kprobes/x86: Allow to handle reentered kprobe on single-stepping
[deliverable/linux.git] / arch / x86 / kernel / kprobes / core.c
CommitLineData
1da177e4
LT
1/*
2 * Kernel Probes (KProbes)
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2002, 2004
19 *
20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21 * Probes initial implementation ( includes contributions from
22 * Rusty Russell).
23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24 * interface to access function arguments.
d6be29b8
MH
25 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
26 * <prasanna@in.ibm.com> adapted for x86_64 from i386.
1da177e4
LT
27 * 2005-Mar Roland McGrath <roland@redhat.com>
28 * Fixed to handle %rip-relative addressing mode correctly.
d6be29b8
MH
29 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
30 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
31 * <prasanna@in.ibm.com> added function-return probes.
32 * 2005-May Rusty Lynch <rusty.lynch@intel.com>
3f33ab1c 33 * Added function return probes functionality
d6be29b8 34 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
3f33ab1c 35 * kprobe-booster and kretprobe-booster for i386.
da07ab03 36 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
3f33ab1c 37 * and kretprobe-booster for x86-64
d6be29b8 38 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
3f33ab1c
MH
39 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
40 * unified x86 kprobes code.
1da177e4 41 */
1da177e4
LT
42#include <linux/kprobes.h>
43#include <linux/ptrace.h>
1da177e4
LT
44#include <linux/string.h>
45#include <linux/slab.h>
b506a9d0 46#include <linux/hardirq.h>
1da177e4 47#include <linux/preempt.h>
c28f8966 48#include <linux/module.h>
1eeb66a1 49#include <linux/kdebug.h>
b46b3d70 50#include <linux/kallsyms.h>
c0f7ac3a 51#include <linux/ftrace.h>
9ec4b1f3 52
8533bbe9
MH
53#include <asm/cacheflush.h>
54#include <asm/desc.h>
1da177e4 55#include <asm/pgtable.h>
c28f8966 56#include <asm/uaccess.h>
19d36ccd 57#include <asm/alternative.h>
b46b3d70 58#include <asm/insn.h>
62edab90 59#include <asm/debugreg.h>
1da177e4 60
f684199f 61#include "common.h"
3f33ab1c 62
1da177e4
LT
63void jprobe_return_end(void);
64
e7a510f9
AM
65DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
66DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
1da177e4 67
98272ed0 68#define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
8533bbe9
MH
69
70#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
71 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
72 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
73 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
74 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
75 << (row % 32))
76 /*
77 * Undefined/reserved opcodes, conditional jump, Opcode Extension
78 * Groups, and some special opcodes can not boost.
7115e3fc
LT
79 * This is non-const and volatile to keep gcc from statically
80 * optimizing it out, as variable_test_bit makes gcc think only
f684199f 81 * *(unsigned long*) is used.
8533bbe9 82 */
7115e3fc 83static volatile u32 twobyte_is_boostable[256 / 32] = {
8533bbe9
MH
84 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
85 /* ---------------------------------------------- */
86 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
87 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 10 */
88 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
89 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
90 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
91 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
92 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
93 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
94 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
95 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
96 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
97 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
98 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
99 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
100 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
101 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */
102 /* ----------------------------------------------- */
103 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
104};
8533bbe9
MH
105#undef W
106
f438d914
MH
107struct kretprobe_blackpoint kretprobe_blacklist[] = {
108 {"__switch_to", }, /* This function switches only current task, but
109 doesn't switch kernel stack.*/
110 {NULL, NULL} /* Terminator */
111};
3f33ab1c 112
f438d914
MH
113const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
114
c0f7ac3a 115static void __kprobes __synthesize_relative_insn(void *from, void *to, u8 op)
aa470140 116{
c0f7ac3a
MH
117 struct __arch_relative_insn {
118 u8 op;
aa470140 119 s32 raddr;
f684199f 120 } __packed *insn;
c0f7ac3a
MH
121
122 insn = (struct __arch_relative_insn *)from;
123 insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
124 insn->op = op;
125}
126
127/* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
3f33ab1c 128void __kprobes synthesize_reljump(void *from, void *to)
c0f7ac3a
MH
129{
130 __synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE);
aa470140
MH
131}
132
3f33ab1c
MH
133/* Insert a call instruction at address 'from', which calls address 'to'.*/
134void __kprobes synthesize_relcall(void *from, void *to)
135{
136 __synthesize_relative_insn(from, to, RELATIVECALL_OPCODE);
137}
138
9930927f 139/*
567a9fd8 140 * Skip the prefixes of the instruction.
9930927f 141 */
567a9fd8 142static kprobe_opcode_t *__kprobes skip_prefixes(kprobe_opcode_t *insn)
9930927f 143{
567a9fd8
MH
144 insn_attr_t attr;
145
146 attr = inat_get_opcode_attribute((insn_byte_t)*insn);
147 while (inat_is_legacy_prefix(attr)) {
148 insn++;
149 attr = inat_get_opcode_attribute((insn_byte_t)*insn);
150 }
9930927f 151#ifdef CONFIG_X86_64
567a9fd8
MH
152 if (inat_is_rex_prefix(attr))
153 insn++;
9930927f 154#endif
567a9fd8 155 return insn;
9930927f
HH
156}
157
aa470140 158/*
d6be29b8
MH
159 * Returns non-zero if opcode is boostable.
160 * RIP relative instructions are adjusted at copying time in 64 bits mode
aa470140 161 */
3f33ab1c 162int __kprobes can_boost(kprobe_opcode_t *opcodes)
aa470140 163{
aa470140
MH
164 kprobe_opcode_t opcode;
165 kprobe_opcode_t *orig_opcodes = opcodes;
166
cde5edbd 167 if (search_exception_tables((unsigned long)opcodes))
30390880
MH
168 return 0; /* Page fault may occur on this address. */
169
aa470140
MH
170retry:
171 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
172 return 0;
173 opcode = *(opcodes++);
174
175 /* 2nd-byte opcode */
176 if (opcode == 0x0f) {
177 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
178 return 0;
8533bbe9
MH
179 return test_bit(*opcodes,
180 (unsigned long *)twobyte_is_boostable);
aa470140
MH
181 }
182
183 switch (opcode & 0xf0) {
d6be29b8 184#ifdef CONFIG_X86_64
aa470140
MH
185 case 0x40:
186 goto retry; /* REX prefix is boostable */
d6be29b8 187#endif
aa470140
MH
188 case 0x60:
189 if (0x63 < opcode && opcode < 0x67)
190 goto retry; /* prefixes */
191 /* can't boost Address-size override and bound */
192 return (opcode != 0x62 && opcode != 0x67);
193 case 0x70:
194 return 0; /* can't boost conditional jump */
195 case 0xc0:
196 /* can't boost software-interruptions */
197 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
198 case 0xd0:
199 /* can boost AA* and XLAT */
200 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
201 case 0xe0:
202 /* can boost in/out and absolute jmps */
203 return ((opcode & 0x04) || opcode == 0xea);
204 case 0xf0:
205 if ((opcode & 0x0c) == 0 && opcode != 0xf1)
206 goto retry; /* lock/rep(ne) prefix */
207 /* clear and set flags are boostable */
208 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
209 default:
210 /* segment override prefixes are boostable */
211 if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
212 goto retry; /* prefixes */
213 /* CS override prefix and call are not boostable */
214 return (opcode != 0x2e && opcode != 0x9a);
215 }
216}
217
3f33ab1c
MH
218static unsigned long
219__recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
b46b3d70
MH
220{
221 struct kprobe *kp;
86b4ce31 222
b46b3d70 223 kp = get_kprobe((void *)addr);
86b4ce31 224 /* There is no probe, return original address */
b46b3d70 225 if (!kp)
86b4ce31 226 return addr;
b46b3d70
MH
227
228 /*
229 * Basically, kp->ainsn.insn has an original instruction.
230 * However, RIP-relative instruction can not do single-stepping
c0f7ac3a 231 * at different place, __copy_instruction() tweaks the displacement of
b46b3d70
MH
232 * that instruction. In that case, we can't recover the instruction
233 * from the kp->ainsn.insn.
234 *
235 * On the other hand, kp->opcode has a copy of the first byte of
236 * the probed instruction, which is overwritten by int3. And
237 * the instruction at kp->addr is not modified by kprobes except
238 * for the first byte, we can recover the original instruction
239 * from it and kp->opcode.
240 */
241 memcpy(buf, kp->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
242 buf[0] = kp->opcode;
86b4ce31
MH
243 return (unsigned long)buf;
244}
245
86b4ce31
MH
246/*
247 * Recover the probed instruction at addr for further analysis.
248 * Caller must lock kprobes by kprobe_mutex, or disable preemption
249 * for preventing to release referencing kprobes.
250 */
3f33ab1c 251unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
86b4ce31
MH
252{
253 unsigned long __addr;
254
255 __addr = __recover_optprobed_insn(buf, addr);
256 if (__addr != addr)
257 return __addr;
258
259 return __recover_probed_insn(buf, addr);
b46b3d70
MH
260}
261
b46b3d70
MH
262/* Check if paddr is at an instruction boundary */
263static int __kprobes can_probe(unsigned long paddr)
264{
86b4ce31 265 unsigned long addr, __addr, offset = 0;
b46b3d70
MH
266 struct insn insn;
267 kprobe_opcode_t buf[MAX_INSN_SIZE];
268
6abded71 269 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
b46b3d70
MH
270 return 0;
271
272 /* Decode instructions */
273 addr = paddr - offset;
274 while (addr < paddr) {
b46b3d70
MH
275 /*
276 * Check if the instruction has been modified by another
277 * kprobe, in which case we replace the breakpoint by the
278 * original instruction in our buffer.
86b4ce31
MH
279 * Also, jump optimization will change the breakpoint to
280 * relative-jump. Since the relative-jump itself is
281 * normally used, we just go through if there is no kprobe.
b46b3d70 282 */
86b4ce31
MH
283 __addr = recover_probed_instruction(buf, addr);
284 kernel_insn_init(&insn, (void *)__addr);
b46b3d70 285 insn_get_length(&insn);
86b4ce31
MH
286
287 /*
288 * Another debugging subsystem might insert this breakpoint.
289 * In that case, we can't recover it.
290 */
291 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
292 return 0;
b46b3d70
MH
293 addr += insn.length;
294 }
295
296 return (addr == paddr);
297}
298
1da177e4 299/*
d6be29b8 300 * Returns non-zero if opcode modifies the interrupt flag.
1da177e4 301 */
8645419c 302static int __kprobes is_IF_modifier(kprobe_opcode_t *insn)
1da177e4 303{
567a9fd8
MH
304 /* Skip prefixes */
305 insn = skip_prefixes(insn);
306
1da177e4
LT
307 switch (*insn) {
308 case 0xfa: /* cli */
309 case 0xfb: /* sti */
310 case 0xcf: /* iret/iretd */
311 case 0x9d: /* popf/popfd */
312 return 1;
313 }
9930927f 314
1da177e4
LT
315 return 0;
316}
317
318/*
c0f7ac3a
MH
319 * Copy an instruction and adjust the displacement if the instruction
320 * uses the %rip-relative addressing mode.
aa470140 321 * If it does, Return the address of the 32-bit displacement word.
1da177e4 322 * If not, return null.
31f80e45 323 * Only applicable to 64-bit x86.
1da177e4 324 */
3f33ab1c 325int __kprobes __copy_instruction(u8 *dest, u8 *src)
1da177e4 326{
89ae465b 327 struct insn insn;
c0f7ac3a 328 kprobe_opcode_t buf[MAX_INSN_SIZE];
86b4ce31 329
46484688 330 kernel_insn_init(&insn, (void *)recover_probed_instruction(buf, (unsigned long)src));
c0f7ac3a 331 insn_get_length(&insn);
86b4ce31 332 /* Another subsystem puts a breakpoint, failed to recover */
46484688 333 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
86b4ce31 334 return 0;
c0f7ac3a
MH
335 memcpy(dest, insn.kaddr, insn.length);
336
337#ifdef CONFIG_X86_64
89ae465b
MH
338 if (insn_rip_relative(&insn)) {
339 s64 newdisp;
340 u8 *disp;
c0f7ac3a 341 kernel_insn_init(&insn, dest);
89ae465b
MH
342 insn_get_displacement(&insn);
343 /*
344 * The copied instruction uses the %rip-relative addressing
345 * mode. Adjust the displacement for the difference between
346 * the original location of this instruction and the location
347 * of the copy that will actually be run. The tricky bit here
348 * is making sure that the sign extension happens correctly in
349 * this calculation, since we need a signed 32-bit result to
350 * be sign-extended to 64 bits when it's added to the %rip
351 * value and yield the same 64-bit result that the sign-
352 * extension of the original signed 32-bit displacement would
353 * have given.
354 */
46484688 355 newdisp = (u8 *) src + (s64) insn.displacement.value - (u8 *) dest;
8101376d
MH
356 if ((s64) (s32) newdisp != newdisp) {
357 pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
358 pr_err("\tSrc: %p, Dest: %p, old disp: %x\n", src, dest, insn.displacement.value);
359 return 0;
360 }
c0f7ac3a 361 disp = (u8 *) dest + insn_offset_displacement(&insn);
89ae465b 362 *(s32 *) disp = (s32) newdisp;
1da177e4 363 }
d6be29b8 364#endif
c0f7ac3a 365 return insn.length;
31f80e45 366}
1da177e4 367
003002e0 368static int __kprobes arch_copy_kprobe(struct kprobe *p)
1da177e4 369{
003002e0
MH
370 int ret;
371
46484688 372 /* Copy an instruction with recovering if other optprobe modifies it.*/
003002e0
MH
373 ret = __copy_instruction(p->ainsn.insn, p->addr);
374 if (!ret)
375 return -EINVAL;
46484688 376
c0f7ac3a 377 /*
46484688
MH
378 * __copy_instruction can modify the displacement of the instruction,
379 * but it doesn't affect boostable check.
c0f7ac3a 380 */
46484688 381 if (can_boost(p->ainsn.insn))
aa470140 382 p->ainsn.boostable = 0;
8533bbe9 383 else
aa470140 384 p->ainsn.boostable = -1;
8533bbe9 385
9a556ab9
MH
386 /* Check whether the instruction modifies Interrupt Flag or not */
387 p->ainsn.if_modifier = is_IF_modifier(p->ainsn.insn);
388
46484688
MH
389 /* Also, displacement change doesn't affect the first byte */
390 p->opcode = p->ainsn.insn[0];
003002e0
MH
391
392 return 0;
1da177e4
LT
393}
394
8533bbe9
MH
395int __kprobes arch_prepare_kprobe(struct kprobe *p)
396{
4554dbcb
MH
397 if (alternatives_text_reserved(p->addr, p->addr))
398 return -EINVAL;
399
b46b3d70
MH
400 if (!can_probe((unsigned long)p->addr))
401 return -EILSEQ;
8533bbe9
MH
402 /* insn: must be on special executable page on x86. */
403 p->ainsn.insn = get_insn_slot();
404 if (!p->ainsn.insn)
405 return -ENOMEM;
003002e0
MH
406
407 return arch_copy_kprobe(p);
8533bbe9
MH
408}
409
0f2fbdcb 410void __kprobes arch_arm_kprobe(struct kprobe *p)
1da177e4 411{
19d36ccd 412 text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
1da177e4
LT
413}
414
0f2fbdcb 415void __kprobes arch_disarm_kprobe(struct kprobe *p)
1da177e4 416{
19d36ccd 417 text_poke(p->addr, &p->opcode, 1);
7e1048b1
RL
418}
419
0498b635 420void __kprobes arch_remove_kprobe(struct kprobe *p)
7e1048b1 421{
12941560
MH
422 if (p->ainsn.insn) {
423 free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1));
424 p->ainsn.insn = NULL;
425 }
1da177e4
LT
426}
427
3b60211c 428static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
aa3d7e3d 429{
e7a510f9
AM
430 kcb->prev_kprobe.kp = kprobe_running();
431 kcb->prev_kprobe.status = kcb->kprobe_status;
8533bbe9
MH
432 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
433 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
aa3d7e3d
PP
434}
435
3b60211c 436static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
aa3d7e3d 437{
b76834bc 438 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
e7a510f9 439 kcb->kprobe_status = kcb->prev_kprobe.status;
8533bbe9
MH
440 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
441 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
aa3d7e3d
PP
442}
443
3b60211c 444static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
e7a510f9 445 struct kprobe_ctlblk *kcb)
aa3d7e3d 446{
b76834bc 447 __this_cpu_write(current_kprobe, p);
8533bbe9 448 kcb->kprobe_saved_flags = kcb->kprobe_old_flags
053de044 449 = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
9a556ab9 450 if (p->ainsn.if_modifier)
053de044 451 kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
aa3d7e3d
PP
452}
453
e7b5e11e 454static void __kprobes clear_btf(void)
1ecc798c 455{
ea8e61b7
PZ
456 if (test_thread_flag(TIF_BLOCKSTEP)) {
457 unsigned long debugctl = get_debugctlmsr();
458
459 debugctl &= ~DEBUGCTLMSR_BTF;
460 update_debugctlmsr(debugctl);
461 }
1ecc798c
RM
462}
463
e7b5e11e 464static void __kprobes restore_btf(void)
1ecc798c 465{
ea8e61b7
PZ
466 if (test_thread_flag(TIF_BLOCKSTEP)) {
467 unsigned long debugctl = get_debugctlmsr();
468
469 debugctl |= DEBUGCTLMSR_BTF;
470 update_debugctlmsr(debugctl);
471 }
1ecc798c
RM
472}
473
3f33ab1c
MH
474void __kprobes
475arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
73649dab 476{
8533bbe9 477 unsigned long *sara = stack_addr(regs);
ba8af12f 478
4c4308cb 479 ri->ret_addr = (kprobe_opcode_t *) *sara;
8533bbe9 480
4c4308cb
CH
481 /* Replace the return addr with trampoline addr */
482 *sara = (unsigned long) &kretprobe_trampoline;
73649dab 483}
f315decb 484
3f33ab1c
MH
485static void __kprobes
486setup_singlestep(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb, int reenter)
f315decb 487{
c0f7ac3a
MH
488 if (setup_detour_execution(p, regs, reenter))
489 return;
490
615d0ebb 491#if !defined(CONFIG_PREEMPT)
f315decb
AS
492 if (p->ainsn.boostable == 1 && !p->post_handler) {
493 /* Boost up -- we can execute copied instructions directly */
0f94eb63
MH
494 if (!reenter)
495 reset_current_kprobe();
496 /*
497 * Reentering boosted probe doesn't reset current_kprobe,
498 * nor set current_kprobe, because it doesn't use single
499 * stepping.
500 */
f315decb
AS
501 regs->ip = (unsigned long)p->ainsn.insn;
502 preempt_enable_no_resched();
503 return;
504 }
505#endif
0f94eb63
MH
506 if (reenter) {
507 save_previous_kprobe(kcb);
508 set_current_kprobe(p, regs, kcb);
509 kcb->kprobe_status = KPROBE_REENTER;
510 } else
511 kcb->kprobe_status = KPROBE_HIT_SS;
512 /* Prepare real single stepping */
513 clear_btf();
514 regs->flags |= X86_EFLAGS_TF;
515 regs->flags &= ~X86_EFLAGS_IF;
516 /* single step inline if the instruction is an int3 */
517 if (p->opcode == BREAKPOINT_INSTRUCTION)
518 regs->ip = (unsigned long)p->addr;
519 else
520 regs->ip = (unsigned long)p->ainsn.insn;
f315decb
AS
521}
522
40102d4a
HH
523/*
524 * We have reentered the kprobe_handler(), since another probe was hit while
525 * within the handler. We save the original kprobes variables and just single
526 * step on the instruction of the new probe without calling any user handlers.
527 */
3f33ab1c
MH
528static int __kprobes
529reenter_kprobe(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb)
40102d4a 530{
f315decb
AS
531 switch (kcb->kprobe_status) {
532 case KPROBE_HIT_SSDONE:
f315decb 533 case KPROBE_HIT_ACTIVE:
6a5022a5 534 case KPROBE_HIT_SS:
fb8830e7 535 kprobes_inc_nmissed_count(p);
0f94eb63 536 setup_singlestep(p, regs, kcb, 1);
f315decb 537 break;
6a5022a5 538 case KPROBE_REENTER:
e9afe9e1
MH
539 /* A probe has been hit in the codepath leading up to, or just
540 * after, single-stepping of a probed instruction. This entire
541 * codepath should strictly reside in .kprobes.text section.
542 * Raise a BUG or we'll continue in an endless reentering loop
543 * and eventually a stack overflow.
544 */
545 printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n",
546 p->addr);
547 dump_kprobe(p);
548 BUG();
f315decb
AS
549 default:
550 /* impossible cases */
551 WARN_ON(1);
fb8830e7 552 return 0;
59e87cdc 553 }
f315decb 554
59e87cdc 555 return 1;
40102d4a 556}
73649dab 557
8533bbe9
MH
558/*
559 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
af901ca1 560 * remain disabled throughout this function.
8533bbe9
MH
561 */
562static int __kprobes kprobe_handler(struct pt_regs *regs)
1da177e4 563{
8533bbe9 564 kprobe_opcode_t *addr;
f315decb 565 struct kprobe *p;
d217d545
AM
566 struct kprobe_ctlblk *kcb;
567
8533bbe9 568 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
d217d545
AM
569 /*
570 * We don't want to be preempted for the entire
f315decb
AS
571 * duration of kprobe processing. We conditionally
572 * re-enable preemption at the end of this function,
573 * and also in reenter_kprobe() and setup_singlestep().
d217d545
AM
574 */
575 preempt_disable();
1da177e4 576
f315decb 577 kcb = get_kprobe_ctlblk();
b9760156 578 p = get_kprobe(addr);
f315decb 579
b9760156 580 if (p) {
b9760156 581 if (kprobe_running()) {
f315decb
AS
582 if (reenter_kprobe(p, regs, kcb))
583 return 1;
1da177e4 584 } else {
b9760156
HH
585 set_current_kprobe(p, regs, kcb);
586 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
f315decb 587
1da177e4 588 /*
f315decb
AS
589 * If we have no pre-handler or it returned 0, we
590 * continue with normal processing. If we have a
591 * pre-handler and it returned non-zero, it prepped
592 * for calling the break_handler below on re-entry
593 * for jprobe processing, so get out doing nothing
594 * more here.
1da177e4 595 */
f315decb 596 if (!p->pre_handler || !p->pre_handler(p, regs))
0f94eb63 597 setup_singlestep(p, regs, kcb, 0);
f315decb 598 return 1;
b9760156 599 }
829e9245
MH
600 } else if (*addr != BREAKPOINT_INSTRUCTION) {
601 /*
602 * The breakpoint instruction was removed right
603 * after we hit it. Another cpu has removed
604 * either a probepoint or a debugger breakpoint
605 * at this address. In either case, no further
606 * handling of this interrupt is appropriate.
607 * Back up over the (now missing) int3 and run
608 * the original instruction.
609 */
610 regs->ip = (unsigned long)addr;
611 preempt_enable_no_resched();
612 return 1;
f315decb 613 } else if (kprobe_running()) {
b76834bc 614 p = __this_cpu_read(current_kprobe);
f315decb 615 if (p->break_handler && p->break_handler(p, regs)) {
e7dbfe34
MH
616 if (!skip_singlestep(p, regs, kcb))
617 setup_singlestep(p, regs, kcb, 0);
f315decb 618 return 1;
1da177e4 619 }
f315decb 620 } /* else: not a kprobe fault; let the kernel handle it */
1da177e4 621
d217d545 622 preempt_enable_no_resched();
f315decb 623 return 0;
1da177e4
LT
624}
625
73649dab 626/*
da07ab03
MH
627 * When a retprobed function returns, this code saves registers and
628 * calls trampoline_handler() runs, which calls the kretprobe's handler.
73649dab 629 */
f1452d42 630static void __used __kprobes kretprobe_trampoline_holder(void)
1017579a 631{
d6be29b8
MH
632 asm volatile (
633 ".global kretprobe_trampoline\n"
da07ab03 634 "kretprobe_trampoline: \n"
d6be29b8 635#ifdef CONFIG_X86_64
da07ab03
MH
636 /* We don't bother saving the ss register */
637 " pushq %rsp\n"
638 " pushfq\n"
f007ea26 639 SAVE_REGS_STRING
da07ab03
MH
640 " movq %rsp, %rdi\n"
641 " call trampoline_handler\n"
642 /* Replace saved sp with true return address. */
643 " movq %rax, 152(%rsp)\n"
f007ea26 644 RESTORE_REGS_STRING
da07ab03 645 " popfq\n"
d6be29b8
MH
646#else
647 " pushf\n"
f007ea26 648 SAVE_REGS_STRING
d6be29b8
MH
649 " movl %esp, %eax\n"
650 " call trampoline_handler\n"
651 /* Move flags to cs */
fee039a1
MH
652 " movl 56(%esp), %edx\n"
653 " movl %edx, 52(%esp)\n"
d6be29b8 654 /* Replace saved flags with true return address. */
fee039a1 655 " movl %eax, 56(%esp)\n"
f007ea26 656 RESTORE_REGS_STRING
d6be29b8
MH
657 " popf\n"
658#endif
da07ab03 659 " ret\n");
1017579a 660}
73649dab
RL
661
662/*
da07ab03 663 * Called from kretprobe_trampoline
73649dab 664 */
04bb591c 665__visible __used __kprobes void *trampoline_handler(struct pt_regs *regs)
73649dab 666{
62c27be0 667 struct kretprobe_instance *ri = NULL;
99219a3f 668 struct hlist_head *head, empty_rp;
b67bfe0d 669 struct hlist_node *tmp;
991a51d8 670 unsigned long flags, orig_ret_address = 0;
d6be29b8 671 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
737480a0 672 kprobe_opcode_t *correct_ret_addr = NULL;
73649dab 673
99219a3f 674 INIT_HLIST_HEAD(&empty_rp);
ef53d9c5 675 kretprobe_hash_lock(current, &head, &flags);
8533bbe9 676 /* fixup registers */
d6be29b8 677#ifdef CONFIG_X86_64
da07ab03 678 regs->cs = __KERNEL_CS;
d6be29b8
MH
679#else
680 regs->cs = __KERNEL_CS | get_kernel_rpl();
fee039a1 681 regs->gs = 0;
d6be29b8 682#endif
da07ab03 683 regs->ip = trampoline_address;
8533bbe9 684 regs->orig_ax = ~0UL;
73649dab 685
ba8af12f
RL
686 /*
687 * It is possible to have multiple instances associated with a given
8533bbe9 688 * task either because multiple functions in the call path have
025dfdaf 689 * return probes installed on them, and/or more than one
ba8af12f
RL
690 * return probe was registered for a target function.
691 *
692 * We can handle this because:
8533bbe9 693 * - instances are always pushed into the head of the list
ba8af12f 694 * - when multiple return probes are registered for the same
8533bbe9
MH
695 * function, the (chronologically) first instance's ret_addr
696 * will be the real return address, and all the rest will
697 * point to kretprobe_trampoline.
ba8af12f 698 */
b67bfe0d 699 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
62c27be0 700 if (ri->task != current)
ba8af12f 701 /* another task is sharing our hash bucket */
62c27be0 702 continue;
ba8af12f 703
737480a0
KS
704 orig_ret_address = (unsigned long)ri->ret_addr;
705
706 if (orig_ret_address != trampoline_address)
707 /*
708 * This is the real return address. Any other
709 * instances associated with this task are for
710 * other calls deeper on the call stack
711 */
712 break;
713 }
714
715 kretprobe_assert(ri, orig_ret_address, trampoline_address);
716
717 correct_ret_addr = ri->ret_addr;
b67bfe0d 718 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
737480a0
KS
719 if (ri->task != current)
720 /* another task is sharing our hash bucket */
721 continue;
722
723 orig_ret_address = (unsigned long)ri->ret_addr;
da07ab03 724 if (ri->rp && ri->rp->handler) {
b76834bc 725 __this_cpu_write(current_kprobe, &ri->rp->kp);
da07ab03 726 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
737480a0 727 ri->ret_addr = correct_ret_addr;
ba8af12f 728 ri->rp->handler(ri, regs);
b76834bc 729 __this_cpu_write(current_kprobe, NULL);
da07ab03 730 }
ba8af12f 731
99219a3f 732 recycle_rp_inst(ri, &empty_rp);
ba8af12f
RL
733
734 if (orig_ret_address != trampoline_address)
735 /*
736 * This is the real return address. Any other
737 * instances associated with this task are for
738 * other calls deeper on the call stack
739 */
740 break;
73649dab 741 }
ba8af12f 742
ef53d9c5 743 kretprobe_hash_unlock(current, &flags);
ba8af12f 744
b67bfe0d 745 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
99219a3f 746 hlist_del(&ri->hlist);
747 kfree(ri);
748 }
da07ab03 749 return (void *)orig_ret_address;
73649dab
RL
750}
751
1da177e4
LT
752/*
753 * Called after single-stepping. p->addr is the address of the
754 * instruction whose first byte has been replaced by the "int 3"
755 * instruction. To avoid the SMP problems that can occur when we
756 * temporarily put back the original opcode to single-step, we
757 * single-stepped a copy of the instruction. The address of this
758 * copy is p->ainsn.insn.
759 *
760 * This function prepares to return from the post-single-step
761 * interrupt. We have to fix up the stack as follows:
762 *
763 * 0) Except in the case of absolute or indirect jump or call instructions,
65ea5b03 764 * the new ip is relative to the copied instruction. We need to make
1da177e4
LT
765 * it relative to the original instruction.
766 *
767 * 1) If the single-stepped instruction was pushfl, then the TF and IF
65ea5b03 768 * flags are set in the just-pushed flags, and may need to be cleared.
1da177e4
LT
769 *
770 * 2) If the single-stepped instruction was a call, the return address
771 * that is atop the stack is the address following the copied instruction.
772 * We need to make it the address following the original instruction.
aa470140
MH
773 *
774 * If this is the first time we've single-stepped the instruction at
775 * this probepoint, and the instruction is boostable, boost it: add a
776 * jump instruction after the copied instruction, that jumps to the next
777 * instruction after the probepoint.
1da177e4 778 */
3f33ab1c
MH
779static void __kprobes
780resume_execution(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb)
1da177e4 781{
8533bbe9
MH
782 unsigned long *tos = stack_addr(regs);
783 unsigned long copy_ip = (unsigned long)p->ainsn.insn;
784 unsigned long orig_ip = (unsigned long)p->addr;
1da177e4
LT
785 kprobe_opcode_t *insn = p->ainsn.insn;
786
567a9fd8
MH
787 /* Skip prefixes */
788 insn = skip_prefixes(insn);
1da177e4 789
053de044 790 regs->flags &= ~X86_EFLAGS_TF;
1da177e4 791 switch (*insn) {
0b0122fa 792 case 0x9c: /* pushfl */
053de044 793 *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
8533bbe9 794 *tos |= kcb->kprobe_old_flags;
1da177e4 795 break;
0b0122fa
MH
796 case 0xc2: /* iret/ret/lret */
797 case 0xc3:
0b9e2cac 798 case 0xca:
0b0122fa
MH
799 case 0xcb:
800 case 0xcf:
801 case 0xea: /* jmp absolute -- ip is correct */
802 /* ip is already adjusted, no more changes required */
aa470140 803 p->ainsn.boostable = 1;
0b0122fa
MH
804 goto no_change;
805 case 0xe8: /* call relative - Fix return addr */
8533bbe9 806 *tos = orig_ip + (*tos - copy_ip);
1da177e4 807 break;
e7b5e11e 808#ifdef CONFIG_X86_32
d6be29b8
MH
809 case 0x9a: /* call absolute -- same as call absolute, indirect */
810 *tos = orig_ip + (*tos - copy_ip);
811 goto no_change;
812#endif
1da177e4 813 case 0xff:
dc49e344 814 if ((insn[1] & 0x30) == 0x10) {
8533bbe9
MH
815 /*
816 * call absolute, indirect
817 * Fix return addr; ip is correct.
818 * But this is not boostable
819 */
820 *tos = orig_ip + (*tos - copy_ip);
0b0122fa 821 goto no_change;
8533bbe9
MH
822 } else if (((insn[1] & 0x31) == 0x20) ||
823 ((insn[1] & 0x31) == 0x21)) {
824 /*
825 * jmp near and far, absolute indirect
826 * ip is correct. And this is boostable
827 */
aa470140 828 p->ainsn.boostable = 1;
0b0122fa 829 goto no_change;
1da177e4 830 }
1da177e4
LT
831 default:
832 break;
833 }
834
aa470140 835 if (p->ainsn.boostable == 0) {
8533bbe9
MH
836 if ((regs->ip > copy_ip) &&
837 (regs->ip - copy_ip) + 5 < MAX_INSN_SIZE) {
aa470140
MH
838 /*
839 * These instructions can be executed directly if it
840 * jumps back to correct address.
841 */
c0f7ac3a
MH
842 synthesize_reljump((void *)regs->ip,
843 (void *)orig_ip + (regs->ip - copy_ip));
aa470140
MH
844 p->ainsn.boostable = 1;
845 } else {
846 p->ainsn.boostable = -1;
847 }
848 }
849
8533bbe9 850 regs->ip += orig_ip - copy_ip;
65ea5b03 851
0b0122fa 852no_change:
1ecc798c 853 restore_btf();
1da177e4
LT
854}
855
8533bbe9
MH
856/*
857 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
af901ca1 858 * remain disabled throughout this function.
8533bbe9
MH
859 */
860static int __kprobes post_kprobe_handler(struct pt_regs *regs)
1da177e4 861{
e7a510f9
AM
862 struct kprobe *cur = kprobe_running();
863 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
864
865 if (!cur)
1da177e4
LT
866 return 0;
867
acb5b8a2
YL
868 resume_execution(cur, regs, kcb);
869 regs->flags |= kcb->kprobe_saved_flags;
acb5b8a2 870
e7a510f9
AM
871 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
872 kcb->kprobe_status = KPROBE_HIT_SSDONE;
873 cur->post_handler(cur, regs, 0);
aa3d7e3d 874 }
1da177e4 875
8533bbe9 876 /* Restore back the original saved kprobes variables and continue. */
e7a510f9
AM
877 if (kcb->kprobe_status == KPROBE_REENTER) {
878 restore_previous_kprobe(kcb);
aa3d7e3d 879 goto out;
aa3d7e3d 880 }
e7a510f9 881 reset_current_kprobe();
aa3d7e3d 882out:
1da177e4
LT
883 preempt_enable_no_resched();
884
885 /*
65ea5b03 886 * if somebody else is singlestepping across a probe point, flags
1da177e4
LT
887 * will have TF set, in which case, continue the remaining processing
888 * of do_debug, as if this is not a probe hit.
889 */
053de044 890 if (regs->flags & X86_EFLAGS_TF)
1da177e4
LT
891 return 0;
892
893 return 1;
894}
895
0f2fbdcb 896int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
1da177e4 897{
e7a510f9
AM
898 struct kprobe *cur = kprobe_running();
899 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
900
6381c24c
MH
901 if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
902 /* This must happen on single-stepping */
903 WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
904 kcb->kprobe_status != KPROBE_REENTER);
c28f8966
PP
905 /*
906 * We are here because the instruction being single
907 * stepped caused a page fault. We reset the current
65ea5b03 908 * kprobe and the ip points back to the probe address
c28f8966
PP
909 * and allow the page fault handler to continue as a
910 * normal page fault.
911 */
65ea5b03 912 regs->ip = (unsigned long)cur->addr;
8533bbe9 913 regs->flags |= kcb->kprobe_old_flags;
c28f8966
PP
914 if (kcb->kprobe_status == KPROBE_REENTER)
915 restore_previous_kprobe(kcb);
916 else
917 reset_current_kprobe();
1da177e4 918 preempt_enable_no_resched();
6381c24c
MH
919 } else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE ||
920 kcb->kprobe_status == KPROBE_HIT_SSDONE) {
c28f8966
PP
921 /*
922 * We increment the nmissed count for accounting,
8533bbe9 923 * we can also use npre/npostfault count for accounting
c28f8966
PP
924 * these specific fault cases.
925 */
926 kprobes_inc_nmissed_count(cur);
927
928 /*
929 * We come here because instructions in the pre/post
930 * handler caused the page_fault, this could happen
931 * if handler tries to access user space by
932 * copy_from_user(), get_user() etc. Let the
933 * user-specified handler try to fix it first.
934 */
935 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
936 return 1;
937
938 /*
939 * In case the user-specified fault handler returned
940 * zero, try to fix up.
941 */
d6be29b8
MH
942 if (fixup_exception(regs))
943 return 1;
6d48583b 944
c28f8966 945 /*
8533bbe9 946 * fixup routine could not handle it,
c28f8966
PP
947 * Let do_page_fault() fix it.
948 */
1da177e4 949 }
6381c24c 950
1da177e4
LT
951 return 0;
952}
953
954/*
955 * Wrapper routine for handling exceptions.
956 */
3f33ab1c
MH
957int __kprobes
958kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, void *data)
1da177e4 959{
ade1af77 960 struct die_args *args = data;
66ff2d06
AM
961 int ret = NOTIFY_DONE;
962
8533bbe9 963 if (args->regs && user_mode_vm(args->regs))
2326c770 964 return ret;
965
1da177e4
LT
966 switch (val) {
967 case DIE_INT3:
968 if (kprobe_handler(args->regs))
66ff2d06 969 ret = NOTIFY_STOP;
1da177e4
LT
970 break;
971 case DIE_DEBUG:
62edab90
P
972 if (post_kprobe_handler(args->regs)) {
973 /*
974 * Reset the BS bit in dr6 (pointed by args->err) to
975 * denote completion of processing
976 */
977 (*(unsigned long *)ERR_PTR(args->err)) &= ~DR_STEP;
66ff2d06 978 ret = NOTIFY_STOP;
62edab90 979 }
1da177e4
LT
980 break;
981 case DIE_GPF:
b506a9d0
QB
982 /*
983 * To be potentially processing a kprobe fault and to
984 * trust the result from kprobe_running(), we have
985 * be non-preemptible.
986 */
987 if (!preemptible() && kprobe_running() &&
1da177e4 988 kprobe_fault_handler(args->regs, args->trapnr))
66ff2d06 989 ret = NOTIFY_STOP;
1da177e4
LT
990 break;
991 default:
992 break;
993 }
66ff2d06 994 return ret;
1da177e4
LT
995}
996
0f2fbdcb 997int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
1da177e4
LT
998{
999 struct jprobe *jp = container_of(p, struct jprobe, kp);
1000 unsigned long addr;
e7a510f9 1001 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1da177e4 1002
e7a510f9 1003 kcb->jprobe_saved_regs = *regs;
8533bbe9
MH
1004 kcb->jprobe_saved_sp = stack_addr(regs);
1005 addr = (unsigned long)(kcb->jprobe_saved_sp);
1006
1da177e4
LT
1007 /*
1008 * As Linus pointed out, gcc assumes that the callee
1009 * owns the argument space and could overwrite it, e.g.
1010 * tailcall optimization. So, to be absolutely safe
1011 * we also save and restore enough stack bytes to cover
1012 * the argument area.
1013 */
e7a510f9 1014 memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
d6be29b8 1015 MIN_STACK_SIZE(addr));
053de044 1016 regs->flags &= ~X86_EFLAGS_IF;
58dfe883 1017 trace_hardirqs_off();
65ea5b03 1018 regs->ip = (unsigned long)(jp->entry);
1da177e4
LT
1019 return 1;
1020}
1021
0f2fbdcb 1022void __kprobes jprobe_return(void)
1da177e4 1023{
e7a510f9
AM
1024 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1025
d6be29b8
MH
1026 asm volatile (
1027#ifdef CONFIG_X86_64
1028 " xchg %%rbx,%%rsp \n"
1029#else
1030 " xchgl %%ebx,%%esp \n"
1031#endif
1032 " int3 \n"
1033 " .globl jprobe_return_end\n"
1034 " jprobe_return_end: \n"
1035 " nop \n"::"b"
1036 (kcb->jprobe_saved_sp):"memory");
1da177e4
LT
1037}
1038
0f2fbdcb 1039int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1da177e4 1040{
e7a510f9 1041 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
65ea5b03 1042 u8 *addr = (u8 *) (regs->ip - 1);
1da177e4
LT
1043 struct jprobe *jp = container_of(p, struct jprobe, kp);
1044
d6be29b8
MH
1045 if ((addr > (u8 *) jprobe_return) &&
1046 (addr < (u8 *) jprobe_return_end)) {
8533bbe9 1047 if (stack_addr(regs) != kcb->jprobe_saved_sp) {
29b6cd79 1048 struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
d6be29b8
MH
1049 printk(KERN_ERR
1050 "current sp %p does not match saved sp %p\n",
8533bbe9 1051 stack_addr(regs), kcb->jprobe_saved_sp);
d6be29b8 1052 printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
57da8b96 1053 show_regs(saved_regs);
d6be29b8 1054 printk(KERN_ERR "Current registers\n");
57da8b96 1055 show_regs(regs);
1da177e4
LT
1056 BUG();
1057 }
e7a510f9 1058 *regs = kcb->jprobe_saved_regs;
8533bbe9
MH
1059 memcpy((kprobe_opcode_t *)(kcb->jprobe_saved_sp),
1060 kcb->jprobes_stack,
1061 MIN_STACK_SIZE(kcb->jprobe_saved_sp));
d217d545 1062 preempt_enable_no_resched();
1da177e4
LT
1063 return 1;
1064 }
1065 return 0;
1066}
ba8af12f 1067
6772926b 1068int __init arch_init_kprobes(void)
ba8af12f 1069{
a7b0133e 1070 return 0;
ba8af12f 1071}
bf8f6e5b
AM
1072
1073int __kprobes arch_trampoline_kprobe(struct kprobe *p)
1074{
bf8f6e5b
AM
1075 return 0;
1076}
This page took 0.752089 seconds and 5 git commands to generate.