x86/alternatives, x86/fpu: Add 'alternatives_patched' debug flag and use it in xsave_...
[deliverable/linux.git] / arch / x86 / kernel / fpu / core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1994 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * General FPU state handling cleanups
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
78f7f1e5 8#include <asm/fpu/internal.h>
91066588 9#include <linux/hardirq.h>
1da177e4 10
085cc281
IM
11/*
12 * Track whether the kernel is using the FPU state
13 * currently.
14 *
15 * This flag is used:
16 *
17 * - by IRQ context code to potentially use the FPU
18 * if it's unused.
19 *
20 * - to debug kernel_fpu_begin()/end() correctness
21 */
14e153ef
ON
22static DEFINE_PER_CPU(bool, in_kernel_fpu);
23
b0c050c5 24/*
36b544dc 25 * Track which context is using the FPU on the CPU:
b0c050c5 26 */
36b544dc 27DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
b0c050c5 28
416d49ac 29static void kernel_fpu_disable(void)
7575637a
ON
30{
31 WARN_ON(this_cpu_read(in_kernel_fpu));
32 this_cpu_write(in_kernel_fpu, true);
33}
34
416d49ac 35static void kernel_fpu_enable(void)
7575637a 36{
3103ae3a 37 WARN_ON_ONCE(!this_cpu_read(in_kernel_fpu));
7575637a
ON
38 this_cpu_write(in_kernel_fpu, false);
39}
40
085cc281
IM
41static bool kernel_fpu_disabled(void)
42{
43 return this_cpu_read(in_kernel_fpu);
44}
45
8546c008
LT
46/*
47 * Were we in an interrupt that interrupted kernel mode?
48 *
304bceda 49 * On others, we can do a kernel_fpu_begin/end() pair *ONLY* if that
8546c008
LT
50 * pair does nothing at all: the thread must not have fpu (so
51 * that we don't try to save the FPU state), and TS must
52 * be set (so that the clts/stts pair does nothing that is
53 * visible in the interrupted kernel thread).
5187b28f 54 *
4b2e762e
ON
55 * Except for the eagerfpu case when we return true; in the likely case
56 * the thread has FPU but we are not going to set/clear TS.
8546c008 57 */
416d49ac 58static bool interrupted_kernel_fpu_idle(void)
8546c008 59{
085cc281 60 if (kernel_fpu_disabled())
14e153ef
ON
61 return false;
62
5d2bd700 63 if (use_eager_fpu())
4b2e762e 64 return true;
304bceda 65
d5cea9b0 66 return !current->thread.fpu.fpregs_active && (read_cr0() & X86_CR0_TS);
8546c008
LT
67}
68
69/*
70 * Were we in user mode (or vm86 mode) when we were
71 * interrupted?
72 *
73 * Doing kernel_fpu_begin/end() is ok if we are running
74 * in an interrupt context from user mode - we'll just
75 * save the FPU state as required.
76 */
416d49ac 77static bool interrupted_user_mode(void)
8546c008
LT
78{
79 struct pt_regs *regs = get_irq_regs();
f39b6f0e 80 return regs && user_mode(regs);
8546c008
LT
81}
82
83/*
84 * Can we use the FPU in kernel mode with the
85 * whole "kernel_fpu_begin/end()" sequence?
86 *
87 * It's always ok in process context (ie "not interrupt")
88 * but it is sometimes ok even from an irq.
89 */
90bool irq_fpu_usable(void)
91{
92 return !in_interrupt() ||
93 interrupted_user_mode() ||
94 interrupted_kernel_fpu_idle();
95}
96EXPORT_SYMBOL(irq_fpu_usable);
97
b1a74bf8 98void __kernel_fpu_begin(void)
8546c008 99{
36b544dc 100 struct fpu *fpu = &current->thread.fpu;
8546c008 101
3103ae3a 102 kernel_fpu_disable();
14e153ef 103
d5cea9b0 104 if (fpu->fpregs_active) {
4f836347 105 copy_fpregs_to_fpstate(fpu);
7aeccb83 106 } else {
36b544dc 107 this_cpu_write(fpu_fpregs_owner_ctx, NULL);
32b49b3c 108 __fpregs_activate_hw();
8546c008
LT
109 }
110}
b1a74bf8 111EXPORT_SYMBOL(__kernel_fpu_begin);
8546c008 112
b1a74bf8 113void __kernel_fpu_end(void)
8546c008 114{
af2d94fd 115 struct fpu *fpu = &current->thread.fpu;
33a3ebdc 116
d5cea9b0 117 if (fpu->fpregs_active) {
11f2d50b 118 if (WARN_ON(restore_fpu_checking(fpu)))
af2d94fd 119 fpu_reset_state(fpu);
32b49b3c
IM
120 } else {
121 __fpregs_deactivate_hw();
731bd6a9 122 }
14e153ef 123
3103ae3a 124 kernel_fpu_enable();
8546c008 125}
b1a74bf8 126EXPORT_SYMBOL(__kernel_fpu_end);
8546c008 127
d63e79b1
IM
128void kernel_fpu_begin(void)
129{
130 preempt_disable();
131 WARN_ON_ONCE(!irq_fpu_usable());
132 __kernel_fpu_begin();
133}
134EXPORT_SYMBOL_GPL(kernel_fpu_begin);
135
136void kernel_fpu_end(void)
137{
138 __kernel_fpu_end();
139 preempt_enable();
140}
141EXPORT_SYMBOL_GPL(kernel_fpu_end);
142
91066588
IM
143/*
144 * CR0::TS save/restore functions:
145 */
146int irq_ts_save(void)
147{
148 /*
149 * If in process context and not atomic, we can take a spurious DNA fault.
150 * Otherwise, doing clts() in process context requires disabling preemption
151 * or some heavy lifting like kernel_fpu_begin()
152 */
153 if (!in_atomic())
154 return 0;
155
156 if (read_cr0() & X86_CR0_TS) {
157 clts();
158 return 1;
159 }
160
161 return 0;
162}
163EXPORT_SYMBOL_GPL(irq_ts_save);
164
165void irq_ts_restore(int TS_state)
166{
167 if (TS_state)
168 stts();
169}
170EXPORT_SYMBOL_GPL(irq_ts_restore);
171
4af08f2f 172/*
48c4717f 173 * Save the FPU state (mark it for reload if necessary):
87cdb98a
IM
174 *
175 * This only ever gets called for the current task.
4af08f2f 176 */
0c070595 177void fpu__save(struct fpu *fpu)
8546c008 178{
0c070595 179 WARN_ON(fpu != &current->thread.fpu);
87cdb98a 180
8546c008 181 preempt_disable();
d5cea9b0 182 if (fpu->fpregs_active) {
48c4717f 183 if (!copy_fpregs_to_fpstate(fpu))
66af8e27 184 fpregs_deactivate(fpu);
a9241ea5 185 }
8546c008
LT
186 preempt_enable();
187}
4af08f2f 188EXPORT_SYMBOL_GPL(fpu__save);
8546c008 189
c0ee2cf6 190void fpstate_init(struct fpu *fpu)
1da177e4 191{
60e019eb 192 if (!cpu_has_fpu) {
7366ed77 193 finit_soft_fpu(&fpu->state.soft);
86603283 194 return;
e8a496ac 195 }
e8a496ac 196
7366ed77 197 memset(&fpu->state, 0, xstate_size);
1d23c451 198
1da177e4 199 if (cpu_has_fxsr) {
7366ed77 200 fx_finit(&fpu->state.fxsave);
1da177e4 201 } else {
7366ed77 202 struct i387_fsave_struct *fp = &fpu->state.fsave;
61c4628b
SS
203 fp->cwd = 0xffff037fu;
204 fp->swd = 0xffff0000u;
205 fp->twd = 0xffffffffu;
206 fp->fos = 0xffff0000u;
1da177e4 207 }
86603283 208}
c0ee2cf6 209EXPORT_SYMBOL_GPL(fpstate_init);
86603283 210
bfd6fc05
IM
211/*
212 * Copy the current task's FPU state to a new task's FPU context.
213 *
214 * In the 'eager' case we just save to the destination context.
215 *
216 * In the 'lazy' case we save to the source context, mark the FPU lazy
217 * via stts() and copy the source context into the destination context.
218 */
f9bc977f 219static void fpu_copy(struct fpu *dst_fpu, struct fpu *src_fpu)
e102f30f 220{
f9bc977f 221 WARN_ON(src_fpu != &current->thread.fpu);
bfd6fc05 222
b1652900
IM
223 /*
224 * Don't let 'init optimized' areas of the XSAVE area
225 * leak into the child task:
226 */
227 if (use_eager_fpu())
7366ed77 228 memset(&dst_fpu->state.xsave, 0, xstate_size);
b1652900
IM
229
230 /*
231 * Save current FPU registers directly into the child
232 * FPU context, without any memory-to-memory copying.
233 *
234 * If the FPU context got destroyed in the process (FNSAVE
235 * done on old CPUs) then copy it back into the source
236 * context and mark the current task for lazy restore.
237 *
238 * We have to do all this with preemption disabled,
239 * mostly because of the FNSAVE case, because in that
240 * case we must not allow preemption in the window
241 * between the FNSAVE and us marking the context lazy.
242 *
243 * It shouldn't be an issue as even FNSAVE is plenty
244 * fast in terms of critical section length.
245 */
246 preempt_disable();
247 if (!copy_fpregs_to_fpstate(dst_fpu)) {
248 memcpy(&src_fpu->state, &dst_fpu->state, xstate_size);
249 fpregs_deactivate(src_fpu);
e102f30f 250 }
b1652900 251 preempt_enable();
e102f30f
IM
252}
253
c69e098b 254int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu)
a752b53d 255{
c69e098b 256 dst_fpu->counter = 0;
d5cea9b0 257 dst_fpu->fpregs_active = 0;
c69e098b 258 dst_fpu->last_cpu = -1;
a752b53d 259
c4d6ee6e 260 if (src_fpu->fpstate_active)
f9bc977f 261 fpu_copy(dst_fpu, src_fpu);
c4d6ee6e 262
a752b53d
IM
263 return 0;
264}
265
97185c95 266/*
c4d72e2d
IM
267 * Activate the current task's in-memory FPU context,
268 * if it has not been used before:
97185c95 269 */
c4d72e2d 270void fpu__activate_curr(struct fpu *fpu)
97185c95 271{
91d93d0e 272 WARN_ON_ONCE(fpu != &current->thread.fpu);
97185c95 273
c4d72e2d
IM
274 if (!fpu->fpstate_active) {
275 fpstate_init(fpu);
97185c95 276
c4d72e2d
IM
277 /* Safe to do for the current task: */
278 fpu->fpstate_active = 1;
279 }
97185c95 280}
c4d72e2d 281EXPORT_SYMBOL_GPL(fpu__activate_curr);
97185c95 282
86603283 283/*
67ee658e
IM
284 * This function must be called before we modify a stopped child's
285 * fpstate.
af7f8721
IM
286 *
287 * If the child has not used the FPU before then initialize its
67ee658e 288 * fpstate.
af7f8721
IM
289 *
290 * If the child has used the FPU before then unlazy it.
291 *
67ee658e
IM
292 * [ After this function call, after registers in the fpstate are
293 * modified and the child task has woken up, the child task will
294 * restore the modified FPU state from the modified context. If we
af7f8721 295 * didn't clear its lazy status here then the lazy in-registers
67ee658e 296 * state pending on its former CPU could be restored, corrupting
af7f8721
IM
297 * the modifications. ]
298 *
299 * This function is also called before we read a stopped child's
67ee658e
IM
300 * FPU state - to make sure it's initialized if the child has
301 * no active FPU state.
af7f8721
IM
302 *
303 * TODO: A future optimization would be to skip the unlazying in
304 * the read-only case, it's not strictly necessary for
305 * read-only access to the context.
86603283 306 */
67ee658e 307static void fpu__activate_stopped(struct fpu *child_fpu)
86603283 308{
2fb29fc7 309 WARN_ON_ONCE(child_fpu == &current->thread.fpu);
67e97fc2 310
c5bedc68 311 if (child_fpu->fpstate_active) {
cc08d545 312 child_fpu->last_cpu = -1;
2fb29fc7
IM
313 } else {
314 fpstate_init(child_fpu);
071ae621 315
2fb29fc7
IM
316 /* Safe to do for stopped child tasks: */
317 child_fpu->fpstate_active = 1;
318 }
1da177e4
LT
319}
320
93b90712 321/*
be7436d5
IM
322 * 'fpu__restore()' is called to copy FPU registers from
323 * the FPU fpstate to the live hw registers and to activate
324 * access to the hardware registers, so that FPU instructions
325 * can be used afterwards.
93b90712 326 *
be7436d5
IM
327 * Must be called with kernel preemption disabled (for example
328 * with local interrupts disabled, as it is in the case of
329 * do_device_not_available()).
93b90712 330 */
3a0aee48 331void fpu__restore(void)
93b90712
IM
332{
333 struct task_struct *tsk = current;
4540d3fa 334 struct fpu *fpu = &tsk->thread.fpu;
93b90712 335
c4d72e2d 336 fpu__activate_curr(fpu);
93b90712 337
232f62cd 338 /* Avoid __kernel_fpu_begin() right after fpregs_activate() */
93b90712 339 kernel_fpu_disable();
232f62cd 340 fpregs_activate(fpu);
11f2d50b 341 if (unlikely(restore_fpu_checking(fpu))) {
af2d94fd 342 fpu_reset_state(fpu);
93b90712
IM
343 force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);
344 } else {
345 tsk->thread.fpu.counter++;
346 }
347 kernel_fpu_enable();
348}
3a0aee48 349EXPORT_SYMBOL_GPL(fpu__restore);
93b90712 350
2e85591a
IM
351/*
352 * Called by sys_execve() to clear the FPU fpregs, so that FPU state
353 * of the previous binary does not leak over into the exec()ed binary:
354 */
2e8a3102 355void fpu__clear(struct task_struct *tsk)
81683cc8 356{
c5bedc68
IM
357 struct fpu *fpu = &tsk->thread.fpu;
358
2e8a3102 359 WARN_ON_ONCE(tsk != current); /* Almost certainly an anomaly */
4c138410 360
81683cc8
IM
361 if (!use_eager_fpu()) {
362 /* FPU state will be reallocated lazily at the first use. */
ca6787ba 363 drop_fpu(fpu);
81683cc8 364 } else {
c5bedc68 365 if (!fpu->fpstate_active) {
c4d72e2d 366 fpu__activate_curr(fpu);
81683cc8
IM
367 user_fpu_begin();
368 }
369 restore_init_xstate();
370 }
371}
372
5b3efd50 373/*
678eaf60 374 * The xstateregs_active() routine is the same as the regset_fpregs_active() routine,
5b3efd50
SS
375 * as the "regset->n" for the xstate regset will be updated based on the feature
376 * capabilites supported by the xsave.
377 */
678eaf60 378int regset_fpregs_active(struct task_struct *target, const struct user_regset *regset)
44210111 379{
c5bedc68
IM
380 struct fpu *target_fpu = &target->thread.fpu;
381
382 return target_fpu->fpstate_active ? regset->n : 0;
44210111 383}
1da177e4 384
678eaf60 385int regset_xregset_fpregs_active(struct task_struct *target, const struct user_regset *regset)
1da177e4 386{
c5bedc68
IM
387 struct fpu *target_fpu = &target->thread.fpu;
388
389 return (cpu_has_fxsr && target_fpu->fpstate_active) ? regset->n : 0;
44210111 390}
1da177e4 391
44210111
RM
392int xfpregs_get(struct task_struct *target, const struct user_regset *regset,
393 unsigned int pos, unsigned int count,
394 void *kbuf, void __user *ubuf)
395{
cc08d545 396 struct fpu *fpu = &target->thread.fpu;
aa283f49 397
44210111
RM
398 if (!cpu_has_fxsr)
399 return -ENODEV;
400
67ee658e 401 fpu__activate_stopped(fpu);
36e49e7f 402 fpstate_sanitize_xstate(fpu);
29104e10 403
44210111 404 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
7366ed77 405 &fpu->state.fxsave, 0, -1);
1da177e4 406}
44210111
RM
407
408int xfpregs_set(struct task_struct *target, const struct user_regset *regset,
409 unsigned int pos, unsigned int count,
410 const void *kbuf, const void __user *ubuf)
411{
cc08d545 412 struct fpu *fpu = &target->thread.fpu;
44210111
RM
413 int ret;
414
415 if (!cpu_has_fxsr)
416 return -ENODEV;
417
67ee658e 418 fpu__activate_stopped(fpu);
36e49e7f 419 fpstate_sanitize_xstate(fpu);
29104e10 420
44210111 421 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
7366ed77 422 &fpu->state.fxsave, 0, -1);
44210111
RM
423
424 /*
425 * mxcsr reserved bits must be masked to zero for security reasons.
426 */
7366ed77 427 fpu->state.fxsave.mxcsr &= mxcsr_feature_mask;
44210111 428
42deec6f
SS
429 /*
430 * update the header bits in the xsave header, indicating the
431 * presence of FP and SSE state.
432 */
433 if (cpu_has_xsave)
7366ed77 434 fpu->state.xsave.header.xfeatures |= XSTATE_FPSSE;
42deec6f 435
44210111
RM
436 return ret;
437}
438
5b3efd50
SS
439int xstateregs_get(struct task_struct *target, const struct user_regset *regset,
440 unsigned int pos, unsigned int count,
441 void *kbuf, void __user *ubuf)
442{
cc08d545 443 struct fpu *fpu = &target->thread.fpu;
18ecb3bf 444 struct xsave_struct *xsave;
5b3efd50
SS
445 int ret;
446
447 if (!cpu_has_xsave)
448 return -ENODEV;
449
67ee658e 450 fpu__activate_stopped(fpu);
5b3efd50 451
7366ed77 452 xsave = &fpu->state.xsave;
18ecb3bf 453
5b3efd50 454 /*
ff7fbc72
SS
455 * Copy the 48bytes defined by the software first into the xstate
456 * memory layout in the thread struct, so that we can copy the entire
457 * xstateregs to the user using one user_regset_copyout().
5b3efd50 458 */
e7f180dc
ON
459 memcpy(&xsave->i387.sw_reserved,
460 xstate_fx_sw_bytes, sizeof(xstate_fx_sw_bytes));
5b3efd50 461 /*
ff7fbc72 462 * Copy the xstate memory layout.
5b3efd50 463 */
e7f180dc 464 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, xsave, 0, -1);
5b3efd50
SS
465 return ret;
466}
467
468int xstateregs_set(struct task_struct *target, const struct user_regset *regset,
469 unsigned int pos, unsigned int count,
470 const void *kbuf, const void __user *ubuf)
471{
cc08d545 472 struct fpu *fpu = &target->thread.fpu;
18ecb3bf 473 struct xsave_struct *xsave;
5b3efd50 474 int ret;
5b3efd50
SS
475
476 if (!cpu_has_xsave)
477 return -ENODEV;
478
67ee658e 479 fpu__activate_stopped(fpu);
5b3efd50 480
7366ed77 481 xsave = &fpu->state.xsave;
18ecb3bf 482
e7f180dc 483 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, xsave, 0, -1);
5b3efd50
SS
484 /*
485 * mxcsr reserved bits must be masked to zero for security reasons.
486 */
e7f180dc 487 xsave->i387.mxcsr &= mxcsr_feature_mask;
400e4b20 488 xsave->header.xfeatures &= xfeatures_mask;
5b3efd50
SS
489 /*
490 * These bits must be zero.
491 */
3a54450b 492 memset(&xsave->header.reserved, 0, 48);
8dcea8db 493
5b3efd50
SS
494 return ret;
495}
496
44210111 497#if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
1da177e4 498
1da177e4
LT
499/*
500 * FPU tag word conversions.
501 */
502
3b095a04 503static inline unsigned short twd_i387_to_fxsr(unsigned short twd)
1da177e4
LT
504{
505 unsigned int tmp; /* to avoid 16 bit prefixes in the code */
3b095a04 506
1da177e4 507 /* Transform each pair of bits into 01 (valid) or 00 (empty) */
3b095a04 508 tmp = ~twd;
44210111 509 tmp = (tmp | (tmp>>1)) & 0x5555; /* 0V0V0V0V0V0V0V0V */
3b095a04
CG
510 /* and move the valid bits to the lower byte. */
511 tmp = (tmp | (tmp >> 1)) & 0x3333; /* 00VV00VV00VV00VV */
512 tmp = (tmp | (tmp >> 2)) & 0x0f0f; /* 0000VVVV0000VVVV */
513 tmp = (tmp | (tmp >> 4)) & 0x00ff; /* 00000000VVVVVVVV */
f668964e 514
3b095a04 515 return tmp;
1da177e4
LT
516}
517
497888cf 518#define FPREG_ADDR(f, n) ((void *)&(f)->st_space + (n) * 16)
44210111
RM
519#define FP_EXP_TAG_VALID 0
520#define FP_EXP_TAG_ZERO 1
521#define FP_EXP_TAG_SPECIAL 2
522#define FP_EXP_TAG_EMPTY 3
523
524static inline u32 twd_fxsr_to_i387(struct i387_fxsave_struct *fxsave)
525{
526 struct _fpxreg *st;
527 u32 tos = (fxsave->swd >> 11) & 7;
528 u32 twd = (unsigned long) fxsave->twd;
529 u32 tag;
530 u32 ret = 0xffff0000u;
531 int i;
1da177e4 532
44210111 533 for (i = 0; i < 8; i++, twd >>= 1) {
3b095a04
CG
534 if (twd & 0x1) {
535 st = FPREG_ADDR(fxsave, (i - tos) & 7);
1da177e4 536
3b095a04 537 switch (st->exponent & 0x7fff) {
1da177e4 538 case 0x7fff:
44210111 539 tag = FP_EXP_TAG_SPECIAL;
1da177e4
LT
540 break;
541 case 0x0000:
3b095a04
CG
542 if (!st->significand[0] &&
543 !st->significand[1] &&
544 !st->significand[2] &&
44210111
RM
545 !st->significand[3])
546 tag = FP_EXP_TAG_ZERO;
547 else
548 tag = FP_EXP_TAG_SPECIAL;
1da177e4
LT
549 break;
550 default:
44210111
RM
551 if (st->significand[3] & 0x8000)
552 tag = FP_EXP_TAG_VALID;
553 else
554 tag = FP_EXP_TAG_SPECIAL;
1da177e4
LT
555 break;
556 }
557 } else {
44210111 558 tag = FP_EXP_TAG_EMPTY;
1da177e4 559 }
44210111 560 ret |= tag << (2 * i);
1da177e4
LT
561 }
562 return ret;
563}
564
565/*
44210111 566 * FXSR floating point environment conversions.
1da177e4
LT
567 */
568
72a671ce 569void
f668964e 570convert_from_fxsr(struct user_i387_ia32_struct *env, struct task_struct *tsk)
1da177e4 571{
7366ed77 572 struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state.fxsave;
44210111
RM
573 struct _fpreg *to = (struct _fpreg *) &env->st_space[0];
574 struct _fpxreg *from = (struct _fpxreg *) &fxsave->st_space[0];
575 int i;
1da177e4 576
44210111
RM
577 env->cwd = fxsave->cwd | 0xffff0000u;
578 env->swd = fxsave->swd | 0xffff0000u;
579 env->twd = twd_fxsr_to_i387(fxsave);
580
581#ifdef CONFIG_X86_64
582 env->fip = fxsave->rip;
583 env->foo = fxsave->rdp;
10c11f30
BG
584 /*
585 * should be actually ds/cs at fpu exception time, but
586 * that information is not available in 64bit mode.
587 */
588 env->fcs = task_pt_regs(tsk)->cs;
44210111 589 if (tsk == current) {
10c11f30 590 savesegment(ds, env->fos);
1da177e4 591 } else {
10c11f30 592 env->fos = tsk->thread.ds;
1da177e4 593 }
10c11f30 594 env->fos |= 0xffff0000;
44210111
RM
595#else
596 env->fip = fxsave->fip;
609b5297 597 env->fcs = (u16) fxsave->fcs | ((u32) fxsave->fop << 16);
44210111
RM
598 env->foo = fxsave->foo;
599 env->fos = fxsave->fos;
600#endif
1da177e4 601
44210111
RM
602 for (i = 0; i < 8; ++i)
603 memcpy(&to[i], &from[i], sizeof(to[0]));
1da177e4
LT
604}
605
72a671ce
SS
606void convert_to_fxsr(struct task_struct *tsk,
607 const struct user_i387_ia32_struct *env)
1da177e4 608
1da177e4 609{
7366ed77 610 struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state.fxsave;
44210111
RM
611 struct _fpreg *from = (struct _fpreg *) &env->st_space[0];
612 struct _fpxreg *to = (struct _fpxreg *) &fxsave->st_space[0];
613 int i;
1da177e4 614
44210111
RM
615 fxsave->cwd = env->cwd;
616 fxsave->swd = env->swd;
617 fxsave->twd = twd_i387_to_fxsr(env->twd);
618 fxsave->fop = (u16) ((u32) env->fcs >> 16);
619#ifdef CONFIG_X86_64
620 fxsave->rip = env->fip;
621 fxsave->rdp = env->foo;
622 /* cs and ds ignored */
623#else
624 fxsave->fip = env->fip;
625 fxsave->fcs = (env->fcs & 0xffff);
626 fxsave->foo = env->foo;
627 fxsave->fos = env->fos;
628#endif
1da177e4 629
44210111
RM
630 for (i = 0; i < 8; ++i)
631 memcpy(&to[i], &from[i], sizeof(from[0]));
1da177e4
LT
632}
633
44210111
RM
634int fpregs_get(struct task_struct *target, const struct user_regset *regset,
635 unsigned int pos, unsigned int count,
636 void *kbuf, void __user *ubuf)
1da177e4 637{
cc08d545 638 struct fpu *fpu = &target->thread.fpu;
44210111 639 struct user_i387_ia32_struct env;
1da177e4 640
67ee658e 641 fpu__activate_stopped(fpu);
1da177e4 642
60e019eb 643 if (!static_cpu_has(X86_FEATURE_FPU))
e8a496ac
SS
644 return fpregs_soft_get(target, regset, pos, count, kbuf, ubuf);
645
60e019eb 646 if (!cpu_has_fxsr)
44210111 647 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
7366ed77 648 &fpu->state.fsave, 0,
61c4628b 649 -1);
1da177e4 650
36e49e7f 651 fpstate_sanitize_xstate(fpu);
29104e10 652
44210111
RM
653 if (kbuf && pos == 0 && count == sizeof(env)) {
654 convert_from_fxsr(kbuf, target);
655 return 0;
1da177e4 656 }
44210111
RM
657
658 convert_from_fxsr(&env, target);
f668964e 659
44210111 660 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
1da177e4
LT
661}
662
44210111
RM
663int fpregs_set(struct task_struct *target, const struct user_regset *regset,
664 unsigned int pos, unsigned int count,
665 const void *kbuf, const void __user *ubuf)
1da177e4 666{
cc08d545 667 struct fpu *fpu = &target->thread.fpu;
44210111
RM
668 struct user_i387_ia32_struct env;
669 int ret;
1da177e4 670
67ee658e 671 fpu__activate_stopped(fpu);
36e49e7f 672 fpstate_sanitize_xstate(fpu);
29104e10 673
60e019eb 674 if (!static_cpu_has(X86_FEATURE_FPU))
e8a496ac
SS
675 return fpregs_soft_set(target, regset, pos, count, kbuf, ubuf);
676
60e019eb 677 if (!cpu_has_fxsr)
44210111 678 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
7366ed77 679 &fpu->state.fsave, 0,
60e019eb 680 -1);
44210111
RM
681
682 if (pos > 0 || count < sizeof(env))
683 convert_from_fxsr(&env, target);
684
685 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
686 if (!ret)
687 convert_to_fxsr(target, &env);
688
42deec6f
SS
689 /*
690 * update the header bit in the xsave header, indicating the
691 * presence of FP.
692 */
693 if (cpu_has_xsave)
7366ed77 694 fpu->state.xsave.header.xfeatures |= XSTATE_FP;
44210111 695 return ret;
1da177e4
LT
696}
697
1da177e4
LT
698/*
699 * FPU state for core dumps.
60b3b9af
RM
700 * This is only used for a.out dumps now.
701 * It is declared generically using elf_fpregset_t (which is
702 * struct user_i387_struct) but is in fact only used for 32-bit
703 * dumps, so on 64-bit it is really struct user_i387_ia32_struct.
1da177e4 704 */
c5bedc68 705int dump_fpu(struct pt_regs *regs, struct user_i387_struct *ufpu)
1da177e4 706{
1da177e4 707 struct task_struct *tsk = current;
c5bedc68 708 struct fpu *fpu = &tsk->thread.fpu;
f668964e 709 int fpvalid;
1da177e4 710
c5bedc68 711 fpvalid = fpu->fpstate_active;
60b3b9af
RM
712 if (fpvalid)
713 fpvalid = !fpregs_get(tsk, NULL,
714 0, sizeof(struct user_i387_ia32_struct),
c5bedc68 715 ufpu, NULL);
1da177e4
LT
716
717 return fpvalid;
718}
129f6946 719EXPORT_SYMBOL(dump_fpu);
1da177e4 720
60b3b9af 721#endif /* CONFIG_X86_32 || CONFIG_IA32_EMULATION */
This page took 0.830468 seconds and 5 git commands to generate.