KVM: i8254: refactor kvm_free_pit
[deliverable/linux.git] / arch / x86 / kvm / i8254.c
CommitLineData
7837699f
SY
1/*
2 * 8253/8254 interval timer emulation
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 * Copyright (c) 2006 Intel Corporation
6 * Copyright (c) 2007 Keir Fraser, XenSource Inc
7 * Copyright (c) 2008 Intel Corporation
9611c187 8 * Copyright 2009 Red Hat, Inc. and/or its affiliates.
7837699f
SY
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 *
28 * Authors:
29 * Sheng Yang <sheng.yang@intel.com>
30 * Based on QEMU and Xen.
31 */
32
a78d9626
JP
33#define pr_fmt(fmt) "pit: " fmt
34
7837699f 35#include <linux/kvm_host.h>
5a0e3ad6 36#include <linux/slab.h>
7837699f 37
49df6397 38#include "ioapic.h"
7837699f
SY
39#include "irq.h"
40#include "i8254.h"
9ed96e87 41#include "x86.h"
7837699f
SY
42
43#ifndef CONFIG_X86_64
6f6d6a1a 44#define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
7837699f
SY
45#else
46#define mod_64(x, y) ((x) % (y))
47#endif
48
49#define RW_STATE_LSB 1
50#define RW_STATE_MSB 2
51#define RW_STATE_WORD0 3
52#define RW_STATE_WORD1 4
53
54/* Compute with 96 bit intermediate result: (a*b)/c */
55static u64 muldiv64(u64 a, u32 b, u32 c)
56{
57 union {
58 u64 ll;
59 struct {
60 u32 low, high;
61 } l;
62 } u, res;
63 u64 rl, rh;
64
65 u.ll = a;
66 rl = (u64)u.l.low * (u64)b;
67 rh = (u64)u.l.high * (u64)b;
68 rh += (rl >> 32);
6f6d6a1a
RZ
69 res.l.high = div64_u64(rh, c);
70 res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
7837699f
SY
71 return res.ll;
72}
73
09edea72 74static void pit_set_gate(struct kvm_pit *pit, int channel, u32 val)
7837699f 75{
09edea72 76 struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
7837699f 77
7837699f
SY
78 switch (c->mode) {
79 default:
80 case 0:
81 case 4:
82 /* XXX: just disable/enable counting */
83 break;
84 case 1:
85 case 2:
86 case 3:
87 case 5:
88 /* Restart counting on rising edge. */
89 if (c->gate < val)
90 c->count_load_time = ktime_get();
91 break;
92 }
93
94 c->gate = val;
95}
96
09edea72 97static int pit_get_gate(struct kvm_pit *pit, int channel)
7837699f 98{
09edea72 99 return pit->pit_state.channels[channel].gate;
7837699f
SY
100}
101
09edea72 102static s64 __kpit_elapsed(struct kvm_pit *pit)
fd668423
MT
103{
104 s64 elapsed;
105 ktime_t remaining;
09edea72 106 struct kvm_kpit_state *ps = &pit->pit_state;
fd668423 107
26ef1924 108 if (!ps->period)
0ff77873
MT
109 return 0;
110
ede2ccc5
MT
111 /*
112 * The Counter does not stop when it reaches zero. In
113 * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
114 * the highest count, either FFFF hex for binary counting
115 * or 9999 for BCD counting, and continues counting.
116 * Modes 2 and 3 are periodic; the Counter reloads
117 * itself with the initial count and continues counting
118 * from there.
119 */
26ef1924
AK
120 remaining = hrtimer_get_remaining(&ps->timer);
121 elapsed = ps->period - ktime_to_ns(remaining);
fd668423
MT
122
123 return elapsed;
124}
125
09edea72 126static s64 kpit_elapsed(struct kvm_pit *pit, struct kvm_kpit_channel_state *c,
fd668423
MT
127 int channel)
128{
129 if (channel == 0)
09edea72 130 return __kpit_elapsed(pit);
fd668423
MT
131
132 return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
133}
134
09edea72 135static int pit_get_count(struct kvm_pit *pit, int channel)
7837699f 136{
09edea72 137 struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
7837699f
SY
138 s64 d, t;
139 int counter;
140
09edea72 141 t = kpit_elapsed(pit, c, channel);
7837699f
SY
142 d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
143
144 switch (c->mode) {
145 case 0:
146 case 1:
147 case 4:
148 case 5:
149 counter = (c->count - d) & 0xffff;
150 break;
151 case 3:
152 /* XXX: may be incorrect for odd counts */
153 counter = c->count - (mod_64((2 * d), c->count));
154 break;
155 default:
156 counter = c->count - mod_64(d, c->count);
157 break;
158 }
159 return counter;
160}
161
09edea72 162static int pit_get_out(struct kvm_pit *pit, int channel)
7837699f 163{
09edea72 164 struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
7837699f
SY
165 s64 d, t;
166 int out;
167
09edea72 168 t = kpit_elapsed(pit, c, channel);
7837699f
SY
169 d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
170
171 switch (c->mode) {
172 default:
173 case 0:
174 out = (d >= c->count);
175 break;
176 case 1:
177 out = (d < c->count);
178 break;
179 case 2:
180 out = ((mod_64(d, c->count) == 0) && (d != 0));
181 break;
182 case 3:
183 out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
184 break;
185 case 4:
186 case 5:
187 out = (d == c->count);
188 break;
189 }
190
191 return out;
192}
193
09edea72 194static void pit_latch_count(struct kvm_pit *pit, int channel)
7837699f 195{
09edea72 196 struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
7837699f 197
7837699f 198 if (!c->count_latched) {
09edea72 199 c->latched_count = pit_get_count(pit, channel);
7837699f
SY
200 c->count_latched = c->rw_mode;
201 }
202}
203
09edea72 204static void pit_latch_status(struct kvm_pit *pit, int channel)
7837699f 205{
09edea72 206 struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
7837699f 207
7837699f
SY
208 if (!c->status_latched) {
209 /* TODO: Return NULL COUNT (bit 6). */
09edea72 210 c->status = ((pit_get_out(pit, channel) << 7) |
7837699f
SY
211 (c->rw_mode << 4) |
212 (c->mode << 1) |
213 c->bcd);
214 c->status_latched = 1;
215 }
216}
217
ee032c99 218static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
3cf57fed
MT
219{
220 struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
221 irq_ack_notifier);
33572ac0 222
ddf54503
RK
223 atomic_set(&ps->irq_ack, 1);
224 /* irq_ack should be set before pending is read. Order accesses with
225 * inc(pending) in pit_timer_fn and xchg(irq_ack, 0) in pit_do_work.
226 */
227 smp_mb();
71474e2f 228 if (atomic_dec_if_positive(&ps->pending) > 0)
b6ddf05f 229 queue_kthread_work(&ps->pit->worker, &ps->pit->expired);
3cf57fed
MT
230}
231
2f599714
MT
232void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
233{
234 struct kvm_pit *pit = vcpu->kvm->arch.vpit;
235 struct hrtimer *timer;
236
c5af89b6 237 if (!kvm_vcpu_is_bsp(vcpu) || !pit)
2f599714
MT
238 return;
239
26ef1924 240 timer = &pit->pit_state.timer;
2febc839 241 mutex_lock(&pit->pit_state.lock);
2f599714 242 if (hrtimer_cancel(timer))
beb20d52 243 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
2febc839 244 mutex_unlock(&pit->pit_state.lock);
2f599714
MT
245}
246
33572ac0 247static void destroy_pit_timer(struct kvm_pit *pit)
7837699f 248{
26ef1924 249 hrtimer_cancel(&pit->pit_state.timer);
b6ddf05f 250 flush_kthread_work(&pit->expired);
7837699f
SY
251}
252
b6ddf05f 253static void pit_do_work(struct kthread_work *work)
33572ac0
CL
254{
255 struct kvm_pit *pit = container_of(work, struct kvm_pit, expired);
256 struct kvm *kvm = pit->kvm;
257 struct kvm_vcpu *vcpu;
258 int i;
259 struct kvm_kpit_state *ps = &pit->pit_state;
33572ac0 260
ddf54503
RK
261 if (ps->reinject && !atomic_xchg(&ps->irq_ack, 0))
262 return;
263
264 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1, false);
265 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0, false);
266
267 /*
268 * Provides NMI watchdog support via Virtual Wire mode.
269 * The route is: PIT -> LVT0 in NMI mode.
270 *
271 * Note: Our Virtual Wire implementation does not follow
272 * the MP specification. We propagate a PIT interrupt to all
273 * VCPUs and only when LVT0 is in NMI mode. The interrupt can
274 * also be simultaneously delivered through PIC and IOAPIC.
33572ac0 275 */
ddf54503
RK
276 if (atomic_read(&kvm->arch.vapics_in_nmi_mode) > 0)
277 kvm_for_each_vcpu(i, vcpu, kvm)
278 kvm_apic_nmi_wd_deliver(vcpu);
33572ac0
CL
279}
280
281static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
282{
26ef1924
AK
283 struct kvm_kpit_state *ps = container_of(data, struct kvm_kpit_state, timer);
284 struct kvm_pit *pt = ps->kvm->arch.vpit;
33572ac0 285
7dd0fdff 286 if (ps->reinject)
26ef1924 287 atomic_inc(&ps->pending);
7dd0fdff
RK
288
289 queue_kthread_work(&pt->worker, &pt->expired);
33572ac0 290
26ef1924
AK
291 if (ps->is_periodic) {
292 hrtimer_add_expires_ns(&ps->timer, ps->period);
33572ac0
CL
293 return HRTIMER_RESTART;
294 } else
295 return HRTIMER_NORESTART;
296}
297
fd700a00
RK
298static inline void kvm_pit_reset_reinject(struct kvm_pit *pit)
299{
300 atomic_set(&pit->pit_state.pending, 0);
ddf54503 301 atomic_set(&pit->pit_state.irq_ack, 1);
fd700a00
RK
302}
303
71474e2f
RK
304void kvm_pit_set_reinject(struct kvm_pit *pit, bool reinject)
305{
306 struct kvm_kpit_state *ps = &pit->pit_state;
307 struct kvm *kvm = pit->kvm;
308
309 if (ps->reinject == reinject)
310 return;
311
312 if (reinject) {
313 /* The initial state is preserved while ps->reinject == 0. */
314 kvm_pit_reset_reinject(pit);
315 kvm_register_irq_ack_notifier(kvm, &ps->irq_ack_notifier);
316 kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
317 } else {
318 kvm_unregister_irq_ack_notifier(kvm, &ps->irq_ack_notifier);
319 kvm_unregister_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
320 }
321
322 ps->reinject = reinject;
323}
324
09edea72 325static void create_pit_timer(struct kvm_pit *pit, u32 val, int is_period)
7837699f 326{
09edea72
RK
327 struct kvm_kpit_state *ps = &pit->pit_state;
328 struct kvm *kvm = pit->kvm;
7837699f
SY
329 s64 interval;
330
49df6397
SR
331 if (!ioapic_in_kernel(kvm) ||
332 ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)
0924ab2c
JK
333 return;
334
7837699f
SY
335 interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
336
a78d9626 337 pr_debug("create pit timer, interval is %llu nsec\n", interval);
7837699f
SY
338
339 /* TODO The new value only affected after the retriggered */
26ef1924 340 hrtimer_cancel(&ps->timer);
b6ddf05f 341 flush_kthread_work(&ps->pit->expired);
26ef1924 342 ps->period = interval;
d3c7b77d
MT
343 ps->is_periodic = is_period;
344
26ef1924 345 ps->timer.function = pit_timer_fn;
09edea72 346 ps->kvm = pit->kvm;
d3c7b77d 347
09edea72 348 kvm_pit_reset_reinject(pit);
7837699f 349
9ed96e87
MT
350 /*
351 * Do not allow the guest to program periodic timers with small
352 * interval, since the hrtimers are not throttled by the host
353 * scheduler.
354 */
355 if (ps->is_periodic) {
356 s64 min_period = min_timer_period_us * 1000LL;
357
358 if (ps->period < min_period) {
359 pr_info_ratelimited(
360 "kvm: requested %lld ns "
361 "i8254 timer period limited to %lld ns\n",
362 ps->period, min_period);
363 ps->period = min_period;
364 }
365 }
366
26ef1924 367 hrtimer_start(&ps->timer, ktime_add_ns(ktime_get(), interval),
7837699f
SY
368 HRTIMER_MODE_ABS);
369}
370
09edea72 371static void pit_load_count(struct kvm_pit *pit, int channel, u32 val)
7837699f 372{
09edea72 373 struct kvm_kpit_state *ps = &pit->pit_state;
7837699f 374
a78d9626 375 pr_debug("load_count val is %d, channel is %d\n", val, channel);
7837699f
SY
376
377 /*
ede2ccc5
MT
378 * The largest possible initial count is 0; this is equivalent
379 * to 216 for binary counting and 104 for BCD counting.
7837699f
SY
380 */
381 if (val == 0)
382 val = 0x10000;
383
7837699f
SY
384 ps->channels[channel].count = val;
385
fd668423
MT
386 if (channel != 0) {
387 ps->channels[channel].count_load_time = ktime_get();
7837699f 388 return;
fd668423 389 }
7837699f
SY
390
391 /* Two types of timer
392 * mode 1 is one shot, mode 2 is period, otherwise del timer */
393 switch (ps->channels[0].mode) {
ede2ccc5 394 case 0:
7837699f 395 case 1:
ece15bab
MT
396 /* FIXME: enhance mode 4 precision */
397 case 4:
09edea72 398 create_pit_timer(pit, val, 0);
7837699f
SY
399 break;
400 case 2:
f6975545 401 case 3:
09edea72 402 create_pit_timer(pit, val, 1);
7837699f
SY
403 break;
404 default:
09edea72 405 destroy_pit_timer(pit);
7837699f
SY
406 }
407}
408
09edea72
RK
409void kvm_pit_load_count(struct kvm_pit *pit, int channel, u32 val,
410 int hpet_legacy_start)
e0f63cb9 411{
e9f42757 412 u8 saved_mode;
b69d920f 413
09edea72 414 WARN_ON_ONCE(!mutex_is_locked(&pit->pit_state.lock));
b69d920f 415
e9f42757
BK
416 if (hpet_legacy_start) {
417 /* save existing mode for later reenablement */
e5e57e7a 418 WARN_ON(channel != 0);
09edea72
RK
419 saved_mode = pit->pit_state.channels[0].mode;
420 pit->pit_state.channels[0].mode = 0xff; /* disable timer */
421 pit_load_count(pit, channel, val);
422 pit->pit_state.channels[0].mode = saved_mode;
e9f42757 423 } else {
09edea72 424 pit_load_count(pit, channel, val);
e9f42757 425 }
e0f63cb9
SY
426}
427
d76685c4
GH
428static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev)
429{
430 return container_of(dev, struct kvm_pit, dev);
431}
432
433static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev)
434{
435 return container_of(dev, struct kvm_pit, speaker_dev);
436}
437
bda9020e
MT
438static inline int pit_in_range(gpa_t addr)
439{
440 return ((addr >= KVM_PIT_BASE_ADDRESS) &&
441 (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
442}
443
e32edf4f
NN
444static int pit_ioport_write(struct kvm_vcpu *vcpu,
445 struct kvm_io_device *this,
bda9020e 446 gpa_t addr, int len, const void *data)
7837699f 447{
d76685c4 448 struct kvm_pit *pit = dev_to_pit(this);
7837699f 449 struct kvm_kpit_state *pit_state = &pit->pit_state;
7837699f
SY
450 int channel, access;
451 struct kvm_kpit_channel_state *s;
452 u32 val = *(u32 *) data;
bda9020e
MT
453 if (!pit_in_range(addr))
454 return -EOPNOTSUPP;
7837699f
SY
455
456 val &= 0xff;
457 addr &= KVM_PIT_CHANNEL_MASK;
458
459 mutex_lock(&pit_state->lock);
460
461 if (val != 0)
a78d9626
JP
462 pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n",
463 (unsigned int)addr, len, val);
7837699f
SY
464
465 if (addr == 3) {
466 channel = val >> 6;
467 if (channel == 3) {
468 /* Read-Back Command. */
469 for (channel = 0; channel < 3; channel++) {
470 s = &pit_state->channels[channel];
471 if (val & (2 << channel)) {
472 if (!(val & 0x20))
09edea72 473 pit_latch_count(pit, channel);
7837699f 474 if (!(val & 0x10))
09edea72 475 pit_latch_status(pit, channel);
7837699f
SY
476 }
477 }
478 } else {
479 /* Select Counter <channel>. */
480 s = &pit_state->channels[channel];
481 access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
482 if (access == 0) {
09edea72 483 pit_latch_count(pit, channel);
7837699f
SY
484 } else {
485 s->rw_mode = access;
486 s->read_state = access;
487 s->write_state = access;
488 s->mode = (val >> 1) & 7;
489 if (s->mode > 5)
490 s->mode -= 4;
491 s->bcd = val & 1;
492 }
493 }
494 } else {
495 /* Write Count. */
496 s = &pit_state->channels[addr];
497 switch (s->write_state) {
498 default:
499 case RW_STATE_LSB:
09edea72 500 pit_load_count(pit, addr, val);
7837699f
SY
501 break;
502 case RW_STATE_MSB:
09edea72 503 pit_load_count(pit, addr, val << 8);
7837699f
SY
504 break;
505 case RW_STATE_WORD0:
506 s->write_latch = val;
507 s->write_state = RW_STATE_WORD1;
508 break;
509 case RW_STATE_WORD1:
09edea72 510 pit_load_count(pit, addr, s->write_latch | (val << 8));
7837699f
SY
511 s->write_state = RW_STATE_WORD0;
512 break;
513 }
514 }
515
516 mutex_unlock(&pit_state->lock);
bda9020e 517 return 0;
7837699f
SY
518}
519
e32edf4f
NN
520static int pit_ioport_read(struct kvm_vcpu *vcpu,
521 struct kvm_io_device *this,
bda9020e 522 gpa_t addr, int len, void *data)
7837699f 523{
d76685c4 524 struct kvm_pit *pit = dev_to_pit(this);
7837699f 525 struct kvm_kpit_state *pit_state = &pit->pit_state;
7837699f
SY
526 int ret, count;
527 struct kvm_kpit_channel_state *s;
bda9020e
MT
528 if (!pit_in_range(addr))
529 return -EOPNOTSUPP;
7837699f
SY
530
531 addr &= KVM_PIT_CHANNEL_MASK;
ee73f656
MT
532 if (addr == 3)
533 return 0;
534
7837699f
SY
535 s = &pit_state->channels[addr];
536
537 mutex_lock(&pit_state->lock);
538
539 if (s->status_latched) {
540 s->status_latched = 0;
541 ret = s->status;
542 } else if (s->count_latched) {
543 switch (s->count_latched) {
544 default:
545 case RW_STATE_LSB:
546 ret = s->latched_count & 0xff;
547 s->count_latched = 0;
548 break;
549 case RW_STATE_MSB:
550 ret = s->latched_count >> 8;
551 s->count_latched = 0;
552 break;
553 case RW_STATE_WORD0:
554 ret = s->latched_count & 0xff;
555 s->count_latched = RW_STATE_MSB;
556 break;
557 }
558 } else {
559 switch (s->read_state) {
560 default:
561 case RW_STATE_LSB:
09edea72 562 count = pit_get_count(pit, addr);
7837699f
SY
563 ret = count & 0xff;
564 break;
565 case RW_STATE_MSB:
09edea72 566 count = pit_get_count(pit, addr);
7837699f
SY
567 ret = (count >> 8) & 0xff;
568 break;
569 case RW_STATE_WORD0:
09edea72 570 count = pit_get_count(pit, addr);
7837699f
SY
571 ret = count & 0xff;
572 s->read_state = RW_STATE_WORD1;
573 break;
574 case RW_STATE_WORD1:
09edea72 575 count = pit_get_count(pit, addr);
7837699f
SY
576 ret = (count >> 8) & 0xff;
577 s->read_state = RW_STATE_WORD0;
578 break;
579 }
580 }
581
582 if (len > sizeof(ret))
583 len = sizeof(ret);
584 memcpy(data, (char *)&ret, len);
585
586 mutex_unlock(&pit_state->lock);
bda9020e 587 return 0;
7837699f
SY
588}
589
e32edf4f
NN
590static int speaker_ioport_write(struct kvm_vcpu *vcpu,
591 struct kvm_io_device *this,
bda9020e 592 gpa_t addr, int len, const void *data)
7837699f 593{
d76685c4 594 struct kvm_pit *pit = speaker_to_pit(this);
7837699f 595 struct kvm_kpit_state *pit_state = &pit->pit_state;
7837699f 596 u32 val = *(u32 *) data;
bda9020e
MT
597 if (addr != KVM_SPEAKER_BASE_ADDRESS)
598 return -EOPNOTSUPP;
7837699f
SY
599
600 mutex_lock(&pit_state->lock);
601 pit_state->speaker_data_on = (val >> 1) & 1;
09edea72 602 pit_set_gate(pit, 2, val & 1);
7837699f 603 mutex_unlock(&pit_state->lock);
bda9020e 604 return 0;
7837699f
SY
605}
606
e32edf4f
NN
607static int speaker_ioport_read(struct kvm_vcpu *vcpu,
608 struct kvm_io_device *this,
609 gpa_t addr, int len, void *data)
7837699f 610{
d76685c4 611 struct kvm_pit *pit = speaker_to_pit(this);
7837699f 612 struct kvm_kpit_state *pit_state = &pit->pit_state;
7837699f
SY
613 unsigned int refresh_clock;
614 int ret;
bda9020e
MT
615 if (addr != KVM_SPEAKER_BASE_ADDRESS)
616 return -EOPNOTSUPP;
7837699f
SY
617
618 /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
619 refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
620
621 mutex_lock(&pit_state->lock);
09edea72
RK
622 ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(pit, 2) |
623 (pit_get_out(pit, 2) << 5) | (refresh_clock << 4));
7837699f
SY
624 if (len > sizeof(ret))
625 len = sizeof(ret);
626 memcpy(data, (char *)&ret, len);
627 mutex_unlock(&pit_state->lock);
bda9020e 628 return 0;
7837699f
SY
629}
630
b39c90b6 631static void kvm_pit_reset(struct kvm_pit *pit)
7837699f
SY
632{
633 int i;
308b0f23
SY
634 struct kvm_kpit_channel_state *c;
635
e9f42757 636 pit->pit_state.flags = 0;
308b0f23
SY
637 for (i = 0; i < 3; i++) {
638 c = &pit->pit_state.channels[i];
639 c->mode = 0xff;
640 c->gate = (i != 2);
09edea72 641 pit_load_count(pit, i, 0);
308b0f23 642 }
308b0f23 643
fd700a00 644 kvm_pit_reset_reinject(pit);
308b0f23
SY
645}
646
4780c659
AK
647static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
648{
649 struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
650
fd700a00
RK
651 if (!mask)
652 kvm_pit_reset_reinject(pit);
4780c659
AK
653}
654
d76685c4
GH
655static const struct kvm_io_device_ops pit_dev_ops = {
656 .read = pit_ioport_read,
657 .write = pit_ioport_write,
d76685c4
GH
658};
659
660static const struct kvm_io_device_ops speaker_dev_ops = {
661 .read = speaker_ioport_read,
662 .write = speaker_ioport_write,
d76685c4
GH
663};
664
79fac95e 665/* Caller must hold slots_lock */
c5ff41ce 666struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags)
308b0f23 667{
7837699f
SY
668 struct kvm_pit *pit;
669 struct kvm_kpit_state *pit_state;
b6ddf05f
JK
670 struct pid *pid;
671 pid_t pid_nr;
090b7aff 672 int ret;
7837699f
SY
673
674 pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
675 if (!pit)
676 return NULL;
677
5550af4d 678 pit->irq_source_id = kvm_request_irq_source_id(kvm);
10d24821
RK
679 if (pit->irq_source_id < 0)
680 goto fail_request;
5550af4d 681
7837699f 682 mutex_init(&pit->pit_state.lock);
33572ac0 683
b6ddf05f
JK
684 pid = get_pid(task_tgid(current));
685 pid_nr = pid_vnr(pid);
686 put_pid(pid);
687
688 init_kthread_worker(&pit->worker);
689 pit->worker_task = kthread_run(kthread_worker_fn, &pit->worker,
690 "kvm-pit/%d", pid_nr);
10d24821
RK
691 if (IS_ERR(pit->worker_task))
692 goto fail_kthread;
693
b6ddf05f 694 init_kthread_work(&pit->expired, pit_do_work);
7837699f 695
7837699f
SY
696 pit->kvm = kvm;
697
698 pit_state = &pit->pit_state;
699 pit_state->pit = pit;
26ef1924 700 hrtimer_init(&pit_state->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
71474e2f 701
3cf57fed
MT
702 pit_state->irq_ack_notifier.gsi = 0;
703 pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
71474e2f 704 pit->mask_notifier.func = pit_mask_notifer;
7837699f 705
308b0f23 706 kvm_pit_reset(pit);
7837699f 707
71474e2f 708 kvm_pit_set_reinject(pit, true);
4780c659 709
6b66ac1a 710 kvm_iodevice_init(&pit->dev, &pit_dev_ops);
743eeb0b
SL
711 ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, KVM_PIT_BASE_ADDRESS,
712 KVM_PIT_MEM_LENGTH, &pit->dev);
090b7aff 713 if (ret < 0)
10d24821 714 goto fail_register_pit;
6b66ac1a
GH
715
716 if (flags & KVM_PIT_SPEAKER_DUMMY) {
717 kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops);
e93f8a0f 718 ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS,
743eeb0b
SL
719 KVM_SPEAKER_BASE_ADDRESS, 4,
720 &pit->speaker_dev);
090b7aff 721 if (ret < 0)
10d24821 722 goto fail_register_speaker;
6b66ac1a
GH
723 }
724
7837699f 725 return pit;
090b7aff 726
10d24821 727fail_register_speaker:
e93f8a0f 728 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
10d24821 729fail_register_pit:
71474e2f 730 kvm_pit_set_reinject(pit, false);
b6ddf05f 731 kthread_stop(pit->worker_task);
10d24821
RK
732fail_kthread:
733 kvm_free_irq_source_id(kvm, pit->irq_source_id);
734fail_request:
090b7aff
GH
735 kfree(pit);
736 return NULL;
7837699f
SY
737}
738
739void kvm_free_pit(struct kvm *kvm)
740{
08e5ccf3
RK
741 struct kvm_pit *pit = kvm->arch.vpit;
742
743 if (pit) {
744 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
745 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->speaker_dev);
746 kvm_pit_set_reinject(pit, false);
747 hrtimer_cancel(&pit->pit_state.timer);
748 flush_kthread_work(&pit->expired);
749 kthread_stop(pit->worker_task);
750 kvm_free_irq_source_id(kvm, pit->irq_source_id);
751 kfree(pit);
7837699f
SY
752 }
753}
This page took 0.467791 seconds and 5 git commands to generate.