x86/fpu: Factor out the exception error code handling code
[deliverable/linux.git] / arch / x86 / kernel / fpu / core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1994 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * General FPU state handling cleanups
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
78f7f1e5 8#include <asm/fpu/internal.h>
59a36d16 9#include <asm/fpu/regset.h>
fcbc99c4 10#include <asm/fpu/signal.h>
e1cebad4 11#include <asm/traps.h>
fcbc99c4 12
91066588 13#include <linux/hardirq.h>
1da177e4 14
085cc281
IM
15/*
16 * Track whether the kernel is using the FPU state
17 * currently.
18 *
19 * This flag is used:
20 *
21 * - by IRQ context code to potentially use the FPU
22 * if it's unused.
23 *
24 * - to debug kernel_fpu_begin()/end() correctness
25 */
14e153ef
ON
26static DEFINE_PER_CPU(bool, in_kernel_fpu);
27
b0c050c5 28/*
36b544dc 29 * Track which context is using the FPU on the CPU:
b0c050c5 30 */
36b544dc 31DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
b0c050c5 32
416d49ac 33static void kernel_fpu_disable(void)
7575637a
ON
34{
35 WARN_ON(this_cpu_read(in_kernel_fpu));
36 this_cpu_write(in_kernel_fpu, true);
37}
38
416d49ac 39static void kernel_fpu_enable(void)
7575637a 40{
3103ae3a 41 WARN_ON_ONCE(!this_cpu_read(in_kernel_fpu));
7575637a
ON
42 this_cpu_write(in_kernel_fpu, false);
43}
44
085cc281
IM
45static bool kernel_fpu_disabled(void)
46{
47 return this_cpu_read(in_kernel_fpu);
48}
49
8546c008
LT
50/*
51 * Were we in an interrupt that interrupted kernel mode?
52 *
304bceda 53 * On others, we can do a kernel_fpu_begin/end() pair *ONLY* if that
8546c008
LT
54 * pair does nothing at all: the thread must not have fpu (so
55 * that we don't try to save the FPU state), and TS must
56 * be set (so that the clts/stts pair does nothing that is
57 * visible in the interrupted kernel thread).
5187b28f 58 *
4b2e762e
ON
59 * Except for the eagerfpu case when we return true; in the likely case
60 * the thread has FPU but we are not going to set/clear TS.
8546c008 61 */
416d49ac 62static bool interrupted_kernel_fpu_idle(void)
8546c008 63{
085cc281 64 if (kernel_fpu_disabled())
14e153ef
ON
65 return false;
66
5d2bd700 67 if (use_eager_fpu())
4b2e762e 68 return true;
304bceda 69
d5cea9b0 70 return !current->thread.fpu.fpregs_active && (read_cr0() & X86_CR0_TS);
8546c008
LT
71}
72
73/*
74 * Were we in user mode (or vm86 mode) when we were
75 * interrupted?
76 *
77 * Doing kernel_fpu_begin/end() is ok if we are running
78 * in an interrupt context from user mode - we'll just
79 * save the FPU state as required.
80 */
416d49ac 81static bool interrupted_user_mode(void)
8546c008
LT
82{
83 struct pt_regs *regs = get_irq_regs();
f39b6f0e 84 return regs && user_mode(regs);
8546c008
LT
85}
86
87/*
88 * Can we use the FPU in kernel mode with the
89 * whole "kernel_fpu_begin/end()" sequence?
90 *
91 * It's always ok in process context (ie "not interrupt")
92 * but it is sometimes ok even from an irq.
93 */
94bool irq_fpu_usable(void)
95{
96 return !in_interrupt() ||
97 interrupted_user_mode() ||
98 interrupted_kernel_fpu_idle();
99}
100EXPORT_SYMBOL(irq_fpu_usable);
101
b1a74bf8 102void __kernel_fpu_begin(void)
8546c008 103{
36b544dc 104 struct fpu *fpu = &current->thread.fpu;
8546c008 105
3103ae3a 106 kernel_fpu_disable();
14e153ef 107
d5cea9b0 108 if (fpu->fpregs_active) {
4f836347 109 copy_fpregs_to_fpstate(fpu);
7aeccb83 110 } else {
36b544dc 111 this_cpu_write(fpu_fpregs_owner_ctx, NULL);
32b49b3c 112 __fpregs_activate_hw();
8546c008
LT
113 }
114}
b1a74bf8 115EXPORT_SYMBOL(__kernel_fpu_begin);
8546c008 116
b1a74bf8 117void __kernel_fpu_end(void)
8546c008 118{
af2d94fd 119 struct fpu *fpu = &current->thread.fpu;
33a3ebdc 120
d5cea9b0 121 if (fpu->fpregs_active) {
0e75c54f 122 if (WARN_ON(copy_fpstate_to_fpregs(fpu)))
fbce7782 123 fpu__clear(fpu);
32b49b3c
IM
124 } else {
125 __fpregs_deactivate_hw();
731bd6a9 126 }
14e153ef 127
3103ae3a 128 kernel_fpu_enable();
8546c008 129}
b1a74bf8 130EXPORT_SYMBOL(__kernel_fpu_end);
8546c008 131
d63e79b1
IM
132void kernel_fpu_begin(void)
133{
134 preempt_disable();
135 WARN_ON_ONCE(!irq_fpu_usable());
136 __kernel_fpu_begin();
137}
138EXPORT_SYMBOL_GPL(kernel_fpu_begin);
139
140void kernel_fpu_end(void)
141{
142 __kernel_fpu_end();
143 preempt_enable();
144}
145EXPORT_SYMBOL_GPL(kernel_fpu_end);
146
91066588
IM
147/*
148 * CR0::TS save/restore functions:
149 */
150int irq_ts_save(void)
151{
152 /*
153 * If in process context and not atomic, we can take a spurious DNA fault.
154 * Otherwise, doing clts() in process context requires disabling preemption
155 * or some heavy lifting like kernel_fpu_begin()
156 */
157 if (!in_atomic())
158 return 0;
159
160 if (read_cr0() & X86_CR0_TS) {
161 clts();
162 return 1;
163 }
164
165 return 0;
166}
167EXPORT_SYMBOL_GPL(irq_ts_save);
168
169void irq_ts_restore(int TS_state)
170{
171 if (TS_state)
172 stts();
173}
174EXPORT_SYMBOL_GPL(irq_ts_restore);
175
4af08f2f 176/*
48c4717f 177 * Save the FPU state (mark it for reload if necessary):
87cdb98a
IM
178 *
179 * This only ever gets called for the current task.
4af08f2f 180 */
0c070595 181void fpu__save(struct fpu *fpu)
8546c008 182{
0c070595 183 WARN_ON(fpu != &current->thread.fpu);
87cdb98a 184
8546c008 185 preempt_disable();
d5cea9b0 186 if (fpu->fpregs_active) {
48c4717f 187 if (!copy_fpregs_to_fpstate(fpu))
66af8e27 188 fpregs_deactivate(fpu);
a9241ea5 189 }
8546c008
LT
190 preempt_enable();
191}
4af08f2f 192EXPORT_SYMBOL_GPL(fpu__save);
8546c008 193
c0ee2cf6 194void fpstate_init(struct fpu *fpu)
1da177e4 195{
60e019eb 196 if (!cpu_has_fpu) {
7366ed77 197 finit_soft_fpu(&fpu->state.soft);
86603283 198 return;
e8a496ac 199 }
e8a496ac 200
7366ed77 201 memset(&fpu->state, 0, xstate_size);
1d23c451 202
1da177e4 203 if (cpu_has_fxsr) {
7366ed77 204 fx_finit(&fpu->state.fxsave);
1da177e4 205 } else {
7366ed77 206 struct i387_fsave_struct *fp = &fpu->state.fsave;
61c4628b
SS
207 fp->cwd = 0xffff037fu;
208 fp->swd = 0xffff0000u;
209 fp->twd = 0xffffffffu;
210 fp->fos = 0xffff0000u;
1da177e4 211 }
86603283 212}
c0ee2cf6 213EXPORT_SYMBOL_GPL(fpstate_init);
86603283 214
bfd6fc05
IM
215/*
216 * Copy the current task's FPU state to a new task's FPU context.
217 *
218 * In the 'eager' case we just save to the destination context.
219 *
220 * In the 'lazy' case we save to the source context, mark the FPU lazy
221 * via stts() and copy the source context into the destination context.
222 */
f9bc977f 223static void fpu_copy(struct fpu *dst_fpu, struct fpu *src_fpu)
e102f30f 224{
f9bc977f 225 WARN_ON(src_fpu != &current->thread.fpu);
bfd6fc05 226
b1652900
IM
227 /*
228 * Don't let 'init optimized' areas of the XSAVE area
229 * leak into the child task:
230 */
231 if (use_eager_fpu())
7366ed77 232 memset(&dst_fpu->state.xsave, 0, xstate_size);
b1652900
IM
233
234 /*
235 * Save current FPU registers directly into the child
236 * FPU context, without any memory-to-memory copying.
237 *
238 * If the FPU context got destroyed in the process (FNSAVE
239 * done on old CPUs) then copy it back into the source
240 * context and mark the current task for lazy restore.
241 *
242 * We have to do all this with preemption disabled,
243 * mostly because of the FNSAVE case, because in that
244 * case we must not allow preemption in the window
245 * between the FNSAVE and us marking the context lazy.
246 *
247 * It shouldn't be an issue as even FNSAVE is plenty
248 * fast in terms of critical section length.
249 */
250 preempt_disable();
251 if (!copy_fpregs_to_fpstate(dst_fpu)) {
252 memcpy(&src_fpu->state, &dst_fpu->state, xstate_size);
253 fpregs_deactivate(src_fpu);
e102f30f 254 }
b1652900 255 preempt_enable();
e102f30f
IM
256}
257
c69e098b 258int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu)
a752b53d 259{
c69e098b 260 dst_fpu->counter = 0;
d5cea9b0 261 dst_fpu->fpregs_active = 0;
c69e098b 262 dst_fpu->last_cpu = -1;
a752b53d 263
c4d6ee6e 264 if (src_fpu->fpstate_active)
f9bc977f 265 fpu_copy(dst_fpu, src_fpu);
c4d6ee6e 266
a752b53d
IM
267 return 0;
268}
269
97185c95 270/*
c4d72e2d
IM
271 * Activate the current task's in-memory FPU context,
272 * if it has not been used before:
97185c95 273 */
c4d72e2d 274void fpu__activate_curr(struct fpu *fpu)
97185c95 275{
91d93d0e 276 WARN_ON_ONCE(fpu != &current->thread.fpu);
97185c95 277
c4d72e2d
IM
278 if (!fpu->fpstate_active) {
279 fpstate_init(fpu);
97185c95 280
c4d72e2d
IM
281 /* Safe to do for the current task: */
282 fpu->fpstate_active = 1;
283 }
97185c95 284}
c4d72e2d 285EXPORT_SYMBOL_GPL(fpu__activate_curr);
97185c95 286
86603283 287/*
67ee658e
IM
288 * This function must be called before we modify a stopped child's
289 * fpstate.
af7f8721
IM
290 *
291 * If the child has not used the FPU before then initialize its
67ee658e 292 * fpstate.
af7f8721
IM
293 *
294 * If the child has used the FPU before then unlazy it.
295 *
67ee658e
IM
296 * [ After this function call, after registers in the fpstate are
297 * modified and the child task has woken up, the child task will
298 * restore the modified FPU state from the modified context. If we
af7f8721 299 * didn't clear its lazy status here then the lazy in-registers
67ee658e 300 * state pending on its former CPU could be restored, corrupting
af7f8721
IM
301 * the modifications. ]
302 *
303 * This function is also called before we read a stopped child's
67ee658e
IM
304 * FPU state - to make sure it's initialized if the child has
305 * no active FPU state.
af7f8721
IM
306 *
307 * TODO: A future optimization would be to skip the unlazying in
308 * the read-only case, it's not strictly necessary for
309 * read-only access to the context.
86603283 310 */
67ee658e 311static void fpu__activate_stopped(struct fpu *child_fpu)
86603283 312{
2fb29fc7 313 WARN_ON_ONCE(child_fpu == &current->thread.fpu);
67e97fc2 314
c5bedc68 315 if (child_fpu->fpstate_active) {
cc08d545 316 child_fpu->last_cpu = -1;
2fb29fc7
IM
317 } else {
318 fpstate_init(child_fpu);
071ae621 319
2fb29fc7
IM
320 /* Safe to do for stopped child tasks: */
321 child_fpu->fpstate_active = 1;
322 }
1da177e4
LT
323}
324
93b90712 325/*
be7436d5
IM
326 * 'fpu__restore()' is called to copy FPU registers from
327 * the FPU fpstate to the live hw registers and to activate
328 * access to the hardware registers, so that FPU instructions
329 * can be used afterwards.
93b90712 330 *
be7436d5
IM
331 * Must be called with kernel preemption disabled (for example
332 * with local interrupts disabled, as it is in the case of
333 * do_device_not_available()).
93b90712 334 */
3a0aee48 335void fpu__restore(void)
93b90712
IM
336{
337 struct task_struct *tsk = current;
4540d3fa 338 struct fpu *fpu = &tsk->thread.fpu;
93b90712 339
c4d72e2d 340 fpu__activate_curr(fpu);
93b90712 341
232f62cd 342 /* Avoid __kernel_fpu_begin() right after fpregs_activate() */
93b90712 343 kernel_fpu_disable();
232f62cd 344 fpregs_activate(fpu);
0e75c54f 345 if (unlikely(copy_fpstate_to_fpregs(fpu))) {
fbce7782 346 fpu__clear(fpu);
93b90712
IM
347 force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);
348 } else {
349 tsk->thread.fpu.counter++;
350 }
351 kernel_fpu_enable();
352}
3a0aee48 353EXPORT_SYMBOL_GPL(fpu__restore);
93b90712 354
6ffc152e
IM
355/*
356 * Drops current FPU state: deactivates the fpregs and
357 * the fpstate. NOTE: it still leaves previous contents
358 * in the fpregs in the eager-FPU case.
359 *
360 * This function can be used in cases where we know that
361 * a state-restore is coming: either an explicit one,
362 * or a reschedule.
363 */
364void fpu__drop(struct fpu *fpu)
365{
366 preempt_disable();
367 fpu->counter = 0;
368
369 if (fpu->fpregs_active) {
370 /* Ignore delayed exceptions from user space */
371 asm volatile("1: fwait\n"
372 "2:\n"
373 _ASM_EXTABLE(1b, 2b));
374 fpregs_deactivate(fpu);
375 }
376
377 fpu->fpstate_active = 0;
378
379 preempt_enable();
380}
381
382/*
fbce7782
IM
383 * Clear the FPU state back to init state.
384 *
385 * Called by sys_execve(), by the signal handler code and by various
386 * error paths.
2e85591a 387 */
04c8e01d 388void fpu__clear(struct fpu *fpu)
81683cc8 389{
04c8e01d 390 WARN_ON_ONCE(fpu != &current->thread.fpu); /* Almost certainly an anomaly */
4c138410 391
81683cc8
IM
392 if (!use_eager_fpu()) {
393 /* FPU state will be reallocated lazily at the first use. */
50338615 394 fpu__drop(fpu);
81683cc8 395 } else {
c5bedc68 396 if (!fpu->fpstate_active) {
c4d72e2d 397 fpu__activate_curr(fpu);
81683cc8
IM
398 user_fpu_begin();
399 }
400 restore_init_xstate();
401 }
402}
403
5b3efd50 404/*
678eaf60 405 * The xstateregs_active() routine is the same as the regset_fpregs_active() routine,
5b3efd50
SS
406 * as the "regset->n" for the xstate regset will be updated based on the feature
407 * capabilites supported by the xsave.
408 */
678eaf60 409int regset_fpregs_active(struct task_struct *target, const struct user_regset *regset)
44210111 410{
c5bedc68
IM
411 struct fpu *target_fpu = &target->thread.fpu;
412
413 return target_fpu->fpstate_active ? regset->n : 0;
44210111 414}
1da177e4 415
678eaf60 416int regset_xregset_fpregs_active(struct task_struct *target, const struct user_regset *regset)
1da177e4 417{
c5bedc68
IM
418 struct fpu *target_fpu = &target->thread.fpu;
419
420 return (cpu_has_fxsr && target_fpu->fpstate_active) ? regset->n : 0;
44210111 421}
1da177e4 422
44210111
RM
423int xfpregs_get(struct task_struct *target, const struct user_regset *regset,
424 unsigned int pos, unsigned int count,
425 void *kbuf, void __user *ubuf)
426{
cc08d545 427 struct fpu *fpu = &target->thread.fpu;
aa283f49 428
44210111
RM
429 if (!cpu_has_fxsr)
430 return -ENODEV;
431
67ee658e 432 fpu__activate_stopped(fpu);
36e49e7f 433 fpstate_sanitize_xstate(fpu);
29104e10 434
44210111 435 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
7366ed77 436 &fpu->state.fxsave, 0, -1);
1da177e4 437}
44210111
RM
438
439int xfpregs_set(struct task_struct *target, const struct user_regset *regset,
440 unsigned int pos, unsigned int count,
441 const void *kbuf, const void __user *ubuf)
442{
cc08d545 443 struct fpu *fpu = &target->thread.fpu;
44210111
RM
444 int ret;
445
446 if (!cpu_has_fxsr)
447 return -ENODEV;
448
67ee658e 449 fpu__activate_stopped(fpu);
36e49e7f 450 fpstate_sanitize_xstate(fpu);
29104e10 451
44210111 452 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
7366ed77 453 &fpu->state.fxsave, 0, -1);
44210111
RM
454
455 /*
456 * mxcsr reserved bits must be masked to zero for security reasons.
457 */
7366ed77 458 fpu->state.fxsave.mxcsr &= mxcsr_feature_mask;
44210111 459
42deec6f
SS
460 /*
461 * update the header bits in the xsave header, indicating the
462 * presence of FP and SSE state.
463 */
464 if (cpu_has_xsave)
7366ed77 465 fpu->state.xsave.header.xfeatures |= XSTATE_FPSSE;
42deec6f 466
44210111
RM
467 return ret;
468}
469
5b3efd50
SS
470int xstateregs_get(struct task_struct *target, const struct user_regset *regset,
471 unsigned int pos, unsigned int count,
472 void *kbuf, void __user *ubuf)
473{
cc08d545 474 struct fpu *fpu = &target->thread.fpu;
18ecb3bf 475 struct xsave_struct *xsave;
5b3efd50
SS
476 int ret;
477
478 if (!cpu_has_xsave)
479 return -ENODEV;
480
67ee658e 481 fpu__activate_stopped(fpu);
5b3efd50 482
7366ed77 483 xsave = &fpu->state.xsave;
18ecb3bf 484
5b3efd50 485 /*
ff7fbc72
SS
486 * Copy the 48bytes defined by the software first into the xstate
487 * memory layout in the thread struct, so that we can copy the entire
488 * xstateregs to the user using one user_regset_copyout().
5b3efd50 489 */
e7f180dc
ON
490 memcpy(&xsave->i387.sw_reserved,
491 xstate_fx_sw_bytes, sizeof(xstate_fx_sw_bytes));
5b3efd50 492 /*
ff7fbc72 493 * Copy the xstate memory layout.
5b3efd50 494 */
e7f180dc 495 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, xsave, 0, -1);
5b3efd50
SS
496 return ret;
497}
498
499int xstateregs_set(struct task_struct *target, const struct user_regset *regset,
500 unsigned int pos, unsigned int count,
501 const void *kbuf, const void __user *ubuf)
502{
cc08d545 503 struct fpu *fpu = &target->thread.fpu;
18ecb3bf 504 struct xsave_struct *xsave;
5b3efd50 505 int ret;
5b3efd50
SS
506
507 if (!cpu_has_xsave)
508 return -ENODEV;
509
67ee658e 510 fpu__activate_stopped(fpu);
5b3efd50 511
7366ed77 512 xsave = &fpu->state.xsave;
18ecb3bf 513
e7f180dc 514 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, xsave, 0, -1);
5b3efd50
SS
515 /*
516 * mxcsr reserved bits must be masked to zero for security reasons.
517 */
e7f180dc 518 xsave->i387.mxcsr &= mxcsr_feature_mask;
400e4b20 519 xsave->header.xfeatures &= xfeatures_mask;
5b3efd50
SS
520 /*
521 * These bits must be zero.
522 */
3a54450b 523 memset(&xsave->header.reserved, 0, 48);
8dcea8db 524
5b3efd50
SS
525 return ret;
526}
527
44210111 528#if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
1da177e4 529
1da177e4
LT
530/*
531 * FPU tag word conversions.
532 */
533
3b095a04 534static inline unsigned short twd_i387_to_fxsr(unsigned short twd)
1da177e4
LT
535{
536 unsigned int tmp; /* to avoid 16 bit prefixes in the code */
3b095a04 537
1da177e4 538 /* Transform each pair of bits into 01 (valid) or 00 (empty) */
3b095a04 539 tmp = ~twd;
44210111 540 tmp = (tmp | (tmp>>1)) & 0x5555; /* 0V0V0V0V0V0V0V0V */
3b095a04
CG
541 /* and move the valid bits to the lower byte. */
542 tmp = (tmp | (tmp >> 1)) & 0x3333; /* 00VV00VV00VV00VV */
543 tmp = (tmp | (tmp >> 2)) & 0x0f0f; /* 0000VVVV0000VVVV */
544 tmp = (tmp | (tmp >> 4)) & 0x00ff; /* 00000000VVVVVVVV */
f668964e 545
3b095a04 546 return tmp;
1da177e4
LT
547}
548
497888cf 549#define FPREG_ADDR(f, n) ((void *)&(f)->st_space + (n) * 16)
44210111
RM
550#define FP_EXP_TAG_VALID 0
551#define FP_EXP_TAG_ZERO 1
552#define FP_EXP_TAG_SPECIAL 2
553#define FP_EXP_TAG_EMPTY 3
554
555static inline u32 twd_fxsr_to_i387(struct i387_fxsave_struct *fxsave)
556{
557 struct _fpxreg *st;
558 u32 tos = (fxsave->swd >> 11) & 7;
559 u32 twd = (unsigned long) fxsave->twd;
560 u32 tag;
561 u32 ret = 0xffff0000u;
562 int i;
1da177e4 563
44210111 564 for (i = 0; i < 8; i++, twd >>= 1) {
3b095a04
CG
565 if (twd & 0x1) {
566 st = FPREG_ADDR(fxsave, (i - tos) & 7);
1da177e4 567
3b095a04 568 switch (st->exponent & 0x7fff) {
1da177e4 569 case 0x7fff:
44210111 570 tag = FP_EXP_TAG_SPECIAL;
1da177e4
LT
571 break;
572 case 0x0000:
3b095a04
CG
573 if (!st->significand[0] &&
574 !st->significand[1] &&
575 !st->significand[2] &&
44210111
RM
576 !st->significand[3])
577 tag = FP_EXP_TAG_ZERO;
578 else
579 tag = FP_EXP_TAG_SPECIAL;
1da177e4
LT
580 break;
581 default:
44210111
RM
582 if (st->significand[3] & 0x8000)
583 tag = FP_EXP_TAG_VALID;
584 else
585 tag = FP_EXP_TAG_SPECIAL;
1da177e4
LT
586 break;
587 }
588 } else {
44210111 589 tag = FP_EXP_TAG_EMPTY;
1da177e4 590 }
44210111 591 ret |= tag << (2 * i);
1da177e4
LT
592 }
593 return ret;
594}
595
596/*
44210111 597 * FXSR floating point environment conversions.
1da177e4
LT
598 */
599
72a671ce 600void
f668964e 601convert_from_fxsr(struct user_i387_ia32_struct *env, struct task_struct *tsk)
1da177e4 602{
7366ed77 603 struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state.fxsave;
44210111
RM
604 struct _fpreg *to = (struct _fpreg *) &env->st_space[0];
605 struct _fpxreg *from = (struct _fpxreg *) &fxsave->st_space[0];
606 int i;
1da177e4 607
44210111
RM
608 env->cwd = fxsave->cwd | 0xffff0000u;
609 env->swd = fxsave->swd | 0xffff0000u;
610 env->twd = twd_fxsr_to_i387(fxsave);
611
612#ifdef CONFIG_X86_64
613 env->fip = fxsave->rip;
614 env->foo = fxsave->rdp;
10c11f30
BG
615 /*
616 * should be actually ds/cs at fpu exception time, but
617 * that information is not available in 64bit mode.
618 */
619 env->fcs = task_pt_regs(tsk)->cs;
44210111 620 if (tsk == current) {
10c11f30 621 savesegment(ds, env->fos);
1da177e4 622 } else {
10c11f30 623 env->fos = tsk->thread.ds;
1da177e4 624 }
10c11f30 625 env->fos |= 0xffff0000;
44210111
RM
626#else
627 env->fip = fxsave->fip;
609b5297 628 env->fcs = (u16) fxsave->fcs | ((u32) fxsave->fop << 16);
44210111
RM
629 env->foo = fxsave->foo;
630 env->fos = fxsave->fos;
631#endif
1da177e4 632
44210111
RM
633 for (i = 0; i < 8; ++i)
634 memcpy(&to[i], &from[i], sizeof(to[0]));
1da177e4
LT
635}
636
72a671ce
SS
637void convert_to_fxsr(struct task_struct *tsk,
638 const struct user_i387_ia32_struct *env)
1da177e4 639
1da177e4 640{
7366ed77 641 struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state.fxsave;
44210111
RM
642 struct _fpreg *from = (struct _fpreg *) &env->st_space[0];
643 struct _fpxreg *to = (struct _fpxreg *) &fxsave->st_space[0];
644 int i;
1da177e4 645
44210111
RM
646 fxsave->cwd = env->cwd;
647 fxsave->swd = env->swd;
648 fxsave->twd = twd_i387_to_fxsr(env->twd);
649 fxsave->fop = (u16) ((u32) env->fcs >> 16);
650#ifdef CONFIG_X86_64
651 fxsave->rip = env->fip;
652 fxsave->rdp = env->foo;
653 /* cs and ds ignored */
654#else
655 fxsave->fip = env->fip;
656 fxsave->fcs = (env->fcs & 0xffff);
657 fxsave->foo = env->foo;
658 fxsave->fos = env->fos;
659#endif
1da177e4 660
44210111
RM
661 for (i = 0; i < 8; ++i)
662 memcpy(&to[i], &from[i], sizeof(from[0]));
1da177e4
LT
663}
664
44210111
RM
665int fpregs_get(struct task_struct *target, const struct user_regset *regset,
666 unsigned int pos, unsigned int count,
667 void *kbuf, void __user *ubuf)
1da177e4 668{
cc08d545 669 struct fpu *fpu = &target->thread.fpu;
44210111 670 struct user_i387_ia32_struct env;
1da177e4 671
67ee658e 672 fpu__activate_stopped(fpu);
1da177e4 673
60e019eb 674 if (!static_cpu_has(X86_FEATURE_FPU))
e8a496ac
SS
675 return fpregs_soft_get(target, regset, pos, count, kbuf, ubuf);
676
60e019eb 677 if (!cpu_has_fxsr)
44210111 678 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
7366ed77 679 &fpu->state.fsave, 0,
61c4628b 680 -1);
1da177e4 681
36e49e7f 682 fpstate_sanitize_xstate(fpu);
29104e10 683
44210111
RM
684 if (kbuf && pos == 0 && count == sizeof(env)) {
685 convert_from_fxsr(kbuf, target);
686 return 0;
1da177e4 687 }
44210111
RM
688
689 convert_from_fxsr(&env, target);
f668964e 690
44210111 691 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
1da177e4
LT
692}
693
44210111
RM
694int fpregs_set(struct task_struct *target, const struct user_regset *regset,
695 unsigned int pos, unsigned int count,
696 const void *kbuf, const void __user *ubuf)
1da177e4 697{
cc08d545 698 struct fpu *fpu = &target->thread.fpu;
44210111
RM
699 struct user_i387_ia32_struct env;
700 int ret;
1da177e4 701
67ee658e 702 fpu__activate_stopped(fpu);
36e49e7f 703 fpstate_sanitize_xstate(fpu);
29104e10 704
60e019eb 705 if (!static_cpu_has(X86_FEATURE_FPU))
e8a496ac
SS
706 return fpregs_soft_set(target, regset, pos, count, kbuf, ubuf);
707
60e019eb 708 if (!cpu_has_fxsr)
44210111 709 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
7366ed77 710 &fpu->state.fsave, 0,
60e019eb 711 -1);
44210111
RM
712
713 if (pos > 0 || count < sizeof(env))
714 convert_from_fxsr(&env, target);
715
716 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
717 if (!ret)
718 convert_to_fxsr(target, &env);
719
42deec6f
SS
720 /*
721 * update the header bit in the xsave header, indicating the
722 * presence of FP.
723 */
724 if (cpu_has_xsave)
7366ed77 725 fpu->state.xsave.header.xfeatures |= XSTATE_FP;
44210111 726 return ret;
1da177e4
LT
727}
728
1da177e4
LT
729/*
730 * FPU state for core dumps.
60b3b9af
RM
731 * This is only used for a.out dumps now.
732 * It is declared generically using elf_fpregset_t (which is
733 * struct user_i387_struct) but is in fact only used for 32-bit
734 * dumps, so on 64-bit it is really struct user_i387_ia32_struct.
1da177e4 735 */
c5bedc68 736int dump_fpu(struct pt_regs *regs, struct user_i387_struct *ufpu)
1da177e4 737{
1da177e4 738 struct task_struct *tsk = current;
c5bedc68 739 struct fpu *fpu = &tsk->thread.fpu;
f668964e 740 int fpvalid;
1da177e4 741
c5bedc68 742 fpvalid = fpu->fpstate_active;
60b3b9af
RM
743 if (fpvalid)
744 fpvalid = !fpregs_get(tsk, NULL,
745 0, sizeof(struct user_i387_ia32_struct),
c5bedc68 746 ufpu, NULL);
1da177e4
LT
747
748 return fpvalid;
749}
129f6946 750EXPORT_SYMBOL(dump_fpu);
1da177e4 751
60b3b9af 752#endif /* CONFIG_X86_32 || CONFIG_IA32_EMULATION */
e1cebad4
IM
753
754/*
755 * x87 math exception handling:
756 */
757
758static inline unsigned short get_fpu_cwd(struct fpu *fpu)
759{
760 if (cpu_has_fxsr) {
761 return fpu->state.fxsave.cwd;
762 } else {
763 return (unsigned short)fpu->state.fsave.cwd;
764 }
765}
766
767static inline unsigned short get_fpu_swd(struct fpu *fpu)
768{
769 if (cpu_has_fxsr) {
770 return fpu->state.fxsave.swd;
771 } else {
772 return (unsigned short)fpu->state.fsave.swd;
773 }
774}
775
776static inline unsigned short get_fpu_mxcsr(struct fpu *fpu)
777{
778 if (cpu_has_xmm) {
779 return fpu->state.fxsave.mxcsr;
780 } else {
781 return MXCSR_DEFAULT;
782 }
783}
784
785int fpu__exception_code(struct fpu *fpu, int trap_nr)
786{
787 int err;
788
789 if (trap_nr == X86_TRAP_MF) {
790 unsigned short cwd, swd;
791 /*
792 * (~cwd & swd) will mask out exceptions that are not set to unmasked
793 * status. 0x3f is the exception bits in these regs, 0x200 is the
794 * C1 reg you need in case of a stack fault, 0x040 is the stack
795 * fault bit. We should only be taking one exception at a time,
796 * so if this combination doesn't produce any single exception,
797 * then we have a bad program that isn't synchronizing its FPU usage
798 * and it will suffer the consequences since we won't be able to
799 * fully reproduce the context of the exception
800 */
801 cwd = get_fpu_cwd(fpu);
802 swd = get_fpu_swd(fpu);
803
804 err = swd & ~cwd;
805 } else {
806 /*
807 * The SIMD FPU exceptions are handled a little differently, as there
808 * is only a single status/control register. Thus, to determine which
809 * unmasked exception was caught we must mask the exception mask bits
810 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
811 */
812 unsigned short mxcsr = get_fpu_mxcsr(fpu);
813 err = ~(mxcsr >> 7) & mxcsr;
814 }
815
816 if (err & 0x001) { /* Invalid op */
817 /*
818 * swd & 0x240 == 0x040: Stack Underflow
819 * swd & 0x240 == 0x240: Stack Overflow
820 * User must clear the SF bit (0x40) if set
821 */
822 return FPE_FLTINV;
823 } else if (err & 0x004) { /* Divide by Zero */
824 return FPE_FLTDIV;
825 } else if (err & 0x008) { /* Overflow */
826 return FPE_FLTOVF;
827 } else if (err & 0x012) { /* Denormal, Underflow */
828 return FPE_FLTUND;
829 } else if (err & 0x020) { /* Precision */
830 return FPE_FLTRES;
831 }
832
833 /*
834 * If we're using IRQ 13, or supposedly even some trap
835 * X86_TRAP_MF implementations, it's possible
836 * we get a spurious trap, which is not an error.
837 */
838 return 0;
839}
This page took 1.23893 seconds and 5 git commands to generate.