perf, x86: Implement IBS initialization
[deliverable/linux.git] / arch / x86 / kernel / nmi.c
CommitLineData
1d48922c
DZ
1/*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
9c48f1c6 4 * Copyright (C) 2011 Don Zickus Red Hat, Inc.
1d48922c
DZ
5 *
6 * Pentium III FXSR, SSE support
7 * Gareth Hughes <gareth@valinux.com>, May 2000
8 */
9
10/*
11 * Handle hardware traps and faults.
12 */
13#include <linux/spinlock.h>
14#include <linux/kprobes.h>
15#include <linux/kdebug.h>
16#include <linux/nmi.h>
c9126b2e
DZ
17#include <linux/delay.h>
18#include <linux/hardirq.h>
19#include <linux/slab.h>
1d48922c
DZ
20
21#if defined(CONFIG_EDAC)
22#include <linux/edac.h>
23#endif
24
25#include <linux/atomic.h>
26#include <asm/traps.h>
27#include <asm/mach_traps.h>
c9126b2e
DZ
28#include <asm/nmi.h>
29
30#define NMI_MAX_NAMELEN 16
31struct nmiaction {
32 struct list_head list;
33 nmi_handler_t handler;
34 unsigned int flags;
35 char *name;
36};
37
38struct nmi_desc {
39 spinlock_t lock;
40 struct list_head head;
41};
42
43static struct nmi_desc nmi_desc[NMI_MAX] =
44{
45 {
46 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
47 .head = LIST_HEAD_INIT(nmi_desc[0].head),
48 },
49 {
50 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
51 .head = LIST_HEAD_INIT(nmi_desc[1].head),
52 },
53
54};
1d48922c 55
efc3aac5
DZ
56struct nmi_stats {
57 unsigned int normal;
58 unsigned int unknown;
59 unsigned int external;
60 unsigned int swallow;
61};
62
63static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
64
1d48922c
DZ
65static int ignore_nmis;
66
67int unknown_nmi_panic;
68/*
69 * Prevent NMI reason port (0x61) being accessed simultaneously, can
70 * only be used in NMI handler.
71 */
72static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
73
74static int __init setup_unknown_nmi_panic(char *str)
75{
76 unknown_nmi_panic = 1;
77 return 1;
78}
79__setup("unknown_nmi_panic", setup_unknown_nmi_panic);
80
c9126b2e
DZ
81#define nmi_to_desc(type) (&nmi_desc[type])
82
b227e233 83static int notrace __kprobes nmi_handle(unsigned int type, struct pt_regs *regs, bool b2b)
c9126b2e
DZ
84{
85 struct nmi_desc *desc = nmi_to_desc(type);
86 struct nmiaction *a;
87 int handled=0;
88
89 rcu_read_lock();
90
91 /*
92 * NMIs are edge-triggered, which means if you have enough
93 * of them concurrently, you can lose some because only one
94 * can be latched at any given time. Walk the whole list
95 * to handle those situations.
96 */
b227e233 97 list_for_each_entry_rcu(a, &desc->head, list)
c9126b2e
DZ
98 handled += a->handler(type, regs);
99
c9126b2e
DZ
100 rcu_read_unlock();
101
102 /* return total number of NMI events handled */
103 return handled;
104}
105
106static int __setup_nmi(unsigned int type, struct nmiaction *action)
107{
108 struct nmi_desc *desc = nmi_to_desc(type);
109 unsigned long flags;
110
111 spin_lock_irqsave(&desc->lock, flags);
112
b227e233
DZ
113 /*
114 * most handlers of type NMI_UNKNOWN never return because
115 * they just assume the NMI is theirs. Just a sanity check
116 * to manage expectations
117 */
118 WARN_ON_ONCE(type == NMI_UNKNOWN && !list_empty(&desc->head));
119
c9126b2e
DZ
120 /*
121 * some handlers need to be executed first otherwise a fake
122 * event confuses some handlers (kdump uses this flag)
123 */
124 if (action->flags & NMI_FLAG_FIRST)
125 list_add_rcu(&action->list, &desc->head);
126 else
127 list_add_tail_rcu(&action->list, &desc->head);
128
129 spin_unlock_irqrestore(&desc->lock, flags);
130 return 0;
131}
132
133static struct nmiaction *__free_nmi(unsigned int type, const char *name)
134{
135 struct nmi_desc *desc = nmi_to_desc(type);
136 struct nmiaction *n;
137 unsigned long flags;
138
139 spin_lock_irqsave(&desc->lock, flags);
140
141 list_for_each_entry_rcu(n, &desc->head, list) {
142 /*
143 * the name passed in to describe the nmi handler
144 * is used as the lookup key
145 */
146 if (!strcmp(n->name, name)) {
147 WARN(in_nmi(),
148 "Trying to free NMI (%s) from NMI context!\n", n->name);
149 list_del_rcu(&n->list);
150 break;
151 }
152 }
153
154 spin_unlock_irqrestore(&desc->lock, flags);
155 synchronize_rcu();
156 return (n);
157}
158
159int register_nmi_handler(unsigned int type, nmi_handler_t handler,
160 unsigned long nmiflags, const char *devname)
161{
162 struct nmiaction *action;
163 int retval = -ENOMEM;
164
165 if (!handler)
166 return -EINVAL;
167
168 action = kzalloc(sizeof(struct nmiaction), GFP_KERNEL);
169 if (!action)
170 goto fail_action;
171
172 action->handler = handler;
173 action->flags = nmiflags;
174 action->name = kstrndup(devname, NMI_MAX_NAMELEN, GFP_KERNEL);
175 if (!action->name)
176 goto fail_action_name;
177
178 retval = __setup_nmi(type, action);
179
180 if (retval)
181 goto fail_setup_nmi;
182
183 return retval;
184
185fail_setup_nmi:
186 kfree(action->name);
187fail_action_name:
188 kfree(action);
189fail_action:
190
191 return retval;
192}
193EXPORT_SYMBOL_GPL(register_nmi_handler);
194
195void unregister_nmi_handler(unsigned int type, const char *name)
196{
197 struct nmiaction *a;
198
199 a = __free_nmi(type, name);
200 if (a) {
201 kfree(a->name);
202 kfree(a);
203 }
204}
205
206EXPORT_SYMBOL_GPL(unregister_nmi_handler);
207
1d48922c
DZ
208static notrace __kprobes void
209pci_serr_error(unsigned char reason, struct pt_regs *regs)
210{
211 pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
212 reason, smp_processor_id());
213
214 /*
215 * On some machines, PCI SERR line is used to report memory
216 * errors. EDAC makes use of it.
217 */
218#if defined(CONFIG_EDAC)
219 if (edac_handler_set()) {
220 edac_atomic_assert_error();
221 return;
222 }
223#endif
224
225 if (panic_on_unrecovered_nmi)
226 panic("NMI: Not continuing");
227
228 pr_emerg("Dazed and confused, but trying to continue\n");
229
230 /* Clear and disable the PCI SERR error line. */
231 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
232 outb(reason, NMI_REASON_PORT);
233}
234
235static notrace __kprobes void
236io_check_error(unsigned char reason, struct pt_regs *regs)
237{
238 unsigned long i;
239
240 pr_emerg(
241 "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
242 reason, smp_processor_id());
243 show_registers(regs);
244
245 if (panic_on_io_nmi)
246 panic("NMI IOCK error: Not continuing");
247
248 /* Re-enable the IOCK line, wait for a few seconds */
249 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
250 outb(reason, NMI_REASON_PORT);
251
252 i = 20000;
253 while (--i) {
254 touch_nmi_watchdog();
255 udelay(100);
256 }
257
258 reason &= ~NMI_REASON_CLEAR_IOCHK;
259 outb(reason, NMI_REASON_PORT);
260}
261
262static notrace __kprobes void
263unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
264{
9c48f1c6
DZ
265 int handled;
266
b227e233
DZ
267 /*
268 * Use 'false' as back-to-back NMIs are dealt with one level up.
269 * Of course this makes having multiple 'unknown' handlers useless
270 * as only the first one is ever run (unless it can actually determine
271 * if it caused the NMI)
272 */
273 handled = nmi_handle(NMI_UNKNOWN, regs, false);
efc3aac5
DZ
274 if (handled) {
275 __this_cpu_add(nmi_stats.unknown, handled);
1d48922c 276 return;
efc3aac5
DZ
277 }
278
279 __this_cpu_add(nmi_stats.unknown, 1);
280
1d48922c
DZ
281#ifdef CONFIG_MCA
282 /*
283 * Might actually be able to figure out what the guilty party
284 * is:
285 */
286 if (MCA_bus) {
287 mca_handle_nmi();
288 return;
289 }
290#endif
291 pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
292 reason, smp_processor_id());
293
294 pr_emerg("Do you have a strange power saving mode enabled?\n");
295 if (unknown_nmi_panic || panic_on_unrecovered_nmi)
296 panic("NMI: Not continuing");
297
298 pr_emerg("Dazed and confused, but trying to continue\n");
299}
300
b227e233
DZ
301static DEFINE_PER_CPU(bool, swallow_nmi);
302static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
303
1d48922c
DZ
304static notrace __kprobes void default_do_nmi(struct pt_regs *regs)
305{
306 unsigned char reason = 0;
9c48f1c6 307 int handled;
b227e233 308 bool b2b = false;
1d48922c
DZ
309
310 /*
311 * CPU-specific NMI must be processed before non-CPU-specific
312 * NMI, otherwise we may lose it, because the CPU-specific
313 * NMI can not be detected/processed on other CPUs.
314 */
b227e233
DZ
315
316 /*
317 * Back-to-back NMIs are interesting because they can either
318 * be two NMI or more than two NMIs (any thing over two is dropped
319 * due to NMI being edge-triggered). If this is the second half
320 * of the back-to-back NMI, assume we dropped things and process
321 * more handlers. Otherwise reset the 'swallow' NMI behaviour
322 */
323 if (regs->ip == __this_cpu_read(last_nmi_rip))
324 b2b = true;
325 else
326 __this_cpu_write(swallow_nmi, false);
327
328 __this_cpu_write(last_nmi_rip, regs->ip);
329
330 handled = nmi_handle(NMI_LOCAL, regs, b2b);
efc3aac5 331 __this_cpu_add(nmi_stats.normal, handled);
b227e233
DZ
332 if (handled) {
333 /*
334 * There are cases when a NMI handler handles multiple
335 * events in the current NMI. One of these events may
336 * be queued for in the next NMI. Because the event is
337 * already handled, the next NMI will result in an unknown
338 * NMI. Instead lets flag this for a potential NMI to
339 * swallow.
340 */
341 if (handled > 1)
342 __this_cpu_write(swallow_nmi, true);
1d48922c 343 return;
b227e233 344 }
1d48922c
DZ
345
346 /* Non-CPU-specific NMI: NMI sources can be processed on any CPU */
347 raw_spin_lock(&nmi_reason_lock);
348 reason = get_nmi_reason();
349
350 if (reason & NMI_REASON_MASK) {
351 if (reason & NMI_REASON_SERR)
352 pci_serr_error(reason, regs);
353 else if (reason & NMI_REASON_IOCHK)
354 io_check_error(reason, regs);
355#ifdef CONFIG_X86_32
356 /*
357 * Reassert NMI in case it became active
358 * meanwhile as it's edge-triggered:
359 */
360 reassert_nmi();
361#endif
efc3aac5 362 __this_cpu_add(nmi_stats.external, 1);
1d48922c
DZ
363 raw_spin_unlock(&nmi_reason_lock);
364 return;
365 }
366 raw_spin_unlock(&nmi_reason_lock);
367
b227e233
DZ
368 /*
369 * Only one NMI can be latched at a time. To handle
370 * this we may process multiple nmi handlers at once to
371 * cover the case where an NMI is dropped. The downside
372 * to this approach is we may process an NMI prematurely,
373 * while its real NMI is sitting latched. This will cause
374 * an unknown NMI on the next run of the NMI processing.
375 *
376 * We tried to flag that condition above, by setting the
377 * swallow_nmi flag when we process more than one event.
378 * This condition is also only present on the second half
379 * of a back-to-back NMI, so we flag that condition too.
380 *
381 * If both are true, we assume we already processed this
382 * NMI previously and we swallow it. Otherwise we reset
383 * the logic.
384 *
385 * There are scenarios where we may accidentally swallow
386 * a 'real' unknown NMI. For example, while processing
387 * a perf NMI another perf NMI comes in along with a
388 * 'real' unknown NMI. These two NMIs get combined into
389 * one (as descibed above). When the next NMI gets
390 * processed, it will be flagged by perf as handled, but
391 * noone will know that there was a 'real' unknown NMI sent
392 * also. As a result it gets swallowed. Or if the first
393 * perf NMI returns two events handled then the second
394 * NMI will get eaten by the logic below, again losing a
395 * 'real' unknown NMI. But this is the best we can do
396 * for now.
397 */
398 if (b2b && __this_cpu_read(swallow_nmi))
efc3aac5 399 __this_cpu_add(nmi_stats.swallow, 1);
b227e233
DZ
400 else
401 unknown_nmi_error(reason, regs);
1d48922c
DZ
402}
403
404dotraplinkage notrace __kprobes void
405do_nmi(struct pt_regs *regs, long error_code)
406{
407 nmi_enter();
408
409 inc_irq_stat(__nmi_count);
410
411 if (!ignore_nmis)
412 default_do_nmi(regs);
413
414 nmi_exit();
415}
416
417void stop_nmi(void)
418{
419 ignore_nmis++;
420}
421
422void restart_nmi(void)
423{
424 ignore_nmis--;
425}
b227e233
DZ
426
427/* reset the back-to-back NMI logic */
428void local_touch_nmi(void)
429{
430 __this_cpu_write(last_nmi_rip, 0);
431}
This page took 0.039781 seconds and 5 git commands to generate.