perf/x86/intel: Reset more state in PMU reset
[deliverable/linux.git] / arch / x86 / kernel / cpu / perf_event.c
CommitLineData
241771ef 1/*
cdd6c482 2 * Performance events x86 architecture code
241771ef 3 *
98144511
IM
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
30dd568c 9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
1da53e02 10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
241771ef
IM
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
cdd6c482 15#include <linux/perf_event.h>
241771ef
IM
16#include <linux/capability.h>
17#include <linux/notifier.h>
18#include <linux/hardirq.h>
19#include <linux/kprobes.h>
4ac13294 20#include <linux/module.h>
241771ef
IM
21#include <linux/kdebug.h>
22#include <linux/sched.h>
d7d59fb3 23#include <linux/uaccess.h>
5a0e3ad6 24#include <linux/slab.h>
30dd568c 25#include <linux/cpu.h>
272d30be 26#include <linux/bitops.h>
0c9d42ed 27#include <linux/device.h>
241771ef 28
241771ef 29#include <asm/apic.h>
d7d59fb3 30#include <asm/stacktrace.h>
4e935e47 31#include <asm/nmi.h>
69092624 32#include <asm/smp.h>
c8e5910e 33#include <asm/alternative.h>
7911d3f7 34#include <asm/mmu_context.h>
375074cc 35#include <asm/tlbflush.h>
e3f3541c 36#include <asm/timer.h>
d07bdfd3
PZ
37#include <asm/desc.h>
38#include <asm/ldt.h>
241771ef 39
de0428a7
KW
40#include "perf_event.h"
41
de0428a7 42struct x86_pmu x86_pmu __read_mostly;
efc9f05d 43
de0428a7 44DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
b0f3f28e
PZ
45 .enabled = 1,
46};
241771ef 47
a6673429
AL
48struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE;
49
de0428a7 50u64 __read_mostly hw_cache_event_ids
8326f44d
IM
51 [PERF_COUNT_HW_CACHE_MAX]
52 [PERF_COUNT_HW_CACHE_OP_MAX]
53 [PERF_COUNT_HW_CACHE_RESULT_MAX];
de0428a7 54u64 __read_mostly hw_cache_extra_regs
e994d7d2
AK
55 [PERF_COUNT_HW_CACHE_MAX]
56 [PERF_COUNT_HW_CACHE_OP_MAX]
57 [PERF_COUNT_HW_CACHE_RESULT_MAX];
8326f44d 58
ee06094f 59/*
cdd6c482
IM
60 * Propagate event elapsed time into the generic event.
61 * Can only be executed on the CPU where the event is active.
ee06094f
IM
62 * Returns the delta events processed.
63 */
de0428a7 64u64 x86_perf_event_update(struct perf_event *event)
ee06094f 65{
cc2ad4ba 66 struct hw_perf_event *hwc = &event->hw;
948b1bb8 67 int shift = 64 - x86_pmu.cntval_bits;
ec3232bd 68 u64 prev_raw_count, new_raw_count;
cc2ad4ba 69 int idx = hwc->idx;
ec3232bd 70 s64 delta;
ee06094f 71
15c7ad51 72 if (idx == INTEL_PMC_IDX_FIXED_BTS)
30dd568c
MM
73 return 0;
74
ee06094f 75 /*
cdd6c482 76 * Careful: an NMI might modify the previous event value.
ee06094f
IM
77 *
78 * Our tactic to handle this is to first atomically read and
79 * exchange a new raw count - then add that new-prev delta
cdd6c482 80 * count to the generic event atomically:
ee06094f
IM
81 */
82again:
e7850595 83 prev_raw_count = local64_read(&hwc->prev_count);
c48b6053 84 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
ee06094f 85
e7850595 86 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
ee06094f
IM
87 new_raw_count) != prev_raw_count)
88 goto again;
89
90 /*
91 * Now we have the new raw value and have updated the prev
92 * timestamp already. We can now calculate the elapsed delta
cdd6c482 93 * (event-)time and add that to the generic event.
ee06094f
IM
94 *
95 * Careful, not all hw sign-extends above the physical width
ec3232bd 96 * of the count.
ee06094f 97 */
ec3232bd
PZ
98 delta = (new_raw_count << shift) - (prev_raw_count << shift);
99 delta >>= shift;
ee06094f 100
e7850595
PZ
101 local64_add(delta, &event->count);
102 local64_sub(delta, &hwc->period_left);
4b7bfd0d
RR
103
104 return new_raw_count;
ee06094f
IM
105}
106
a7e3ed1e
AK
107/*
108 * Find and validate any extra registers to set up.
109 */
110static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
111{
efc9f05d 112 struct hw_perf_event_extra *reg;
a7e3ed1e
AK
113 struct extra_reg *er;
114
efc9f05d 115 reg = &event->hw.extra_reg;
a7e3ed1e
AK
116
117 if (!x86_pmu.extra_regs)
118 return 0;
119
120 for (er = x86_pmu.extra_regs; er->msr; er++) {
121 if (er->event != (config & er->config_mask))
122 continue;
123 if (event->attr.config1 & ~er->valid_mask)
124 return -EINVAL;
338b522c
KL
125 /* Check if the extra msrs can be safely accessed*/
126 if (!er->extra_msr_access)
127 return -ENXIO;
efc9f05d
SE
128
129 reg->idx = er->idx;
130 reg->config = event->attr.config1;
131 reg->reg = er->msr;
a7e3ed1e
AK
132 break;
133 }
134 return 0;
135}
136
cdd6c482 137static atomic_t active_events;
4e935e47
PZ
138static DEFINE_MUTEX(pmc_reserve_mutex);
139
b27ea29c
RR
140#ifdef CONFIG_X86_LOCAL_APIC
141
4e935e47
PZ
142static bool reserve_pmc_hardware(void)
143{
144 int i;
145
948b1bb8 146 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989 147 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
4e935e47
PZ
148 goto perfctr_fail;
149 }
150
948b1bb8 151 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989 152 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
4e935e47
PZ
153 goto eventsel_fail;
154 }
155
156 return true;
157
158eventsel_fail:
159 for (i--; i >= 0; i--)
41bf4989 160 release_evntsel_nmi(x86_pmu_config_addr(i));
4e935e47 161
948b1bb8 162 i = x86_pmu.num_counters;
4e935e47
PZ
163
164perfctr_fail:
165 for (i--; i >= 0; i--)
41bf4989 166 release_perfctr_nmi(x86_pmu_event_addr(i));
4e935e47 167
4e935e47
PZ
168 return false;
169}
170
171static void release_pmc_hardware(void)
172{
173 int i;
174
948b1bb8 175 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989
RR
176 release_perfctr_nmi(x86_pmu_event_addr(i));
177 release_evntsel_nmi(x86_pmu_config_addr(i));
4e935e47 178 }
4e935e47
PZ
179}
180
b27ea29c
RR
181#else
182
183static bool reserve_pmc_hardware(void) { return true; }
184static void release_pmc_hardware(void) {}
185
186#endif
187
33c6d6a7
DZ
188static bool check_hw_exists(void)
189{
a5ebe0ba
GD
190 u64 val, val_fail, val_new= ~0;
191 int i, reg, reg_fail, ret = 0;
192 int bios_fail = 0;
33c6d6a7 193
4407204c
PZ
194 /*
195 * Check to see if the BIOS enabled any of the counters, if so
196 * complain and bail.
197 */
198 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989 199 reg = x86_pmu_config_addr(i);
4407204c
PZ
200 ret = rdmsrl_safe(reg, &val);
201 if (ret)
202 goto msr_fail;
a5ebe0ba
GD
203 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
204 bios_fail = 1;
205 val_fail = val;
206 reg_fail = reg;
207 }
4407204c
PZ
208 }
209
210 if (x86_pmu.num_counters_fixed) {
211 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
212 ret = rdmsrl_safe(reg, &val);
213 if (ret)
214 goto msr_fail;
215 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
a5ebe0ba
GD
216 if (val & (0x03 << i*4)) {
217 bios_fail = 1;
218 val_fail = val;
219 reg_fail = reg;
220 }
4407204c
PZ
221 }
222 }
223
224 /*
bffd5fc2
AP
225 * Read the current value, change it and read it back to see if it
226 * matches, this is needed to detect certain hardware emulators
227 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
4407204c 228 */
f285f92f 229 reg = x86_pmu_event_addr(0);
bffd5fc2
AP
230 if (rdmsrl_safe(reg, &val))
231 goto msr_fail;
232 val ^= 0xffffUL;
f285f92f
RR
233 ret = wrmsrl_safe(reg, val);
234 ret |= rdmsrl_safe(reg, &val_new);
33c6d6a7 235 if (ret || val != val_new)
4407204c 236 goto msr_fail;
33c6d6a7 237
45daae57
IM
238 /*
239 * We still allow the PMU driver to operate:
240 */
a5ebe0ba
GD
241 if (bios_fail) {
242 printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
243 printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg_fail, val_fail);
244 }
45daae57
IM
245
246 return true;
4407204c
PZ
247
248msr_fail:
249 printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
65d71fe1
PZI
250 printk("%sFailed to access perfctr msr (MSR %x is %Lx)\n",
251 boot_cpu_has(X86_FEATURE_HYPERVISOR) ? KERN_INFO : KERN_ERR,
252 reg, val_new);
45daae57 253
4407204c 254 return false;
33c6d6a7
DZ
255}
256
cdd6c482 257static void hw_perf_event_destroy(struct perf_event *event)
4e935e47 258{
cdd6c482 259 if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
4e935e47 260 release_pmc_hardware();
ca037701 261 release_ds_buffers();
4e935e47
PZ
262 mutex_unlock(&pmc_reserve_mutex);
263 }
264}
265
48070342
AS
266void hw_perf_lbr_event_destroy(struct perf_event *event)
267{
268 hw_perf_event_destroy(event);
269
270 /* undo the lbr/bts event accounting */
271 x86_del_exclusive(x86_lbr_exclusive_lbr);
272}
273
85cf9dba
RR
274static inline int x86_pmu_initialized(void)
275{
276 return x86_pmu.handle_irq != NULL;
277}
278
8326f44d 279static inline int
e994d7d2 280set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
8326f44d 281{
e994d7d2 282 struct perf_event_attr *attr = &event->attr;
8326f44d
IM
283 unsigned int cache_type, cache_op, cache_result;
284 u64 config, val;
285
286 config = attr->config;
287
288 cache_type = (config >> 0) & 0xff;
289 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
290 return -EINVAL;
291
292 cache_op = (config >> 8) & 0xff;
293 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
294 return -EINVAL;
295
296 cache_result = (config >> 16) & 0xff;
297 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
298 return -EINVAL;
299
300 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
301
302 if (val == 0)
303 return -ENOENT;
304
305 if (val == -1)
306 return -EINVAL;
307
308 hwc->config |= val;
e994d7d2
AK
309 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
310 return x86_pmu_extra_regs(val, event);
8326f44d
IM
311}
312
48070342
AS
313/*
314 * Check if we can create event of a certain type (that no conflicting events
315 * are present).
316 */
317int x86_add_exclusive(unsigned int what)
318{
319 int ret = -EBUSY, i;
320
321 if (atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what]))
322 return 0;
323
324 mutex_lock(&pmc_reserve_mutex);
325 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++)
326 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
327 goto out;
328
329 atomic_inc(&x86_pmu.lbr_exclusive[what]);
330 ret = 0;
331
332out:
333 mutex_unlock(&pmc_reserve_mutex);
334 return ret;
335}
336
337void x86_del_exclusive(unsigned int what)
338{
339 atomic_dec(&x86_pmu.lbr_exclusive[what]);
340}
341
de0428a7 342int x86_setup_perfctr(struct perf_event *event)
c1726f34
RR
343{
344 struct perf_event_attr *attr = &event->attr;
345 struct hw_perf_event *hwc = &event->hw;
346 u64 config;
347
6c7e550f 348 if (!is_sampling_event(event)) {
c1726f34
RR
349 hwc->sample_period = x86_pmu.max_period;
350 hwc->last_period = hwc->sample_period;
e7850595 351 local64_set(&hwc->period_left, hwc->sample_period);
c1726f34
RR
352 }
353
354 if (attr->type == PERF_TYPE_RAW)
ed13ec58 355 return x86_pmu_extra_regs(event->attr.config, event);
c1726f34
RR
356
357 if (attr->type == PERF_TYPE_HW_CACHE)
e994d7d2 358 return set_ext_hw_attr(hwc, event);
c1726f34
RR
359
360 if (attr->config >= x86_pmu.max_events)
361 return -EINVAL;
362
363 /*
364 * The generic map:
365 */
366 config = x86_pmu.event_map(attr->config);
367
368 if (config == 0)
369 return -ENOENT;
370
371 if (config == -1LL)
372 return -EINVAL;
373
374 /*
375 * Branch tracing:
376 */
18a073a3
PZ
377 if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
378 !attr->freq && hwc->sample_period == 1) {
c1726f34 379 /* BTS is not supported by this architecture. */
6809b6ea 380 if (!x86_pmu.bts_active)
c1726f34
RR
381 return -EOPNOTSUPP;
382
383 /* BTS is currently only allowed for user-mode. */
384 if (!attr->exclude_kernel)
385 return -EOPNOTSUPP;
48070342
AS
386
387 /* disallow bts if conflicting events are present */
388 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
389 return -EBUSY;
390
391 event->destroy = hw_perf_lbr_event_destroy;
c1726f34
RR
392 }
393
394 hwc->config |= config;
395
396 return 0;
397}
4261e0e0 398
ff3fb511
SE
399/*
400 * check that branch_sample_type is compatible with
401 * settings needed for precise_ip > 1 which implies
402 * using the LBR to capture ALL taken branches at the
403 * priv levels of the measurement
404 */
405static inline int precise_br_compat(struct perf_event *event)
406{
407 u64 m = event->attr.branch_sample_type;
408 u64 b = 0;
409
410 /* must capture all branches */
411 if (!(m & PERF_SAMPLE_BRANCH_ANY))
412 return 0;
413
414 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
415
416 if (!event->attr.exclude_user)
417 b |= PERF_SAMPLE_BRANCH_USER;
418
419 if (!event->attr.exclude_kernel)
420 b |= PERF_SAMPLE_BRANCH_KERNEL;
421
422 /*
423 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
424 */
425
426 return m == b;
427}
428
de0428a7 429int x86_pmu_hw_config(struct perf_event *event)
a072738e 430{
ab608344
PZ
431 if (event->attr.precise_ip) {
432 int precise = 0;
433
434 /* Support for constant skid */
c93dc84c 435 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
ab608344
PZ
436 precise++;
437
5553be26 438 /* Support for IP fixup */
03de874a 439 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
5553be26
PZ
440 precise++;
441 }
ab608344
PZ
442
443 if (event->attr.precise_ip > precise)
444 return -EOPNOTSUPP;
4b854900
YZ
445 }
446 /*
447 * check that PEBS LBR correction does not conflict with
448 * whatever the user is asking with attr->branch_sample_type
449 */
450 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
451 u64 *br_type = &event->attr.branch_sample_type;
452
453 if (has_branch_stack(event)) {
454 if (!precise_br_compat(event))
455 return -EOPNOTSUPP;
456
457 /* branch_sample_type is compatible */
458
459 } else {
460 /*
461 * user did not specify branch_sample_type
462 *
463 * For PEBS fixups, we capture all
464 * the branches at the priv level of the
465 * event.
466 */
467 *br_type = PERF_SAMPLE_BRANCH_ANY;
468
469 if (!event->attr.exclude_user)
470 *br_type |= PERF_SAMPLE_BRANCH_USER;
471
472 if (!event->attr.exclude_kernel)
473 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
ff3fb511 474 }
ab608344
PZ
475 }
476
e18bf526
YZ
477 if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
478 event->attach_state |= PERF_ATTACH_TASK_DATA;
479
a072738e
CG
480 /*
481 * Generate PMC IRQs:
482 * (keep 'enabled' bit clear for now)
483 */
b4cdc5c2 484 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
a072738e
CG
485
486 /*
487 * Count user and OS events unless requested not to
488 */
b4cdc5c2
PZ
489 if (!event->attr.exclude_user)
490 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
491 if (!event->attr.exclude_kernel)
492 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
a072738e 493
b4cdc5c2
PZ
494 if (event->attr.type == PERF_TYPE_RAW)
495 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
a072738e 496
294fe0f5
AK
497 if (event->attr.sample_period && x86_pmu.limit_period) {
498 if (x86_pmu.limit_period(event, event->attr.sample_period) >
499 event->attr.sample_period)
500 return -EINVAL;
501 }
502
9d0fcba6 503 return x86_setup_perfctr(event);
a098f448
RR
504}
505
241771ef 506/*
0d48696f 507 * Setup the hardware configuration for a given attr_type
241771ef 508 */
b0a873eb 509static int __x86_pmu_event_init(struct perf_event *event)
241771ef 510{
4e935e47 511 int err;
241771ef 512
85cf9dba
RR
513 if (!x86_pmu_initialized())
514 return -ENODEV;
241771ef 515
4e935e47 516 err = 0;
cdd6c482 517 if (!atomic_inc_not_zero(&active_events)) {
4e935e47 518 mutex_lock(&pmc_reserve_mutex);
cdd6c482 519 if (atomic_read(&active_events) == 0) {
30dd568c
MM
520 if (!reserve_pmc_hardware())
521 err = -EBUSY;
f80c9e30
PZ
522 else
523 reserve_ds_buffers();
30dd568c
MM
524 }
525 if (!err)
cdd6c482 526 atomic_inc(&active_events);
4e935e47
PZ
527 mutex_unlock(&pmc_reserve_mutex);
528 }
529 if (err)
530 return err;
531
cdd6c482 532 event->destroy = hw_perf_event_destroy;
a1792cda 533
4261e0e0
RR
534 event->hw.idx = -1;
535 event->hw.last_cpu = -1;
536 event->hw.last_tag = ~0ULL;
b690081d 537
efc9f05d
SE
538 /* mark unused */
539 event->hw.extra_reg.idx = EXTRA_REG_NONE;
b36817e8
SE
540 event->hw.branch_reg.idx = EXTRA_REG_NONE;
541
9d0fcba6 542 return x86_pmu.hw_config(event);
4261e0e0
RR
543}
544
de0428a7 545void x86_pmu_disable_all(void)
f87ad35d 546{
89cbc767 547 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
9e35ad38
PZ
548 int idx;
549
948b1bb8 550 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
b0f3f28e
PZ
551 u64 val;
552
43f6201a 553 if (!test_bit(idx, cpuc->active_mask))
4295ee62 554 continue;
41bf4989 555 rdmsrl(x86_pmu_config_addr(idx), val);
bb1165d6 556 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
4295ee62 557 continue;
bb1165d6 558 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
41bf4989 559 wrmsrl(x86_pmu_config_addr(idx), val);
f87ad35d 560 }
f87ad35d
JSR
561}
562
a4eaf7f1 563static void x86_pmu_disable(struct pmu *pmu)
b56a3802 564{
89cbc767 565 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1da53e02 566
85cf9dba 567 if (!x86_pmu_initialized())
9e35ad38 568 return;
1da53e02 569
1a6e21f7
PZ
570 if (!cpuc->enabled)
571 return;
572
573 cpuc->n_added = 0;
574 cpuc->enabled = 0;
575 barrier();
1da53e02
SE
576
577 x86_pmu.disable_all();
b56a3802 578}
241771ef 579
de0428a7 580void x86_pmu_enable_all(int added)
f87ad35d 581{
89cbc767 582 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
f87ad35d
JSR
583 int idx;
584
948b1bb8 585 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
d45dd923 586 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
b0f3f28e 587
43f6201a 588 if (!test_bit(idx, cpuc->active_mask))
4295ee62 589 continue;
984b838c 590
d45dd923 591 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
f87ad35d
JSR
592 }
593}
594
51b0fe39 595static struct pmu pmu;
1da53e02
SE
596
597static inline int is_x86_event(struct perf_event *event)
598{
599 return event->pmu == &pmu;
600}
601
1e2ad28f
RR
602/*
603 * Event scheduler state:
604 *
605 * Assign events iterating over all events and counters, beginning
606 * with events with least weights first. Keep the current iterator
607 * state in struct sched_state.
608 */
609struct sched_state {
610 int weight;
611 int event; /* event index */
612 int counter; /* counter index */
613 int unassigned; /* number of events to be assigned left */
614 unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
615};
616
bc1738f6
RR
617/* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
618#define SCHED_STATES_MAX 2
619
1e2ad28f
RR
620struct perf_sched {
621 int max_weight;
622 int max_events;
43b45780 623 struct perf_event **events;
1e2ad28f 624 struct sched_state state;
bc1738f6
RR
625 int saved_states;
626 struct sched_state saved[SCHED_STATES_MAX];
1e2ad28f
RR
627};
628
629/*
630 * Initialize interator that runs through all events and counters.
631 */
43b45780 632static void perf_sched_init(struct perf_sched *sched, struct perf_event **events,
1e2ad28f
RR
633 int num, int wmin, int wmax)
634{
635 int idx;
636
637 memset(sched, 0, sizeof(*sched));
638 sched->max_events = num;
639 sched->max_weight = wmax;
43b45780 640 sched->events = events;
1e2ad28f
RR
641
642 for (idx = 0; idx < num; idx++) {
43b45780 643 if (events[idx]->hw.constraint->weight == wmin)
1e2ad28f
RR
644 break;
645 }
646
647 sched->state.event = idx; /* start with min weight */
648 sched->state.weight = wmin;
649 sched->state.unassigned = num;
650}
651
bc1738f6
RR
652static void perf_sched_save_state(struct perf_sched *sched)
653{
654 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
655 return;
656
657 sched->saved[sched->saved_states] = sched->state;
658 sched->saved_states++;
659}
660
661static bool perf_sched_restore_state(struct perf_sched *sched)
662{
663 if (!sched->saved_states)
664 return false;
665
666 sched->saved_states--;
667 sched->state = sched->saved[sched->saved_states];
668
669 /* continue with next counter: */
670 clear_bit(sched->state.counter++, sched->state.used);
671
672 return true;
673}
674
1e2ad28f
RR
675/*
676 * Select a counter for the current event to schedule. Return true on
677 * success.
678 */
bc1738f6 679static bool __perf_sched_find_counter(struct perf_sched *sched)
1e2ad28f
RR
680{
681 struct event_constraint *c;
682 int idx;
683
684 if (!sched->state.unassigned)
685 return false;
686
687 if (sched->state.event >= sched->max_events)
688 return false;
689
43b45780 690 c = sched->events[sched->state.event]->hw.constraint;
4defea85 691 /* Prefer fixed purpose counters */
15c7ad51
RR
692 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
693 idx = INTEL_PMC_IDX_FIXED;
307b1cd7 694 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
4defea85
PZ
695 if (!__test_and_set_bit(idx, sched->state.used))
696 goto done;
697 }
698 }
1e2ad28f
RR
699 /* Grab the first unused counter starting with idx */
700 idx = sched->state.counter;
15c7ad51 701 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
1e2ad28f 702 if (!__test_and_set_bit(idx, sched->state.used))
4defea85 703 goto done;
1e2ad28f 704 }
1e2ad28f 705
4defea85
PZ
706 return false;
707
708done:
709 sched->state.counter = idx;
1e2ad28f 710
bc1738f6
RR
711 if (c->overlap)
712 perf_sched_save_state(sched);
713
714 return true;
715}
716
717static bool perf_sched_find_counter(struct perf_sched *sched)
718{
719 while (!__perf_sched_find_counter(sched)) {
720 if (!perf_sched_restore_state(sched))
721 return false;
722 }
723
1e2ad28f
RR
724 return true;
725}
726
727/*
728 * Go through all unassigned events and find the next one to schedule.
729 * Take events with the least weight first. Return true on success.
730 */
731static bool perf_sched_next_event(struct perf_sched *sched)
732{
733 struct event_constraint *c;
734
735 if (!sched->state.unassigned || !--sched->state.unassigned)
736 return false;
737
738 do {
739 /* next event */
740 sched->state.event++;
741 if (sched->state.event >= sched->max_events) {
742 /* next weight */
743 sched->state.event = 0;
744 sched->state.weight++;
745 if (sched->state.weight > sched->max_weight)
746 return false;
747 }
43b45780 748 c = sched->events[sched->state.event]->hw.constraint;
1e2ad28f
RR
749 } while (c->weight != sched->state.weight);
750
751 sched->state.counter = 0; /* start with first counter */
752
753 return true;
754}
755
756/*
757 * Assign a counter for each event.
758 */
43b45780 759int perf_assign_events(struct perf_event **events, int n,
4b4969b1 760 int wmin, int wmax, int *assign)
1e2ad28f
RR
761{
762 struct perf_sched sched;
763
43b45780 764 perf_sched_init(&sched, events, n, wmin, wmax);
1e2ad28f
RR
765
766 do {
767 if (!perf_sched_find_counter(&sched))
768 break; /* failed */
769 if (assign)
770 assign[sched.state.event] = sched.state.counter;
771 } while (perf_sched_next_event(&sched));
772
773 return sched.state.unassigned;
774}
4a3dc121 775EXPORT_SYMBOL_GPL(perf_assign_events);
1e2ad28f 776
de0428a7 777int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
1da53e02 778{
43b45780 779 struct event_constraint *c;
1da53e02 780 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
2f7f73a5 781 struct perf_event *e;
e979121b 782 int i, wmin, wmax, unsched = 0;
1da53e02
SE
783 struct hw_perf_event *hwc;
784
785 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
786
c5362c0c
MD
787 if (x86_pmu.start_scheduling)
788 x86_pmu.start_scheduling(cpuc);
789
1e2ad28f 790 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
43b45780 791 hwc = &cpuc->event_list[i]->hw;
79cba822 792 c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
43b45780
AH
793 hwc->constraint = c;
794
1e2ad28f
RR
795 wmin = min(wmin, c->weight);
796 wmax = max(wmax, c->weight);
1da53e02
SE
797 }
798
8113070d
SE
799 /*
800 * fastpath, try to reuse previous register
801 */
c933c1a6 802 for (i = 0; i < n; i++) {
8113070d 803 hwc = &cpuc->event_list[i]->hw;
43b45780 804 c = hwc->constraint;
8113070d
SE
805
806 /* never assigned */
807 if (hwc->idx == -1)
808 break;
809
810 /* constraint still honored */
63b14649 811 if (!test_bit(hwc->idx, c->idxmsk))
8113070d
SE
812 break;
813
814 /* not already used */
815 if (test_bit(hwc->idx, used_mask))
816 break;
817
34538ee7 818 __set_bit(hwc->idx, used_mask);
8113070d
SE
819 if (assign)
820 assign[i] = hwc->idx;
821 }
8113070d 822
1e2ad28f
RR
823 /* slow path */
824 if (i != n)
e979121b
MD
825 unsched = perf_assign_events(cpuc->event_list, n, wmin,
826 wmax, assign);
8113070d 827
2f7f73a5 828 /*
e979121b
MD
829 * In case of success (unsched = 0), mark events as committed,
830 * so we do not put_constraint() in case new events are added
831 * and fail to be scheduled
832 *
833 * We invoke the lower level commit callback to lock the resource
834 *
835 * We do not need to do all of this in case we are called to
836 * validate an event group (assign == NULL)
2f7f73a5 837 */
e979121b 838 if (!unsched && assign) {
2f7f73a5
SE
839 for (i = 0; i < n; i++) {
840 e = cpuc->event_list[i];
841 e->hw.flags |= PERF_X86_EVENT_COMMITTED;
c5362c0c
MD
842 if (x86_pmu.commit_scheduling)
843 x86_pmu.commit_scheduling(cpuc, e, assign[i]);
2f7f73a5
SE
844 }
845 }
e979121b
MD
846
847 if (!assign || unsched) {
848
1da53e02 849 for (i = 0; i < n; i++) {
2f7f73a5
SE
850 e = cpuc->event_list[i];
851 /*
852 * do not put_constraint() on comitted events,
853 * because they are good to go
854 */
855 if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
856 continue;
857
e979121b
MD
858 /*
859 * release events that failed scheduling
860 */
1da53e02 861 if (x86_pmu.put_event_constraints)
2f7f73a5 862 x86_pmu.put_event_constraints(cpuc, e);
1da53e02
SE
863 }
864 }
c5362c0c
MD
865
866 if (x86_pmu.stop_scheduling)
867 x86_pmu.stop_scheduling(cpuc);
868
e979121b 869 return unsched ? -EINVAL : 0;
1da53e02
SE
870}
871
872/*
873 * dogrp: true if must collect siblings events (group)
874 * returns total number of events and error code
875 */
876static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
877{
878 struct perf_event *event;
879 int n, max_count;
880
948b1bb8 881 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
1da53e02
SE
882
883 /* current number of events already accepted */
884 n = cpuc->n_events;
885
886 if (is_x86_event(leader)) {
887 if (n >= max_count)
aa2bc1ad 888 return -EINVAL;
1da53e02
SE
889 cpuc->event_list[n] = leader;
890 n++;
891 }
892 if (!dogrp)
893 return n;
894
895 list_for_each_entry(event, &leader->sibling_list, group_entry) {
896 if (!is_x86_event(event) ||
8113070d 897 event->state <= PERF_EVENT_STATE_OFF)
1da53e02
SE
898 continue;
899
900 if (n >= max_count)
aa2bc1ad 901 return -EINVAL;
1da53e02
SE
902
903 cpuc->event_list[n] = event;
904 n++;
905 }
906 return n;
907}
908
1da53e02 909static inline void x86_assign_hw_event(struct perf_event *event,
447a194b 910 struct cpu_hw_events *cpuc, int i)
1da53e02 911{
447a194b
SE
912 struct hw_perf_event *hwc = &event->hw;
913
914 hwc->idx = cpuc->assign[i];
915 hwc->last_cpu = smp_processor_id();
916 hwc->last_tag = ++cpuc->tags[i];
1da53e02 917
15c7ad51 918 if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
1da53e02
SE
919 hwc->config_base = 0;
920 hwc->event_base = 0;
15c7ad51 921 } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1da53e02 922 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
15c7ad51
RR
923 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
924 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1da53e02 925 } else {
73d6e522
RR
926 hwc->config_base = x86_pmu_config_addr(hwc->idx);
927 hwc->event_base = x86_pmu_event_addr(hwc->idx);
0fbdad07 928 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1da53e02
SE
929 }
930}
931
447a194b
SE
932static inline int match_prev_assignment(struct hw_perf_event *hwc,
933 struct cpu_hw_events *cpuc,
934 int i)
935{
936 return hwc->idx == cpuc->assign[i] &&
937 hwc->last_cpu == smp_processor_id() &&
938 hwc->last_tag == cpuc->tags[i];
939}
940
a4eaf7f1 941static void x86_pmu_start(struct perf_event *event, int flags);
2e841873 942
a4eaf7f1 943static void x86_pmu_enable(struct pmu *pmu)
ee06094f 944{
89cbc767 945 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1da53e02
SE
946 struct perf_event *event;
947 struct hw_perf_event *hwc;
11164cd4 948 int i, added = cpuc->n_added;
1da53e02 949
85cf9dba 950 if (!x86_pmu_initialized())
2b9ff0db 951 return;
1a6e21f7
PZ
952
953 if (cpuc->enabled)
954 return;
955
1da53e02 956 if (cpuc->n_added) {
19925ce7 957 int n_running = cpuc->n_events - cpuc->n_added;
1da53e02
SE
958 /*
959 * apply assignment obtained either from
960 * hw_perf_group_sched_in() or x86_pmu_enable()
961 *
962 * step1: save events moving to new counters
1da53e02 963 */
19925ce7 964 for (i = 0; i < n_running; i++) {
1da53e02
SE
965 event = cpuc->event_list[i];
966 hwc = &event->hw;
967
447a194b
SE
968 /*
969 * we can avoid reprogramming counter if:
970 * - assigned same counter as last time
971 * - running on same CPU as last time
972 * - no other event has used the counter since
973 */
974 if (hwc->idx == -1 ||
975 match_prev_assignment(hwc, cpuc, i))
1da53e02
SE
976 continue;
977
a4eaf7f1
PZ
978 /*
979 * Ensure we don't accidentally enable a stopped
980 * counter simply because we rescheduled.
981 */
982 if (hwc->state & PERF_HES_STOPPED)
983 hwc->state |= PERF_HES_ARCH;
984
985 x86_pmu_stop(event, PERF_EF_UPDATE);
1da53e02
SE
986 }
987
c347a2f1
PZ
988 /*
989 * step2: reprogram moved events into new counters
990 */
1da53e02 991 for (i = 0; i < cpuc->n_events; i++) {
1da53e02
SE
992 event = cpuc->event_list[i];
993 hwc = &event->hw;
994
45e16a68 995 if (!match_prev_assignment(hwc, cpuc, i))
447a194b 996 x86_assign_hw_event(event, cpuc, i);
45e16a68
PZ
997 else if (i < n_running)
998 continue;
1da53e02 999
a4eaf7f1
PZ
1000 if (hwc->state & PERF_HES_ARCH)
1001 continue;
1002
1003 x86_pmu_start(event, PERF_EF_RELOAD);
1da53e02
SE
1004 }
1005 cpuc->n_added = 0;
1006 perf_events_lapic_init();
1007 }
1a6e21f7
PZ
1008
1009 cpuc->enabled = 1;
1010 barrier();
1011
11164cd4 1012 x86_pmu.enable_all(added);
ee06094f 1013}
ee06094f 1014
245b2e70 1015static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
241771ef 1016
ee06094f
IM
1017/*
1018 * Set the next IRQ period, based on the hwc->period_left value.
cdd6c482 1019 * To be called with the event disabled in hw:
ee06094f 1020 */
de0428a7 1021int x86_perf_event_set_period(struct perf_event *event)
241771ef 1022{
07088edb 1023 struct hw_perf_event *hwc = &event->hw;
e7850595 1024 s64 left = local64_read(&hwc->period_left);
e4abb5d4 1025 s64 period = hwc->sample_period;
7645a24c 1026 int ret = 0, idx = hwc->idx;
ee06094f 1027
15c7ad51 1028 if (idx == INTEL_PMC_IDX_FIXED_BTS)
30dd568c
MM
1029 return 0;
1030
ee06094f 1031 /*
af901ca1 1032 * If we are way outside a reasonable range then just skip forward:
ee06094f
IM
1033 */
1034 if (unlikely(left <= -period)) {
1035 left = period;
e7850595 1036 local64_set(&hwc->period_left, left);
9e350de3 1037 hwc->last_period = period;
e4abb5d4 1038 ret = 1;
ee06094f
IM
1039 }
1040
1041 if (unlikely(left <= 0)) {
1042 left += period;
e7850595 1043 local64_set(&hwc->period_left, left);
9e350de3 1044 hwc->last_period = period;
e4abb5d4 1045 ret = 1;
ee06094f 1046 }
1c80f4b5 1047 /*
dfc65094 1048 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1c80f4b5
IM
1049 */
1050 if (unlikely(left < 2))
1051 left = 2;
241771ef 1052
e4abb5d4
PZ
1053 if (left > x86_pmu.max_period)
1054 left = x86_pmu.max_period;
1055
294fe0f5
AK
1056 if (x86_pmu.limit_period)
1057 left = x86_pmu.limit_period(event, left);
1058
245b2e70 1059 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
ee06094f
IM
1060
1061 /*
cdd6c482 1062 * The hw event starts counting from this event offset,
ee06094f
IM
1063 * mark it to be able to extra future deltas:
1064 */
e7850595 1065 local64_set(&hwc->prev_count, (u64)-left);
ee06094f 1066
73d6e522 1067 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
68aa00ac
CG
1068
1069 /*
1070 * Due to erratum on certan cpu we need
1071 * a second write to be sure the register
1072 * is updated properly
1073 */
1074 if (x86_pmu.perfctr_second_write) {
73d6e522 1075 wrmsrl(hwc->event_base,
948b1bb8 1076 (u64)(-left) & x86_pmu.cntval_mask);
68aa00ac 1077 }
e4abb5d4 1078
cdd6c482 1079 perf_event_update_userpage(event);
194002b2 1080
e4abb5d4 1081 return ret;
2f18d1e8
IM
1082}
1083
de0428a7 1084void x86_pmu_enable_event(struct perf_event *event)
7c90cc45 1085{
0a3aee0d 1086 if (__this_cpu_read(cpu_hw_events.enabled))
31fa58af
RR
1087 __x86_pmu_enable_event(&event->hw,
1088 ARCH_PERFMON_EVENTSEL_ENABLE);
241771ef
IM
1089}
1090
b690081d 1091/*
a4eaf7f1 1092 * Add a single event to the PMU.
1da53e02
SE
1093 *
1094 * The event is added to the group of enabled events
1095 * but only if it can be scehduled with existing events.
fe9081cc 1096 */
a4eaf7f1 1097static int x86_pmu_add(struct perf_event *event, int flags)
fe9081cc 1098{
89cbc767 1099 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1da53e02
SE
1100 struct hw_perf_event *hwc;
1101 int assign[X86_PMC_IDX_MAX];
1102 int n, n0, ret;
fe9081cc 1103
1da53e02 1104 hwc = &event->hw;
fe9081cc 1105
1da53e02 1106 n0 = cpuc->n_events;
24cd7f54
PZ
1107 ret = n = collect_events(cpuc, event, false);
1108 if (ret < 0)
1109 goto out;
53b441a5 1110
a4eaf7f1
PZ
1111 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1112 if (!(flags & PERF_EF_START))
1113 hwc->state |= PERF_HES_ARCH;
1114
4d1c52b0
LM
1115 /*
1116 * If group events scheduling transaction was started,
0d2eb44f 1117 * skip the schedulability test here, it will be performed
c347a2f1 1118 * at commit time (->commit_txn) as a whole.
4d1c52b0 1119 */
8d2cacbb 1120 if (cpuc->group_flag & PERF_EVENT_TXN)
24cd7f54 1121 goto done_collect;
4d1c52b0 1122
a072738e 1123 ret = x86_pmu.schedule_events(cpuc, n, assign);
1da53e02 1124 if (ret)
24cd7f54 1125 goto out;
1da53e02
SE
1126 /*
1127 * copy new assignment, now we know it is possible
1128 * will be used by hw_perf_enable()
1129 */
1130 memcpy(cpuc->assign, assign, n*sizeof(int));
7e2ae347 1131
24cd7f54 1132done_collect:
c347a2f1
PZ
1133 /*
1134 * Commit the collect_events() state. See x86_pmu_del() and
1135 * x86_pmu_*_txn().
1136 */
1da53e02 1137 cpuc->n_events = n;
356e1f2e 1138 cpuc->n_added += n - n0;
90151c35 1139 cpuc->n_txn += n - n0;
95cdd2e7 1140
24cd7f54
PZ
1141 ret = 0;
1142out:
24cd7f54 1143 return ret;
241771ef
IM
1144}
1145
a4eaf7f1 1146static void x86_pmu_start(struct perf_event *event, int flags)
d76a0812 1147{
89cbc767 1148 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
c08053e6
PZ
1149 int idx = event->hw.idx;
1150
a4eaf7f1
PZ
1151 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1152 return;
1153
1154 if (WARN_ON_ONCE(idx == -1))
1155 return;
1156
1157 if (flags & PERF_EF_RELOAD) {
1158 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1159 x86_perf_event_set_period(event);
1160 }
1161
1162 event->hw.state = 0;
d76a0812 1163
c08053e6
PZ
1164 cpuc->events[idx] = event;
1165 __set_bit(idx, cpuc->active_mask);
63e6be6d 1166 __set_bit(idx, cpuc->running);
aff3d91a 1167 x86_pmu.enable(event);
c08053e6 1168 perf_event_update_userpage(event);
a78ac325
PZ
1169}
1170
cdd6c482 1171void perf_event_print_debug(void)
241771ef 1172{
2f18d1e8 1173 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
ca037701 1174 u64 pebs;
cdd6c482 1175 struct cpu_hw_events *cpuc;
5bb9efe3 1176 unsigned long flags;
1e125676
IM
1177 int cpu, idx;
1178
948b1bb8 1179 if (!x86_pmu.num_counters)
1e125676 1180 return;
241771ef 1181
5bb9efe3 1182 local_irq_save(flags);
241771ef
IM
1183
1184 cpu = smp_processor_id();
cdd6c482 1185 cpuc = &per_cpu(cpu_hw_events, cpu);
241771ef 1186
faa28ae0 1187 if (x86_pmu.version >= 2) {
a1ef58f4
JSR
1188 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1189 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1190 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1191 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
ca037701 1192 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
a1ef58f4
JSR
1193
1194 pr_info("\n");
1195 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1196 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1197 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1198 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
ca037701 1199 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
f87ad35d 1200 }
7645a24c 1201 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
241771ef 1202
948b1bb8 1203 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
41bf4989
RR
1204 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1205 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
241771ef 1206
245b2e70 1207 prev_left = per_cpu(pmc_prev_left[idx], cpu);
241771ef 1208
a1ef58f4 1209 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
241771ef 1210 cpu, idx, pmc_ctrl);
a1ef58f4 1211 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
241771ef 1212 cpu, idx, pmc_count);
a1ef58f4 1213 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
ee06094f 1214 cpu, idx, prev_left);
241771ef 1215 }
948b1bb8 1216 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
2f18d1e8
IM
1217 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1218
a1ef58f4 1219 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
2f18d1e8
IM
1220 cpu, idx, pmc_count);
1221 }
5bb9efe3 1222 local_irq_restore(flags);
241771ef
IM
1223}
1224
de0428a7 1225void x86_pmu_stop(struct perf_event *event, int flags)
241771ef 1226{
89cbc767 1227 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
cdd6c482 1228 struct hw_perf_event *hwc = &event->hw;
241771ef 1229
a4eaf7f1
PZ
1230 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1231 x86_pmu.disable(event);
1232 cpuc->events[hwc->idx] = NULL;
1233 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1234 hwc->state |= PERF_HES_STOPPED;
1235 }
30dd568c 1236
a4eaf7f1
PZ
1237 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1238 /*
1239 * Drain the remaining delta count out of a event
1240 * that we are disabling:
1241 */
1242 x86_perf_event_update(event);
1243 hwc->state |= PERF_HES_UPTODATE;
1244 }
2e841873
PZ
1245}
1246
a4eaf7f1 1247static void x86_pmu_del(struct perf_event *event, int flags)
2e841873 1248{
89cbc767 1249 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2e841873
PZ
1250 int i;
1251
2f7f73a5
SE
1252 /*
1253 * event is descheduled
1254 */
1255 event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1256
90151c35
SE
1257 /*
1258 * If we're called during a txn, we don't need to do anything.
1259 * The events never got scheduled and ->cancel_txn will truncate
1260 * the event_list.
c347a2f1
PZ
1261 *
1262 * XXX assumes any ->del() called during a TXN will only be on
1263 * an event added during that same TXN.
90151c35 1264 */
8d2cacbb 1265 if (cpuc->group_flag & PERF_EVENT_TXN)
90151c35
SE
1266 return;
1267
c347a2f1
PZ
1268 /*
1269 * Not a TXN, therefore cleanup properly.
1270 */
a4eaf7f1 1271 x86_pmu_stop(event, PERF_EF_UPDATE);
194002b2 1272
1da53e02 1273 for (i = 0; i < cpuc->n_events; i++) {
c347a2f1
PZ
1274 if (event == cpuc->event_list[i])
1275 break;
1276 }
1da53e02 1277
c347a2f1
PZ
1278 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1279 return;
26e61e89 1280
c347a2f1
PZ
1281 /* If we have a newly added event; make sure to decrease n_added. */
1282 if (i >= cpuc->n_events - cpuc->n_added)
1283 --cpuc->n_added;
1da53e02 1284
c347a2f1
PZ
1285 if (x86_pmu.put_event_constraints)
1286 x86_pmu.put_event_constraints(cpuc, event);
1287
1288 /* Delete the array entry. */
1289 while (++i < cpuc->n_events)
1290 cpuc->event_list[i-1] = cpuc->event_list[i];
1291 --cpuc->n_events;
1da53e02 1292
cdd6c482 1293 perf_event_update_userpage(event);
241771ef
IM
1294}
1295
de0428a7 1296int x86_pmu_handle_irq(struct pt_regs *regs)
a29aa8a7 1297{
df1a132b 1298 struct perf_sample_data data;
cdd6c482
IM
1299 struct cpu_hw_events *cpuc;
1300 struct perf_event *event;
11d1578f 1301 int idx, handled = 0;
9029a5e3
IM
1302 u64 val;
1303
89cbc767 1304 cpuc = this_cpu_ptr(&cpu_hw_events);
962bf7a6 1305
2bce5dac
DZ
1306 /*
1307 * Some chipsets need to unmask the LVTPC in a particular spot
1308 * inside the nmi handler. As a result, the unmasking was pushed
1309 * into all the nmi handlers.
1310 *
1311 * This generic handler doesn't seem to have any issues where the
1312 * unmasking occurs so it was left at the top.
1313 */
1314 apic_write(APIC_LVTPC, APIC_DM_NMI);
1315
948b1bb8 1316 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
63e6be6d
RR
1317 if (!test_bit(idx, cpuc->active_mask)) {
1318 /*
1319 * Though we deactivated the counter some cpus
1320 * might still deliver spurious interrupts still
1321 * in flight. Catch them:
1322 */
1323 if (__test_and_clear_bit(idx, cpuc->running))
1324 handled++;
a29aa8a7 1325 continue;
63e6be6d 1326 }
962bf7a6 1327
cdd6c482 1328 event = cpuc->events[idx];
a4016a79 1329
cc2ad4ba 1330 val = x86_perf_event_update(event);
948b1bb8 1331 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
48e22d56 1332 continue;
962bf7a6 1333
9e350de3 1334 /*
cdd6c482 1335 * event overflow
9e350de3 1336 */
4177c42a 1337 handled++;
fd0d000b 1338 perf_sample_data_init(&data, 0, event->hw.last_period);
9e350de3 1339
07088edb 1340 if (!x86_perf_event_set_period(event))
e4abb5d4
PZ
1341 continue;
1342
a8b0ca17 1343 if (perf_event_overflow(event, &data, regs))
a4eaf7f1 1344 x86_pmu_stop(event, 0);
a29aa8a7 1345 }
962bf7a6 1346
9e350de3
PZ
1347 if (handled)
1348 inc_irq_stat(apic_perf_irqs);
1349
a29aa8a7
RR
1350 return handled;
1351}
39d81eab 1352
cdd6c482 1353void perf_events_lapic_init(void)
241771ef 1354{
04da8a43 1355 if (!x86_pmu.apic || !x86_pmu_initialized())
241771ef 1356 return;
85cf9dba 1357
241771ef 1358 /*
c323d95f 1359 * Always use NMI for PMU
241771ef 1360 */
c323d95f 1361 apic_write(APIC_LVTPC, APIC_DM_NMI);
241771ef
IM
1362}
1363
9326638c 1364static int
9c48f1c6 1365perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
241771ef 1366{
14c63f17
DH
1367 u64 start_clock;
1368 u64 finish_clock;
e8a923cc 1369 int ret;
14c63f17 1370
cdd6c482 1371 if (!atomic_read(&active_events))
9c48f1c6 1372 return NMI_DONE;
4177c42a 1373
e8a923cc 1374 start_clock = sched_clock();
14c63f17 1375 ret = x86_pmu.handle_irq(regs);
e8a923cc 1376 finish_clock = sched_clock();
14c63f17
DH
1377
1378 perf_sample_event_took(finish_clock - start_clock);
1379
1380 return ret;
241771ef 1381}
9326638c 1382NOKPROBE_SYMBOL(perf_event_nmi_handler);
241771ef 1383
de0428a7
KW
1384struct event_constraint emptyconstraint;
1385struct event_constraint unconstrained;
f87ad35d 1386
148f9bb8 1387static int
3f6da390
PZ
1388x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1389{
1390 unsigned int cpu = (long)hcpu;
7fdba1ca 1391 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
90413464 1392 int i, ret = NOTIFY_OK;
3f6da390
PZ
1393
1394 switch (action & ~CPU_TASKS_FROZEN) {
1395 case CPU_UP_PREPARE:
90413464
SE
1396 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1397 cpuc->kfree_on_online[i] = NULL;
3f6da390 1398 if (x86_pmu.cpu_prepare)
b38b24ea 1399 ret = x86_pmu.cpu_prepare(cpu);
3f6da390
PZ
1400 break;
1401
1402 case CPU_STARTING:
1403 if (x86_pmu.cpu_starting)
1404 x86_pmu.cpu_starting(cpu);
1405 break;
1406
7fdba1ca 1407 case CPU_ONLINE:
90413464
SE
1408 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1409 kfree(cpuc->kfree_on_online[i]);
1410 cpuc->kfree_on_online[i] = NULL;
1411 }
7fdba1ca
PZ
1412 break;
1413
3f6da390
PZ
1414 case CPU_DYING:
1415 if (x86_pmu.cpu_dying)
1416 x86_pmu.cpu_dying(cpu);
1417 break;
1418
b38b24ea 1419 case CPU_UP_CANCELED:
3f6da390
PZ
1420 case CPU_DEAD:
1421 if (x86_pmu.cpu_dead)
1422 x86_pmu.cpu_dead(cpu);
1423 break;
1424
1425 default:
1426 break;
1427 }
1428
b38b24ea 1429 return ret;
3f6da390
PZ
1430}
1431
12558038
CG
1432static void __init pmu_check_apic(void)
1433{
1434 if (cpu_has_apic)
1435 return;
1436
1437 x86_pmu.apic = 0;
1438 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1439 pr_info("no hardware sampling interrupt available.\n");
c184c980
VW
1440
1441 /*
1442 * If we have a PMU initialized but no APIC
1443 * interrupts, we cannot sample hardware
1444 * events (user-space has to fall back and
1445 * sample via a hrtimer based software event):
1446 */
1447 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1448
12558038
CG
1449}
1450
641cc938
JO
1451static struct attribute_group x86_pmu_format_group = {
1452 .name = "format",
1453 .attrs = NULL,
1454};
1455
8300daa2
JO
1456/*
1457 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1458 * out of events_attr attributes.
1459 */
1460static void __init filter_events(struct attribute **attrs)
1461{
3a54aaa0
SE
1462 struct device_attribute *d;
1463 struct perf_pmu_events_attr *pmu_attr;
8300daa2
JO
1464 int i, j;
1465
1466 for (i = 0; attrs[i]; i++) {
3a54aaa0
SE
1467 d = (struct device_attribute *)attrs[i];
1468 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1469 /* str trumps id */
1470 if (pmu_attr->event_str)
1471 continue;
8300daa2
JO
1472 if (x86_pmu.event_map(i))
1473 continue;
1474
1475 for (j = i; attrs[j]; j++)
1476 attrs[j] = attrs[j + 1];
1477
1478 /* Check the shifted attr. */
1479 i--;
1480 }
1481}
1482
1a6461b1
AK
1483/* Merge two pointer arrays */
1484static __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1485{
1486 struct attribute **new;
1487 int j, i;
1488
1489 for (j = 0; a[j]; j++)
1490 ;
1491 for (i = 0; b[i]; i++)
1492 j++;
1493 j++;
1494
1495 new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1496 if (!new)
1497 return NULL;
1498
1499 j = 0;
1500 for (i = 0; a[i]; i++)
1501 new[j++] = a[i];
1502 for (i = 0; b[i]; i++)
1503 new[j++] = b[i];
1504 new[j] = NULL;
1505
1506 return new;
1507}
1508
f20093ee 1509ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr,
a4747393
JO
1510 char *page)
1511{
1512 struct perf_pmu_events_attr *pmu_attr = \
1513 container_of(attr, struct perf_pmu_events_attr, attr);
a4747393 1514 u64 config = x86_pmu.event_map(pmu_attr->id);
a4747393 1515
3a54aaa0
SE
1516 /* string trumps id */
1517 if (pmu_attr->event_str)
1518 return sprintf(page, "%s", pmu_attr->event_str);
a4747393 1519
3a54aaa0
SE
1520 return x86_pmu.events_sysfs_show(page, config);
1521}
a4747393
JO
1522
1523EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1524EVENT_ATTR(instructions, INSTRUCTIONS );
1525EVENT_ATTR(cache-references, CACHE_REFERENCES );
1526EVENT_ATTR(cache-misses, CACHE_MISSES );
1527EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1528EVENT_ATTR(branch-misses, BRANCH_MISSES );
1529EVENT_ATTR(bus-cycles, BUS_CYCLES );
1530EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1531EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1532EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1533
1534static struct attribute *empty_attrs;
1535
95d18aa2 1536static struct attribute *events_attr[] = {
a4747393
JO
1537 EVENT_PTR(CPU_CYCLES),
1538 EVENT_PTR(INSTRUCTIONS),
1539 EVENT_PTR(CACHE_REFERENCES),
1540 EVENT_PTR(CACHE_MISSES),
1541 EVENT_PTR(BRANCH_INSTRUCTIONS),
1542 EVENT_PTR(BRANCH_MISSES),
1543 EVENT_PTR(BUS_CYCLES),
1544 EVENT_PTR(STALLED_CYCLES_FRONTEND),
1545 EVENT_PTR(STALLED_CYCLES_BACKEND),
1546 EVENT_PTR(REF_CPU_CYCLES),
1547 NULL,
1548};
1549
1550static struct attribute_group x86_pmu_events_group = {
1551 .name = "events",
1552 .attrs = events_attr,
1553};
1554
0bf79d44 1555ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
43c032fe 1556{
43c032fe
JO
1557 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1558 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1559 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1560 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1561 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
1562 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
1563 ssize_t ret;
1564
1565 /*
1566 * We have whole page size to spend and just little data
1567 * to write, so we can safely use sprintf.
1568 */
1569 ret = sprintf(page, "event=0x%02llx", event);
1570
1571 if (umask)
1572 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1573
1574 if (edge)
1575 ret += sprintf(page + ret, ",edge");
1576
1577 if (pc)
1578 ret += sprintf(page + ret, ",pc");
1579
1580 if (any)
1581 ret += sprintf(page + ret, ",any");
1582
1583 if (inv)
1584 ret += sprintf(page + ret, ",inv");
1585
1586 if (cmask)
1587 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1588
1589 ret += sprintf(page + ret, "\n");
1590
1591 return ret;
1592}
1593
dda99116 1594static int __init init_hw_perf_events(void)
b56a3802 1595{
c1d6f42f 1596 struct x86_pmu_quirk *quirk;
72eae04d
RR
1597 int err;
1598
cdd6c482 1599 pr_info("Performance Events: ");
1123e3ad 1600
b56a3802
JSR
1601 switch (boot_cpu_data.x86_vendor) {
1602 case X86_VENDOR_INTEL:
72eae04d 1603 err = intel_pmu_init();
b56a3802 1604 break;
f87ad35d 1605 case X86_VENDOR_AMD:
72eae04d 1606 err = amd_pmu_init();
f87ad35d 1607 break;
4138960a 1608 default:
8a3da6c7 1609 err = -ENOTSUPP;
b56a3802 1610 }
1123e3ad 1611 if (err != 0) {
cdd6c482 1612 pr_cont("no PMU driver, software events only.\n");
004417a6 1613 return 0;
1123e3ad 1614 }
b56a3802 1615
12558038
CG
1616 pmu_check_apic();
1617
33c6d6a7 1618 /* sanity check that the hardware exists or is emulated */
4407204c 1619 if (!check_hw_exists())
004417a6 1620 return 0;
33c6d6a7 1621
1123e3ad 1622 pr_cont("%s PMU driver.\n", x86_pmu.name);
faa28ae0 1623
e97df763
PZ
1624 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1625
c1d6f42f
PZ
1626 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1627 quirk->func();
3c44780b 1628
a1eac7ac
RR
1629 if (!x86_pmu.intel_ctrl)
1630 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
241771ef 1631
cdd6c482 1632 perf_events_lapic_init();
9c48f1c6 1633 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1123e3ad 1634
63b14649 1635 unconstrained = (struct event_constraint)
948b1bb8 1636 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
9fac2cf3 1637 0, x86_pmu.num_counters, 0, 0);
63b14649 1638
641cc938 1639 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
0c9d42ed 1640
f20093ee
SE
1641 if (x86_pmu.event_attrs)
1642 x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1643
a4747393
JO
1644 if (!x86_pmu.events_sysfs_show)
1645 x86_pmu_events_group.attrs = &empty_attrs;
8300daa2
JO
1646 else
1647 filter_events(x86_pmu_events_group.attrs);
a4747393 1648
1a6461b1
AK
1649 if (x86_pmu.cpu_events) {
1650 struct attribute **tmp;
1651
1652 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1653 if (!WARN_ON(!tmp))
1654 x86_pmu_events_group.attrs = tmp;
1655 }
1656
57c0c15b 1657 pr_info("... version: %d\n", x86_pmu.version);
948b1bb8
RR
1658 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1659 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1660 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
57c0c15b 1661 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
948b1bb8 1662 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
d6dc0b4e 1663 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
3f6da390 1664
2e80a82a 1665 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
3f6da390 1666 perf_cpu_notifier(x86_pmu_notifier);
004417a6
PZ
1667
1668 return 0;
241771ef 1669}
004417a6 1670early_initcall(init_hw_perf_events);
621a01ea 1671
cdd6c482 1672static inline void x86_pmu_read(struct perf_event *event)
ee06094f 1673{
cc2ad4ba 1674 x86_perf_event_update(event);
ee06094f
IM
1675}
1676
4d1c52b0
LM
1677/*
1678 * Start group events scheduling transaction
1679 * Set the flag to make pmu::enable() not perform the
1680 * schedulability test, it will be performed at commit time
1681 */
51b0fe39 1682static void x86_pmu_start_txn(struct pmu *pmu)
4d1c52b0 1683{
33696fc0 1684 perf_pmu_disable(pmu);
0a3aee0d
TH
1685 __this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
1686 __this_cpu_write(cpu_hw_events.n_txn, 0);
4d1c52b0
LM
1687}
1688
1689/*
1690 * Stop group events scheduling transaction
1691 * Clear the flag and pmu::enable() will perform the
1692 * schedulability test.
1693 */
51b0fe39 1694static void x86_pmu_cancel_txn(struct pmu *pmu)
4d1c52b0 1695{
0a3aee0d 1696 __this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
90151c35 1697 /*
c347a2f1
PZ
1698 * Truncate collected array by the number of events added in this
1699 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
90151c35 1700 */
0a3aee0d
TH
1701 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1702 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
33696fc0 1703 perf_pmu_enable(pmu);
4d1c52b0
LM
1704}
1705
1706/*
1707 * Commit group events scheduling transaction
1708 * Perform the group schedulability test as a whole
1709 * Return 0 if success
c347a2f1
PZ
1710 *
1711 * Does not cancel the transaction on failure; expects the caller to do this.
4d1c52b0 1712 */
51b0fe39 1713static int x86_pmu_commit_txn(struct pmu *pmu)
4d1c52b0 1714{
89cbc767 1715 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4d1c52b0
LM
1716 int assign[X86_PMC_IDX_MAX];
1717 int n, ret;
1718
1719 n = cpuc->n_events;
1720
1721 if (!x86_pmu_initialized())
1722 return -EAGAIN;
1723
1724 ret = x86_pmu.schedule_events(cpuc, n, assign);
1725 if (ret)
1726 return ret;
1727
1728 /*
1729 * copy new assignment, now we know it is possible
1730 * will be used by hw_perf_enable()
1731 */
1732 memcpy(cpuc->assign, assign, n*sizeof(int));
1733
8d2cacbb 1734 cpuc->group_flag &= ~PERF_EVENT_TXN;
33696fc0 1735 perf_pmu_enable(pmu);
4d1c52b0
LM
1736 return 0;
1737}
cd8a38d3
SE
1738/*
1739 * a fake_cpuc is used to validate event groups. Due to
1740 * the extra reg logic, we need to also allocate a fake
1741 * per_core and per_cpu structure. Otherwise, group events
1742 * using extra reg may conflict without the kernel being
1743 * able to catch this when the last event gets added to
1744 * the group.
1745 */
1746static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1747{
1748 kfree(cpuc->shared_regs);
1749 kfree(cpuc);
1750}
1751
1752static struct cpu_hw_events *allocate_fake_cpuc(void)
1753{
1754 struct cpu_hw_events *cpuc;
1755 int cpu = raw_smp_processor_id();
1756
1757 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1758 if (!cpuc)
1759 return ERR_PTR(-ENOMEM);
1760
1761 /* only needed, if we have extra_regs */
1762 if (x86_pmu.extra_regs) {
1763 cpuc->shared_regs = allocate_shared_regs(cpu);
1764 if (!cpuc->shared_regs)
1765 goto error;
1766 }
b430f7c4 1767 cpuc->is_fake = 1;
cd8a38d3
SE
1768 return cpuc;
1769error:
1770 free_fake_cpuc(cpuc);
1771 return ERR_PTR(-ENOMEM);
1772}
4d1c52b0 1773
ca037701
PZ
1774/*
1775 * validate that we can schedule this event
1776 */
1777static int validate_event(struct perf_event *event)
1778{
1779 struct cpu_hw_events *fake_cpuc;
1780 struct event_constraint *c;
1781 int ret = 0;
1782
cd8a38d3
SE
1783 fake_cpuc = allocate_fake_cpuc();
1784 if (IS_ERR(fake_cpuc))
1785 return PTR_ERR(fake_cpuc);
ca037701 1786
79cba822 1787 c = x86_pmu.get_event_constraints(fake_cpuc, -1, event);
ca037701
PZ
1788
1789 if (!c || !c->weight)
aa2bc1ad 1790 ret = -EINVAL;
ca037701
PZ
1791
1792 if (x86_pmu.put_event_constraints)
1793 x86_pmu.put_event_constraints(fake_cpuc, event);
1794
cd8a38d3 1795 free_fake_cpuc(fake_cpuc);
ca037701
PZ
1796
1797 return ret;
1798}
1799
1da53e02
SE
1800/*
1801 * validate a single event group
1802 *
1803 * validation include:
184f412c
IM
1804 * - check events are compatible which each other
1805 * - events do not compete for the same counter
1806 * - number of events <= number of counters
1da53e02
SE
1807 *
1808 * validation ensures the group can be loaded onto the
1809 * PMU if it was the only group available.
1810 */
fe9081cc
PZ
1811static int validate_group(struct perf_event *event)
1812{
1da53e02 1813 struct perf_event *leader = event->group_leader;
502568d5 1814 struct cpu_hw_events *fake_cpuc;
aa2bc1ad 1815 int ret = -EINVAL, n;
fe9081cc 1816
cd8a38d3
SE
1817 fake_cpuc = allocate_fake_cpuc();
1818 if (IS_ERR(fake_cpuc))
1819 return PTR_ERR(fake_cpuc);
1da53e02
SE
1820 /*
1821 * the event is not yet connected with its
1822 * siblings therefore we must first collect
1823 * existing siblings, then add the new event
1824 * before we can simulate the scheduling
1825 */
502568d5 1826 n = collect_events(fake_cpuc, leader, true);
1da53e02 1827 if (n < 0)
cd8a38d3 1828 goto out;
fe9081cc 1829
502568d5
PZ
1830 fake_cpuc->n_events = n;
1831 n = collect_events(fake_cpuc, event, false);
1da53e02 1832 if (n < 0)
cd8a38d3 1833 goto out;
fe9081cc 1834
502568d5 1835 fake_cpuc->n_events = n;
1da53e02 1836
a072738e 1837 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
502568d5 1838
502568d5 1839out:
cd8a38d3 1840 free_fake_cpuc(fake_cpuc);
502568d5 1841 return ret;
fe9081cc
PZ
1842}
1843
dda99116 1844static int x86_pmu_event_init(struct perf_event *event)
621a01ea 1845{
51b0fe39 1846 struct pmu *tmp;
621a01ea
IM
1847 int err;
1848
b0a873eb
PZ
1849 switch (event->attr.type) {
1850 case PERF_TYPE_RAW:
1851 case PERF_TYPE_HARDWARE:
1852 case PERF_TYPE_HW_CACHE:
1853 break;
1854
1855 default:
1856 return -ENOENT;
1857 }
1858
1859 err = __x86_pmu_event_init(event);
fe9081cc 1860 if (!err) {
8113070d
SE
1861 /*
1862 * we temporarily connect event to its pmu
1863 * such that validate_group() can classify
1864 * it as an x86 event using is_x86_event()
1865 */
1866 tmp = event->pmu;
1867 event->pmu = &pmu;
1868
fe9081cc
PZ
1869 if (event->group_leader != event)
1870 err = validate_group(event);
ca037701
PZ
1871 else
1872 err = validate_event(event);
8113070d
SE
1873
1874 event->pmu = tmp;
fe9081cc 1875 }
a1792cda 1876 if (err) {
cdd6c482
IM
1877 if (event->destroy)
1878 event->destroy(event);
a1792cda 1879 }
621a01ea 1880
7911d3f7
AL
1881 if (ACCESS_ONCE(x86_pmu.attr_rdpmc))
1882 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
1883
b0a873eb 1884 return err;
621a01ea 1885}
d7d59fb3 1886
7911d3f7
AL
1887static void refresh_pce(void *ignored)
1888{
1889 if (current->mm)
1890 load_mm_cr4(current->mm);
1891}
1892
1893static void x86_pmu_event_mapped(struct perf_event *event)
1894{
1895 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
1896 return;
1897
1898 if (atomic_inc_return(&current->mm->context.perf_rdpmc_allowed) == 1)
1899 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
1900}
1901
1902static void x86_pmu_event_unmapped(struct perf_event *event)
1903{
1904 if (!current->mm)
1905 return;
1906
1907 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
1908 return;
1909
1910 if (atomic_dec_and_test(&current->mm->context.perf_rdpmc_allowed))
1911 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
1912}
1913
fe4a3308
PZ
1914static int x86_pmu_event_idx(struct perf_event *event)
1915{
1916 int idx = event->hw.idx;
1917
7911d3f7 1918 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
c7206205
PZ
1919 return 0;
1920
15c7ad51
RR
1921 if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
1922 idx -= INTEL_PMC_IDX_FIXED;
fe4a3308
PZ
1923 idx |= 1 << 30;
1924 }
1925
1926 return idx + 1;
1927}
1928
0c9d42ed
PZ
1929static ssize_t get_attr_rdpmc(struct device *cdev,
1930 struct device_attribute *attr,
1931 char *buf)
1932{
1933 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
1934}
1935
0c9d42ed
PZ
1936static ssize_t set_attr_rdpmc(struct device *cdev,
1937 struct device_attribute *attr,
1938 const char *buf, size_t count)
1939{
e2b297fc
SK
1940 unsigned long val;
1941 ssize_t ret;
1942
1943 ret = kstrtoul(buf, 0, &val);
1944 if (ret)
1945 return ret;
e97df763 1946
a6673429
AL
1947 if (val > 2)
1948 return -EINVAL;
1949
e97df763
PZ
1950 if (x86_pmu.attr_rdpmc_broken)
1951 return -ENOTSUPP;
0c9d42ed 1952
a6673429
AL
1953 if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
1954 /*
1955 * Changing into or out of always available, aka
1956 * perf-event-bypassing mode. This path is extremely slow,
1957 * but only root can trigger it, so it's okay.
1958 */
1959 if (val == 2)
1960 static_key_slow_inc(&rdpmc_always_available);
1961 else
1962 static_key_slow_dec(&rdpmc_always_available);
1963 on_each_cpu(refresh_pce, NULL, 1);
1964 }
1965
1966 x86_pmu.attr_rdpmc = val;
1967
0c9d42ed
PZ
1968 return count;
1969}
1970
1971static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
1972
1973static struct attribute *x86_pmu_attrs[] = {
1974 &dev_attr_rdpmc.attr,
1975 NULL,
1976};
1977
1978static struct attribute_group x86_pmu_attr_group = {
1979 .attrs = x86_pmu_attrs,
1980};
1981
1982static const struct attribute_group *x86_pmu_attr_groups[] = {
1983 &x86_pmu_attr_group,
641cc938 1984 &x86_pmu_format_group,
a4747393 1985 &x86_pmu_events_group,
0c9d42ed
PZ
1986 NULL,
1987};
1988
ba532500
YZ
1989static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
1990{
1991 if (x86_pmu.sched_task)
1992 x86_pmu.sched_task(ctx, sched_in);
1993}
1994
c93dc84c
PZ
1995void perf_check_microcode(void)
1996{
1997 if (x86_pmu.check_microcode)
1998 x86_pmu.check_microcode();
1999}
2000EXPORT_SYMBOL_GPL(perf_check_microcode);
2001
b0a873eb 2002static struct pmu pmu = {
d010b332
SE
2003 .pmu_enable = x86_pmu_enable,
2004 .pmu_disable = x86_pmu_disable,
a4eaf7f1 2005
c93dc84c 2006 .attr_groups = x86_pmu_attr_groups,
0c9d42ed 2007
c93dc84c 2008 .event_init = x86_pmu_event_init,
a4eaf7f1 2009
7911d3f7
AL
2010 .event_mapped = x86_pmu_event_mapped,
2011 .event_unmapped = x86_pmu_event_unmapped,
2012
d010b332
SE
2013 .add = x86_pmu_add,
2014 .del = x86_pmu_del,
2015 .start = x86_pmu_start,
2016 .stop = x86_pmu_stop,
2017 .read = x86_pmu_read,
a4eaf7f1 2018
c93dc84c
PZ
2019 .start_txn = x86_pmu_start_txn,
2020 .cancel_txn = x86_pmu_cancel_txn,
2021 .commit_txn = x86_pmu_commit_txn,
fe4a3308 2022
c93dc84c 2023 .event_idx = x86_pmu_event_idx,
ba532500 2024 .sched_task = x86_pmu_sched_task,
e18bf526 2025 .task_ctx_size = sizeof(struct x86_perf_task_context),
b0a873eb
PZ
2026};
2027
c1317ec2
AL
2028void arch_perf_update_userpage(struct perf_event *event,
2029 struct perf_event_mmap_page *userpg, u64 now)
e3f3541c 2030{
20d1c86a
PZ
2031 struct cyc2ns_data *data;
2032
fa731587
PZ
2033 userpg->cap_user_time = 0;
2034 userpg->cap_user_time_zero = 0;
7911d3f7
AL
2035 userpg->cap_user_rdpmc =
2036 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
c7206205
PZ
2037 userpg->pmc_width = x86_pmu.cntval_bits;
2038
35af99e6 2039 if (!sched_clock_stable())
e3f3541c
PZ
2040 return;
2041
20d1c86a
PZ
2042 data = cyc2ns_read_begin();
2043
34f43927
PZ
2044 /*
2045 * Internal timekeeping for enabled/running/stopped times
2046 * is always in the local_clock domain.
2047 */
fa731587 2048 userpg->cap_user_time = 1;
20d1c86a
PZ
2049 userpg->time_mult = data->cyc2ns_mul;
2050 userpg->time_shift = data->cyc2ns_shift;
2051 userpg->time_offset = data->cyc2ns_offset - now;
c73deb6a 2052
34f43927
PZ
2053 /*
2054 * cap_user_time_zero doesn't make sense when we're using a different
2055 * time base for the records.
2056 */
2057 if (event->clock == &local_clock) {
2058 userpg->cap_user_time_zero = 1;
2059 userpg->time_zero = data->cyc2ns_offset;
2060 }
20d1c86a
PZ
2061
2062 cyc2ns_read_end(data);
e3f3541c
PZ
2063}
2064
d7d59fb3
PZ
2065/*
2066 * callchain support
2067 */
2068
d7d59fb3
PZ
2069static int backtrace_stack(void *data, char *name)
2070{
038e836e 2071 return 0;
d7d59fb3
PZ
2072}
2073
2074static void backtrace_address(void *data, unsigned long addr, int reliable)
2075{
2076 struct perf_callchain_entry *entry = data;
2077
70791ce9 2078 perf_callchain_store(entry, addr);
d7d59fb3
PZ
2079}
2080
2081static const struct stacktrace_ops backtrace_ops = {
d7d59fb3
PZ
2082 .stack = backtrace_stack,
2083 .address = backtrace_address,
06d65bda 2084 .walk_stack = print_context_stack_bp,
d7d59fb3
PZ
2085};
2086
56962b44
FW
2087void
2088perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
d7d59fb3 2089{
927c7a9e
FW
2090 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2091 /* TODO: We don't support guest os callchain now */
ed805261 2092 return;
927c7a9e
FW
2093 }
2094
70791ce9 2095 perf_callchain_store(entry, regs->ip);
d7d59fb3 2096
e8e999cf 2097 dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
d7d59fb3
PZ
2098}
2099
bc6ca7b3
AS
2100static inline int
2101valid_user_frame(const void __user *fp, unsigned long size)
2102{
2103 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2104}
2105
d07bdfd3
PZ
2106static unsigned long get_segment_base(unsigned int segment)
2107{
2108 struct desc_struct *desc;
2109 int idx = segment >> 3;
2110
2111 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2112 if (idx > LDT_ENTRIES)
2113 return 0;
2114
2115 if (idx > current->active_mm->context.size)
2116 return 0;
2117
2118 desc = current->active_mm->context.ldt;
2119 } else {
2120 if (idx > GDT_ENTRIES)
2121 return 0;
2122
89cbc767 2123 desc = raw_cpu_ptr(gdt_page.gdt);
d07bdfd3
PZ
2124 }
2125
2126 return get_desc_base(desc + idx);
2127}
2128
257ef9d2 2129#ifdef CONFIG_COMPAT
d1a797f3
PA
2130
2131#include <asm/compat.h>
2132
257ef9d2
TE
2133static inline int
2134perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
74193ef0 2135{
257ef9d2 2136 /* 32-bit process in 64-bit kernel. */
d07bdfd3 2137 unsigned long ss_base, cs_base;
257ef9d2
TE
2138 struct stack_frame_ia32 frame;
2139 const void __user *fp;
74193ef0 2140
257ef9d2
TE
2141 if (!test_thread_flag(TIF_IA32))
2142 return 0;
2143
d07bdfd3
PZ
2144 cs_base = get_segment_base(regs->cs);
2145 ss_base = get_segment_base(regs->ss);
2146
2147 fp = compat_ptr(ss_base + regs->bp);
257ef9d2
TE
2148 while (entry->nr < PERF_MAX_STACK_DEPTH) {
2149 unsigned long bytes;
2150 frame.next_frame = 0;
2151 frame.return_address = 0;
2152
2153 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
0a196848 2154 if (bytes != 0)
257ef9d2 2155 break;
74193ef0 2156
bc6ca7b3
AS
2157 if (!valid_user_frame(fp, sizeof(frame)))
2158 break;
2159
d07bdfd3
PZ
2160 perf_callchain_store(entry, cs_base + frame.return_address);
2161 fp = compat_ptr(ss_base + frame.next_frame);
257ef9d2
TE
2162 }
2163 return 1;
d7d59fb3 2164}
257ef9d2
TE
2165#else
2166static inline int
2167perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
2168{
2169 return 0;
2170}
2171#endif
d7d59fb3 2172
56962b44
FW
2173void
2174perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
d7d59fb3
PZ
2175{
2176 struct stack_frame frame;
2177 const void __user *fp;
2178
927c7a9e
FW
2179 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2180 /* TODO: We don't support guest os callchain now */
ed805261 2181 return;
927c7a9e 2182 }
5a6cec3a 2183
d07bdfd3
PZ
2184 /*
2185 * We don't know what to do with VM86 stacks.. ignore them for now.
2186 */
2187 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2188 return;
2189
74193ef0 2190 fp = (void __user *)regs->bp;
d7d59fb3 2191
70791ce9 2192 perf_callchain_store(entry, regs->ip);
d7d59fb3 2193
20afc60f
AV
2194 if (!current->mm)
2195 return;
2196
257ef9d2
TE
2197 if (perf_callchain_user32(regs, entry))
2198 return;
2199
f9188e02 2200 while (entry->nr < PERF_MAX_STACK_DEPTH) {
257ef9d2 2201 unsigned long bytes;
038e836e 2202 frame.next_frame = NULL;
d7d59fb3
PZ
2203 frame.return_address = 0;
2204
257ef9d2 2205 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
0a196848 2206 if (bytes != 0)
d7d59fb3
PZ
2207 break;
2208
bc6ca7b3
AS
2209 if (!valid_user_frame(fp, sizeof(frame)))
2210 break;
2211
70791ce9 2212 perf_callchain_store(entry, frame.return_address);
038e836e 2213 fp = frame.next_frame;
d7d59fb3
PZ
2214 }
2215}
2216
d07bdfd3
PZ
2217/*
2218 * Deal with code segment offsets for the various execution modes:
2219 *
2220 * VM86 - the good olde 16 bit days, where the linear address is
2221 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2222 *
2223 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2224 * to figure out what the 32bit base address is.
2225 *
2226 * X32 - has TIF_X32 set, but is running in x86_64
2227 *
2228 * X86_64 - CS,DS,SS,ES are all zero based.
2229 */
2230static unsigned long code_segment_base(struct pt_regs *regs)
39447b38 2231{
d07bdfd3
PZ
2232 /*
2233 * If we are in VM86 mode, add the segment offset to convert to a
2234 * linear address.
2235 */
2236 if (regs->flags & X86_VM_MASK)
2237 return 0x10 * regs->cs;
2238
2239 /*
2240 * For IA32 we look at the GDT/LDT segment base to convert the
2241 * effective IP to a linear address.
2242 */
2243#ifdef CONFIG_X86_32
2244 if (user_mode(regs) && regs->cs != __USER_CS)
2245 return get_segment_base(regs->cs);
2246#else
2247 if (test_thread_flag(TIF_IA32)) {
2248 if (user_mode(regs) && regs->cs != __USER32_CS)
2249 return get_segment_base(regs->cs);
2250 }
2251#endif
2252 return 0;
2253}
dcf46b94 2254
d07bdfd3
PZ
2255unsigned long perf_instruction_pointer(struct pt_regs *regs)
2256{
39447b38 2257 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
d07bdfd3 2258 return perf_guest_cbs->get_guest_ip();
dcf46b94 2259
d07bdfd3 2260 return regs->ip + code_segment_base(regs);
39447b38
ZY
2261}
2262
2263unsigned long perf_misc_flags(struct pt_regs *regs)
2264{
2265 int misc = 0;
dcf46b94 2266
39447b38 2267 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
dcf46b94
ZY
2268 if (perf_guest_cbs->is_user_mode())
2269 misc |= PERF_RECORD_MISC_GUEST_USER;
2270 else
2271 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2272 } else {
d07bdfd3 2273 if (user_mode(regs))
dcf46b94
ZY
2274 misc |= PERF_RECORD_MISC_USER;
2275 else
2276 misc |= PERF_RECORD_MISC_KERNEL;
2277 }
2278
39447b38 2279 if (regs->flags & PERF_EFLAGS_EXACT)
ab608344 2280 misc |= PERF_RECORD_MISC_EXACT_IP;
39447b38
ZY
2281
2282 return misc;
2283}
b3d9468a
GN
2284
2285void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2286{
2287 cap->version = x86_pmu.version;
2288 cap->num_counters_gp = x86_pmu.num_counters;
2289 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2290 cap->bit_width_gp = x86_pmu.cntval_bits;
2291 cap->bit_width_fixed = x86_pmu.cntval_bits;
2292 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
2293 cap->events_mask_len = x86_pmu.events_mask_len;
2294}
2295EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
This page took 0.533873 seconds and 5 git commands to generate.