hw_breakpoints, powerpc: Fix CONFIG_HAVE_HW_BREAKPOINT off-case in ptrace_set_debugreg()
[deliverable/linux.git] / arch / x86 / kernel / cpu / perf_event_intel.c
CommitLineData
f22f54f4
PZ
1#ifdef CONFIG_CPU_SUP_INTEL
2
a7e3ed1e
AK
3#define MAX_EXTRA_REGS 2
4
5/*
6 * Per register state.
7 */
8struct er_account {
9 int ref; /* reference count */
10 unsigned int extra_reg; /* extra MSR number */
11 u64 extra_config; /* extra MSR config */
12};
13
14/*
15 * Per core state
16 * This used to coordinate shared registers for HT threads.
17 */
18struct intel_percore {
19 raw_spinlock_t lock; /* protect structure */
20 struct er_account regs[MAX_EXTRA_REGS];
21 int refcnt; /* number of threads */
22 unsigned core_id;
23};
24
f22f54f4 25/*
b622d644 26 * Intel PerfMon, used on Core and later.
f22f54f4 27 */
ec75a716 28static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
f22f54f4
PZ
29{
30 [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
31 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
32 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
33 [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
34 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
35 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
36 [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
37};
38
39static struct event_constraint intel_core_event_constraints[] =
40{
41 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
42 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
43 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
44 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
45 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
46 INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
47 EVENT_CONSTRAINT_END
48};
49
50static struct event_constraint intel_core2_event_constraints[] =
51{
b622d644
PZ
52 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
53 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
54 /*
55 * Core2 has Fixed Counter 2 listed as CPU_CLK_UNHALTED.REF and event
56 * 0x013c as CPU_CLK_UNHALTED.BUS and specifies there is a fixed
57 * ratio between these counters.
58 */
59 /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
f22f54f4
PZ
60 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
61 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
62 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
63 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
64 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
65 INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
66 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
67 INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
b622d644 68 INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
f22f54f4
PZ
69 INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
70 EVENT_CONSTRAINT_END
71};
72
73static struct event_constraint intel_nehalem_event_constraints[] =
74{
b622d644
PZ
75 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
76 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
77 /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
f22f54f4
PZ
78 INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
79 INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
80 INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
81 INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
82 INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
83 INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
84 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
85 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
86 EVENT_CONSTRAINT_END
87};
88
a7e3ed1e
AK
89static struct extra_reg intel_nehalem_extra_regs[] =
90{
91 INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff),
92 EVENT_EXTRA_END
93};
94
95static struct event_constraint intel_nehalem_percore_constraints[] =
96{
97 INTEL_EVENT_CONSTRAINT(0xb7, 0),
98 EVENT_CONSTRAINT_END
99};
100
f22f54f4
PZ
101static struct event_constraint intel_westmere_event_constraints[] =
102{
b622d644
PZ
103 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
104 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
105 /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
f22f54f4
PZ
106 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
107 INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
108 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
d1100770 109 INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
f22f54f4
PZ
110 EVENT_CONSTRAINT_END
111};
112
b06b3d49
LM
113static struct event_constraint intel_snb_event_constraints[] =
114{
115 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
116 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
117 /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
118 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
119 INTEL_EVENT_CONSTRAINT(0xb7, 0x1), /* OFF_CORE_RESPONSE_0 */
120 INTEL_EVENT_CONSTRAINT(0xbb, 0x8), /* OFF_CORE_RESPONSE_1 */
121 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
122 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
123 EVENT_CONSTRAINT_END
124};
125
a7e3ed1e
AK
126static struct extra_reg intel_westmere_extra_regs[] =
127{
128 INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff),
129 INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0xffff),
130 EVENT_EXTRA_END
131};
132
133static struct event_constraint intel_westmere_percore_constraints[] =
134{
135 INTEL_EVENT_CONSTRAINT(0xb7, 0),
136 INTEL_EVENT_CONSTRAINT(0xbb, 0),
137 EVENT_CONSTRAINT_END
138};
139
f22f54f4
PZ
140static struct event_constraint intel_gen_event_constraints[] =
141{
b622d644
PZ
142 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
143 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
144 /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
f22f54f4
PZ
145 EVENT_CONSTRAINT_END
146};
147
148static u64 intel_pmu_event_map(int hw_event)
149{
150 return intel_perfmon_event_map[hw_event];
151}
152
b06b3d49
LM
153static __initconst const u64 snb_hw_cache_event_ids
154 [PERF_COUNT_HW_CACHE_MAX]
155 [PERF_COUNT_HW_CACHE_OP_MAX]
156 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
157{
158 [ C(L1D) ] = {
159 [ C(OP_READ) ] = {
160 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
161 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
162 },
163 [ C(OP_WRITE) ] = {
164 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
165 [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
166 },
167 [ C(OP_PREFETCH) ] = {
168 [ C(RESULT_ACCESS) ] = 0x0,
169 [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
170 },
171 },
172 [ C(L1I ) ] = {
173 [ C(OP_READ) ] = {
174 [ C(RESULT_ACCESS) ] = 0x0,
175 [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
176 },
177 [ C(OP_WRITE) ] = {
178 [ C(RESULT_ACCESS) ] = -1,
179 [ C(RESULT_MISS) ] = -1,
180 },
181 [ C(OP_PREFETCH) ] = {
182 [ C(RESULT_ACCESS) ] = 0x0,
183 [ C(RESULT_MISS) ] = 0x0,
184 },
185 },
186 [ C(LL ) ] = {
187 /*
188 * TBD: Need Off-core Response Performance Monitoring support
189 */
190 [ C(OP_READ) ] = {
191 /* OFFCORE_RESPONSE_0.ANY_DATA.LOCAL_CACHE */
192 [ C(RESULT_ACCESS) ] = 0x01b7,
193 /* OFFCORE_RESPONSE_1.ANY_DATA.ANY_LLC_MISS */
194 [ C(RESULT_MISS) ] = 0x01bb,
195 },
196 [ C(OP_WRITE) ] = {
197 /* OFFCORE_RESPONSE_0.ANY_RFO.LOCAL_CACHE */
198 [ C(RESULT_ACCESS) ] = 0x01b7,
199 /* OFFCORE_RESPONSE_1.ANY_RFO.ANY_LLC_MISS */
200 [ C(RESULT_MISS) ] = 0x01bb,
201 },
202 [ C(OP_PREFETCH) ] = {
203 /* OFFCORE_RESPONSE_0.PREFETCH.LOCAL_CACHE */
204 [ C(RESULT_ACCESS) ] = 0x01b7,
205 /* OFFCORE_RESPONSE_1.PREFETCH.ANY_LLC_MISS */
206 [ C(RESULT_MISS) ] = 0x01bb,
207 },
208 },
209 [ C(DTLB) ] = {
210 [ C(OP_READ) ] = {
211 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
212 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
213 },
214 [ C(OP_WRITE) ] = {
215 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
216 [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
217 },
218 [ C(OP_PREFETCH) ] = {
219 [ C(RESULT_ACCESS) ] = 0x0,
220 [ C(RESULT_MISS) ] = 0x0,
221 },
222 },
223 [ C(ITLB) ] = {
224 [ C(OP_READ) ] = {
225 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
226 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
227 },
228 [ C(OP_WRITE) ] = {
229 [ C(RESULT_ACCESS) ] = -1,
230 [ C(RESULT_MISS) ] = -1,
231 },
232 [ C(OP_PREFETCH) ] = {
233 [ C(RESULT_ACCESS) ] = -1,
234 [ C(RESULT_MISS) ] = -1,
235 },
236 },
237 [ C(BPU ) ] = {
238 [ C(OP_READ) ] = {
239 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
240 [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
241 },
242 [ C(OP_WRITE) ] = {
243 [ C(RESULT_ACCESS) ] = -1,
244 [ C(RESULT_MISS) ] = -1,
245 },
246 [ C(OP_PREFETCH) ] = {
247 [ C(RESULT_ACCESS) ] = -1,
248 [ C(RESULT_MISS) ] = -1,
249 },
250 },
251};
252
caaa8be3 253static __initconst const u64 westmere_hw_cache_event_ids
f22f54f4
PZ
254 [PERF_COUNT_HW_CACHE_MAX]
255 [PERF_COUNT_HW_CACHE_OP_MAX]
256 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
257{
258 [ C(L1D) ] = {
259 [ C(OP_READ) ] = {
260 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
261 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
262 },
263 [ C(OP_WRITE) ] = {
264 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
265 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
266 },
267 [ C(OP_PREFETCH) ] = {
268 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
269 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
270 },
271 },
272 [ C(L1I ) ] = {
273 [ C(OP_READ) ] = {
274 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
275 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
276 },
277 [ C(OP_WRITE) ] = {
278 [ C(RESULT_ACCESS) ] = -1,
279 [ C(RESULT_MISS) ] = -1,
280 },
281 [ C(OP_PREFETCH) ] = {
282 [ C(RESULT_ACCESS) ] = 0x0,
283 [ C(RESULT_MISS) ] = 0x0,
284 },
285 },
286 [ C(LL ) ] = {
287 [ C(OP_READ) ] = {
e994d7d2
AK
288 /* OFFCORE_RESPONSE_0.ANY_DATA.LOCAL_CACHE */
289 [ C(RESULT_ACCESS) ] = 0x01b7,
290 /* OFFCORE_RESPONSE_1.ANY_DATA.ANY_LLC_MISS */
291 [ C(RESULT_MISS) ] = 0x01bb,
f22f54f4 292 },
e994d7d2
AK
293 /*
294 * Use RFO, not WRITEBACK, because a write miss would typically occur
295 * on RFO.
296 */
f22f54f4 297 [ C(OP_WRITE) ] = {
e994d7d2
AK
298 /* OFFCORE_RESPONSE_1.ANY_RFO.LOCAL_CACHE */
299 [ C(RESULT_ACCESS) ] = 0x01bb,
300 /* OFFCORE_RESPONSE_0.ANY_RFO.ANY_LLC_MISS */
301 [ C(RESULT_MISS) ] = 0x01b7,
f22f54f4
PZ
302 },
303 [ C(OP_PREFETCH) ] = {
e994d7d2
AK
304 /* OFFCORE_RESPONSE_0.PREFETCH.LOCAL_CACHE */
305 [ C(RESULT_ACCESS) ] = 0x01b7,
306 /* OFFCORE_RESPONSE_1.PREFETCH.ANY_LLC_MISS */
307 [ C(RESULT_MISS) ] = 0x01bb,
f22f54f4
PZ
308 },
309 },
310 [ C(DTLB) ] = {
311 [ C(OP_READ) ] = {
312 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
313 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
314 },
315 [ C(OP_WRITE) ] = {
316 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
317 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
318 },
319 [ C(OP_PREFETCH) ] = {
320 [ C(RESULT_ACCESS) ] = 0x0,
321 [ C(RESULT_MISS) ] = 0x0,
322 },
323 },
324 [ C(ITLB) ] = {
325 [ C(OP_READ) ] = {
326 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
327 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
328 },
329 [ C(OP_WRITE) ] = {
330 [ C(RESULT_ACCESS) ] = -1,
331 [ C(RESULT_MISS) ] = -1,
332 },
333 [ C(OP_PREFETCH) ] = {
334 [ C(RESULT_ACCESS) ] = -1,
335 [ C(RESULT_MISS) ] = -1,
336 },
337 },
338 [ C(BPU ) ] = {
339 [ C(OP_READ) ] = {
340 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
341 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
342 },
343 [ C(OP_WRITE) ] = {
344 [ C(RESULT_ACCESS) ] = -1,
345 [ C(RESULT_MISS) ] = -1,
346 },
347 [ C(OP_PREFETCH) ] = {
348 [ C(RESULT_ACCESS) ] = -1,
349 [ C(RESULT_MISS) ] = -1,
350 },
351 },
352};
353
e994d7d2
AK
354/*
355 * OFFCORE_RESPONSE MSR bits (subset), See IA32 SDM Vol 3 30.6.1.3
356 */
357
358#define DMND_DATA_RD (1 << 0)
359#define DMND_RFO (1 << 1)
360#define DMND_WB (1 << 3)
361#define PF_DATA_RD (1 << 4)
362#define PF_DATA_RFO (1 << 5)
363#define RESP_UNCORE_HIT (1 << 8)
364#define RESP_MISS (0xf600) /* non uncore hit */
365
366static __initconst const u64 nehalem_hw_cache_extra_regs
367 [PERF_COUNT_HW_CACHE_MAX]
368 [PERF_COUNT_HW_CACHE_OP_MAX]
369 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
370{
371 [ C(LL ) ] = {
372 [ C(OP_READ) ] = {
373 [ C(RESULT_ACCESS) ] = DMND_DATA_RD|RESP_UNCORE_HIT,
374 [ C(RESULT_MISS) ] = DMND_DATA_RD|RESP_MISS,
375 },
376 [ C(OP_WRITE) ] = {
377 [ C(RESULT_ACCESS) ] = DMND_RFO|DMND_WB|RESP_UNCORE_HIT,
378 [ C(RESULT_MISS) ] = DMND_RFO|DMND_WB|RESP_MISS,
379 },
380 [ C(OP_PREFETCH) ] = {
381 [ C(RESULT_ACCESS) ] = PF_DATA_RD|PF_DATA_RFO|RESP_UNCORE_HIT,
382 [ C(RESULT_MISS) ] = PF_DATA_RD|PF_DATA_RFO|RESP_MISS,
383 },
384 }
385};
386
caaa8be3 387static __initconst const u64 nehalem_hw_cache_event_ids
f22f54f4
PZ
388 [PERF_COUNT_HW_CACHE_MAX]
389 [PERF_COUNT_HW_CACHE_OP_MAX]
390 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
391{
392 [ C(L1D) ] = {
393 [ C(OP_READ) ] = {
f4929bd3
PZ
394 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
395 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
f22f54f4
PZ
396 },
397 [ C(OP_WRITE) ] = {
f4929bd3
PZ
398 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
399 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
f22f54f4
PZ
400 },
401 [ C(OP_PREFETCH) ] = {
402 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
403 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
404 },
405 },
406 [ C(L1I ) ] = {
407 [ C(OP_READ) ] = {
408 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
409 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
410 },
411 [ C(OP_WRITE) ] = {
412 [ C(RESULT_ACCESS) ] = -1,
413 [ C(RESULT_MISS) ] = -1,
414 },
415 [ C(OP_PREFETCH) ] = {
416 [ C(RESULT_ACCESS) ] = 0x0,
417 [ C(RESULT_MISS) ] = 0x0,
418 },
419 },
420 [ C(LL ) ] = {
421 [ C(OP_READ) ] = {
e994d7d2
AK
422 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
423 [ C(RESULT_ACCESS) ] = 0x01b7,
424 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
425 [ C(RESULT_MISS) ] = 0x01b7,
f22f54f4 426 },
e994d7d2
AK
427 /*
428 * Use RFO, not WRITEBACK, because a write miss would typically occur
429 * on RFO.
430 */
f22f54f4 431 [ C(OP_WRITE) ] = {
e994d7d2
AK
432 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
433 [ C(RESULT_ACCESS) ] = 0x01b7,
434 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
435 [ C(RESULT_MISS) ] = 0x01b7,
f22f54f4
PZ
436 },
437 [ C(OP_PREFETCH) ] = {
e994d7d2
AK
438 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
439 [ C(RESULT_ACCESS) ] = 0x01b7,
440 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
441 [ C(RESULT_MISS) ] = 0x01b7,
f22f54f4
PZ
442 },
443 },
444 [ C(DTLB) ] = {
445 [ C(OP_READ) ] = {
446 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
447 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
448 },
449 [ C(OP_WRITE) ] = {
450 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
451 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
452 },
453 [ C(OP_PREFETCH) ] = {
454 [ C(RESULT_ACCESS) ] = 0x0,
455 [ C(RESULT_MISS) ] = 0x0,
456 },
457 },
458 [ C(ITLB) ] = {
459 [ C(OP_READ) ] = {
460 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
461 [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
462 },
463 [ C(OP_WRITE) ] = {
464 [ C(RESULT_ACCESS) ] = -1,
465 [ C(RESULT_MISS) ] = -1,
466 },
467 [ C(OP_PREFETCH) ] = {
468 [ C(RESULT_ACCESS) ] = -1,
469 [ C(RESULT_MISS) ] = -1,
470 },
471 },
472 [ C(BPU ) ] = {
473 [ C(OP_READ) ] = {
474 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
475 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
476 },
477 [ C(OP_WRITE) ] = {
478 [ C(RESULT_ACCESS) ] = -1,
479 [ C(RESULT_MISS) ] = -1,
480 },
481 [ C(OP_PREFETCH) ] = {
482 [ C(RESULT_ACCESS) ] = -1,
483 [ C(RESULT_MISS) ] = -1,
484 },
485 },
486};
487
caaa8be3 488static __initconst const u64 core2_hw_cache_event_ids
f22f54f4
PZ
489 [PERF_COUNT_HW_CACHE_MAX]
490 [PERF_COUNT_HW_CACHE_OP_MAX]
491 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
492{
493 [ C(L1D) ] = {
494 [ C(OP_READ) ] = {
495 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
496 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
497 },
498 [ C(OP_WRITE) ] = {
499 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
500 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
501 },
502 [ C(OP_PREFETCH) ] = {
503 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
504 [ C(RESULT_MISS) ] = 0,
505 },
506 },
507 [ C(L1I ) ] = {
508 [ C(OP_READ) ] = {
509 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
510 [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
511 },
512 [ C(OP_WRITE) ] = {
513 [ C(RESULT_ACCESS) ] = -1,
514 [ C(RESULT_MISS) ] = -1,
515 },
516 [ C(OP_PREFETCH) ] = {
517 [ C(RESULT_ACCESS) ] = 0,
518 [ C(RESULT_MISS) ] = 0,
519 },
520 },
521 [ C(LL ) ] = {
522 [ C(OP_READ) ] = {
523 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
524 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
525 },
526 [ C(OP_WRITE) ] = {
527 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
528 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
529 },
530 [ C(OP_PREFETCH) ] = {
531 [ C(RESULT_ACCESS) ] = 0,
532 [ C(RESULT_MISS) ] = 0,
533 },
534 },
535 [ C(DTLB) ] = {
536 [ C(OP_READ) ] = {
537 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
538 [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
539 },
540 [ C(OP_WRITE) ] = {
541 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
542 [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
543 },
544 [ C(OP_PREFETCH) ] = {
545 [ C(RESULT_ACCESS) ] = 0,
546 [ C(RESULT_MISS) ] = 0,
547 },
548 },
549 [ C(ITLB) ] = {
550 [ C(OP_READ) ] = {
551 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
552 [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
553 },
554 [ C(OP_WRITE) ] = {
555 [ C(RESULT_ACCESS) ] = -1,
556 [ C(RESULT_MISS) ] = -1,
557 },
558 [ C(OP_PREFETCH) ] = {
559 [ C(RESULT_ACCESS) ] = -1,
560 [ C(RESULT_MISS) ] = -1,
561 },
562 },
563 [ C(BPU ) ] = {
564 [ C(OP_READ) ] = {
565 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
566 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
567 },
568 [ C(OP_WRITE) ] = {
569 [ C(RESULT_ACCESS) ] = -1,
570 [ C(RESULT_MISS) ] = -1,
571 },
572 [ C(OP_PREFETCH) ] = {
573 [ C(RESULT_ACCESS) ] = -1,
574 [ C(RESULT_MISS) ] = -1,
575 },
576 },
577};
578
caaa8be3 579static __initconst const u64 atom_hw_cache_event_ids
f22f54f4
PZ
580 [PERF_COUNT_HW_CACHE_MAX]
581 [PERF_COUNT_HW_CACHE_OP_MAX]
582 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
583{
584 [ C(L1D) ] = {
585 [ C(OP_READ) ] = {
586 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
587 [ C(RESULT_MISS) ] = 0,
588 },
589 [ C(OP_WRITE) ] = {
590 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
591 [ C(RESULT_MISS) ] = 0,
592 },
593 [ C(OP_PREFETCH) ] = {
594 [ C(RESULT_ACCESS) ] = 0x0,
595 [ C(RESULT_MISS) ] = 0,
596 },
597 },
598 [ C(L1I ) ] = {
599 [ C(OP_READ) ] = {
600 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
601 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
602 },
603 [ C(OP_WRITE) ] = {
604 [ C(RESULT_ACCESS) ] = -1,
605 [ C(RESULT_MISS) ] = -1,
606 },
607 [ C(OP_PREFETCH) ] = {
608 [ C(RESULT_ACCESS) ] = 0,
609 [ C(RESULT_MISS) ] = 0,
610 },
611 },
612 [ C(LL ) ] = {
613 [ C(OP_READ) ] = {
614 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
615 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
616 },
617 [ C(OP_WRITE) ] = {
618 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
619 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
620 },
621 [ C(OP_PREFETCH) ] = {
622 [ C(RESULT_ACCESS) ] = 0,
623 [ C(RESULT_MISS) ] = 0,
624 },
625 },
626 [ C(DTLB) ] = {
627 [ C(OP_READ) ] = {
628 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
629 [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
630 },
631 [ C(OP_WRITE) ] = {
632 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
633 [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
634 },
635 [ C(OP_PREFETCH) ] = {
636 [ C(RESULT_ACCESS) ] = 0,
637 [ C(RESULT_MISS) ] = 0,
638 },
639 },
640 [ C(ITLB) ] = {
641 [ C(OP_READ) ] = {
642 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
643 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
644 },
645 [ C(OP_WRITE) ] = {
646 [ C(RESULT_ACCESS) ] = -1,
647 [ C(RESULT_MISS) ] = -1,
648 },
649 [ C(OP_PREFETCH) ] = {
650 [ C(RESULT_ACCESS) ] = -1,
651 [ C(RESULT_MISS) ] = -1,
652 },
653 },
654 [ C(BPU ) ] = {
655 [ C(OP_READ) ] = {
656 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
657 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
658 },
659 [ C(OP_WRITE) ] = {
660 [ C(RESULT_ACCESS) ] = -1,
661 [ C(RESULT_MISS) ] = -1,
662 },
663 [ C(OP_PREFETCH) ] = {
664 [ C(RESULT_ACCESS) ] = -1,
665 [ C(RESULT_MISS) ] = -1,
666 },
667 },
668};
669
f22f54f4
PZ
670static void intel_pmu_disable_all(void)
671{
672 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
673
674 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
675
676 if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask))
677 intel_pmu_disable_bts();
ca037701
PZ
678
679 intel_pmu_pebs_disable_all();
caff2bef 680 intel_pmu_lbr_disable_all();
f22f54f4
PZ
681}
682
11164cd4 683static void intel_pmu_enable_all(int added)
f22f54f4
PZ
684{
685 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
686
d329527e
PZ
687 intel_pmu_pebs_enable_all();
688 intel_pmu_lbr_enable_all();
f22f54f4
PZ
689 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, x86_pmu.intel_ctrl);
690
691 if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
692 struct perf_event *event =
693 cpuc->events[X86_PMC_IDX_FIXED_BTS];
694
695 if (WARN_ON_ONCE(!event))
696 return;
697
698 intel_pmu_enable_bts(event->hw.config);
699 }
700}
701
11164cd4
PZ
702/*
703 * Workaround for:
704 * Intel Errata AAK100 (model 26)
705 * Intel Errata AAP53 (model 30)
40b91cd1 706 * Intel Errata BD53 (model 44)
11164cd4 707 *
351af072
ZY
708 * The official story:
709 * These chips need to be 'reset' when adding counters by programming the
710 * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
711 * in sequence on the same PMC or on different PMCs.
712 *
713 * In practise it appears some of these events do in fact count, and
714 * we need to programm all 4 events.
11164cd4 715 */
351af072 716static void intel_pmu_nhm_workaround(void)
11164cd4 717{
351af072
ZY
718 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
719 static const unsigned long nhm_magic[4] = {
720 0x4300B5,
721 0x4300D2,
722 0x4300B1,
723 0x4300B1
724 };
725 struct perf_event *event;
726 int i;
11164cd4 727
351af072
ZY
728 /*
729 * The Errata requires below steps:
730 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
731 * 2) Configure 4 PERFEVTSELx with the magic events and clear
732 * the corresponding PMCx;
733 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
734 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
735 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
736 */
11164cd4 737
351af072
ZY
738 /*
739 * The real steps we choose are a little different from above.
740 * A) To reduce MSR operations, we don't run step 1) as they
741 * are already cleared before this function is called;
742 * B) Call x86_perf_event_update to save PMCx before configuring
743 * PERFEVTSELx with magic number;
744 * C) With step 5), we do clear only when the PERFEVTSELx is
745 * not used currently.
746 * D) Call x86_perf_event_set_period to restore PMCx;
747 */
11164cd4 748
351af072
ZY
749 /* We always operate 4 pairs of PERF Counters */
750 for (i = 0; i < 4; i++) {
751 event = cpuc->events[i];
752 if (event)
753 x86_perf_event_update(event);
754 }
11164cd4 755
351af072
ZY
756 for (i = 0; i < 4; i++) {
757 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
758 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
759 }
760
761 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
762 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
11164cd4 763
351af072
ZY
764 for (i = 0; i < 4; i++) {
765 event = cpuc->events[i];
766
767 if (event) {
768 x86_perf_event_set_period(event);
31fa58af 769 __x86_pmu_enable_event(&event->hw,
351af072
ZY
770 ARCH_PERFMON_EVENTSEL_ENABLE);
771 } else
772 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
11164cd4 773 }
351af072
ZY
774}
775
776static void intel_pmu_nhm_enable_all(int added)
777{
778 if (added)
779 intel_pmu_nhm_workaround();
11164cd4
PZ
780 intel_pmu_enable_all(added);
781}
782
f22f54f4
PZ
783static inline u64 intel_pmu_get_status(void)
784{
785 u64 status;
786
787 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
788
789 return status;
790}
791
792static inline void intel_pmu_ack_status(u64 ack)
793{
794 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
795}
796
ca037701 797static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
f22f54f4 798{
aff3d91a 799 int idx = hwc->idx - X86_PMC_IDX_FIXED;
f22f54f4
PZ
800 u64 ctrl_val, mask;
801
802 mask = 0xfULL << (idx * 4);
803
804 rdmsrl(hwc->config_base, ctrl_val);
805 ctrl_val &= ~mask;
7645a24c 806 wrmsrl(hwc->config_base, ctrl_val);
f22f54f4
PZ
807}
808
ca037701 809static void intel_pmu_disable_event(struct perf_event *event)
f22f54f4 810{
aff3d91a
PZ
811 struct hw_perf_event *hwc = &event->hw;
812
813 if (unlikely(hwc->idx == X86_PMC_IDX_FIXED_BTS)) {
f22f54f4
PZ
814 intel_pmu_disable_bts();
815 intel_pmu_drain_bts_buffer();
816 return;
817 }
818
819 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
aff3d91a 820 intel_pmu_disable_fixed(hwc);
f22f54f4
PZ
821 return;
822 }
823
aff3d91a 824 x86_pmu_disable_event(event);
ca037701 825
ab608344 826 if (unlikely(event->attr.precise_ip))
ef21f683 827 intel_pmu_pebs_disable(event);
f22f54f4
PZ
828}
829
ca037701 830static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
f22f54f4 831{
aff3d91a 832 int idx = hwc->idx - X86_PMC_IDX_FIXED;
f22f54f4 833 u64 ctrl_val, bits, mask;
f22f54f4
PZ
834
835 /*
836 * Enable IRQ generation (0x8),
837 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
838 * if requested:
839 */
840 bits = 0x8ULL;
841 if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
842 bits |= 0x2;
843 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
844 bits |= 0x1;
845
846 /*
847 * ANY bit is supported in v3 and up
848 */
849 if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
850 bits |= 0x4;
851
852 bits <<= (idx * 4);
853 mask = 0xfULL << (idx * 4);
854
855 rdmsrl(hwc->config_base, ctrl_val);
856 ctrl_val &= ~mask;
857 ctrl_val |= bits;
7645a24c 858 wrmsrl(hwc->config_base, ctrl_val);
f22f54f4
PZ
859}
860
aff3d91a 861static void intel_pmu_enable_event(struct perf_event *event)
f22f54f4 862{
aff3d91a
PZ
863 struct hw_perf_event *hwc = &event->hw;
864
865 if (unlikely(hwc->idx == X86_PMC_IDX_FIXED_BTS)) {
0a3aee0d 866 if (!__this_cpu_read(cpu_hw_events.enabled))
f22f54f4
PZ
867 return;
868
869 intel_pmu_enable_bts(hwc->config);
870 return;
871 }
872
873 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
aff3d91a 874 intel_pmu_enable_fixed(hwc);
f22f54f4
PZ
875 return;
876 }
877
ab608344 878 if (unlikely(event->attr.precise_ip))
ef21f683 879 intel_pmu_pebs_enable(event);
ca037701 880
31fa58af 881 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
f22f54f4
PZ
882}
883
884/*
885 * Save and restart an expired event. Called by NMI contexts,
886 * so it has to be careful about preempting normal event ops:
887 */
888static int intel_pmu_save_and_restart(struct perf_event *event)
889{
cc2ad4ba
PZ
890 x86_perf_event_update(event);
891 return x86_perf_event_set_period(event);
f22f54f4
PZ
892}
893
894static void intel_pmu_reset(void)
895{
0a3aee0d 896 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
f22f54f4
PZ
897 unsigned long flags;
898 int idx;
899
948b1bb8 900 if (!x86_pmu.num_counters)
f22f54f4
PZ
901 return;
902
903 local_irq_save(flags);
904
905 printk("clearing PMU state on CPU#%d\n", smp_processor_id());
906
948b1bb8 907 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
41bf4989
RR
908 checking_wrmsrl(x86_pmu_config_addr(idx), 0ull);
909 checking_wrmsrl(x86_pmu_event_addr(idx), 0ull);
f22f54f4 910 }
948b1bb8 911 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
f22f54f4 912 checking_wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
948b1bb8 913
f22f54f4
PZ
914 if (ds)
915 ds->bts_index = ds->bts_buffer_base;
916
917 local_irq_restore(flags);
918}
919
920/*
921 * This handler is triggered by the local APIC, so the APIC IRQ handling
922 * rules apply:
923 */
924static int intel_pmu_handle_irq(struct pt_regs *regs)
925{
926 struct perf_sample_data data;
927 struct cpu_hw_events *cpuc;
928 int bit, loops;
2e556b5b 929 u64 status;
b0b2072d 930 int handled;
f22f54f4 931
dc1d628a 932 perf_sample_data_init(&data, 0);
f22f54f4
PZ
933
934 cpuc = &__get_cpu_var(cpu_hw_events);
935
2bce5dac
DZ
936 /*
937 * Some chipsets need to unmask the LVTPC in a particular spot
938 * inside the nmi handler. As a result, the unmasking was pushed
939 * into all the nmi handlers.
940 *
941 * This handler doesn't seem to have any issues with the unmasking
942 * so it was left at the top.
943 */
944 apic_write(APIC_LVTPC, APIC_DM_NMI);
945
3fb2b8dd 946 intel_pmu_disable_all();
b0b2072d 947 handled = intel_pmu_drain_bts_buffer();
f22f54f4
PZ
948 status = intel_pmu_get_status();
949 if (!status) {
11164cd4 950 intel_pmu_enable_all(0);
b0b2072d 951 return handled;
f22f54f4
PZ
952 }
953
954 loops = 0;
955again:
2e556b5b 956 intel_pmu_ack_status(status);
f22f54f4
PZ
957 if (++loops > 100) {
958 WARN_ONCE(1, "perfevents: irq loop stuck!\n");
959 perf_event_print_debug();
960 intel_pmu_reset();
3fb2b8dd 961 goto done;
f22f54f4
PZ
962 }
963
964 inc_irq_stat(apic_perf_irqs);
ca037701 965
caff2bef
PZ
966 intel_pmu_lbr_read();
967
ca037701
PZ
968 /*
969 * PEBS overflow sets bit 62 in the global status register
970 */
de725dec
PZ
971 if (__test_and_clear_bit(62, (unsigned long *)&status)) {
972 handled++;
ca037701 973 x86_pmu.drain_pebs(regs);
de725dec 974 }
ca037701 975
984b3f57 976 for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
f22f54f4
PZ
977 struct perf_event *event = cpuc->events[bit];
978
de725dec
PZ
979 handled++;
980
f22f54f4
PZ
981 if (!test_bit(bit, cpuc->active_mask))
982 continue;
983
984 if (!intel_pmu_save_and_restart(event))
985 continue;
986
987 data.period = event->hw.last_period;
988
989 if (perf_event_overflow(event, 1, &data, regs))
a4eaf7f1 990 x86_pmu_stop(event, 0);
f22f54f4
PZ
991 }
992
f22f54f4
PZ
993 /*
994 * Repeat if there is more work to be done:
995 */
996 status = intel_pmu_get_status();
997 if (status)
998 goto again;
999
3fb2b8dd 1000done:
11164cd4 1001 intel_pmu_enable_all(0);
de725dec 1002 return handled;
f22f54f4
PZ
1003}
1004
f22f54f4 1005static struct event_constraint *
ca037701 1006intel_bts_constraints(struct perf_event *event)
f22f54f4 1007{
ca037701
PZ
1008 struct hw_perf_event *hwc = &event->hw;
1009 unsigned int hw_event, bts_event;
f22f54f4 1010
18a073a3
PZ
1011 if (event->attr.freq)
1012 return NULL;
1013
ca037701
PZ
1014 hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
1015 bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
f22f54f4 1016
ca037701 1017 if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
f22f54f4 1018 return &bts_constraint;
ca037701 1019
f22f54f4
PZ
1020 return NULL;
1021}
1022
a7e3ed1e
AK
1023static struct event_constraint *
1024intel_percore_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1025{
1026 struct hw_perf_event *hwc = &event->hw;
1027 unsigned int e = hwc->config & ARCH_PERFMON_EVENTSEL_EVENT;
1028 struct event_constraint *c;
1029 struct intel_percore *pc;
1030 struct er_account *era;
1031 int i;
1032 int free_slot;
1033 int found;
1034
1035 if (!x86_pmu.percore_constraints || hwc->extra_alloc)
1036 return NULL;
1037
1038 for (c = x86_pmu.percore_constraints; c->cmask; c++) {
1039 if (e != c->code)
1040 continue;
1041
1042 /*
1043 * Allocate resource per core.
1044 */
1045 pc = cpuc->per_core;
1046 if (!pc)
1047 break;
1048 c = &emptyconstraint;
1049 raw_spin_lock(&pc->lock);
1050 free_slot = -1;
1051 found = 0;
1052 for (i = 0; i < MAX_EXTRA_REGS; i++) {
1053 era = &pc->regs[i];
1054 if (era->ref > 0 && hwc->extra_reg == era->extra_reg) {
1055 /* Allow sharing same config */
1056 if (hwc->extra_config == era->extra_config) {
1057 era->ref++;
1058 cpuc->percore_used = 1;
1059 hwc->extra_alloc = 1;
1060 c = NULL;
1061 }
1062 /* else conflict */
1063 found = 1;
1064 break;
1065 } else if (era->ref == 0 && free_slot == -1)
1066 free_slot = i;
1067 }
1068 if (!found && free_slot != -1) {
1069 era = &pc->regs[free_slot];
1070 era->ref = 1;
1071 era->extra_reg = hwc->extra_reg;
1072 era->extra_config = hwc->extra_config;
1073 cpuc->percore_used = 1;
1074 hwc->extra_alloc = 1;
1075 c = NULL;
1076 }
1077 raw_spin_unlock(&pc->lock);
1078 return c;
1079 }
1080
1081 return NULL;
1082}
1083
f22f54f4
PZ
1084static struct event_constraint *
1085intel_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1086{
1087 struct event_constraint *c;
1088
ca037701
PZ
1089 c = intel_bts_constraints(event);
1090 if (c)
1091 return c;
1092
1093 c = intel_pebs_constraints(event);
f22f54f4
PZ
1094 if (c)
1095 return c;
1096
a7e3ed1e
AK
1097 c = intel_percore_constraints(cpuc, event);
1098 if (c)
1099 return c;
1100
f22f54f4
PZ
1101 return x86_get_event_constraints(cpuc, event);
1102}
1103
a7e3ed1e
AK
1104static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
1105 struct perf_event *event)
1106{
1107 struct extra_reg *er;
1108 struct intel_percore *pc;
1109 struct er_account *era;
1110 struct hw_perf_event *hwc = &event->hw;
1111 int i, allref;
1112
1113 if (!cpuc->percore_used)
1114 return;
1115
1116 for (er = x86_pmu.extra_regs; er->msr; er++) {
1117 if (er->event != (hwc->config & er->config_mask))
1118 continue;
1119
1120 pc = cpuc->per_core;
1121 raw_spin_lock(&pc->lock);
1122 for (i = 0; i < MAX_EXTRA_REGS; i++) {
1123 era = &pc->regs[i];
1124 if (era->ref > 0 &&
1125 era->extra_config == hwc->extra_config &&
1126 era->extra_reg == er->msr) {
1127 era->ref--;
1128 hwc->extra_alloc = 0;
1129 break;
1130 }
1131 }
1132 allref = 0;
1133 for (i = 0; i < MAX_EXTRA_REGS; i++)
1134 allref += pc->regs[i].ref;
1135 if (allref == 0)
1136 cpuc->percore_used = 0;
1137 raw_spin_unlock(&pc->lock);
1138 break;
1139 }
1140}
1141
b4cdc5c2
PZ
1142static int intel_pmu_hw_config(struct perf_event *event)
1143{
1144 int ret = x86_pmu_hw_config(event);
1145
1146 if (ret)
1147 return ret;
1148
7639dae0
PZ
1149 if (event->attr.precise_ip &&
1150 (event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
1151 /*
1152 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
1153 * (0x003c) so that we can use it with PEBS.
1154 *
1155 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
1156 * PEBS capable. However we can use INST_RETIRED.ANY_P
1157 * (0x00c0), which is a PEBS capable event, to get the same
1158 * count.
1159 *
1160 * INST_RETIRED.ANY_P counts the number of cycles that retires
1161 * CNTMASK instructions. By setting CNTMASK to a value (16)
1162 * larger than the maximum number of instructions that can be
1163 * retired per cycle (4) and then inverting the condition, we
1164 * count all cycles that retire 16 or less instructions, which
1165 * is every cycle.
1166 *
1167 * Thereby we gain a PEBS capable cycle counter.
1168 */
1169 u64 alt_config = 0x108000c0; /* INST_RETIRED.TOTAL_CYCLES */
1170
1171 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
1172 event->hw.config = alt_config;
1173 }
1174
b4cdc5c2
PZ
1175 if (event->attr.type != PERF_TYPE_RAW)
1176 return 0;
1177
1178 if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
1179 return 0;
1180
1181 if (x86_pmu.version < 3)
1182 return -EINVAL;
1183
1184 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1185 return -EACCES;
1186
1187 event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
1188
1189 return 0;
1190}
1191
caaa8be3 1192static __initconst const struct x86_pmu core_pmu = {
f22f54f4
PZ
1193 .name = "core",
1194 .handle_irq = x86_pmu_handle_irq,
1195 .disable_all = x86_pmu_disable_all,
1196 .enable_all = x86_pmu_enable_all,
1197 .enable = x86_pmu_enable_event,
1198 .disable = x86_pmu_disable_event,
b4cdc5c2 1199 .hw_config = x86_pmu_hw_config,
a072738e 1200 .schedule_events = x86_schedule_events,
f22f54f4
PZ
1201 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
1202 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
1203 .event_map = intel_pmu_event_map,
f22f54f4
PZ
1204 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
1205 .apic = 1,
1206 /*
1207 * Intel PMCs cannot be accessed sanely above 32 bit width,
1208 * so we install an artificial 1<<31 period regardless of
1209 * the generic event period:
1210 */
1211 .max_period = (1ULL << 31) - 1,
1212 .get_event_constraints = intel_get_event_constraints,
a7e3ed1e 1213 .put_event_constraints = intel_put_event_constraints,
f22f54f4
PZ
1214 .event_constraints = intel_core_event_constraints,
1215};
1216
a7e3ed1e
AK
1217static int intel_pmu_cpu_prepare(int cpu)
1218{
1219 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1220
69092624
LM
1221 if (!cpu_has_ht_siblings())
1222 return NOTIFY_OK;
1223
a7e3ed1e
AK
1224 cpuc->per_core = kzalloc_node(sizeof(struct intel_percore),
1225 GFP_KERNEL, cpu_to_node(cpu));
1226 if (!cpuc->per_core)
1227 return NOTIFY_BAD;
1228
1229 raw_spin_lock_init(&cpuc->per_core->lock);
1230 cpuc->per_core->core_id = -1;
1231 return NOTIFY_OK;
1232}
1233
74846d35
PZ
1234static void intel_pmu_cpu_starting(int cpu)
1235{
a7e3ed1e
AK
1236 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1237 int core_id = topology_core_id(cpu);
1238 int i;
1239
69092624
LM
1240 init_debug_store_on_cpu(cpu);
1241 /*
1242 * Deal with CPUs that don't clear their LBRs on power-up.
1243 */
1244 intel_pmu_lbr_reset();
1245
1246 if (!cpu_has_ht_siblings())
1247 return;
1248
a7e3ed1e
AK
1249 for_each_cpu(i, topology_thread_cpumask(cpu)) {
1250 struct intel_percore *pc = per_cpu(cpu_hw_events, i).per_core;
1251
1252 if (pc && pc->core_id == core_id) {
1253 kfree(cpuc->per_core);
1254 cpuc->per_core = pc;
1255 break;
1256 }
1257 }
1258
1259 cpuc->per_core->core_id = core_id;
1260 cpuc->per_core->refcnt++;
74846d35
PZ
1261}
1262
1263static void intel_pmu_cpu_dying(int cpu)
1264{
a7e3ed1e
AK
1265 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1266 struct intel_percore *pc = cpuc->per_core;
1267
1268 if (pc) {
1269 if (pc->core_id == -1 || --pc->refcnt == 0)
1270 kfree(pc);
1271 cpuc->per_core = NULL;
1272 }
1273
74846d35
PZ
1274 fini_debug_store_on_cpu(cpu);
1275}
1276
caaa8be3 1277static __initconst const struct x86_pmu intel_pmu = {
f22f54f4
PZ
1278 .name = "Intel",
1279 .handle_irq = intel_pmu_handle_irq,
1280 .disable_all = intel_pmu_disable_all,
1281 .enable_all = intel_pmu_enable_all,
1282 .enable = intel_pmu_enable_event,
1283 .disable = intel_pmu_disable_event,
b4cdc5c2 1284 .hw_config = intel_pmu_hw_config,
a072738e 1285 .schedule_events = x86_schedule_events,
f22f54f4
PZ
1286 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
1287 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
1288 .event_map = intel_pmu_event_map,
f22f54f4
PZ
1289 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
1290 .apic = 1,
1291 /*
1292 * Intel PMCs cannot be accessed sanely above 32 bit width,
1293 * so we install an artificial 1<<31 period regardless of
1294 * the generic event period:
1295 */
1296 .max_period = (1ULL << 31) - 1,
3f6da390 1297 .get_event_constraints = intel_get_event_constraints,
a7e3ed1e 1298 .put_event_constraints = intel_put_event_constraints,
3f6da390 1299
a7e3ed1e 1300 .cpu_prepare = intel_pmu_cpu_prepare,
74846d35
PZ
1301 .cpu_starting = intel_pmu_cpu_starting,
1302 .cpu_dying = intel_pmu_cpu_dying,
f22f54f4
PZ
1303};
1304
3c44780b
PZ
1305static void intel_clovertown_quirks(void)
1306{
1307 /*
1308 * PEBS is unreliable due to:
1309 *
1310 * AJ67 - PEBS may experience CPL leaks
1311 * AJ68 - PEBS PMI may be delayed by one event
1312 * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
1313 * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
1314 *
1315 * AJ67 could be worked around by restricting the OS/USR flags.
1316 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
1317 *
1318 * AJ106 could possibly be worked around by not allowing LBR
1319 * usage from PEBS, including the fixup.
1320 * AJ68 could possibly be worked around by always programming
ec75a716 1321 * a pebs_event_reset[0] value and coping with the lost events.
3c44780b
PZ
1322 *
1323 * But taken together it might just make sense to not enable PEBS on
1324 * these chips.
1325 */
1326 printk(KERN_WARNING "PEBS disabled due to CPU errata.\n");
1327 x86_pmu.pebs = 0;
1328 x86_pmu.pebs_constraints = NULL;
1329}
1330
f22f54f4
PZ
1331static __init int intel_pmu_init(void)
1332{
1333 union cpuid10_edx edx;
1334 union cpuid10_eax eax;
1335 unsigned int unused;
1336 unsigned int ebx;
1337 int version;
1338
1339 if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
a072738e
CG
1340 switch (boot_cpu_data.x86) {
1341 case 0x6:
1342 return p6_pmu_init();
1343 case 0xf:
1344 return p4_pmu_init();
1345 }
f22f54f4 1346 return -ENODEV;
f22f54f4
PZ
1347 }
1348
1349 /*
1350 * Check whether the Architectural PerfMon supports
1351 * Branch Misses Retired hw_event or not.
1352 */
1353 cpuid(10, &eax.full, &ebx, &unused, &edx.full);
1354 if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED)
1355 return -ENODEV;
1356
1357 version = eax.split.version_id;
1358 if (version < 2)
1359 x86_pmu = core_pmu;
1360 else
1361 x86_pmu = intel_pmu;
1362
1363 x86_pmu.version = version;
948b1bb8
RR
1364 x86_pmu.num_counters = eax.split.num_counters;
1365 x86_pmu.cntval_bits = eax.split.bit_width;
1366 x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
f22f54f4
PZ
1367
1368 /*
1369 * Quirk: v2 perfmon does not report fixed-purpose events, so
1370 * assume at least 3 events:
1371 */
1372 if (version > 1)
948b1bb8 1373 x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
f22f54f4 1374
8db909a7
PZ
1375 /*
1376 * v2 and above have a perf capabilities MSR
1377 */
1378 if (version > 1) {
1379 u64 capabilities;
1380
1381 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
1382 x86_pmu.intel_cap.capabilities = capabilities;
1383 }
1384
ca037701
PZ
1385 intel_ds_init();
1386
f22f54f4
PZ
1387 /*
1388 * Install the hw-cache-events table:
1389 */
1390 switch (boot_cpu_data.x86_model) {
1391 case 14: /* 65 nm core solo/duo, "Yonah" */
1392 pr_cont("Core events, ");
1393 break;
1394
1395 case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
3c44780b 1396 x86_pmu.quirks = intel_clovertown_quirks;
f22f54f4
PZ
1397 case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
1398 case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
1399 case 29: /* six-core 45 nm xeon "Dunnington" */
1400 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
1401 sizeof(hw_cache_event_ids));
1402
caff2bef
PZ
1403 intel_pmu_lbr_init_core();
1404
f22f54f4 1405 x86_pmu.event_constraints = intel_core2_event_constraints;
17e31629 1406 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
f22f54f4
PZ
1407 pr_cont("Core2 events, ");
1408 break;
1409
1410 case 26: /* 45 nm nehalem, "Bloomfield" */
1411 case 30: /* 45 nm nehalem, "Lynnfield" */
134fbadf 1412 case 46: /* 45 nm nehalem-ex, "Beckton" */
f22f54f4
PZ
1413 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
1414 sizeof(hw_cache_event_ids));
e994d7d2
AK
1415 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
1416 sizeof(hw_cache_extra_regs));
f22f54f4 1417
caff2bef
PZ
1418 intel_pmu_lbr_init_nhm();
1419
f22f54f4 1420 x86_pmu.event_constraints = intel_nehalem_event_constraints;
17e31629 1421 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
a7e3ed1e 1422 x86_pmu.percore_constraints = intel_nehalem_percore_constraints;
11164cd4 1423 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
a7e3ed1e 1424 x86_pmu.extra_regs = intel_nehalem_extra_regs;
ec75a716
IM
1425
1426 if (ebx & 0x40) {
1427 /*
1428 * Erratum AAJ80 detected, we work it around by using
1429 * the BR_MISP_EXEC.ANY event. This will over-count
1430 * branch-misses, but it's still much better than the
1431 * architectural event which is often completely bogus:
1432 */
1433 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
1434
1435 pr_cont("erratum AAJ80 worked around, ");
1436 }
11164cd4 1437 pr_cont("Nehalem events, ");
f22f54f4 1438 break;
caff2bef 1439
b622d644 1440 case 28: /* Atom */
f22f54f4
PZ
1441 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
1442 sizeof(hw_cache_event_ids));
1443
caff2bef
PZ
1444 intel_pmu_lbr_init_atom();
1445
f22f54f4 1446 x86_pmu.event_constraints = intel_gen_event_constraints;
17e31629 1447 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
f22f54f4
PZ
1448 pr_cont("Atom events, ");
1449 break;
1450
1451 case 37: /* 32 nm nehalem, "Clarkdale" */
1452 case 44: /* 32 nm nehalem, "Gulftown" */
b2508e82 1453 case 47: /* 32 nm Xeon E7 */
f22f54f4
PZ
1454 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
1455 sizeof(hw_cache_event_ids));
e994d7d2
AK
1456 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
1457 sizeof(hw_cache_extra_regs));
f22f54f4 1458
caff2bef
PZ
1459 intel_pmu_lbr_init_nhm();
1460
f22f54f4 1461 x86_pmu.event_constraints = intel_westmere_event_constraints;
a7e3ed1e 1462 x86_pmu.percore_constraints = intel_westmere_percore_constraints;
40b91cd1 1463 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
17e31629 1464 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
a7e3ed1e 1465 x86_pmu.extra_regs = intel_westmere_extra_regs;
f22f54f4
PZ
1466 pr_cont("Westmere events, ");
1467 break;
b622d644 1468
b06b3d49
LM
1469 case 42: /* SandyBridge */
1470 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
1471 sizeof(hw_cache_event_ids));
1472
1473 intel_pmu_lbr_init_nhm();
1474
1475 x86_pmu.event_constraints = intel_snb_event_constraints;
1476 x86_pmu.pebs_constraints = intel_snb_pebs_events;
1477 pr_cont("SandyBridge events, ");
1478 break;
1479
f22f54f4
PZ
1480 default:
1481 /*
1482 * default constraints for v2 and up
1483 */
1484 x86_pmu.event_constraints = intel_gen_event_constraints;
1485 pr_cont("generic architected perfmon, ");
1486 }
1487 return 0;
1488}
1489
1490#else /* CONFIG_CPU_SUP_INTEL */
1491
1492static int intel_pmu_init(void)
1493{
1494 return 0;
1495}
1496
1497#endif /* CONFIG_CPU_SUP_INTEL */
This page took 0.192525 seconds and 5 git commands to generate.