x86: move to .rodata/.init.data
[deliverable/linux.git] / arch / x86 / kernel / suspend_64.c
CommitLineData
1da177e4
LT
1/*
2 * Suspend support specific for i386.
3 *
4 * Distribute under GPLv2
5 *
6 * Copyright (c) 2002 Pavel Machek <pavel@suse.cz>
7 * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
8 */
9
55679edb 10#include <linux/smp.h>
1da177e4 11#include <linux/suspend.h>
1da177e4 12#include <asm/proto.h>
3dd08325
RW
13#include <asm/page.h>
14#include <asm/pgtable.h>
3ebad590 15#include <asm/mtrr.h>
1da177e4 16
49c3df6a
VG
17/* References to section boundaries */
18extern const void __nosave_begin, __nosave_end;
19
1da177e4
LT
20struct saved_context saved_context;
21
5c9c9bec
RW
22/**
23 * __save_processor_state - save CPU registers before creating a
24 * hibernation image and before restoring the memory state from it
25 * @ctxt - structure to store the registers contents in
26 *
27 * NOTE: If there is a CPU register the modification of which by the
28 * boot kernel (ie. the kernel used for loading the hibernation image)
29 * might affect the operations of the restored target kernel (ie. the one
30 * saved in the hibernation image), then its contents must be saved by this
31 * function. In other words, if kernel A is hibernated and different
32 * kernel B is used for loading the hibernation image into memory, the
33 * kernel A's __save_processor_state() function must save all registers
34 * needed by kernel A, so that it can operate correctly after the resume
35 * regardless of what kernel B does in the meantime.
36 */
1da177e4
LT
37void __save_processor_state(struct saved_context *ctxt)
38{
39 kernel_fpu_begin();
40
41 /*
42 * descriptor tables
43 */
9d1c6e7c
GOC
44 store_gdt((struct desc_ptr *)&ctxt->gdt_limit);
45 store_idt((struct desc_ptr *)&ctxt->idt_limit);
46 store_tr(ctxt->tr);
1da177e4
LT
47
48 /* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
1da177e4
LT
49 /*
50 * segment registers
51 */
52 asm volatile ("movw %%ds, %0" : "=m" (ctxt->ds));
53 asm volatile ("movw %%es, %0" : "=m" (ctxt->es));
54 asm volatile ("movw %%fs, %0" : "=m" (ctxt->fs));
55 asm volatile ("movw %%gs, %0" : "=m" (ctxt->gs));
56 asm volatile ("movw %%ss, %0" : "=m" (ctxt->ss));
57
58 rdmsrl(MSR_FS_BASE, ctxt->fs_base);
59 rdmsrl(MSR_GS_BASE, ctxt->gs_base);
60 rdmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base);
3ebad590 61 mtrr_save_fixed_ranges(NULL);
1da177e4
LT
62
63 /*
64 * control registers
65 */
3c321bce 66 rdmsrl(MSR_EFER, ctxt->efer);
f51c9452
GOC
67 ctxt->cr0 = read_cr0();
68 ctxt->cr2 = read_cr2();
69 ctxt->cr3 = read_cr3();
70 ctxt->cr4 = read_cr4();
71 ctxt->cr8 = read_cr8();
1da177e4
LT
72}
73
74void save_processor_state(void)
75{
76 __save_processor_state(&saved_context);
77}
78
08967f94 79static void do_fpu_end(void)
1da177e4 80{
08967f94
SL
81 /*
82 * Restore FPU regs if necessary
83 */
84 kernel_fpu_end();
1da177e4
LT
85}
86
5c9c9bec
RW
87/**
88 * __restore_processor_state - restore the contents of CPU registers saved
89 * by __save_processor_state()
90 * @ctxt - structure to load the registers contents from
91 */
1da177e4
LT
92void __restore_processor_state(struct saved_context *ctxt)
93{
94 /*
95 * control registers
96 */
3c321bce 97 wrmsrl(MSR_EFER, ctxt->efer);
f51c9452
GOC
98 write_cr8(ctxt->cr8);
99 write_cr4(ctxt->cr4);
100 write_cr3(ctxt->cr3);
101 write_cr2(ctxt->cr2);
102 write_cr0(ctxt->cr0);
1da177e4 103
8d783b3e
PM
104 /*
105 * now restore the descriptor tables to their proper values
106 * ltr is done i fix_processor_context().
107 */
9d1c6e7c
GOC
108 load_gdt((const struct desc_ptr *)&ctxt->gdt_limit);
109 load_idt((const struct desc_ptr *)&ctxt->idt_limit);
110
8d783b3e 111
1da177e4
LT
112 /*
113 * segment registers
114 */
115 asm volatile ("movw %0, %%ds" :: "r" (ctxt->ds));
116 asm volatile ("movw %0, %%es" :: "r" (ctxt->es));
117 asm volatile ("movw %0, %%fs" :: "r" (ctxt->fs));
118 load_gs_index(ctxt->gs);
119 asm volatile ("movw %0, %%ss" :: "r" (ctxt->ss));
120
121 wrmsrl(MSR_FS_BASE, ctxt->fs_base);
122 wrmsrl(MSR_GS_BASE, ctxt->gs_base);
123 wrmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base);
124
1da177e4
LT
125 fix_processor_context();
126
127 do_fpu_end();
3b520b23 128 mtrr_ap_init();
1da177e4
LT
129}
130
131void restore_processor_state(void)
132{
133 __restore_processor_state(&saved_context);
134}
135
136void fix_processor_context(void)
137{
138 int cpu = smp_processor_id();
139 struct tss_struct *t = &per_cpu(init_tss, cpu);
140
3a4fa0a2 141 set_tss_desc(cpu,t); /* This just modifies memory; should not be necessary. But... This is necessary, because 386 hardware has concept of busy TSS or some similar stupidity. */
1da177e4 142
f6dc247c 143 get_cpu_gdt_table(cpu)[GDT_ENTRY_TSS].type = 9;
1da177e4
LT
144
145 syscall_init(); /* This sets MSR_*STAR and related */
146 load_TR_desc(); /* This does ltr */
147 load_LDT(&current->active_mm->context); /* This does lldt */
148
149 /*
150 * Now maybe reload the debug registers
151 */
152 if (current->thread.debugreg7){
153 loaddebug(&current->thread, 0);
154 loaddebug(&current->thread, 1);
155 loaddebug(&current->thread, 2);
156 loaddebug(&current->thread, 3);
157 /* no 4 and 5 */
158 loaddebug(&current->thread, 6);
159 loaddebug(&current->thread, 7);
160 }
161
162}
163
b0cb1a19 164#ifdef CONFIG_HIBERNATION
3dd08325
RW
165/* Defined in arch/x86_64/kernel/suspend_asm.S */
166extern int restore_image(void);
1da177e4 167
d158cbdf
RW
168/*
169 * Address to jump to in the last phase of restore in order to get to the image
170 * kernel's text (this value is passed in the image header).
171 */
172unsigned long restore_jump_address;
173
c30bb68c
RW
174/*
175 * Value of the cr3 register from before the hibernation (this value is passed
176 * in the image header).
177 */
178unsigned long restore_cr3;
179
3dd08325
RW
180pgd_t *temp_level4_pgt;
181
d158cbdf
RW
182void *relocated_restore_code;
183
2c1b4a5c 184static int res_phys_pud_init(pud_t *pud, unsigned long address, unsigned long end)
3dd08325
RW
185{
186 long i, j;
187
188 i = pud_index(address);
189 pud = pud + i;
190 for (; i < PTRS_PER_PUD; pud++, i++) {
191 unsigned long paddr;
192 pmd_t *pmd;
193
194 paddr = address + i*PUD_SIZE;
195 if (paddr >= end)
196 break;
197
2c1b4a5c
RW
198 pmd = (pmd_t *)get_safe_page(GFP_ATOMIC);
199 if (!pmd)
200 return -ENOMEM;
3dd08325
RW
201 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
202 for (j = 0; j < PTRS_PER_PMD; pmd++, j++, paddr += PMD_SIZE) {
203 unsigned long pe;
204
205 if (paddr >= end)
206 break;
d158cbdf 207 pe = __PAGE_KERNEL_LARGE_EXEC | paddr;
3dd08325
RW
208 pe &= __supported_pte_mask;
209 set_pmd(pmd, __pmd(pe));
210 }
211 }
2c1b4a5c 212 return 0;
3dd08325
RW
213}
214
2c1b4a5c 215static int set_up_temporary_mappings(void)
3dd08325
RW
216{
217 unsigned long start, end, next;
2c1b4a5c 218 int error;
3dd08325 219
2c1b4a5c
RW
220 temp_level4_pgt = (pgd_t *)get_safe_page(GFP_ATOMIC);
221 if (!temp_level4_pgt)
222 return -ENOMEM;
3dd08325 223
5867a78f
AM
224 /* It is safe to reuse the original kernel mapping */
225 set_pgd(temp_level4_pgt + pgd_index(__START_KERNEL_map),
226 init_level4_pgt[pgd_index(__START_KERNEL_map)]);
227
3dd08325
RW
228 /* Set up the direct mapping from scratch */
229 start = (unsigned long)pfn_to_kaddr(0);
230 end = (unsigned long)pfn_to_kaddr(end_pfn);
231
232 for (; start < end; start = next) {
5867a78f 233 pud_t *pud = (pud_t *)get_safe_page(GFP_ATOMIC);
2c1b4a5c
RW
234 if (!pud)
235 return -ENOMEM;
3dd08325
RW
236 next = start + PGDIR_SIZE;
237 if (next > end)
238 next = end;
2c1b4a5c
RW
239 if ((error = res_phys_pud_init(pud, __pa(start), __pa(next))))
240 return error;
3dd08325
RW
241 set_pgd(temp_level4_pgt + pgd_index(start),
242 mk_kernel_pgd(__pa(pud)));
243 }
5867a78f 244 return 0;
3dd08325
RW
245}
246
247int swsusp_arch_resume(void)
248{
2c1b4a5c 249 int error;
3dd08325 250
3dd08325 251 /* We have got enough memory and from now on we cannot recover */
2c1b4a5c
RW
252 if ((error = set_up_temporary_mappings()))
253 return error;
d158cbdf
RW
254
255 relocated_restore_code = (void *)get_safe_page(GFP_ATOMIC);
256 if (!relocated_restore_code)
257 return -ENOMEM;
258 memcpy(relocated_restore_code, &core_restore_code,
259 &restore_registers - &core_restore_code);
260
3dd08325
RW
261 restore_image();
262 return 0;
263}
49c3df6a
VG
264
265/*
266 * pfn_is_nosave - check if given pfn is in the 'nosave' section
267 */
268
269int pfn_is_nosave(unsigned long pfn)
270{
271 unsigned long nosave_begin_pfn = __pa_symbol(&__nosave_begin) >> PAGE_SHIFT;
272 unsigned long nosave_end_pfn = PAGE_ALIGN(__pa_symbol(&__nosave_end)) >> PAGE_SHIFT;
273 return (pfn >= nosave_begin_pfn) && (pfn < nosave_end_pfn);
274}
d158cbdf
RW
275
276struct restore_data_record {
277 unsigned long jump_address;
c30bb68c
RW
278 unsigned long cr3;
279 unsigned long magic;
d158cbdf
RW
280};
281
282#define RESTORE_MAGIC 0x0123456789ABCDEFUL
283
284/**
285 * arch_hibernation_header_save - populate the architecture specific part
286 * of a hibernation image header
287 * @addr: address to save the data at
288 */
289int arch_hibernation_header_save(void *addr, unsigned int max_size)
290{
291 struct restore_data_record *rdr = addr;
292
293 if (max_size < sizeof(struct restore_data_record))
294 return -EOVERFLOW;
295 rdr->jump_address = restore_jump_address;
c30bb68c
RW
296 rdr->cr3 = restore_cr3;
297 rdr->magic = RESTORE_MAGIC;
d158cbdf
RW
298 return 0;
299}
300
301/**
302 * arch_hibernation_header_restore - read the architecture specific data
303 * from the hibernation image header
304 * @addr: address to read the data from
305 */
306int arch_hibernation_header_restore(void *addr)
307{
308 struct restore_data_record *rdr = addr;
309
310 restore_jump_address = rdr->jump_address;
c30bb68c
RW
311 restore_cr3 = rdr->cr3;
312 return (rdr->magic == RESTORE_MAGIC) ? 0 : -EINVAL;
d158cbdf 313}
b0cb1a19 314#endif /* CONFIG_HIBERNATION */
This page took 0.295962 seconds and 5 git commands to generate.