Merge tag 'perf-urgent-for-mingo' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / arch / x86 / kernel / cpu / perf_event_intel.c
CommitLineData
a7e3ed1e 1/*
efc9f05d
SE
2 * Per core/cpu state
3 *
4 * Used to coordinate shared registers between HT threads or
5 * among events on a single PMU.
a7e3ed1e 6 */
de0428a7 7
c767a54b
JP
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
de0428a7
KW
10#include <linux/stddef.h>
11#include <linux/types.h>
12#include <linux/init.h>
13#include <linux/slab.h>
69c60c88 14#include <linux/export.h>
de0428a7 15
3a632cb2 16#include <asm/cpufeature.h>
de0428a7
KW
17#include <asm/hardirq.h>
18#include <asm/apic.h>
19
20#include "perf_event.h"
a7e3ed1e 21
f22f54f4 22/*
b622d644 23 * Intel PerfMon, used on Core and later.
f22f54f4 24 */
ec75a716 25static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
f22f54f4 26{
c3b7cdf1
PE
27 [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
28 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
29 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
30 [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
31 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
32 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
33 [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
34 [PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */
f22f54f4
PZ
35};
36
5c543e3c 37static struct event_constraint intel_core_event_constraints[] __read_mostly =
f22f54f4
PZ
38{
39 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
40 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
41 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
42 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
43 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
44 INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
45 EVENT_CONSTRAINT_END
46};
47
5c543e3c 48static struct event_constraint intel_core2_event_constraints[] __read_mostly =
f22f54f4 49{
b622d644
PZ
50 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
51 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
cd09c0c4 52 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
f22f54f4
PZ
53 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
54 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
55 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
56 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
57 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
58 INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
59 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
60 INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
b622d644 61 INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
f22f54f4
PZ
62 INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
63 EVENT_CONSTRAINT_END
64};
65
5c543e3c 66static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
f22f54f4 67{
b622d644
PZ
68 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
69 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
cd09c0c4 70 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
f22f54f4
PZ
71 INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
72 INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
73 INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
74 INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
75 INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
76 INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
77 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
78 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
79 EVENT_CONSTRAINT_END
80};
81
5c543e3c 82static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
a7e3ed1e 83{
53ad0447
YZ
84 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
85 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
f20093ee 86 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
a7e3ed1e
AK
87 EVENT_EXTRA_END
88};
89
5c543e3c 90static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
f22f54f4 91{
b622d644
PZ
92 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
93 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
cd09c0c4 94 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
f22f54f4
PZ
95 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
96 INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
97 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
d1100770 98 INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
f22f54f4
PZ
99 EVENT_CONSTRAINT_END
100};
101
5c543e3c 102static struct event_constraint intel_snb_event_constraints[] __read_mostly =
b06b3d49
LM
103{
104 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
105 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
cd09c0c4 106 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
fd4a5aef
SE
107 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
108 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
109 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
110 INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
b06b3d49 111 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
b06b3d49
LM
112 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
113 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
f8378f52
AK
114 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
115 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
b06b3d49
LM
116 EVENT_CONSTRAINT_END
117};
118
69943182
SE
119static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
120{
121 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
122 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
123 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
124 INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
125 INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
126 INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
6113af14 127 INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
69943182
SE
128 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
129 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
130 INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
131 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
132 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
133 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
741a698f
PZ
134 /*
135 * Errata BV98 -- MEM_*_RETIRED events can leak between counters of SMT
136 * siblings; disable these events because they can corrupt unrelated
137 * counters.
138 */
139 INTEL_EVENT_CONSTRAINT(0xd0, 0x0), /* MEM_UOPS_RETIRED.* */
140 INTEL_EVENT_CONSTRAINT(0xd1, 0x0), /* MEM_LOAD_UOPS_RETIRED.* */
141 INTEL_EVENT_CONSTRAINT(0xd2, 0x0), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
142 INTEL_EVENT_CONSTRAINT(0xd3, 0x0), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
69943182
SE
143 EVENT_CONSTRAINT_END
144};
145
5c543e3c 146static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
a7e3ed1e 147{
53ad0447
YZ
148 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
149 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
150 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
f20093ee 151 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
a7e3ed1e
AK
152 EVENT_EXTRA_END
153};
154
0af3ac1f
AK
155static struct event_constraint intel_v1_event_constraints[] __read_mostly =
156{
157 EVENT_CONSTRAINT_END
158};
159
5c543e3c 160static struct event_constraint intel_gen_event_constraints[] __read_mostly =
f22f54f4 161{
b622d644
PZ
162 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
163 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
cd09c0c4 164 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
f22f54f4
PZ
165 EVENT_CONSTRAINT_END
166};
167
1fa64180
YZ
168static struct event_constraint intel_slm_event_constraints[] __read_mostly =
169{
170 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
171 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
1fa64180
YZ
172 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
173 EVENT_CONSTRAINT_END
174};
175
ee89cbc2 176static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
53ad0447
YZ
177 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
178 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
179 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
f20093ee 180 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
f1923820
SE
181 EVENT_EXTRA_END
182};
183
184static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
53ad0447
YZ
185 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
186 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
187 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
f1a52789 188 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
ee89cbc2
SE
189 EVENT_EXTRA_END
190};
191
7f2ee91f
IM
192EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3");
193EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3");
194EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2");
f20093ee
SE
195
196struct attribute *nhm_events_attrs[] = {
197 EVENT_PTR(mem_ld_nhm),
198 NULL,
199};
200
201struct attribute *snb_events_attrs[] = {
202 EVENT_PTR(mem_ld_snb),
9ad64c0f 203 EVENT_PTR(mem_st_snb),
f20093ee
SE
204 NULL,
205};
206
3a632cb2
AK
207static struct event_constraint intel_hsw_event_constraints[] = {
208 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
209 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
210 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
211 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.* */
212 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
213 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
214 /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
215 INTEL_EVENT_CONSTRAINT(0x08a3, 0x4),
216 /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
217 INTEL_EVENT_CONSTRAINT(0x0ca3, 0x4),
218 /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
219 INTEL_EVENT_CONSTRAINT(0x04a3, 0xf),
220 EVENT_CONSTRAINT_END
221};
222
f22f54f4
PZ
223static u64 intel_pmu_event_map(int hw_event)
224{
225 return intel_perfmon_event_map[hw_event];
226}
227
74e6543f
YZ
228#define SNB_DMND_DATA_RD (1ULL << 0)
229#define SNB_DMND_RFO (1ULL << 1)
230#define SNB_DMND_IFETCH (1ULL << 2)
231#define SNB_DMND_WB (1ULL << 3)
232#define SNB_PF_DATA_RD (1ULL << 4)
233#define SNB_PF_RFO (1ULL << 5)
234#define SNB_PF_IFETCH (1ULL << 6)
235#define SNB_LLC_DATA_RD (1ULL << 7)
236#define SNB_LLC_RFO (1ULL << 8)
237#define SNB_LLC_IFETCH (1ULL << 9)
238#define SNB_BUS_LOCKS (1ULL << 10)
239#define SNB_STRM_ST (1ULL << 11)
240#define SNB_OTHER (1ULL << 15)
241#define SNB_RESP_ANY (1ULL << 16)
242#define SNB_NO_SUPP (1ULL << 17)
243#define SNB_LLC_HITM (1ULL << 18)
244#define SNB_LLC_HITE (1ULL << 19)
245#define SNB_LLC_HITS (1ULL << 20)
246#define SNB_LLC_HITF (1ULL << 21)
247#define SNB_LOCAL (1ULL << 22)
248#define SNB_REMOTE (0xffULL << 23)
249#define SNB_SNP_NONE (1ULL << 31)
250#define SNB_SNP_NOT_NEEDED (1ULL << 32)
251#define SNB_SNP_MISS (1ULL << 33)
252#define SNB_NO_FWD (1ULL << 34)
253#define SNB_SNP_FWD (1ULL << 35)
254#define SNB_HITM (1ULL << 36)
255#define SNB_NON_DRAM (1ULL << 37)
256
257#define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
258#define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO)
259#define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
260
261#define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
262 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
263 SNB_HITM)
264
265#define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
266#define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY)
267
268#define SNB_L3_ACCESS SNB_RESP_ANY
269#define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM)
270
271static __initconst const u64 snb_hw_cache_extra_regs
272 [PERF_COUNT_HW_CACHE_MAX]
273 [PERF_COUNT_HW_CACHE_OP_MAX]
274 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
275{
276 [ C(LL ) ] = {
277 [ C(OP_READ) ] = {
278 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
279 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS,
280 },
281 [ C(OP_WRITE) ] = {
282 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
283 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS,
284 },
285 [ C(OP_PREFETCH) ] = {
286 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
287 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
288 },
289 },
290 [ C(NODE) ] = {
291 [ C(OP_READ) ] = {
292 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
293 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
294 },
295 [ C(OP_WRITE) ] = {
296 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
297 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
298 },
299 [ C(OP_PREFETCH) ] = {
300 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
301 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
302 },
303 },
304};
305
b06b3d49
LM
306static __initconst const u64 snb_hw_cache_event_ids
307 [PERF_COUNT_HW_CACHE_MAX]
308 [PERF_COUNT_HW_CACHE_OP_MAX]
309 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
310{
311 [ C(L1D) ] = {
312 [ C(OP_READ) ] = {
313 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
314 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
315 },
316 [ C(OP_WRITE) ] = {
317 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
318 [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
319 },
320 [ C(OP_PREFETCH) ] = {
321 [ C(RESULT_ACCESS) ] = 0x0,
322 [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
323 },
324 },
325 [ C(L1I ) ] = {
326 [ C(OP_READ) ] = {
327 [ C(RESULT_ACCESS) ] = 0x0,
328 [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
329 },
330 [ C(OP_WRITE) ] = {
331 [ C(RESULT_ACCESS) ] = -1,
332 [ C(RESULT_MISS) ] = -1,
333 },
334 [ C(OP_PREFETCH) ] = {
335 [ C(RESULT_ACCESS) ] = 0x0,
336 [ C(RESULT_MISS) ] = 0x0,
337 },
338 },
339 [ C(LL ) ] = {
b06b3d49 340 [ C(OP_READ) ] = {
63b6a675 341 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
b06b3d49 342 [ C(RESULT_ACCESS) ] = 0x01b7,
63b6a675
PZ
343 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
344 [ C(RESULT_MISS) ] = 0x01b7,
b06b3d49
LM
345 },
346 [ C(OP_WRITE) ] = {
63b6a675 347 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
b06b3d49 348 [ C(RESULT_ACCESS) ] = 0x01b7,
63b6a675
PZ
349 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
350 [ C(RESULT_MISS) ] = 0x01b7,
b06b3d49
LM
351 },
352 [ C(OP_PREFETCH) ] = {
63b6a675 353 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
b06b3d49 354 [ C(RESULT_ACCESS) ] = 0x01b7,
63b6a675
PZ
355 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
356 [ C(RESULT_MISS) ] = 0x01b7,
b06b3d49
LM
357 },
358 },
359 [ C(DTLB) ] = {
360 [ C(OP_READ) ] = {
361 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
362 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
363 },
364 [ C(OP_WRITE) ] = {
365 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
366 [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
367 },
368 [ C(OP_PREFETCH) ] = {
369 [ C(RESULT_ACCESS) ] = 0x0,
370 [ C(RESULT_MISS) ] = 0x0,
371 },
372 },
373 [ C(ITLB) ] = {
374 [ C(OP_READ) ] = {
375 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
376 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
377 },
378 [ C(OP_WRITE) ] = {
379 [ C(RESULT_ACCESS) ] = -1,
380 [ C(RESULT_MISS) ] = -1,
381 },
382 [ C(OP_PREFETCH) ] = {
383 [ C(RESULT_ACCESS) ] = -1,
384 [ C(RESULT_MISS) ] = -1,
385 },
386 },
387 [ C(BPU ) ] = {
388 [ C(OP_READ) ] = {
389 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
390 [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
391 },
392 [ C(OP_WRITE) ] = {
393 [ C(RESULT_ACCESS) ] = -1,
394 [ C(RESULT_MISS) ] = -1,
395 },
396 [ C(OP_PREFETCH) ] = {
397 [ C(RESULT_ACCESS) ] = -1,
398 [ C(RESULT_MISS) ] = -1,
399 },
400 },
89d6c0b5
PZ
401 [ C(NODE) ] = {
402 [ C(OP_READ) ] = {
74e6543f
YZ
403 [ C(RESULT_ACCESS) ] = 0x01b7,
404 [ C(RESULT_MISS) ] = 0x01b7,
89d6c0b5
PZ
405 },
406 [ C(OP_WRITE) ] = {
74e6543f
YZ
407 [ C(RESULT_ACCESS) ] = 0x01b7,
408 [ C(RESULT_MISS) ] = 0x01b7,
89d6c0b5
PZ
409 },
410 [ C(OP_PREFETCH) ] = {
74e6543f
YZ
411 [ C(RESULT_ACCESS) ] = 0x01b7,
412 [ C(RESULT_MISS) ] = 0x01b7,
89d6c0b5
PZ
413 },
414 },
415
b06b3d49
LM
416};
417
caaa8be3 418static __initconst const u64 westmere_hw_cache_event_ids
f22f54f4
PZ
419 [PERF_COUNT_HW_CACHE_MAX]
420 [PERF_COUNT_HW_CACHE_OP_MAX]
421 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
422{
423 [ C(L1D) ] = {
424 [ C(OP_READ) ] = {
425 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
426 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
427 },
428 [ C(OP_WRITE) ] = {
429 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
430 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
431 },
432 [ C(OP_PREFETCH) ] = {
433 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
434 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
435 },
436 },
437 [ C(L1I ) ] = {
438 [ C(OP_READ) ] = {
439 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
440 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
441 },
442 [ C(OP_WRITE) ] = {
443 [ C(RESULT_ACCESS) ] = -1,
444 [ C(RESULT_MISS) ] = -1,
445 },
446 [ C(OP_PREFETCH) ] = {
447 [ C(RESULT_ACCESS) ] = 0x0,
448 [ C(RESULT_MISS) ] = 0x0,
449 },
450 },
451 [ C(LL ) ] = {
452 [ C(OP_READ) ] = {
63b6a675 453 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
e994d7d2 454 [ C(RESULT_ACCESS) ] = 0x01b7,
63b6a675
PZ
455 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
456 [ C(RESULT_MISS) ] = 0x01b7,
f22f54f4 457 },
e994d7d2
AK
458 /*
459 * Use RFO, not WRITEBACK, because a write miss would typically occur
460 * on RFO.
461 */
f22f54f4 462 [ C(OP_WRITE) ] = {
63b6a675
PZ
463 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
464 [ C(RESULT_ACCESS) ] = 0x01b7,
465 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
e994d7d2 466 [ C(RESULT_MISS) ] = 0x01b7,
f22f54f4
PZ
467 },
468 [ C(OP_PREFETCH) ] = {
63b6a675 469 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
e994d7d2 470 [ C(RESULT_ACCESS) ] = 0x01b7,
63b6a675
PZ
471 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
472 [ C(RESULT_MISS) ] = 0x01b7,
f22f54f4
PZ
473 },
474 },
475 [ C(DTLB) ] = {
476 [ C(OP_READ) ] = {
477 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
478 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
479 },
480 [ C(OP_WRITE) ] = {
481 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
482 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
483 },
484 [ C(OP_PREFETCH) ] = {
485 [ C(RESULT_ACCESS) ] = 0x0,
486 [ C(RESULT_MISS) ] = 0x0,
487 },
488 },
489 [ C(ITLB) ] = {
490 [ C(OP_READ) ] = {
491 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
492 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
493 },
494 [ C(OP_WRITE) ] = {
495 [ C(RESULT_ACCESS) ] = -1,
496 [ C(RESULT_MISS) ] = -1,
497 },
498 [ C(OP_PREFETCH) ] = {
499 [ C(RESULT_ACCESS) ] = -1,
500 [ C(RESULT_MISS) ] = -1,
501 },
502 },
503 [ C(BPU ) ] = {
504 [ C(OP_READ) ] = {
505 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
506 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
507 },
508 [ C(OP_WRITE) ] = {
509 [ C(RESULT_ACCESS) ] = -1,
510 [ C(RESULT_MISS) ] = -1,
511 },
512 [ C(OP_PREFETCH) ] = {
513 [ C(RESULT_ACCESS) ] = -1,
514 [ C(RESULT_MISS) ] = -1,
515 },
516 },
89d6c0b5
PZ
517 [ C(NODE) ] = {
518 [ C(OP_READ) ] = {
519 [ C(RESULT_ACCESS) ] = 0x01b7,
520 [ C(RESULT_MISS) ] = 0x01b7,
521 },
522 [ C(OP_WRITE) ] = {
523 [ C(RESULT_ACCESS) ] = 0x01b7,
524 [ C(RESULT_MISS) ] = 0x01b7,
525 },
526 [ C(OP_PREFETCH) ] = {
527 [ C(RESULT_ACCESS) ] = 0x01b7,
528 [ C(RESULT_MISS) ] = 0x01b7,
529 },
530 },
f22f54f4
PZ
531};
532
e994d7d2 533/*
63b6a675
PZ
534 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
535 * See IA32 SDM Vol 3B 30.6.1.3
e994d7d2
AK
536 */
537
63b6a675
PZ
538#define NHM_DMND_DATA_RD (1 << 0)
539#define NHM_DMND_RFO (1 << 1)
540#define NHM_DMND_IFETCH (1 << 2)
541#define NHM_DMND_WB (1 << 3)
542#define NHM_PF_DATA_RD (1 << 4)
543#define NHM_PF_DATA_RFO (1 << 5)
544#define NHM_PF_IFETCH (1 << 6)
545#define NHM_OFFCORE_OTHER (1 << 7)
546#define NHM_UNCORE_HIT (1 << 8)
547#define NHM_OTHER_CORE_HIT_SNP (1 << 9)
548#define NHM_OTHER_CORE_HITM (1 << 10)
549 /* reserved */
550#define NHM_REMOTE_CACHE_FWD (1 << 12)
551#define NHM_REMOTE_DRAM (1 << 13)
552#define NHM_LOCAL_DRAM (1 << 14)
553#define NHM_NON_DRAM (1 << 15)
554
87e24f4b
PZ
555#define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
556#define NHM_REMOTE (NHM_REMOTE_DRAM)
63b6a675
PZ
557
558#define NHM_DMND_READ (NHM_DMND_DATA_RD)
559#define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
560#define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
561
562#define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
87e24f4b 563#define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
63b6a675 564#define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
e994d7d2
AK
565
566static __initconst const u64 nehalem_hw_cache_extra_regs
567 [PERF_COUNT_HW_CACHE_MAX]
568 [PERF_COUNT_HW_CACHE_OP_MAX]
569 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
570{
571 [ C(LL ) ] = {
572 [ C(OP_READ) ] = {
63b6a675
PZ
573 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
574 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
e994d7d2
AK
575 },
576 [ C(OP_WRITE) ] = {
63b6a675
PZ
577 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
578 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
e994d7d2
AK
579 },
580 [ C(OP_PREFETCH) ] = {
63b6a675
PZ
581 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
582 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
e994d7d2 583 },
89d6c0b5
PZ
584 },
585 [ C(NODE) ] = {
586 [ C(OP_READ) ] = {
87e24f4b
PZ
587 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
588 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE,
89d6c0b5
PZ
589 },
590 [ C(OP_WRITE) ] = {
87e24f4b
PZ
591 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
592 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE,
89d6c0b5
PZ
593 },
594 [ C(OP_PREFETCH) ] = {
87e24f4b
PZ
595 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
596 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE,
89d6c0b5
PZ
597 },
598 },
e994d7d2
AK
599};
600
caaa8be3 601static __initconst const u64 nehalem_hw_cache_event_ids
f22f54f4
PZ
602 [PERF_COUNT_HW_CACHE_MAX]
603 [PERF_COUNT_HW_CACHE_OP_MAX]
604 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
605{
606 [ C(L1D) ] = {
607 [ C(OP_READ) ] = {
f4929bd3
PZ
608 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
609 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
f22f54f4
PZ
610 },
611 [ C(OP_WRITE) ] = {
f4929bd3
PZ
612 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
613 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
f22f54f4
PZ
614 },
615 [ C(OP_PREFETCH) ] = {
616 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
617 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
618 },
619 },
620 [ C(L1I ) ] = {
621 [ C(OP_READ) ] = {
622 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
623 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
624 },
625 [ C(OP_WRITE) ] = {
626 [ C(RESULT_ACCESS) ] = -1,
627 [ C(RESULT_MISS) ] = -1,
628 },
629 [ C(OP_PREFETCH) ] = {
630 [ C(RESULT_ACCESS) ] = 0x0,
631 [ C(RESULT_MISS) ] = 0x0,
632 },
633 },
634 [ C(LL ) ] = {
635 [ C(OP_READ) ] = {
e994d7d2
AK
636 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
637 [ C(RESULT_ACCESS) ] = 0x01b7,
638 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
639 [ C(RESULT_MISS) ] = 0x01b7,
f22f54f4 640 },
e994d7d2
AK
641 /*
642 * Use RFO, not WRITEBACK, because a write miss would typically occur
643 * on RFO.
644 */
f22f54f4 645 [ C(OP_WRITE) ] = {
e994d7d2
AK
646 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
647 [ C(RESULT_ACCESS) ] = 0x01b7,
648 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
649 [ C(RESULT_MISS) ] = 0x01b7,
f22f54f4
PZ
650 },
651 [ C(OP_PREFETCH) ] = {
e994d7d2
AK
652 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
653 [ C(RESULT_ACCESS) ] = 0x01b7,
654 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
655 [ C(RESULT_MISS) ] = 0x01b7,
f22f54f4
PZ
656 },
657 },
658 [ C(DTLB) ] = {
659 [ C(OP_READ) ] = {
660 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
661 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
662 },
663 [ C(OP_WRITE) ] = {
664 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
665 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
666 },
667 [ C(OP_PREFETCH) ] = {
668 [ C(RESULT_ACCESS) ] = 0x0,
669 [ C(RESULT_MISS) ] = 0x0,
670 },
671 },
672 [ C(ITLB) ] = {
673 [ C(OP_READ) ] = {
674 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
675 [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
676 },
677 [ C(OP_WRITE) ] = {
678 [ C(RESULT_ACCESS) ] = -1,
679 [ C(RESULT_MISS) ] = -1,
680 },
681 [ C(OP_PREFETCH) ] = {
682 [ C(RESULT_ACCESS) ] = -1,
683 [ C(RESULT_MISS) ] = -1,
684 },
685 },
686 [ C(BPU ) ] = {
687 [ C(OP_READ) ] = {
688 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
689 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
690 },
691 [ C(OP_WRITE) ] = {
692 [ C(RESULT_ACCESS) ] = -1,
693 [ C(RESULT_MISS) ] = -1,
694 },
695 [ C(OP_PREFETCH) ] = {
696 [ C(RESULT_ACCESS) ] = -1,
697 [ C(RESULT_MISS) ] = -1,
698 },
699 },
89d6c0b5
PZ
700 [ C(NODE) ] = {
701 [ C(OP_READ) ] = {
702 [ C(RESULT_ACCESS) ] = 0x01b7,
703 [ C(RESULT_MISS) ] = 0x01b7,
704 },
705 [ C(OP_WRITE) ] = {
706 [ C(RESULT_ACCESS) ] = 0x01b7,
707 [ C(RESULT_MISS) ] = 0x01b7,
708 },
709 [ C(OP_PREFETCH) ] = {
710 [ C(RESULT_ACCESS) ] = 0x01b7,
711 [ C(RESULT_MISS) ] = 0x01b7,
712 },
713 },
f22f54f4
PZ
714};
715
caaa8be3 716static __initconst const u64 core2_hw_cache_event_ids
f22f54f4
PZ
717 [PERF_COUNT_HW_CACHE_MAX]
718 [PERF_COUNT_HW_CACHE_OP_MAX]
719 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
720{
721 [ C(L1D) ] = {
722 [ C(OP_READ) ] = {
723 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
724 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
725 },
726 [ C(OP_WRITE) ] = {
727 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
728 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
729 },
730 [ C(OP_PREFETCH) ] = {
731 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
732 [ C(RESULT_MISS) ] = 0,
733 },
734 },
735 [ C(L1I ) ] = {
736 [ C(OP_READ) ] = {
737 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
738 [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
739 },
740 [ C(OP_WRITE) ] = {
741 [ C(RESULT_ACCESS) ] = -1,
742 [ C(RESULT_MISS) ] = -1,
743 },
744 [ C(OP_PREFETCH) ] = {
745 [ C(RESULT_ACCESS) ] = 0,
746 [ C(RESULT_MISS) ] = 0,
747 },
748 },
749 [ C(LL ) ] = {
750 [ C(OP_READ) ] = {
751 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
752 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
753 },
754 [ C(OP_WRITE) ] = {
755 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
756 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
757 },
758 [ C(OP_PREFETCH) ] = {
759 [ C(RESULT_ACCESS) ] = 0,
760 [ C(RESULT_MISS) ] = 0,
761 },
762 },
763 [ C(DTLB) ] = {
764 [ C(OP_READ) ] = {
765 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
766 [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
767 },
768 [ C(OP_WRITE) ] = {
769 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
770 [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
771 },
772 [ C(OP_PREFETCH) ] = {
773 [ C(RESULT_ACCESS) ] = 0,
774 [ C(RESULT_MISS) ] = 0,
775 },
776 },
777 [ C(ITLB) ] = {
778 [ C(OP_READ) ] = {
779 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
780 [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
781 },
782 [ C(OP_WRITE) ] = {
783 [ C(RESULT_ACCESS) ] = -1,
784 [ C(RESULT_MISS) ] = -1,
785 },
786 [ C(OP_PREFETCH) ] = {
787 [ C(RESULT_ACCESS) ] = -1,
788 [ C(RESULT_MISS) ] = -1,
789 },
790 },
791 [ C(BPU ) ] = {
792 [ C(OP_READ) ] = {
793 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
794 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
795 },
796 [ C(OP_WRITE) ] = {
797 [ C(RESULT_ACCESS) ] = -1,
798 [ C(RESULT_MISS) ] = -1,
799 },
800 [ C(OP_PREFETCH) ] = {
801 [ C(RESULT_ACCESS) ] = -1,
802 [ C(RESULT_MISS) ] = -1,
803 },
804 },
805};
806
caaa8be3 807static __initconst const u64 atom_hw_cache_event_ids
f22f54f4
PZ
808 [PERF_COUNT_HW_CACHE_MAX]
809 [PERF_COUNT_HW_CACHE_OP_MAX]
810 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
811{
812 [ C(L1D) ] = {
813 [ C(OP_READ) ] = {
814 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
815 [ C(RESULT_MISS) ] = 0,
816 },
817 [ C(OP_WRITE) ] = {
818 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
819 [ C(RESULT_MISS) ] = 0,
820 },
821 [ C(OP_PREFETCH) ] = {
822 [ C(RESULT_ACCESS) ] = 0x0,
823 [ C(RESULT_MISS) ] = 0,
824 },
825 },
826 [ C(L1I ) ] = {
827 [ C(OP_READ) ] = {
828 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
829 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
830 },
831 [ C(OP_WRITE) ] = {
832 [ C(RESULT_ACCESS) ] = -1,
833 [ C(RESULT_MISS) ] = -1,
834 },
835 [ C(OP_PREFETCH) ] = {
836 [ C(RESULT_ACCESS) ] = 0,
837 [ C(RESULT_MISS) ] = 0,
838 },
839 },
840 [ C(LL ) ] = {
841 [ C(OP_READ) ] = {
842 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
843 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
844 },
845 [ C(OP_WRITE) ] = {
846 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
847 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
848 },
849 [ C(OP_PREFETCH) ] = {
850 [ C(RESULT_ACCESS) ] = 0,
851 [ C(RESULT_MISS) ] = 0,
852 },
853 },
854 [ C(DTLB) ] = {
855 [ C(OP_READ) ] = {
856 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
857 [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
858 },
859 [ C(OP_WRITE) ] = {
860 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
861 [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
862 },
863 [ C(OP_PREFETCH) ] = {
864 [ C(RESULT_ACCESS) ] = 0,
865 [ C(RESULT_MISS) ] = 0,
866 },
867 },
868 [ C(ITLB) ] = {
869 [ C(OP_READ) ] = {
870 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
871 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
872 },
873 [ C(OP_WRITE) ] = {
874 [ C(RESULT_ACCESS) ] = -1,
875 [ C(RESULT_MISS) ] = -1,
876 },
877 [ C(OP_PREFETCH) ] = {
878 [ C(RESULT_ACCESS) ] = -1,
879 [ C(RESULT_MISS) ] = -1,
880 },
881 },
882 [ C(BPU ) ] = {
883 [ C(OP_READ) ] = {
884 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
885 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
886 },
887 [ C(OP_WRITE) ] = {
888 [ C(RESULT_ACCESS) ] = -1,
889 [ C(RESULT_MISS) ] = -1,
890 },
891 [ C(OP_PREFETCH) ] = {
892 [ C(RESULT_ACCESS) ] = -1,
893 [ C(RESULT_MISS) ] = -1,
894 },
895 },
896};
897
1fa64180
YZ
898static struct extra_reg intel_slm_extra_regs[] __read_mostly =
899{
900 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
06c939c1
PZ
901 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
902 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x768005ffffull, RSP_1),
1fa64180
YZ
903 EVENT_EXTRA_END
904};
905
906#define SLM_DMND_READ SNB_DMND_DATA_RD
907#define SLM_DMND_WRITE SNB_DMND_RFO
908#define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
909
910#define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
911#define SLM_LLC_ACCESS SNB_RESP_ANY
912#define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM)
913
914static __initconst const u64 slm_hw_cache_extra_regs
915 [PERF_COUNT_HW_CACHE_MAX]
916 [PERF_COUNT_HW_CACHE_OP_MAX]
917 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
918{
919 [ C(LL ) ] = {
920 [ C(OP_READ) ] = {
921 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
922 [ C(RESULT_MISS) ] = SLM_DMND_READ|SLM_LLC_MISS,
923 },
924 [ C(OP_WRITE) ] = {
925 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
926 [ C(RESULT_MISS) ] = SLM_DMND_WRITE|SLM_LLC_MISS,
927 },
928 [ C(OP_PREFETCH) ] = {
929 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
930 [ C(RESULT_MISS) ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
931 },
932 },
933};
934
935static __initconst const u64 slm_hw_cache_event_ids
936 [PERF_COUNT_HW_CACHE_MAX]
937 [PERF_COUNT_HW_CACHE_OP_MAX]
938 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
939{
940 [ C(L1D) ] = {
941 [ C(OP_READ) ] = {
942 [ C(RESULT_ACCESS) ] = 0,
943 [ C(RESULT_MISS) ] = 0x0104, /* LD_DCU_MISS */
944 },
945 [ C(OP_WRITE) ] = {
946 [ C(RESULT_ACCESS) ] = 0,
947 [ C(RESULT_MISS) ] = 0,
948 },
949 [ C(OP_PREFETCH) ] = {
950 [ C(RESULT_ACCESS) ] = 0,
951 [ C(RESULT_MISS) ] = 0,
952 },
953 },
954 [ C(L1I ) ] = {
955 [ C(OP_READ) ] = {
956 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
957 [ C(RESULT_MISS) ] = 0x0280, /* ICACGE.MISSES */
958 },
959 [ C(OP_WRITE) ] = {
960 [ C(RESULT_ACCESS) ] = -1,
961 [ C(RESULT_MISS) ] = -1,
962 },
963 [ C(OP_PREFETCH) ] = {
964 [ C(RESULT_ACCESS) ] = 0,
965 [ C(RESULT_MISS) ] = 0,
966 },
967 },
968 [ C(LL ) ] = {
969 [ C(OP_READ) ] = {
970 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
971 [ C(RESULT_ACCESS) ] = 0x01b7,
972 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
973 [ C(RESULT_MISS) ] = 0x01b7,
974 },
975 [ C(OP_WRITE) ] = {
976 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
977 [ C(RESULT_ACCESS) ] = 0x01b7,
978 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
979 [ C(RESULT_MISS) ] = 0x01b7,
980 },
981 [ C(OP_PREFETCH) ] = {
982 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
983 [ C(RESULT_ACCESS) ] = 0x01b7,
984 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
985 [ C(RESULT_MISS) ] = 0x01b7,
986 },
987 },
988 [ C(DTLB) ] = {
989 [ C(OP_READ) ] = {
990 [ C(RESULT_ACCESS) ] = 0,
991 [ C(RESULT_MISS) ] = 0x0804, /* LD_DTLB_MISS */
992 },
993 [ C(OP_WRITE) ] = {
994 [ C(RESULT_ACCESS) ] = 0,
995 [ C(RESULT_MISS) ] = 0,
996 },
997 [ C(OP_PREFETCH) ] = {
998 [ C(RESULT_ACCESS) ] = 0,
999 [ C(RESULT_MISS) ] = 0,
1000 },
1001 },
1002 [ C(ITLB) ] = {
1003 [ C(OP_READ) ] = {
1004 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1005 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
1006 },
1007 [ C(OP_WRITE) ] = {
1008 [ C(RESULT_ACCESS) ] = -1,
1009 [ C(RESULT_MISS) ] = -1,
1010 },
1011 [ C(OP_PREFETCH) ] = {
1012 [ C(RESULT_ACCESS) ] = -1,
1013 [ C(RESULT_MISS) ] = -1,
1014 },
1015 },
1016 [ C(BPU ) ] = {
1017 [ C(OP_READ) ] = {
1018 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1019 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1020 },
1021 [ C(OP_WRITE) ] = {
1022 [ C(RESULT_ACCESS) ] = -1,
1023 [ C(RESULT_MISS) ] = -1,
1024 },
1025 [ C(OP_PREFETCH) ] = {
1026 [ C(RESULT_ACCESS) ] = -1,
1027 [ C(RESULT_MISS) ] = -1,
1028 },
1029 },
1030};
1031
60ce0fbd
SE
1032static inline bool intel_pmu_needs_lbr_smpl(struct perf_event *event)
1033{
1034 /* user explicitly requested branch sampling */
1035 if (has_branch_stack(event))
1036 return true;
1037
1038 /* implicit branch sampling to correct PEBS skid */
3044318f
AK
1039 if (x86_pmu.intel_cap.pebs_trap && event->attr.precise_ip > 1 &&
1040 x86_pmu.intel_cap.pebs_format < 2)
60ce0fbd
SE
1041 return true;
1042
1043 return false;
1044}
1045
f22f54f4
PZ
1046static void intel_pmu_disable_all(void)
1047{
1048 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1049
1050 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1051
15c7ad51 1052 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
f22f54f4 1053 intel_pmu_disable_bts();
ca037701
PZ
1054
1055 intel_pmu_pebs_disable_all();
caff2bef 1056 intel_pmu_lbr_disable_all();
f22f54f4
PZ
1057}
1058
11164cd4 1059static void intel_pmu_enable_all(int added)
f22f54f4
PZ
1060{
1061 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1062
d329527e
PZ
1063 intel_pmu_pebs_enable_all();
1064 intel_pmu_lbr_enable_all();
144d31e6
GN
1065 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1066 x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
f22f54f4 1067
15c7ad51 1068 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
f22f54f4 1069 struct perf_event *event =
15c7ad51 1070 cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
f22f54f4
PZ
1071
1072 if (WARN_ON_ONCE(!event))
1073 return;
1074
1075 intel_pmu_enable_bts(event->hw.config);
1076 }
1077}
1078
11164cd4
PZ
1079/*
1080 * Workaround for:
1081 * Intel Errata AAK100 (model 26)
1082 * Intel Errata AAP53 (model 30)
40b91cd1 1083 * Intel Errata BD53 (model 44)
11164cd4 1084 *
351af072
ZY
1085 * The official story:
1086 * These chips need to be 'reset' when adding counters by programming the
1087 * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1088 * in sequence on the same PMC or on different PMCs.
1089 *
1090 * In practise it appears some of these events do in fact count, and
1091 * we need to programm all 4 events.
11164cd4 1092 */
351af072 1093static void intel_pmu_nhm_workaround(void)
11164cd4 1094{
351af072
ZY
1095 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1096 static const unsigned long nhm_magic[4] = {
1097 0x4300B5,
1098 0x4300D2,
1099 0x4300B1,
1100 0x4300B1
1101 };
1102 struct perf_event *event;
1103 int i;
11164cd4 1104
351af072
ZY
1105 /*
1106 * The Errata requires below steps:
1107 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1108 * 2) Configure 4 PERFEVTSELx with the magic events and clear
1109 * the corresponding PMCx;
1110 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1111 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1112 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1113 */
11164cd4 1114
351af072
ZY
1115 /*
1116 * The real steps we choose are a little different from above.
1117 * A) To reduce MSR operations, we don't run step 1) as they
1118 * are already cleared before this function is called;
1119 * B) Call x86_perf_event_update to save PMCx before configuring
1120 * PERFEVTSELx with magic number;
1121 * C) With step 5), we do clear only when the PERFEVTSELx is
1122 * not used currently.
1123 * D) Call x86_perf_event_set_period to restore PMCx;
1124 */
11164cd4 1125
351af072
ZY
1126 /* We always operate 4 pairs of PERF Counters */
1127 for (i = 0; i < 4; i++) {
1128 event = cpuc->events[i];
1129 if (event)
1130 x86_perf_event_update(event);
1131 }
11164cd4 1132
351af072
ZY
1133 for (i = 0; i < 4; i++) {
1134 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
1135 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
1136 }
1137
1138 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
1139 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
11164cd4 1140
351af072
ZY
1141 for (i = 0; i < 4; i++) {
1142 event = cpuc->events[i];
1143
1144 if (event) {
1145 x86_perf_event_set_period(event);
31fa58af 1146 __x86_pmu_enable_event(&event->hw,
351af072
ZY
1147 ARCH_PERFMON_EVENTSEL_ENABLE);
1148 } else
1149 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
11164cd4 1150 }
351af072
ZY
1151}
1152
1153static void intel_pmu_nhm_enable_all(int added)
1154{
1155 if (added)
1156 intel_pmu_nhm_workaround();
11164cd4
PZ
1157 intel_pmu_enable_all(added);
1158}
1159
f22f54f4
PZ
1160static inline u64 intel_pmu_get_status(void)
1161{
1162 u64 status;
1163
1164 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1165
1166 return status;
1167}
1168
1169static inline void intel_pmu_ack_status(u64 ack)
1170{
1171 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
1172}
1173
ca037701 1174static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
f22f54f4 1175{
15c7ad51 1176 int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
f22f54f4
PZ
1177 u64 ctrl_val, mask;
1178
1179 mask = 0xfULL << (idx * 4);
1180
1181 rdmsrl(hwc->config_base, ctrl_val);
1182 ctrl_val &= ~mask;
7645a24c 1183 wrmsrl(hwc->config_base, ctrl_val);
f22f54f4
PZ
1184}
1185
2b9e344d
PZ
1186static inline bool event_is_checkpointed(struct perf_event *event)
1187{
1188 return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
1189}
1190
ca037701 1191static void intel_pmu_disable_event(struct perf_event *event)
f22f54f4 1192{
aff3d91a 1193 struct hw_perf_event *hwc = &event->hw;
144d31e6 1194 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
aff3d91a 1195
15c7ad51 1196 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
f22f54f4
PZ
1197 intel_pmu_disable_bts();
1198 intel_pmu_drain_bts_buffer();
1199 return;
1200 }
1201
144d31e6
GN
1202 cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
1203 cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
2b9e344d 1204 cpuc->intel_cp_status &= ~(1ull << hwc->idx);
144d31e6 1205
60ce0fbd
SE
1206 /*
1207 * must disable before any actual event
1208 * because any event may be combined with LBR
1209 */
1210 if (intel_pmu_needs_lbr_smpl(event))
1211 intel_pmu_lbr_disable(event);
1212
f22f54f4 1213 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
aff3d91a 1214 intel_pmu_disable_fixed(hwc);
f22f54f4
PZ
1215 return;
1216 }
1217
aff3d91a 1218 x86_pmu_disable_event(event);
ca037701 1219
ab608344 1220 if (unlikely(event->attr.precise_ip))
ef21f683 1221 intel_pmu_pebs_disable(event);
f22f54f4
PZ
1222}
1223
ca037701 1224static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
f22f54f4 1225{
15c7ad51 1226 int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
f22f54f4 1227 u64 ctrl_val, bits, mask;
f22f54f4
PZ
1228
1229 /*
1230 * Enable IRQ generation (0x8),
1231 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
1232 * if requested:
1233 */
1234 bits = 0x8ULL;
1235 if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
1236 bits |= 0x2;
1237 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
1238 bits |= 0x1;
1239
1240 /*
1241 * ANY bit is supported in v3 and up
1242 */
1243 if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
1244 bits |= 0x4;
1245
1246 bits <<= (idx * 4);
1247 mask = 0xfULL << (idx * 4);
1248
1249 rdmsrl(hwc->config_base, ctrl_val);
1250 ctrl_val &= ~mask;
1251 ctrl_val |= bits;
7645a24c 1252 wrmsrl(hwc->config_base, ctrl_val);
f22f54f4
PZ
1253}
1254
aff3d91a 1255static void intel_pmu_enable_event(struct perf_event *event)
f22f54f4 1256{
aff3d91a 1257 struct hw_perf_event *hwc = &event->hw;
144d31e6 1258 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
aff3d91a 1259
15c7ad51 1260 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
0a3aee0d 1261 if (!__this_cpu_read(cpu_hw_events.enabled))
f22f54f4
PZ
1262 return;
1263
1264 intel_pmu_enable_bts(hwc->config);
1265 return;
1266 }
60ce0fbd
SE
1267 /*
1268 * must enabled before any actual event
1269 * because any event may be combined with LBR
1270 */
1271 if (intel_pmu_needs_lbr_smpl(event))
1272 intel_pmu_lbr_enable(event);
f22f54f4 1273
144d31e6
GN
1274 if (event->attr.exclude_host)
1275 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
1276 if (event->attr.exclude_guest)
1277 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
1278
2b9e344d
PZ
1279 if (unlikely(event_is_checkpointed(event)))
1280 cpuc->intel_cp_status |= (1ull << hwc->idx);
1281
f22f54f4 1282 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
aff3d91a 1283 intel_pmu_enable_fixed(hwc);
f22f54f4
PZ
1284 return;
1285 }
1286
ab608344 1287 if (unlikely(event->attr.precise_ip))
ef21f683 1288 intel_pmu_pebs_enable(event);
ca037701 1289
31fa58af 1290 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
f22f54f4
PZ
1291}
1292
1293/*
1294 * Save and restart an expired event. Called by NMI contexts,
1295 * so it has to be careful about preempting normal event ops:
1296 */
de0428a7 1297int intel_pmu_save_and_restart(struct perf_event *event)
f22f54f4 1298{
cc2ad4ba 1299 x86_perf_event_update(event);
2dbf0116
AK
1300 /*
1301 * For a checkpointed counter always reset back to 0. This
1302 * avoids a situation where the counter overflows, aborts the
1303 * transaction and is then set back to shortly before the
1304 * overflow, and overflows and aborts again.
1305 */
1306 if (unlikely(event_is_checkpointed(event))) {
1307 /* No race with NMIs because the counter should not be armed */
1308 wrmsrl(event->hw.event_base, 0);
1309 local64_set(&event->hw.prev_count, 0);
1310 }
cc2ad4ba 1311 return x86_perf_event_set_period(event);
f22f54f4
PZ
1312}
1313
1314static void intel_pmu_reset(void)
1315{
0a3aee0d 1316 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
f22f54f4
PZ
1317 unsigned long flags;
1318 int idx;
1319
948b1bb8 1320 if (!x86_pmu.num_counters)
f22f54f4
PZ
1321 return;
1322
1323 local_irq_save(flags);
1324
c767a54b 1325 pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
f22f54f4 1326
948b1bb8 1327 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
715c85b1
PA
1328 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
1329 wrmsrl_safe(x86_pmu_event_addr(idx), 0ull);
f22f54f4 1330 }
948b1bb8 1331 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
715c85b1 1332 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
948b1bb8 1333
f22f54f4
PZ
1334 if (ds)
1335 ds->bts_index = ds->bts_buffer_base;
1336
1337 local_irq_restore(flags);
1338}
1339
1340/*
1341 * This handler is triggered by the local APIC, so the APIC IRQ handling
1342 * rules apply:
1343 */
1344static int intel_pmu_handle_irq(struct pt_regs *regs)
1345{
1346 struct perf_sample_data data;
1347 struct cpu_hw_events *cpuc;
1348 int bit, loops;
2e556b5b 1349 u64 status;
b0b2072d 1350 int handled;
f22f54f4 1351
f22f54f4
PZ
1352 cpuc = &__get_cpu_var(cpu_hw_events);
1353
2bce5dac 1354 /*
72db5596
AK
1355 * No known reason to not always do late ACK,
1356 * but just in case do it opt-in.
2bce5dac 1357 */
72db5596
AK
1358 if (!x86_pmu.late_ack)
1359 apic_write(APIC_LVTPC, APIC_DM_NMI);
3fb2b8dd 1360 intel_pmu_disable_all();
b0b2072d 1361 handled = intel_pmu_drain_bts_buffer();
f22f54f4 1362 status = intel_pmu_get_status();
a3ef2229
MM
1363 if (!status)
1364 goto done;
f22f54f4
PZ
1365
1366 loops = 0;
1367again:
2e556b5b 1368 intel_pmu_ack_status(status);
f22f54f4 1369 if (++loops > 100) {
ae0def05
DH
1370 static bool warned = false;
1371 if (!warned) {
1372 WARN(1, "perfevents: irq loop stuck!\n");
1373 perf_event_print_debug();
1374 warned = true;
1375 }
f22f54f4 1376 intel_pmu_reset();
3fb2b8dd 1377 goto done;
f22f54f4
PZ
1378 }
1379
1380 inc_irq_stat(apic_perf_irqs);
ca037701 1381
caff2bef
PZ
1382 intel_pmu_lbr_read();
1383
ca037701
PZ
1384 /*
1385 * PEBS overflow sets bit 62 in the global status register
1386 */
de725dec
PZ
1387 if (__test_and_clear_bit(62, (unsigned long *)&status)) {
1388 handled++;
ca037701 1389 x86_pmu.drain_pebs(regs);
de725dec 1390 }
ca037701 1391
2dbf0116 1392 /*
2b9e344d
PZ
1393 * Checkpointed counters can lead to 'spurious' PMIs because the
1394 * rollback caused by the PMI will have cleared the overflow status
1395 * bit. Therefore always force probe these counters.
2dbf0116 1396 */
2b9e344d 1397 status |= cpuc->intel_cp_status;
2dbf0116 1398
984b3f57 1399 for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
f22f54f4
PZ
1400 struct perf_event *event = cpuc->events[bit];
1401
de725dec
PZ
1402 handled++;
1403
f22f54f4
PZ
1404 if (!test_bit(bit, cpuc->active_mask))
1405 continue;
1406
1407 if (!intel_pmu_save_and_restart(event))
1408 continue;
1409
fd0d000b 1410 perf_sample_data_init(&data, 0, event->hw.last_period);
f22f54f4 1411
60ce0fbd
SE
1412 if (has_branch_stack(event))
1413 data.br_stack = &cpuc->lbr_stack;
1414
a8b0ca17 1415 if (perf_event_overflow(event, &data, regs))
a4eaf7f1 1416 x86_pmu_stop(event, 0);
f22f54f4
PZ
1417 }
1418
f22f54f4
PZ
1419 /*
1420 * Repeat if there is more work to be done:
1421 */
1422 status = intel_pmu_get_status();
1423 if (status)
1424 goto again;
1425
3fb2b8dd 1426done:
11164cd4 1427 intel_pmu_enable_all(0);
72db5596
AK
1428 /*
1429 * Only unmask the NMI after the overflow counters
1430 * have been reset. This avoids spurious NMIs on
1431 * Haswell CPUs.
1432 */
1433 if (x86_pmu.late_ack)
1434 apic_write(APIC_LVTPC, APIC_DM_NMI);
de725dec 1435 return handled;
f22f54f4
PZ
1436}
1437
f22f54f4 1438static struct event_constraint *
ca037701 1439intel_bts_constraints(struct perf_event *event)
f22f54f4 1440{
ca037701
PZ
1441 struct hw_perf_event *hwc = &event->hw;
1442 unsigned int hw_event, bts_event;
f22f54f4 1443
18a073a3
PZ
1444 if (event->attr.freq)
1445 return NULL;
1446
ca037701
PZ
1447 hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
1448 bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
f22f54f4 1449
ca037701 1450 if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
f22f54f4 1451 return &bts_constraint;
ca037701 1452
f22f54f4
PZ
1453 return NULL;
1454}
1455
5a425294 1456static int intel_alt_er(int idx)
b79e8941
PZ
1457{
1458 if (!(x86_pmu.er_flags & ERF_HAS_RSP_1))
5a425294 1459 return idx;
b79e8941 1460
5a425294
PZ
1461 if (idx == EXTRA_REG_RSP_0)
1462 return EXTRA_REG_RSP_1;
1463
1464 if (idx == EXTRA_REG_RSP_1)
1465 return EXTRA_REG_RSP_0;
1466
1467 return idx;
1468}
1469
1470static void intel_fixup_er(struct perf_event *event, int idx)
1471{
1472 event->hw.extra_reg.idx = idx;
1473
1474 if (idx == EXTRA_REG_RSP_0) {
b79e8941 1475 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
53ad0447 1476 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
b79e8941 1477 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
5a425294
PZ
1478 } else if (idx == EXTRA_REG_RSP_1) {
1479 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
53ad0447 1480 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
5a425294 1481 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
b79e8941 1482 }
b79e8941
PZ
1483}
1484
efc9f05d
SE
1485/*
1486 * manage allocation of shared extra msr for certain events
1487 *
1488 * sharing can be:
1489 * per-cpu: to be shared between the various events on a single PMU
1490 * per-core: per-cpu + shared by HT threads
1491 */
a7e3ed1e 1492static struct event_constraint *
efc9f05d 1493__intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
b36817e8
SE
1494 struct perf_event *event,
1495 struct hw_perf_event_extra *reg)
a7e3ed1e 1496{
efc9f05d 1497 struct event_constraint *c = &emptyconstraint;
a7e3ed1e 1498 struct er_account *era;
cd8a38d3 1499 unsigned long flags;
5a425294 1500 int idx = reg->idx;
a7e3ed1e 1501
5a425294
PZ
1502 /*
1503 * reg->alloc can be set due to existing state, so for fake cpuc we
1504 * need to ignore this, otherwise we might fail to allocate proper fake
1505 * state for this extra reg constraint. Also see the comment below.
1506 */
1507 if (reg->alloc && !cpuc->is_fake)
b36817e8 1508 return NULL; /* call x86_get_event_constraint() */
a7e3ed1e 1509
b79e8941 1510again:
5a425294 1511 era = &cpuc->shared_regs->regs[idx];
cd8a38d3
SE
1512 /*
1513 * we use spin_lock_irqsave() to avoid lockdep issues when
1514 * passing a fake cpuc
1515 */
1516 raw_spin_lock_irqsave(&era->lock, flags);
efc9f05d
SE
1517
1518 if (!atomic_read(&era->ref) || era->config == reg->config) {
1519
5a425294
PZ
1520 /*
1521 * If its a fake cpuc -- as per validate_{group,event}() we
1522 * shouldn't touch event state and we can avoid doing so
1523 * since both will only call get_event_constraints() once
1524 * on each event, this avoids the need for reg->alloc.
1525 *
1526 * Not doing the ER fixup will only result in era->reg being
1527 * wrong, but since we won't actually try and program hardware
1528 * this isn't a problem either.
1529 */
1530 if (!cpuc->is_fake) {
1531 if (idx != reg->idx)
1532 intel_fixup_er(event, idx);
1533
1534 /*
1535 * x86_schedule_events() can call get_event_constraints()
1536 * multiple times on events in the case of incremental
1537 * scheduling(). reg->alloc ensures we only do the ER
1538 * allocation once.
1539 */
1540 reg->alloc = 1;
1541 }
1542
efc9f05d
SE
1543 /* lock in msr value */
1544 era->config = reg->config;
1545 era->reg = reg->reg;
1546
1547 /* one more user */
1548 atomic_inc(&era->ref);
1549
a7e3ed1e 1550 /*
b36817e8
SE
1551 * need to call x86_get_event_constraint()
1552 * to check if associated event has constraints
a7e3ed1e 1553 */
b36817e8 1554 c = NULL;
5a425294
PZ
1555 } else {
1556 idx = intel_alt_er(idx);
1557 if (idx != reg->idx) {
1558 raw_spin_unlock_irqrestore(&era->lock, flags);
1559 goto again;
1560 }
a7e3ed1e 1561 }
cd8a38d3 1562 raw_spin_unlock_irqrestore(&era->lock, flags);
a7e3ed1e 1563
efc9f05d
SE
1564 return c;
1565}
1566
1567static void
1568__intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
1569 struct hw_perf_event_extra *reg)
1570{
1571 struct er_account *era;
1572
1573 /*
5a425294
PZ
1574 * Only put constraint if extra reg was actually allocated. Also takes
1575 * care of event which do not use an extra shared reg.
1576 *
1577 * Also, if this is a fake cpuc we shouldn't touch any event state
1578 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
1579 * either since it'll be thrown out.
efc9f05d 1580 */
5a425294 1581 if (!reg->alloc || cpuc->is_fake)
efc9f05d
SE
1582 return;
1583
1584 era = &cpuc->shared_regs->regs[reg->idx];
1585
1586 /* one fewer user */
1587 atomic_dec(&era->ref);
1588
1589 /* allocate again next time */
1590 reg->alloc = 0;
1591}
1592
1593static struct event_constraint *
1594intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
1595 struct perf_event *event)
1596{
b36817e8
SE
1597 struct event_constraint *c = NULL, *d;
1598 struct hw_perf_event_extra *xreg, *breg;
1599
1600 xreg = &event->hw.extra_reg;
1601 if (xreg->idx != EXTRA_REG_NONE) {
1602 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
1603 if (c == &emptyconstraint)
1604 return c;
1605 }
1606 breg = &event->hw.branch_reg;
1607 if (breg->idx != EXTRA_REG_NONE) {
1608 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
1609 if (d == &emptyconstraint) {
1610 __intel_shared_reg_put_constraints(cpuc, xreg);
1611 c = d;
1612 }
1613 }
efc9f05d 1614 return c;
a7e3ed1e
AK
1615}
1616
de0428a7
KW
1617struct event_constraint *
1618x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1619{
1620 struct event_constraint *c;
1621
1622 if (x86_pmu.event_constraints) {
1623 for_each_event_constraint(c, x86_pmu.event_constraints) {
9fac2cf3 1624 if ((event->hw.config & c->cmask) == c->code) {
9fac2cf3 1625 event->hw.flags |= c->flags;
de0428a7 1626 return c;
9fac2cf3 1627 }
de0428a7
KW
1628 }
1629 }
1630
1631 return &unconstrained;
1632}
1633
f22f54f4
PZ
1634static struct event_constraint *
1635intel_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1636{
1637 struct event_constraint *c;
1638
ca037701
PZ
1639 c = intel_bts_constraints(event);
1640 if (c)
1641 return c;
1642
1643 c = intel_pebs_constraints(event);
f22f54f4
PZ
1644 if (c)
1645 return c;
1646
efc9f05d 1647 c = intel_shared_regs_constraints(cpuc, event);
a7e3ed1e
AK
1648 if (c)
1649 return c;
1650
f22f54f4
PZ
1651 return x86_get_event_constraints(cpuc, event);
1652}
1653
efc9f05d
SE
1654static void
1655intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
a7e3ed1e
AK
1656 struct perf_event *event)
1657{
efc9f05d 1658 struct hw_perf_event_extra *reg;
a7e3ed1e 1659
efc9f05d
SE
1660 reg = &event->hw.extra_reg;
1661 if (reg->idx != EXTRA_REG_NONE)
1662 __intel_shared_reg_put_constraints(cpuc, reg);
b36817e8
SE
1663
1664 reg = &event->hw.branch_reg;
1665 if (reg->idx != EXTRA_REG_NONE)
1666 __intel_shared_reg_put_constraints(cpuc, reg);
efc9f05d 1667}
a7e3ed1e 1668
efc9f05d
SE
1669static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
1670 struct perf_event *event)
1671{
1672 intel_put_shared_regs_event_constraints(cpuc, event);
a7e3ed1e
AK
1673}
1674
0780c927 1675static void intel_pebs_aliases_core2(struct perf_event *event)
b4cdc5c2 1676{
0780c927 1677 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
7639dae0
PZ
1678 /*
1679 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
1680 * (0x003c) so that we can use it with PEBS.
1681 *
1682 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
1683 * PEBS capable. However we can use INST_RETIRED.ANY_P
1684 * (0x00c0), which is a PEBS capable event, to get the same
1685 * count.
1686 *
1687 * INST_RETIRED.ANY_P counts the number of cycles that retires
1688 * CNTMASK instructions. By setting CNTMASK to a value (16)
1689 * larger than the maximum number of instructions that can be
1690 * retired per cycle (4) and then inverting the condition, we
1691 * count all cycles that retire 16 or less instructions, which
1692 * is every cycle.
1693 *
1694 * Thereby we gain a PEBS capable cycle counter.
1695 */
f9b4eeb8
PZ
1696 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
1697
0780c927
PZ
1698 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
1699 event->hw.config = alt_config;
1700 }
1701}
1702
1703static void intel_pebs_aliases_snb(struct perf_event *event)
1704{
1705 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
1706 /*
1707 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
1708 * (0x003c) so that we can use it with PEBS.
1709 *
1710 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
1711 * PEBS capable. However we can use UOPS_RETIRED.ALL
1712 * (0x01c2), which is a PEBS capable event, to get the same
1713 * count.
1714 *
1715 * UOPS_RETIRED.ALL counts the number of cycles that retires
1716 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
1717 * larger than the maximum number of micro-ops that can be
1718 * retired per cycle (4) and then inverting the condition, we
1719 * count all cycles that retire 16 or less micro-ops, which
1720 * is every cycle.
1721 *
1722 * Thereby we gain a PEBS capable cycle counter.
1723 */
1724 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
7639dae0
PZ
1725
1726 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
1727 event->hw.config = alt_config;
1728 }
0780c927
PZ
1729}
1730
1731static int intel_pmu_hw_config(struct perf_event *event)
1732{
1733 int ret = x86_pmu_hw_config(event);
1734
1735 if (ret)
1736 return ret;
1737
1738 if (event->attr.precise_ip && x86_pmu.pebs_aliases)
1739 x86_pmu.pebs_aliases(event);
7639dae0 1740
60ce0fbd
SE
1741 if (intel_pmu_needs_lbr_smpl(event)) {
1742 ret = intel_pmu_setup_lbr_filter(event);
1743 if (ret)
1744 return ret;
1745 }
1746
b4cdc5c2
PZ
1747 if (event->attr.type != PERF_TYPE_RAW)
1748 return 0;
1749
1750 if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
1751 return 0;
1752
1753 if (x86_pmu.version < 3)
1754 return -EINVAL;
1755
1756 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1757 return -EACCES;
1758
1759 event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
1760
1761 return 0;
1762}
1763
144d31e6
GN
1764struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
1765{
1766 if (x86_pmu.guest_get_msrs)
1767 return x86_pmu.guest_get_msrs(nr);
1768 *nr = 0;
1769 return NULL;
1770}
1771EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
1772
1773static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
1774{
1775 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1776 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
1777
1778 arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
1779 arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
1780 arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
26a4f3c0
GN
1781 /*
1782 * If PMU counter has PEBS enabled it is not enough to disable counter
1783 * on a guest entry since PEBS memory write can overshoot guest entry
1784 * and corrupt guest memory. Disabling PEBS solves the problem.
1785 */
1786 arr[1].msr = MSR_IA32_PEBS_ENABLE;
1787 arr[1].host = cpuc->pebs_enabled;
1788 arr[1].guest = 0;
144d31e6 1789
26a4f3c0 1790 *nr = 2;
144d31e6
GN
1791 return arr;
1792}
1793
1794static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
1795{
1796 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1797 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
1798 int idx;
1799
1800 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1801 struct perf_event *event = cpuc->events[idx];
1802
1803 arr[idx].msr = x86_pmu_config_addr(idx);
1804 arr[idx].host = arr[idx].guest = 0;
1805
1806 if (!test_bit(idx, cpuc->active_mask))
1807 continue;
1808
1809 arr[idx].host = arr[idx].guest =
1810 event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
1811
1812 if (event->attr.exclude_host)
1813 arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
1814 else if (event->attr.exclude_guest)
1815 arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
1816 }
1817
1818 *nr = x86_pmu.num_counters;
1819 return arr;
1820}
1821
1822static void core_pmu_enable_event(struct perf_event *event)
1823{
1824 if (!event->attr.exclude_host)
1825 x86_pmu_enable_event(event);
1826}
1827
1828static void core_pmu_enable_all(int added)
1829{
1830 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1831 int idx;
1832
1833 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1834 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
1835
1836 if (!test_bit(idx, cpuc->active_mask) ||
1837 cpuc->events[idx]->attr.exclude_host)
1838 continue;
1839
1840 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1841 }
1842}
1843
3a632cb2
AK
1844static int hsw_hw_config(struct perf_event *event)
1845{
1846 int ret = intel_pmu_hw_config(event);
1847
1848 if (ret)
1849 return ret;
1850 if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
1851 return 0;
1852 event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
1853
1854 /*
1855 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
1856 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
1857 * this combination.
1858 */
1859 if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
1860 ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
1861 event->attr.precise_ip > 0))
1862 return -EOPNOTSUPP;
1863
2dbf0116
AK
1864 if (event_is_checkpointed(event)) {
1865 /*
1866 * Sampling of checkpointed events can cause situations where
1867 * the CPU constantly aborts because of a overflow, which is
1868 * then checkpointed back and ignored. Forbid checkpointing
1869 * for sampling.
1870 *
1871 * But still allow a long sampling period, so that perf stat
1872 * from KVM works.
1873 */
1874 if (event->attr.sample_period > 0 &&
1875 event->attr.sample_period < 0x7fffffff)
1876 return -EOPNOTSUPP;
1877 }
3a632cb2
AK
1878 return 0;
1879}
1880
1881static struct event_constraint counter2_constraint =
1882 EVENT_CONSTRAINT(0, 0x4, 0);
1883
1884static struct event_constraint *
1885hsw_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1886{
1887 struct event_constraint *c = intel_get_event_constraints(cpuc, event);
1888
1889 /* Handle special quirk on in_tx_checkpointed only in counter 2 */
1890 if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
1891 if (c->idxmsk64 & (1U << 2))
1892 return &counter2_constraint;
1893 return &emptyconstraint;
1894 }
1895
1896 return c;
1897}
1898
641cc938
JO
1899PMU_FORMAT_ATTR(event, "config:0-7" );
1900PMU_FORMAT_ATTR(umask, "config:8-15" );
1901PMU_FORMAT_ATTR(edge, "config:18" );
1902PMU_FORMAT_ATTR(pc, "config:19" );
1903PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */
1904PMU_FORMAT_ATTR(inv, "config:23" );
1905PMU_FORMAT_ATTR(cmask, "config:24-31" );
3a632cb2
AK
1906PMU_FORMAT_ATTR(in_tx, "config:32");
1907PMU_FORMAT_ATTR(in_tx_cp, "config:33");
641cc938
JO
1908
1909static struct attribute *intel_arch_formats_attr[] = {
1910 &format_attr_event.attr,
1911 &format_attr_umask.attr,
1912 &format_attr_edge.attr,
1913 &format_attr_pc.attr,
1914 &format_attr_inv.attr,
1915 &format_attr_cmask.attr,
1916 NULL,
1917};
1918
0bf79d44
JO
1919ssize_t intel_event_sysfs_show(char *page, u64 config)
1920{
1921 u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
1922
1923 return x86_event_sysfs_show(page, config, event);
1924}
1925
caaa8be3 1926static __initconst const struct x86_pmu core_pmu = {
f22f54f4
PZ
1927 .name = "core",
1928 .handle_irq = x86_pmu_handle_irq,
1929 .disable_all = x86_pmu_disable_all,
144d31e6
GN
1930 .enable_all = core_pmu_enable_all,
1931 .enable = core_pmu_enable_event,
f22f54f4 1932 .disable = x86_pmu_disable_event,
b4cdc5c2 1933 .hw_config = x86_pmu_hw_config,
a072738e 1934 .schedule_events = x86_schedule_events,
f22f54f4
PZ
1935 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
1936 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
1937 .event_map = intel_pmu_event_map,
f22f54f4
PZ
1938 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
1939 .apic = 1,
1940 /*
1941 * Intel PMCs cannot be accessed sanely above 32 bit width,
1942 * so we install an artificial 1<<31 period regardless of
1943 * the generic event period:
1944 */
1945 .max_period = (1ULL << 31) - 1,
1946 .get_event_constraints = intel_get_event_constraints,
a7e3ed1e 1947 .put_event_constraints = intel_put_event_constraints,
f22f54f4 1948 .event_constraints = intel_core_event_constraints,
144d31e6 1949 .guest_get_msrs = core_guest_get_msrs,
641cc938 1950 .format_attrs = intel_arch_formats_attr,
0bf79d44 1951 .events_sysfs_show = intel_event_sysfs_show,
f22f54f4
PZ
1952};
1953
de0428a7 1954struct intel_shared_regs *allocate_shared_regs(int cpu)
efc9f05d
SE
1955{
1956 struct intel_shared_regs *regs;
1957 int i;
1958
1959 regs = kzalloc_node(sizeof(struct intel_shared_regs),
1960 GFP_KERNEL, cpu_to_node(cpu));
1961 if (regs) {
1962 /*
1963 * initialize the locks to keep lockdep happy
1964 */
1965 for (i = 0; i < EXTRA_REG_MAX; i++)
1966 raw_spin_lock_init(&regs->regs[i].lock);
1967
1968 regs->core_id = -1;
1969 }
1970 return regs;
1971}
1972
a7e3ed1e
AK
1973static int intel_pmu_cpu_prepare(int cpu)
1974{
1975 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1976
b36817e8 1977 if (!(x86_pmu.extra_regs || x86_pmu.lbr_sel_map))
69092624
LM
1978 return NOTIFY_OK;
1979
efc9f05d
SE
1980 cpuc->shared_regs = allocate_shared_regs(cpu);
1981 if (!cpuc->shared_regs)
a7e3ed1e
AK
1982 return NOTIFY_BAD;
1983
a7e3ed1e
AK
1984 return NOTIFY_OK;
1985}
1986
74846d35
PZ
1987static void intel_pmu_cpu_starting(int cpu)
1988{
a7e3ed1e
AK
1989 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1990 int core_id = topology_core_id(cpu);
1991 int i;
1992
69092624
LM
1993 init_debug_store_on_cpu(cpu);
1994 /*
1995 * Deal with CPUs that don't clear their LBRs on power-up.
1996 */
1997 intel_pmu_lbr_reset();
1998
b36817e8
SE
1999 cpuc->lbr_sel = NULL;
2000
2001 if (!cpuc->shared_regs)
69092624
LM
2002 return;
2003
b36817e8
SE
2004 if (!(x86_pmu.er_flags & ERF_NO_HT_SHARING)) {
2005 for_each_cpu(i, topology_thread_cpumask(cpu)) {
2006 struct intel_shared_regs *pc;
a7e3ed1e 2007
b36817e8
SE
2008 pc = per_cpu(cpu_hw_events, i).shared_regs;
2009 if (pc && pc->core_id == core_id) {
2010 cpuc->kfree_on_online = cpuc->shared_regs;
2011 cpuc->shared_regs = pc;
2012 break;
2013 }
a7e3ed1e 2014 }
b36817e8
SE
2015 cpuc->shared_regs->core_id = core_id;
2016 cpuc->shared_regs->refcnt++;
a7e3ed1e
AK
2017 }
2018
b36817e8
SE
2019 if (x86_pmu.lbr_sel_map)
2020 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
74846d35
PZ
2021}
2022
2023static void intel_pmu_cpu_dying(int cpu)
2024{
a7e3ed1e 2025 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
efc9f05d 2026 struct intel_shared_regs *pc;
a7e3ed1e 2027
efc9f05d 2028 pc = cpuc->shared_regs;
a7e3ed1e
AK
2029 if (pc) {
2030 if (pc->core_id == -1 || --pc->refcnt == 0)
2031 kfree(pc);
efc9f05d 2032 cpuc->shared_regs = NULL;
a7e3ed1e
AK
2033 }
2034
74846d35
PZ
2035 fini_debug_store_on_cpu(cpu);
2036}
2037
d010b332
SE
2038static void intel_pmu_flush_branch_stack(void)
2039{
2040 /*
2041 * Intel LBR does not tag entries with the
2042 * PID of the current task, then we need to
2043 * flush it on ctxsw
2044 * For now, we simply reset it
2045 */
2046 if (x86_pmu.lbr_nr)
2047 intel_pmu_lbr_reset();
2048}
2049
641cc938
JO
2050PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
2051
a63fcab4
SE
2052PMU_FORMAT_ATTR(ldlat, "config1:0-15");
2053
641cc938
JO
2054static struct attribute *intel_arch3_formats_attr[] = {
2055 &format_attr_event.attr,
2056 &format_attr_umask.attr,
2057 &format_attr_edge.attr,
2058 &format_attr_pc.attr,
2059 &format_attr_any.attr,
2060 &format_attr_inv.attr,
2061 &format_attr_cmask.attr,
3a632cb2
AK
2062 &format_attr_in_tx.attr,
2063 &format_attr_in_tx_cp.attr,
641cc938
JO
2064
2065 &format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
a63fcab4 2066 &format_attr_ldlat.attr, /* PEBS load latency */
641cc938
JO
2067 NULL,
2068};
2069
caaa8be3 2070static __initconst const struct x86_pmu intel_pmu = {
f22f54f4
PZ
2071 .name = "Intel",
2072 .handle_irq = intel_pmu_handle_irq,
2073 .disable_all = intel_pmu_disable_all,
2074 .enable_all = intel_pmu_enable_all,
2075 .enable = intel_pmu_enable_event,
2076 .disable = intel_pmu_disable_event,
b4cdc5c2 2077 .hw_config = intel_pmu_hw_config,
a072738e 2078 .schedule_events = x86_schedule_events,
f22f54f4
PZ
2079 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
2080 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
2081 .event_map = intel_pmu_event_map,
f22f54f4
PZ
2082 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
2083 .apic = 1,
2084 /*
2085 * Intel PMCs cannot be accessed sanely above 32 bit width,
2086 * so we install an artificial 1<<31 period regardless of
2087 * the generic event period:
2088 */
2089 .max_period = (1ULL << 31) - 1,
3f6da390 2090 .get_event_constraints = intel_get_event_constraints,
a7e3ed1e 2091 .put_event_constraints = intel_put_event_constraints,
0780c927 2092 .pebs_aliases = intel_pebs_aliases_core2,
3f6da390 2093
641cc938 2094 .format_attrs = intel_arch3_formats_attr,
0bf79d44 2095 .events_sysfs_show = intel_event_sysfs_show,
641cc938 2096
a7e3ed1e 2097 .cpu_prepare = intel_pmu_cpu_prepare,
74846d35
PZ
2098 .cpu_starting = intel_pmu_cpu_starting,
2099 .cpu_dying = intel_pmu_cpu_dying,
144d31e6 2100 .guest_get_msrs = intel_guest_get_msrs,
d010b332 2101 .flush_branch_stack = intel_pmu_flush_branch_stack,
f22f54f4
PZ
2102};
2103
c1d6f42f 2104static __init void intel_clovertown_quirk(void)
3c44780b
PZ
2105{
2106 /*
2107 * PEBS is unreliable due to:
2108 *
2109 * AJ67 - PEBS may experience CPL leaks
2110 * AJ68 - PEBS PMI may be delayed by one event
2111 * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
2112 * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
2113 *
2114 * AJ67 could be worked around by restricting the OS/USR flags.
2115 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
2116 *
2117 * AJ106 could possibly be worked around by not allowing LBR
2118 * usage from PEBS, including the fixup.
2119 * AJ68 could possibly be worked around by always programming
ec75a716 2120 * a pebs_event_reset[0] value and coping with the lost events.
3c44780b
PZ
2121 *
2122 * But taken together it might just make sense to not enable PEBS on
2123 * these chips.
2124 */
c767a54b 2125 pr_warn("PEBS disabled due to CPU errata\n");
3c44780b
PZ
2126 x86_pmu.pebs = 0;
2127 x86_pmu.pebs_constraints = NULL;
2128}
2129
c93dc84c
PZ
2130static int intel_snb_pebs_broken(int cpu)
2131{
2132 u32 rev = UINT_MAX; /* default to broken for unknown models */
2133
2134 switch (cpu_data(cpu).x86_model) {
2135 case 42: /* SNB */
2136 rev = 0x28;
2137 break;
2138
2139 case 45: /* SNB-EP */
2140 switch (cpu_data(cpu).x86_mask) {
2141 case 6: rev = 0x618; break;
2142 case 7: rev = 0x70c; break;
2143 }
2144 }
2145
2146 return (cpu_data(cpu).microcode < rev);
2147}
2148
2149static void intel_snb_check_microcode(void)
2150{
2151 int pebs_broken = 0;
2152 int cpu;
2153
2154 get_online_cpus();
2155 for_each_online_cpu(cpu) {
2156 if ((pebs_broken = intel_snb_pebs_broken(cpu)))
2157 break;
2158 }
2159 put_online_cpus();
2160
2161 if (pebs_broken == x86_pmu.pebs_broken)
2162 return;
2163
2164 /*
2165 * Serialized by the microcode lock..
2166 */
2167 if (x86_pmu.pebs_broken) {
2168 pr_info("PEBS enabled due to microcode update\n");
2169 x86_pmu.pebs_broken = 0;
2170 } else {
2171 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
2172 x86_pmu.pebs_broken = 1;
2173 }
2174}
2175
c1d6f42f 2176static __init void intel_sandybridge_quirk(void)
6a600a8b 2177{
c93dc84c
PZ
2178 x86_pmu.check_microcode = intel_snb_check_microcode;
2179 intel_snb_check_microcode();
6a600a8b
PZ
2180}
2181
c1d6f42f
PZ
2182static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
2183 { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
2184 { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
2185 { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
2186 { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
2187 { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
2188 { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
2189 { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
ffb871bc
GN
2190};
2191
c1d6f42f
PZ
2192static __init void intel_arch_events_quirk(void)
2193{
2194 int bit;
2195
2196 /* disable event that reported as not presend by cpuid */
2197 for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
2198 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
c767a54b
JP
2199 pr_warn("CPUID marked event: \'%s\' unavailable\n",
2200 intel_arch_events_map[bit].name);
c1d6f42f
PZ
2201 }
2202}
2203
2204static __init void intel_nehalem_quirk(void)
2205{
2206 union cpuid10_ebx ebx;
2207
2208 ebx.full = x86_pmu.events_maskl;
2209 if (ebx.split.no_branch_misses_retired) {
2210 /*
2211 * Erratum AAJ80 detected, we work it around by using
2212 * the BR_MISP_EXEC.ANY event. This will over-count
2213 * branch-misses, but it's still much better than the
2214 * architectural event which is often completely bogus:
2215 */
2216 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
2217 ebx.split.no_branch_misses_retired = 0;
2218 x86_pmu.events_maskl = ebx.full;
c767a54b 2219 pr_info("CPU erratum AAJ80 worked around\n");
c1d6f42f
PZ
2220 }
2221}
2222
7f2ee91f
IM
2223EVENT_ATTR_STR(mem-loads, mem_ld_hsw, "event=0xcd,umask=0x1,ldlat=3");
2224EVENT_ATTR_STR(mem-stores, mem_st_hsw, "event=0xd0,umask=0x82")
f9134f36 2225
4b2c4f1f 2226/* Haswell special events */
7f2ee91f
IM
2227EVENT_ATTR_STR(tx-start, tx_start, "event=0xc9,umask=0x1");
2228EVENT_ATTR_STR(tx-commit, tx_commit, "event=0xc9,umask=0x2");
2229EVENT_ATTR_STR(tx-abort, tx_abort, "event=0xc9,umask=0x4");
2230EVENT_ATTR_STR(tx-capacity, tx_capacity, "event=0x54,umask=0x2");
2231EVENT_ATTR_STR(tx-conflict, tx_conflict, "event=0x54,umask=0x1");
2232EVENT_ATTR_STR(el-start, el_start, "event=0xc8,umask=0x1");
2233EVENT_ATTR_STR(el-commit, el_commit, "event=0xc8,umask=0x2");
2234EVENT_ATTR_STR(el-abort, el_abort, "event=0xc8,umask=0x4");
2235EVENT_ATTR_STR(el-capacity, el_capacity, "event=0x54,umask=0x2");
2236EVENT_ATTR_STR(el-conflict, el_conflict, "event=0x54,umask=0x1");
2237EVENT_ATTR_STR(cycles-t, cycles_t, "event=0x3c,in_tx=1");
2238EVENT_ATTR_STR(cycles-ct, cycles_ct, "event=0x3c,in_tx=1,in_tx_cp=1");
4b2c4f1f 2239
f9134f36 2240static struct attribute *hsw_events_attrs[] = {
4b2c4f1f
AK
2241 EVENT_PTR(tx_start),
2242 EVENT_PTR(tx_commit),
2243 EVENT_PTR(tx_abort),
2244 EVENT_PTR(tx_capacity),
2245 EVENT_PTR(tx_conflict),
2246 EVENT_PTR(el_start),
2247 EVENT_PTR(el_commit),
2248 EVENT_PTR(el_abort),
2249 EVENT_PTR(el_capacity),
2250 EVENT_PTR(el_conflict),
2251 EVENT_PTR(cycles_t),
2252 EVENT_PTR(cycles_ct),
f9134f36
AK
2253 EVENT_PTR(mem_ld_hsw),
2254 EVENT_PTR(mem_st_hsw),
2255 NULL
2256};
2257
de0428a7 2258__init int intel_pmu_init(void)
f22f54f4
PZ
2259{
2260 union cpuid10_edx edx;
2261 union cpuid10_eax eax;
ffb871bc 2262 union cpuid10_ebx ebx;
a1eac7ac 2263 struct event_constraint *c;
f22f54f4 2264 unsigned int unused;
f22f54f4
PZ
2265 int version;
2266
2267 if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
a072738e
CG
2268 switch (boot_cpu_data.x86) {
2269 case 0x6:
2270 return p6_pmu_init();
e717bf4e
VW
2271 case 0xb:
2272 return knc_pmu_init();
a072738e
CG
2273 case 0xf:
2274 return p4_pmu_init();
2275 }
f22f54f4 2276 return -ENODEV;
f22f54f4
PZ
2277 }
2278
2279 /*
2280 * Check whether the Architectural PerfMon supports
2281 * Branch Misses Retired hw_event or not.
2282 */
ffb871bc
GN
2283 cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
2284 if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
f22f54f4
PZ
2285 return -ENODEV;
2286
2287 version = eax.split.version_id;
2288 if (version < 2)
2289 x86_pmu = core_pmu;
2290 else
2291 x86_pmu = intel_pmu;
2292
2293 x86_pmu.version = version;
948b1bb8
RR
2294 x86_pmu.num_counters = eax.split.num_counters;
2295 x86_pmu.cntval_bits = eax.split.bit_width;
2296 x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
f22f54f4 2297
c1d6f42f
PZ
2298 x86_pmu.events_maskl = ebx.full;
2299 x86_pmu.events_mask_len = eax.split.mask_length;
2300
70ab7003
AK
2301 x86_pmu.max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
2302
f22f54f4
PZ
2303 /*
2304 * Quirk: v2 perfmon does not report fixed-purpose events, so
2305 * assume at least 3 events:
2306 */
2307 if (version > 1)
948b1bb8 2308 x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
f22f54f4 2309
c9b08884 2310 if (boot_cpu_has(X86_FEATURE_PDCM)) {
8db909a7
PZ
2311 u64 capabilities;
2312
2313 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
2314 x86_pmu.intel_cap.capabilities = capabilities;
2315 }
2316
ca037701
PZ
2317 intel_ds_init();
2318
c1d6f42f
PZ
2319 x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
2320
f22f54f4
PZ
2321 /*
2322 * Install the hw-cache-events table:
2323 */
2324 switch (boot_cpu_data.x86_model) {
2325 case 14: /* 65 nm core solo/duo, "Yonah" */
2326 pr_cont("Core events, ");
2327 break;
2328
2329 case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
c1d6f42f 2330 x86_add_quirk(intel_clovertown_quirk);
f22f54f4
PZ
2331 case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
2332 case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
2333 case 29: /* six-core 45 nm xeon "Dunnington" */
2334 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
2335 sizeof(hw_cache_event_ids));
2336
caff2bef
PZ
2337 intel_pmu_lbr_init_core();
2338
f22f54f4 2339 x86_pmu.event_constraints = intel_core2_event_constraints;
17e31629 2340 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
f22f54f4
PZ
2341 pr_cont("Core2 events, ");
2342 break;
2343
2344 case 26: /* 45 nm nehalem, "Bloomfield" */
2345 case 30: /* 45 nm nehalem, "Lynnfield" */
134fbadf 2346 case 46: /* 45 nm nehalem-ex, "Beckton" */
f22f54f4
PZ
2347 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
2348 sizeof(hw_cache_event_ids));
e994d7d2
AK
2349 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
2350 sizeof(hw_cache_extra_regs));
f22f54f4 2351
caff2bef
PZ
2352 intel_pmu_lbr_init_nhm();
2353
f22f54f4 2354 x86_pmu.event_constraints = intel_nehalem_event_constraints;
17e31629 2355 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
11164cd4 2356 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
a7e3ed1e 2357 x86_pmu.extra_regs = intel_nehalem_extra_regs;
ec75a716 2358
f20093ee
SE
2359 x86_pmu.cpu_events = nhm_events_attrs;
2360
91fc4cc0 2361 /* UOPS_ISSUED.STALLED_CYCLES */
f9b4eeb8
PZ
2362 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2363 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
91fc4cc0 2364 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
f9b4eeb8
PZ
2365 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
2366 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
94403f88 2367
c1d6f42f 2368 x86_add_quirk(intel_nehalem_quirk);
ec75a716 2369
11164cd4 2370 pr_cont("Nehalem events, ");
f22f54f4 2371 break;
caff2bef 2372
b622d644 2373 case 28: /* Atom */
0927b482
SL
2374 case 38: /* Lincroft */
2375 case 39: /* Penwell */
2376 case 53: /* Cloverview */
2377 case 54: /* Cedarview */
f22f54f4
PZ
2378 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
2379 sizeof(hw_cache_event_ids));
2380
caff2bef
PZ
2381 intel_pmu_lbr_init_atom();
2382
f22f54f4 2383 x86_pmu.event_constraints = intel_gen_event_constraints;
17e31629 2384 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
f22f54f4
PZ
2385 pr_cont("Atom events, ");
2386 break;
2387
1fa64180 2388 case 55: /* Atom 22nm "Silvermont" */
cf3b425d 2389 case 77: /* Avoton "Silvermont" */
1fa64180
YZ
2390 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
2391 sizeof(hw_cache_event_ids));
2392 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
2393 sizeof(hw_cache_extra_regs));
2394
2395 intel_pmu_lbr_init_atom();
2396
2397 x86_pmu.event_constraints = intel_slm_event_constraints;
2398 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
2399 x86_pmu.extra_regs = intel_slm_extra_regs;
2400 x86_pmu.er_flags |= ERF_HAS_RSP_1;
2401 pr_cont("Silvermont events, ");
2402 break;
2403
f22f54f4
PZ
2404 case 37: /* 32 nm nehalem, "Clarkdale" */
2405 case 44: /* 32 nm nehalem, "Gulftown" */
b2508e82 2406 case 47: /* 32 nm Xeon E7 */
f22f54f4
PZ
2407 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
2408 sizeof(hw_cache_event_ids));
e994d7d2
AK
2409 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
2410 sizeof(hw_cache_extra_regs));
f22f54f4 2411
caff2bef
PZ
2412 intel_pmu_lbr_init_nhm();
2413
f22f54f4 2414 x86_pmu.event_constraints = intel_westmere_event_constraints;
40b91cd1 2415 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
17e31629 2416 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
a7e3ed1e 2417 x86_pmu.extra_regs = intel_westmere_extra_regs;
b79e8941 2418 x86_pmu.er_flags |= ERF_HAS_RSP_1;
30112039 2419
f20093ee
SE
2420 x86_pmu.cpu_events = nhm_events_attrs;
2421
30112039 2422 /* UOPS_ISSUED.STALLED_CYCLES */
f9b4eeb8
PZ
2423 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2424 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
30112039 2425 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
f9b4eeb8
PZ
2426 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
2427 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
30112039 2428
f22f54f4
PZ
2429 pr_cont("Westmere events, ");
2430 break;
b622d644 2431
b06b3d49 2432 case 42: /* SandyBridge */
a34668f6 2433 case 45: /* SandyBridge, "Romely-EP" */
47a8863d 2434 x86_add_quirk(intel_sandybridge_quirk);
b06b3d49
LM
2435 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
2436 sizeof(hw_cache_event_ids));
74e6543f
YZ
2437 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
2438 sizeof(hw_cache_extra_regs));
b06b3d49 2439
c5cc2cd9 2440 intel_pmu_lbr_init_snb();
b06b3d49
LM
2441
2442 x86_pmu.event_constraints = intel_snb_event_constraints;
de0428a7 2443 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
0780c927 2444 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
f1923820
SE
2445 if (boot_cpu_data.x86_model == 45)
2446 x86_pmu.extra_regs = intel_snbep_extra_regs;
2447 else
2448 x86_pmu.extra_regs = intel_snb_extra_regs;
ee89cbc2 2449 /* all extra regs are per-cpu when HT is on */
b79e8941
PZ
2450 x86_pmu.er_flags |= ERF_HAS_RSP_1;
2451 x86_pmu.er_flags |= ERF_NO_HT_SHARING;
e04d1b23 2452
f20093ee
SE
2453 x86_pmu.cpu_events = snb_events_attrs;
2454
e04d1b23 2455 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
f9b4eeb8
PZ
2456 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2457 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
e04d1b23 2458 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
f9b4eeb8
PZ
2459 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
2460 X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
e04d1b23 2461
b06b3d49
LM
2462 pr_cont("SandyBridge events, ");
2463 break;
20a36e39 2464 case 58: /* IvyBridge */
923d8697 2465 case 62: /* IvyBridge EP */
20a36e39
SE
2466 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
2467 sizeof(hw_cache_event_ids));
2468 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
2469 sizeof(hw_cache_extra_regs));
2470
2471 intel_pmu_lbr_init_snb();
2472
69943182 2473 x86_pmu.event_constraints = intel_ivb_event_constraints;
20a36e39
SE
2474 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
2475 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
f1923820
SE
2476 if (boot_cpu_data.x86_model == 62)
2477 x86_pmu.extra_regs = intel_snbep_extra_regs;
2478 else
2479 x86_pmu.extra_regs = intel_snb_extra_regs;
20a36e39
SE
2480 /* all extra regs are per-cpu when HT is on */
2481 x86_pmu.er_flags |= ERF_HAS_RSP_1;
2482 x86_pmu.er_flags |= ERF_NO_HT_SHARING;
2483
f20093ee
SE
2484 x86_pmu.cpu_events = snb_events_attrs;
2485
20a36e39
SE
2486 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
2487 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2488 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2489
2490 pr_cont("IvyBridge events, ");
2491 break;
2492
b06b3d49 2493
3a632cb2
AK
2494 case 60: /* Haswell Client */
2495 case 70:
2496 case 71:
2497 case 63:
0499bd86 2498 case 69:
72db5596 2499 x86_pmu.late_ack = true;
3a632cb2
AK
2500 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids, sizeof(hw_cache_event_ids));
2501 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
2502
2503 intel_pmu_lbr_init_snb();
2504
2505 x86_pmu.event_constraints = intel_hsw_event_constraints;
3044318f 2506 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
3a632cb2 2507 x86_pmu.extra_regs = intel_snb_extra_regs;
3044318f 2508 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3a632cb2
AK
2509 /* all extra regs are per-cpu when HT is on */
2510 x86_pmu.er_flags |= ERF_HAS_RSP_1;
2511 x86_pmu.er_flags |= ERF_NO_HT_SHARING;
2512
2513 x86_pmu.hw_config = hsw_hw_config;
2514 x86_pmu.get_event_constraints = hsw_get_event_constraints;
f9134f36 2515 x86_pmu.cpu_events = hsw_events_attrs;
b7af41a1 2516 x86_pmu.lbr_double_abort = true;
3a632cb2
AK
2517 pr_cont("Haswell events, ");
2518 break;
2519
f22f54f4 2520 default:
0af3ac1f
AK
2521 switch (x86_pmu.version) {
2522 case 1:
2523 x86_pmu.event_constraints = intel_v1_event_constraints;
2524 pr_cont("generic architected perfmon v1, ");
2525 break;
2526 default:
2527 /*
2528 * default constraints for v2 and up
2529 */
2530 x86_pmu.event_constraints = intel_gen_event_constraints;
2531 pr_cont("generic architected perfmon, ");
2532 break;
2533 }
f22f54f4 2534 }
ffb871bc 2535
a1eac7ac
RR
2536 if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
2537 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
2538 x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
2539 x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
2540 }
2541 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
2542
2543 if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
2544 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
2545 x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
2546 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
2547 }
2548
2549 x86_pmu.intel_ctrl |=
2550 ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
2551
2552 if (x86_pmu.event_constraints) {
2553 /*
2554 * event on fixed counter2 (REF_CYCLES) only works on this
2555 * counter, so do not extend mask to generic counters
2556 */
2557 for_each_event_constraint(c, x86_pmu.event_constraints) {
3a632cb2 2558 if (c->cmask != FIXED_EVENT_FLAGS
a1eac7ac
RR
2559 || c->idxmsk64 == INTEL_PMC_MSK_FIXED_REF_CYCLES) {
2560 continue;
2561 }
2562
2563 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
2564 c->weight += x86_pmu.num_counters;
2565 }
2566 }
2567
069e0c3c
AK
2568 /* Support full width counters using alternative MSR range */
2569 if (x86_pmu.intel_cap.full_width_write) {
2570 x86_pmu.max_period = x86_pmu.cntval_mask;
2571 x86_pmu.perfctr = MSR_IA32_PMC0;
2572 pr_cont("full-width counters, ");
2573 }
2574
f22f54f4
PZ
2575 return 0;
2576}
This page took 0.318042 seconds and 5 git commands to generate.