1227 if (!is_x86_event(event))
1228 ret = event->pmu->enable(event);
1229
1230 if (!ret && !is_software_event(event))
1231 cpuctx->active_oncpu++;
1232
1233 if (!ret && event->attr.exclusive)
1234 cpuctx->exclusive = 1;
1235
1236 return ret;
1237}
1238
1239static void x86_event_sched_out(struct perf_event *event,
6e37738a 1240 struct perf_cpu_context *cpuctx)
1da53e02
SE
1241{
1242 event->state = PERF_EVENT_STATE_INACTIVE;
1243 event->oncpu = -1;
1244
1245 if (!is_x86_event(event))
1246 event->pmu->disable(event);
1247
1248 event->tstamp_running -= event->ctx->time - event->tstamp_stopped;
1249
1250 if (!is_software_event(event))
1251 cpuctx->active_oncpu--;
1252
1253 if (event->attr.exclusive || !cpuctx->active_oncpu)
1254 cpuctx->exclusive = 0;
1255}
1256
1257/*
1258 * Called to enable a whole group of events.
1259 * Returns 1 if the group was enabled, or -EAGAIN if it could not be.
1260 * Assumes the caller has disabled interrupts and has
1261 * frozen the PMU with hw_perf_save_disable.
1262 *
1263 * called with PMU disabled. If successful and return value 1,
1264 * then guaranteed to call perf_enable() and hw_perf_enable()
1265 */
1266int hw_perf_group_sched_in(struct perf_event *leader,
1267 struct perf_cpu_context *cpuctx,
6e37738a 1268 struct perf_event_context *ctx)
1da53e02 1269{
6e37738a 1270 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1da53e02
SE
1271 struct perf_event *sub;
1272 int assign[X86_PMC_IDX_MAX];
1273 int n0, n1, ret;
1274
1275 /* n0 = total number of events */
1276 n0 = collect_events(cpuc, leader, true);
1277 if (n0 < 0)
1278 return n0;
1279
1280 ret = x86_schedule_events(cpuc, n0, assign);
1281 if (ret)
1282 return ret;
1283
6e37738a 1284 ret = x86_event_sched_in(leader, cpuctx);
1da53e02
SE
1285 if (ret)
1286 return ret;
1287
1288 n1 = 1;
1289 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
8113070d 1290 if (sub->state > PERF_EVENT_STATE_OFF) {
6e37738a 1291 ret = x86_event_sched_in(sub, cpuctx);
1da53e02
SE
1292 if (ret)
1293 goto undo;
1294 ++n1;
1295 }
1296 }
1297 /*
1298 * copy new assignment, now we know it is possible
1299 * will be used by hw_perf_enable()
1300 */
1301 memcpy(cpuc->assign, assign, n0*sizeof(int));
1302
1303 cpuc->n_events = n0;
356e1f2e 1304 cpuc->n_added += n1;
1da53e02
SE
1305 ctx->nr_active += n1;
1306
1307 /*
1308 * 1 means successful and events are active
1309 * This is not quite true because we defer
1310 * actual activation until hw_perf_enable() but
1311 * this way we* ensure caller won't try to enable
1312 * individual events
1313 */
1314 return 1;
1315undo:
6e37738a 1316 x86_event_sched_out(leader, cpuctx);
1da53e02
SE
1317 n0 = 1;
1318 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1319 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
6e37738a 1320 x86_event_sched_out(sub, cpuctx);
1da53e02
SE
1321 if (++n0 == n1)
1322 break;
1323 }
1324 }
1325 return ret;
1326}
1327
f22f54f4
PZ
1328#include "perf_event_amd.c"
1329#include "perf_event_p6.c"
1330#include "perf_event_intel.c"
f87ad35d 1331
3f6da390
PZ
1332static int __cpuinit
1333x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1334{
1335 unsigned int cpu = (long)hcpu;
1336
1337 switch (action & ~CPU_TASKS_FROZEN) {
1338 case CPU_UP_PREPARE:
1339 if (x86_pmu.cpu_prepare)
1340 x86_pmu.cpu_prepare(cpu);
1341 break;
1342
1343 case CPU_STARTING:
1344 if (x86_pmu.cpu_starting)
1345 x86_pmu.cpu_starting(cpu);
1346 break;
1347
1348 case CPU_DYING:
1349 if (x86_pmu.cpu_dying)
1350 x86_pmu.cpu_dying(cpu);
1351 break;
1352
1353 case CPU_DEAD:
1354 if (x86_pmu.cpu_dead)
1355 x86_pmu.cpu_dead(cpu);
1356 break;
1357
1358 default:
1359 break;
1360 }
1361
1362 return NOTIFY_OK;
1363}
1364
12558038
CG
1365static void __init pmu_check_apic(void)
1366{
1367 if (cpu_has_apic)
1368 return;
1369
1370 x86_pmu.apic = 0;
1371 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1372 pr_info("no hardware sampling interrupt available.\n");
1373}
1374
cdd6c482 1375void __init init_hw_perf_events(void)
b56a3802 1376{
b622d644 1377 struct event_constraint *c;
72eae04d
RR
1378 int err;
1379
cdd6c482 1380 pr_info("Performance Events: ");
1123e3ad 1381
b56a3802
JSR
1382 switch (boot_cpu_data.x86_vendor) {
1383 case X86_VENDOR_INTEL:
72eae04d 1384 err = intel_pmu_init();
b56a3802 1385 break;
f87ad35d 1386 case X86_VENDOR_AMD:
72eae04d 1387 err = amd_pmu_init();
f87ad35d 1388 break;
4138960a
RR
1389 default:
1390 return;
b56a3802 1391 }
1123e3ad 1392 if (err != 0) {
cdd6c482 1393 pr_cont("no PMU driver, software events only.\n");
b56a3802 1394 return;
1123e3ad 1395 }
b56a3802 1396
12558038
CG
1397 pmu_check_apic();
1398
1123e3ad 1399 pr_cont("%s PMU driver.\n", x86_pmu.name);
faa28ae0 1400
cdd6c482
IM
1401 if (x86_pmu.num_events > X86_PMC_MAX_GENERIC) {
1402 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
1403 x86_pmu.num_events, X86_PMC_MAX_GENERIC);
1404 x86_pmu.num_events = X86_PMC_MAX_GENERIC;
241771ef 1405 }
cdd6c482
IM
1406 perf_event_mask = (1 << x86_pmu.num_events) - 1;
1407 perf_max_events = x86_pmu.num_events;
241771ef 1408
cdd6c482
IM
1409 if (x86_pmu.num_events_fixed > X86_PMC_MAX_FIXED) {
1410 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
1411 x86_pmu.num_events_fixed, X86_PMC_MAX_FIXED);
1412 x86_pmu.num_events_fixed = X86_PMC_MAX_FIXED;
703e937c 1413 }
862a1a5f 1414
cdd6c482
IM
1415 perf_event_mask |=
1416 ((1LL << x86_pmu.num_events_fixed)-1) << X86_PMC_IDX_FIXED;
1417 x86_pmu.intel_ctrl = perf_event_mask;
241771ef 1418
cdd6c482
IM
1419 perf_events_lapic_init();
1420 register_die_notifier(&perf_event_nmi_notifier);
1123e3ad 1421
63b14649 1422 unconstrained = (struct event_constraint)
fce877e3
PZ
1423 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_events) - 1,
1424 0, x86_pmu.num_events);
63b14649 1425
b622d644
PZ
1426 if (x86_pmu.event_constraints) {
1427 for_each_event_constraint(c, x86_pmu.event_constraints) {
1428 if (c->cmask != INTEL_ARCH_FIXED_MASK)
1429 continue;
1430
1431 c->idxmsk64 |= (1ULL << x86_pmu.num_events) - 1;
1432 c->weight += x86_pmu.num_events;
1433 }
1434 }
1435
57c0c15b
IM
1436 pr_info("... version: %d\n", x86_pmu.version);
1437 pr_info("... bit width: %d\n", x86_pmu.event_bits);
1438 pr_info("... generic registers: %d\n", x86_pmu.num_events);
1439 pr_info("... value mask: %016Lx\n", x86_pmu.event_mask);
1440 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1441 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_events_fixed);
1442 pr_info("... event mask: %016Lx\n", perf_event_mask);
3f6da390
PZ
1443
1444 perf_cpu_notifier(x86_pmu_notifier);
241771ef 1445}
621a01ea 1446
cdd6c482 1447static inline void x86_pmu_read(struct perf_event *event)
ee06094f 1448{
cc2ad4ba 1449 x86_perf_event_update(event);
ee06094f
IM
1450}
1451
4aeb0b42
RR
1452static const struct pmu pmu = {
1453 .enable = x86_pmu_enable,
1454 .disable = x86_pmu_disable,
d76a0812
SE
1455 .start = x86_pmu_start,
1456 .stop = x86_pmu_stop,
4aeb0b42 1457 .read = x86_pmu_read,
a78ac325 1458 .unthrottle = x86_pmu_unthrottle,
621a01ea
IM
1459};
1460
1da53e02
SE
1461/*
1462 * validate a single event group
1463 *
1464 * validation include:
184f412c
IM
1465 * - check events are compatible which each other
1466 * - events do not compete for the same counter
1467 * - number of events <= number of counters
1da53e02
SE
1468 *
1469 * validation ensures the group can be loaded onto the
1470 * PMU if it was the only group available.
1471 */
fe9081cc
PZ
1472static int validate_group(struct perf_event *event)
1473{
1da53e02 1474 struct perf_event *leader = event->group_leader;
502568d5
PZ
1475 struct cpu_hw_events *fake_cpuc;
1476 int ret, n;
fe9081cc 1477
502568d5
PZ
1478 ret = -ENOMEM;
1479 fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1480 if (!fake_cpuc)
1481 goto out;
fe9081cc 1482
1da53e02
SE
1483 /*
1484 * the event is not yet connected with its
1485 * siblings therefore we must first collect
1486 * existing siblings, then add the new event
1487 * before we can simulate the scheduling
1488 */
502568d5
PZ
1489 ret = -ENOSPC;
1490 n = collect_events(fake_cpuc, leader, true);
1da53e02 1491 if (n < 0)
502568d5 1492 goto out_free;
fe9081cc 1493
502568d5
PZ
1494 fake_cpuc->n_events = n;
1495 n = collect_events(fake_cpuc, event, false);
1da53e02 1496 if (n < 0)
502568d5 1497 goto out_free;
fe9081cc 1498
502568d5 1499 fake_cpuc->n_events = n;
1da53e02 1500
502568d5
PZ
1501 ret = x86_schedule_events(fake_cpuc, n, NULL);
1502
1503out_free:
1504 kfree(fake_cpuc);
1505out:
1506 return ret;
fe9081cc
PZ
1507}
1508
cdd6c482 1509const struct pmu *hw_perf_event_init(struct perf_event *event)
621a01ea 1510{
8113070d 1511 const struct pmu *tmp;
621a01ea
IM
1512 int err;
1513
cdd6c482 1514 err = __hw_perf_event_init(event);
fe9081cc 1515 if (!err) {
8113070d
SE
1516 /*
1517 * we temporarily connect event to its pmu
1518 * such that validate_group() can classify
1519 * it as an x86 event using is_x86_event()
1520 */
1521 tmp = event->pmu;
1522 event->pmu = &pmu;
1523
fe9081cc
PZ
1524 if (event->group_leader != event)
1525 err = validate_group(event);
8113070d
SE
1526
1527 event->pmu = tmp;
fe9081cc 1528 }
a1792cda 1529 if (err) {
cdd6c482
IM
1530 if (event->destroy)
1531 event->destroy(event);
9ea98e19 1532 return ERR_PTR(err);
a1792cda 1533 }
621a01ea 1534
4aeb0b42 1535 return &pmu;
621a01ea 1536}
d7d59fb3
PZ
1537
1538/*
1539 * callchain support
1540 */
1541
1542static inline
f9188e02 1543void callchain_store(struct perf_callchain_entry *entry, u64 ip)
d7d59fb3 1544{
f9188e02 1545 if (entry->nr < PERF_MAX_STACK_DEPTH)
d7d59fb3
PZ
1546 entry->ip[entry->nr++] = ip;
1547}
1548
245b2e70
TH
1549static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_irq_entry);
1550static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_nmi_entry);
d7d59fb3
PZ
1551
1552
1553static void
1554backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
1555{
1556 /* Ignore warnings */
1557}
1558
1559static void backtrace_warning(void *data, char *msg)
1560{
1561 /* Ignore warnings */
1562}
1563
1564static int backtrace_stack(void *data, char *name)
1565{
038e836e 1566 return 0;
d7d59fb3
PZ
1567}
1568
1569static void backtrace_address(void *data, unsigned long addr, int reliable)
1570{
1571 struct perf_callchain_entry *entry = data;
1572
1573 if (reliable)
1574 callchain_store(entry, addr);
1575}
1576
1577static const struct stacktrace_ops backtrace_ops = {
1578 .warning = backtrace_warning,
1579 .warning_symbol = backtrace_warning_symbol,
1580 .stack = backtrace_stack,
1581 .address = backtrace_address,
06d65bda 1582 .walk_stack = print_context_stack_bp,
d7d59fb3
PZ
1583};
1584
038e836e
IM
1585#include "../dumpstack.h"
1586
d7d59fb3
PZ
1587static void
1588perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
1589{
f9188e02 1590 callchain_store(entry, PERF_CONTEXT_KERNEL);
038e836e 1591 callchain_store(entry, regs->ip);
d7d59fb3 1592
48b5ba9c 1593 dump_trace(NULL, regs, NULL, regs->bp, &backtrace_ops, entry);
d7d59fb3
PZ
1594}
1595
74193ef0
PZ
1596/*
1597 * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
1598 */
1599static unsigned long
1600copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
d7d59fb3 1601{
74193ef0
PZ
1602 unsigned long offset, addr = (unsigned long)from;
1603 int type = in_nmi() ? KM_NMI : KM_IRQ0;
1604 unsigned long size, len = 0;
1605 struct page *page;
1606 void *map;
d7d59fb3
PZ
1607 int ret;
1608
74193ef0
PZ
1609 do {
1610 ret = __get_user_pages_fast(addr, 1, 0, &page);
1611 if (!ret)
1612 break;
d7d59fb3 1613
74193ef0
PZ
1614 offset = addr & (PAGE_SIZE - 1);
1615 size = min(PAGE_SIZE - offset, n - len);
d7d59fb3 1616
74193ef0
PZ
1617 map = kmap_atomic(page, type);
1618 memcpy(to, map+offset, size);
1619 kunmap_atomic(map, type);
1620 put_page(page);
1621
1622 len += size;
1623 to += size;
1624 addr += size;
1625
1626 } while (len < n);
1627
1628 return len;
1629}
1630
1631static int copy_stack_frame(const void __user *fp, struct stack_frame *frame)
1632{
1633 unsigned long bytes;
1634
1635 bytes = copy_from_user_nmi(frame, fp, sizeof(*frame));
1636
1637 return bytes == sizeof(*frame);
d7d59fb3
PZ
1638}
1639
1640static void
1641perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
1642{
1643 struct stack_frame frame;
1644 const void __user *fp;
1645
5a6cec3a
IM
1646 if (!user_mode(regs))
1647 regs = task_pt_regs(current);
1648
74193ef0 1649 fp = (void __user *)regs->bp;
d7d59fb3 1650
f9188e02 1651 callchain_store(entry, PERF_CONTEXT_USER);
d7d59fb3
PZ
1652 callchain_store(entry, regs->ip);
1653
f9188e02 1654 while (entry->nr < PERF_MAX_STACK_DEPTH) {
038e836e 1655 frame.next_frame = NULL;
d7d59fb3
PZ
1656 frame.return_address = 0;
1657
1658 if (!copy_stack_frame(fp, &frame))
1659 break;
1660
5a6cec3a 1661 if ((unsigned long)fp < regs->sp)
d7d59fb3
PZ
1662 break;
1663
1664 callchain_store(entry, frame.return_address);
038e836e 1665 fp = frame.next_frame;
d7d59fb3
PZ
1666 }
1667}
1668
1669static void
1670perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
1671{
1672 int is_user;
1673
1674 if (!regs)
1675 return;
1676
1677 is_user = user_mode(regs);
1678
d7d59fb3
PZ
1679 if (is_user && current->state != TASK_RUNNING)
1680 return;
1681
1682 if (!is_user)
1683 perf_callchain_kernel(regs, entry);
1684
1685 if (current->mm)
1686 perf_callchain_user(regs, entry);
1687}
1688
1689struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1690{
1691 struct perf_callchain_entry *entry;
1692
1693 if (in_nmi())
245b2e70 1694 entry = &__get_cpu_var(pmc_nmi_entry);
d7d59fb3 1695 else
245b2e70 1696 entry = &__get_cpu_var(pmc_irq_entry);
d7d59fb3
PZ
1697
1698 entry->nr = 0;
1699
1700 perf_do_callchain(regs, entry);
1701
1702 return entry;
1703}
5331d7b8
FW
1704
1705void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
1706{
1707 regs->ip = ip;
1708 /*
1709 * perf_arch_fetch_caller_regs adds another call, we need to increment
1710 * the skip level
1711 */
1712 regs->bp = rewind_frame_pointer(skip + 1);
1713 regs->cs = __KERNEL_CS;
1714 local_save_flags(regs->flags);
1715}
This page took 0.209954 seconds and 5 git commands to generate.