[PATCH] kprobe whitespace cleanup
[deliverable/linux.git] / arch / x86_64 / kernel / kprobes.c
CommitLineData
1da177e4
LT
1/*
2 * Kernel Probes (KProbes)
3 * arch/x86_64/kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation ( includes contributions from
23 * Rusty Russell).
24 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
25 * interface to access function arguments.
26 * 2004-Oct Jim Keniston <kenistoj@us.ibm.com> and Prasanna S Panchamukhi
27 * <prasanna@in.ibm.com> adapted for x86_64
28 * 2005-Mar Roland McGrath <roland@redhat.com>
29 * Fixed to handle %rip-relative addressing mode correctly.
73649dab
RL
30 * 2005-May Rusty Lynch <rusty.lynch@intel.com>
31 * Added function return probes functionality
1da177e4
LT
32 */
33
1da177e4
LT
34#include <linux/kprobes.h>
35#include <linux/ptrace.h>
1da177e4
LT
36#include <linux/string.h>
37#include <linux/slab.h>
38#include <linux/preempt.h>
c28f8966 39#include <linux/module.h>
9ec4b1f3 40
7e1048b1 41#include <asm/cacheflush.h>
1da177e4
LT
42#include <asm/pgtable.h>
43#include <asm/kdebug.h>
c28f8966 44#include <asm/uaccess.h>
1da177e4 45
1da177e4 46void jprobe_return_end(void);
f709b122 47static void __kprobes arch_copy_kprobe(struct kprobe *p);
1da177e4 48
e7a510f9
AM
49DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
50DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
1da177e4
LT
51
52/*
53 * returns non-zero if opcode modifies the interrupt flag.
54 */
3b60211c 55static __always_inline int is_IF_modifier(kprobe_opcode_t *insn)
1da177e4
LT
56{
57 switch (*insn) {
58 case 0xfa: /* cli */
59 case 0xfb: /* sti */
60 case 0xcf: /* iret/iretd */
61 case 0x9d: /* popf/popfd */
62 return 1;
63 }
64
65 if (*insn >= 0x40 && *insn <= 0x4f && *++insn == 0xcf)
66 return 1;
67 return 0;
68}
69
0f2fbdcb 70int __kprobes arch_prepare_kprobe(struct kprobe *p)
1da177e4
LT
71{
72 /* insn: must be on special executable page on x86_64. */
2dd960d6 73 p->ainsn.insn = get_insn_slot();
1da177e4
LT
74 if (!p->ainsn.insn) {
75 return -ENOMEM;
76 }
49a2a1b8 77 arch_copy_kprobe(p);
1da177e4
LT
78 return 0;
79}
80
81/*
82 * Determine if the instruction uses the %rip-relative addressing mode.
83 * If it does, return the address of the 32-bit displacement word.
84 * If not, return null.
85 */
3b60211c 86static s32 __kprobes *is_riprel(u8 *insn)
1da177e4
LT
87{
88#define W(row,b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,ba,bb,bc,bd,be,bf) \
89 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
90 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
91 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
92 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
93 << (row % 64))
94 static const u64 onebyte_has_modrm[256 / 64] = {
95 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
96 /* ------------------------------- */
97 W(0x00, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 00 */
98 W(0x10, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 10 */
99 W(0x20, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 20 */
100 W(0x30, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0), /* 30 */
101 W(0x40, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 40 */
102 W(0x50, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 50 */
103 W(0x60, 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0)| /* 60 */
104 W(0x70, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 70 */
105 W(0x80, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 80 */
106 W(0x90, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 90 */
107 W(0xa0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* a0 */
108 W(0xb0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* b0 */
109 W(0xc0, 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0)| /* c0 */
110 W(0xd0, 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1)| /* d0 */
111 W(0xe0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* e0 */
112 W(0xf0, 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1) /* f0 */
113 /* ------------------------------- */
114 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
115 };
116 static const u64 twobyte_has_modrm[256 / 64] = {
117 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
118 /* ------------------------------- */
119 W(0x00, 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1)| /* 0f */
120 W(0x10, 1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0)| /* 1f */
121 W(0x20, 1,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1)| /* 2f */
122 W(0x30, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 3f */
123 W(0x40, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 4f */
124 W(0x50, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 5f */
125 W(0x60, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 6f */
126 W(0x70, 1,1,1,1,1,1,1,0,0,0,0,0,1,1,1,1), /* 7f */
127 W(0x80, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 8f */
128 W(0x90, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 9f */
129 W(0xa0, 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1)| /* af */
130 W(0xb0, 1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1), /* bf */
131 W(0xc0, 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0)| /* cf */
132 W(0xd0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* df */
133 W(0xe0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* ef */
134 W(0xf0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0) /* ff */
135 /* ------------------------------- */
136 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
137 };
138#undef W
139 int need_modrm;
140
141 /* Skip legacy instruction prefixes. */
142 while (1) {
143 switch (*insn) {
144 case 0x66:
145 case 0x67:
146 case 0x2e:
147 case 0x3e:
148 case 0x26:
149 case 0x64:
150 case 0x65:
151 case 0x36:
152 case 0xf0:
153 case 0xf3:
154 case 0xf2:
155 ++insn;
156 continue;
157 }
158 break;
159 }
160
161 /* Skip REX instruction prefix. */
162 if ((*insn & 0xf0) == 0x40)
163 ++insn;
164
165 if (*insn == 0x0f) { /* Two-byte opcode. */
166 ++insn;
167 need_modrm = test_bit(*insn, twobyte_has_modrm);
168 } else { /* One-byte opcode. */
169 need_modrm = test_bit(*insn, onebyte_has_modrm);
170 }
171
172 if (need_modrm) {
173 u8 modrm = *++insn;
174 if ((modrm & 0xc7) == 0x05) { /* %rip+disp32 addressing mode */
175 /* Displacement follows ModRM byte. */
176 return (s32 *) ++insn;
177 }
178 }
179
180 /* No %rip-relative addressing mode here. */
181 return NULL;
182}
183
f709b122 184static void __kprobes arch_copy_kprobe(struct kprobe *p)
1da177e4
LT
185{
186 s32 *ripdisp;
187 memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE);
188 ripdisp = is_riprel(p->ainsn.insn);
189 if (ripdisp) {
190 /*
191 * The copied instruction uses the %rip-relative
192 * addressing mode. Adjust the displacement for the
193 * difference between the original location of this
194 * instruction and the location of the copy that will
195 * actually be run. The tricky bit here is making sure
196 * that the sign extension happens correctly in this
197 * calculation, since we need a signed 32-bit result to
198 * be sign-extended to 64 bits when it's added to the
199 * %rip value and yield the same 64-bit result that the
200 * sign-extension of the original signed 32-bit
201 * displacement would have given.
202 */
203 s64 disp = (u8 *) p->addr + *ripdisp - (u8 *) p->ainsn.insn;
204 BUG_ON((s64) (s32) disp != disp); /* Sanity check. */
205 *ripdisp = disp;
206 }
7e1048b1 207 p->opcode = *p->addr;
1da177e4
LT
208}
209
0f2fbdcb 210void __kprobes arch_arm_kprobe(struct kprobe *p)
1da177e4 211{
7e1048b1
RL
212 *p->addr = BREAKPOINT_INSTRUCTION;
213 flush_icache_range((unsigned long) p->addr,
214 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
1da177e4
LT
215}
216
0f2fbdcb 217void __kprobes arch_disarm_kprobe(struct kprobe *p)
1da177e4
LT
218{
219 *p->addr = p->opcode;
7e1048b1
RL
220 flush_icache_range((unsigned long) p->addr,
221 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
222}
223
0498b635 224void __kprobes arch_remove_kprobe(struct kprobe *p)
7e1048b1 225{
7a7d1cf9 226 mutex_lock(&kprobe_mutex);
2dd960d6 227 free_insn_slot(p->ainsn.insn);
7a7d1cf9 228 mutex_unlock(&kprobe_mutex);
1da177e4
LT
229}
230
3b60211c 231static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
aa3d7e3d 232{
e7a510f9
AM
233 kcb->prev_kprobe.kp = kprobe_running();
234 kcb->prev_kprobe.status = kcb->kprobe_status;
235 kcb->prev_kprobe.old_rflags = kcb->kprobe_old_rflags;
236 kcb->prev_kprobe.saved_rflags = kcb->kprobe_saved_rflags;
aa3d7e3d
PP
237}
238
3b60211c 239static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
aa3d7e3d 240{
e7a510f9
AM
241 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
242 kcb->kprobe_status = kcb->prev_kprobe.status;
243 kcb->kprobe_old_rflags = kcb->prev_kprobe.old_rflags;
244 kcb->kprobe_saved_rflags = kcb->prev_kprobe.saved_rflags;
aa3d7e3d
PP
245}
246
3b60211c 247static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
e7a510f9 248 struct kprobe_ctlblk *kcb)
aa3d7e3d 249{
e7a510f9
AM
250 __get_cpu_var(current_kprobe) = p;
251 kcb->kprobe_saved_rflags = kcb->kprobe_old_rflags
aa3d7e3d
PP
252 = (regs->eflags & (TF_MASK | IF_MASK));
253 if (is_IF_modifier(p->ainsn.insn))
e7a510f9 254 kcb->kprobe_saved_rflags &= ~IF_MASK;
aa3d7e3d
PP
255}
256
0f2fbdcb 257static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
1da177e4
LT
258{
259 regs->eflags |= TF_MASK;
260 regs->eflags &= ~IF_MASK;
261 /*single step inline if the instruction is an int3*/
262 if (p->opcode == BREAKPOINT_INSTRUCTION)
263 regs->rip = (unsigned long)p->addr;
264 else
265 regs->rip = (unsigned long)p->ainsn.insn;
266}
267
991a51d8 268/* Called with kretprobe_lock held */
0f2fbdcb
PP
269void __kprobes arch_prepare_kretprobe(struct kretprobe *rp,
270 struct pt_regs *regs)
73649dab
RL
271{
272 unsigned long *sara = (unsigned long *)regs->rsp;
62c27be0 273 struct kretprobe_instance *ri;
ba8af12f 274
62c27be0 275 if ((ri = get_free_rp_inst(rp)) != NULL) {
276 ri->rp = rp;
277 ri->task = current;
ba8af12f 278 ri->ret_addr = (kprobe_opcode_t *) *sara;
73649dab 279
73649dab
RL
280 /* Replace the return addr with trampoline addr */
281 *sara = (unsigned long) &kretprobe_trampoline;
62c27be0 282 add_rp_inst(ri);
283 } else {
284 rp->nmissed++;
285 }
73649dab
RL
286}
287
0f2fbdcb 288int __kprobes kprobe_handler(struct pt_regs *regs)
1da177e4
LT
289{
290 struct kprobe *p;
291 int ret = 0;
292 kprobe_opcode_t *addr = (kprobe_opcode_t *)(regs->rip - sizeof(kprobe_opcode_t));
d217d545
AM
293 struct kprobe_ctlblk *kcb;
294
295 /*
296 * We don't want to be preempted for the entire
297 * duration of kprobe processing
298 */
299 preempt_disable();
300 kcb = get_kprobe_ctlblk();
1da177e4 301
1da177e4
LT
302 /* Check we're not actually recursing */
303 if (kprobe_running()) {
1da177e4
LT
304 p = get_kprobe(addr);
305 if (p) {
e7a510f9 306 if (kcb->kprobe_status == KPROBE_HIT_SS &&
deac66ae 307 *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
1da177e4 308 regs->eflags &= ~TF_MASK;
e7a510f9 309 regs->eflags |= kcb->kprobe_saved_rflags;
1da177e4 310 goto no_kprobe;
e7a510f9 311 } else if (kcb->kprobe_status == KPROBE_HIT_SSDONE) {
aa3d7e3d
PP
312 /* TODO: Provide re-entrancy from
313 * post_kprobes_handler() and avoid exception
314 * stack corruption while single-stepping on
315 * the instruction of the new probe.
316 */
317 arch_disarm_kprobe(p);
318 regs->rip = (unsigned long)p->addr;
e7a510f9 319 reset_current_kprobe();
aa3d7e3d
PP
320 ret = 1;
321 } else {
322 /* We have reentered the kprobe_handler(), since
323 * another probe was hit while within the
324 * handler. We here save the original kprobe
325 * variables and just single step on instruction
326 * of the new probe without calling any user
327 * handlers.
328 */
e7a510f9
AM
329 save_previous_kprobe(kcb);
330 set_current_kprobe(p, regs, kcb);
bf8d5c52 331 kprobes_inc_nmissed_count(p);
aa3d7e3d 332 prepare_singlestep(p, regs);
e7a510f9 333 kcb->kprobe_status = KPROBE_REENTER;
aa3d7e3d 334 return 1;
1da177e4 335 }
1da177e4 336 } else {
eb3a7292
KA
337 if (*addr != BREAKPOINT_INSTRUCTION) {
338 /* The breakpoint instruction was removed by
339 * another cpu right after we hit, no further
340 * handling of this interrupt is appropriate
341 */
342 regs->rip = (unsigned long)addr;
343 ret = 1;
344 goto no_kprobe;
345 }
e7a510f9 346 p = __get_cpu_var(current_kprobe);
1da177e4
LT
347 if (p->break_handler && p->break_handler(p, regs)) {
348 goto ss_probe;
349 }
350 }
1da177e4
LT
351 goto no_kprobe;
352 }
353
1da177e4
LT
354 p = get_kprobe(addr);
355 if (!p) {
1da177e4
LT
356 if (*addr != BREAKPOINT_INSTRUCTION) {
357 /*
358 * The breakpoint instruction was removed right
359 * after we hit it. Another cpu has removed
360 * either a probepoint or a debugger breakpoint
361 * at this address. In either case, no further
362 * handling of this interrupt is appropriate.
bce06494
JK
363 * Back up over the (now missing) int3 and run
364 * the original instruction.
1da177e4 365 */
bce06494 366 regs->rip = (unsigned long)addr;
1da177e4
LT
367 ret = 1;
368 }
369 /* Not one of ours: let kernel handle it */
370 goto no_kprobe;
371 }
372
e7a510f9
AM
373 set_current_kprobe(p, regs, kcb);
374 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1da177e4
LT
375
376 if (p->pre_handler && p->pre_handler(p, regs))
377 /* handler has already set things up, so skip ss setup */
378 return 1;
379
380ss_probe:
381 prepare_singlestep(p, regs);
e7a510f9 382 kcb->kprobe_status = KPROBE_HIT_SS;
1da177e4
LT
383 return 1;
384
385no_kprobe:
d217d545 386 preempt_enable_no_resched();
1da177e4
LT
387 return ret;
388}
389
73649dab
RL
390/*
391 * For function-return probes, init_kprobes() establishes a probepoint
392 * here. When a retprobed function returns, this probe is hit and
393 * trampoline_probe_handler() runs, calling the kretprobe's handler.
394 */
395 void kretprobe_trampoline_holder(void)
396 {
397 asm volatile ( ".global kretprobe_trampoline\n"
398 "kretprobe_trampoline: \n"
399 "nop\n");
400 }
401
402/*
403 * Called when we hit the probe point at kretprobe_trampoline
404 */
0f2fbdcb 405int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
73649dab 406{
62c27be0 407 struct kretprobe_instance *ri = NULL;
408 struct hlist_head *head;
409 struct hlist_node *node, *tmp;
991a51d8 410 unsigned long flags, orig_ret_address = 0;
ba8af12f 411 unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
73649dab 412
991a51d8 413 spin_lock_irqsave(&kretprobe_lock, flags);
62c27be0 414 head = kretprobe_inst_table_head(current);
73649dab 415
ba8af12f
RL
416 /*
417 * It is possible to have multiple instances associated with a given
418 * task either because an multiple functions in the call path
419 * have a return probe installed on them, and/or more then one return
420 * return probe was registered for a target function.
421 *
422 * We can handle this because:
423 * - instances are always inserted at the head of the list
424 * - when multiple return probes are registered for the same
62c27be0 425 * function, the first instance's ret_addr will point to the
ba8af12f
RL
426 * real return address, and all the rest will point to
427 * kretprobe_trampoline
428 */
429 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
62c27be0 430 if (ri->task != current)
ba8af12f 431 /* another task is sharing our hash bucket */
62c27be0 432 continue;
ba8af12f
RL
433
434 if (ri->rp && ri->rp->handler)
435 ri->rp->handler(ri, regs);
436
437 orig_ret_address = (unsigned long)ri->ret_addr;
73649dab 438 recycle_rp_inst(ri);
ba8af12f
RL
439
440 if (orig_ret_address != trampoline_address)
441 /*
442 * This is the real return address. Any other
443 * instances associated with this task are for
444 * other calls deeper on the call stack
445 */
446 break;
73649dab 447 }
ba8af12f
RL
448
449 BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
450 regs->rip = orig_ret_address;
451
e7a510f9 452 reset_current_kprobe();
991a51d8 453 spin_unlock_irqrestore(&kretprobe_lock, flags);
ba8af12f
RL
454 preempt_enable_no_resched();
455
62c27be0 456 /*
457 * By returning a non-zero value, we are telling
458 * kprobe_handler() that we don't want the post_handler
d217d545 459 * to run (and have re-enabled preemption)
62c27be0 460 */
461 return 1;
73649dab
RL
462}
463
1da177e4
LT
464/*
465 * Called after single-stepping. p->addr is the address of the
466 * instruction whose first byte has been replaced by the "int 3"
467 * instruction. To avoid the SMP problems that can occur when we
468 * temporarily put back the original opcode to single-step, we
469 * single-stepped a copy of the instruction. The address of this
470 * copy is p->ainsn.insn.
471 *
472 * This function prepares to return from the post-single-step
473 * interrupt. We have to fix up the stack as follows:
474 *
475 * 0) Except in the case of absolute or indirect jump or call instructions,
476 * the new rip is relative to the copied instruction. We need to make
477 * it relative to the original instruction.
478 *
479 * 1) If the single-stepped instruction was pushfl, then the TF and IF
480 * flags are set in the just-pushed eflags, and may need to be cleared.
481 *
482 * 2) If the single-stepped instruction was a call, the return address
483 * that is atop the stack is the address following the copied instruction.
484 * We need to make it the address following the original instruction.
485 */
e7a510f9
AM
486static void __kprobes resume_execution(struct kprobe *p,
487 struct pt_regs *regs, struct kprobe_ctlblk *kcb)
1da177e4
LT
488{
489 unsigned long *tos = (unsigned long *)regs->rsp;
490 unsigned long next_rip = 0;
491 unsigned long copy_rip = (unsigned long)p->ainsn.insn;
492 unsigned long orig_rip = (unsigned long)p->addr;
493 kprobe_opcode_t *insn = p->ainsn.insn;
494
495 /*skip the REX prefix*/
496 if (*insn >= 0x40 && *insn <= 0x4f)
497 insn++;
498
499 switch (*insn) {
500 case 0x9c: /* pushfl */
501 *tos &= ~(TF_MASK | IF_MASK);
e7a510f9 502 *tos |= kcb->kprobe_old_rflags;
1da177e4 503 break;
0b9e2cac
PP
504 case 0xc3: /* ret/lret */
505 case 0xcb:
506 case 0xc2:
507 case 0xca:
508 regs->eflags &= ~TF_MASK;
509 /* rip is already adjusted, no more changes required*/
510 return;
1da177e4
LT
511 case 0xe8: /* call relative - Fix return addr */
512 *tos = orig_rip + (*tos - copy_rip);
513 break;
514 case 0xff:
dc49e344 515 if ((insn[1] & 0x30) == 0x10) {
1da177e4
LT
516 /* call absolute, indirect */
517 /* Fix return addr; rip is correct. */
518 next_rip = regs->rip;
519 *tos = orig_rip + (*tos - copy_rip);
dc49e344
SO
520 } else if (((insn[1] & 0x31) == 0x20) || /* jmp near, absolute indirect */
521 ((insn[1] & 0x31) == 0x21)) { /* jmp far, absolute indirect */
1da177e4
LT
522 /* rip is correct. */
523 next_rip = regs->rip;
524 }
525 break;
526 case 0xea: /* jmp absolute -- rip is correct */
527 next_rip = regs->rip;
528 break;
529 default:
530 break;
531 }
532
533 regs->eflags &= ~TF_MASK;
534 if (next_rip) {
535 regs->rip = next_rip;
536 } else {
537 regs->rip = orig_rip + (regs->rip - copy_rip);
538 }
539}
540
0f2fbdcb 541int __kprobes post_kprobe_handler(struct pt_regs *regs)
1da177e4 542{
e7a510f9
AM
543 struct kprobe *cur = kprobe_running();
544 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
545
546 if (!cur)
1da177e4
LT
547 return 0;
548
e7a510f9
AM
549 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
550 kcb->kprobe_status = KPROBE_HIT_SSDONE;
551 cur->post_handler(cur, regs, 0);
aa3d7e3d 552 }
1da177e4 553
e7a510f9
AM
554 resume_execution(cur, regs, kcb);
555 regs->eflags |= kcb->kprobe_saved_rflags;
1da177e4 556
aa3d7e3d 557 /* Restore the original saved kprobes variables and continue. */
e7a510f9
AM
558 if (kcb->kprobe_status == KPROBE_REENTER) {
559 restore_previous_kprobe(kcb);
aa3d7e3d 560 goto out;
aa3d7e3d 561 }
e7a510f9 562 reset_current_kprobe();
aa3d7e3d 563out:
1da177e4
LT
564 preempt_enable_no_resched();
565
566 /*
567 * if somebody else is singlestepping across a probe point, eflags
568 * will have TF set, in which case, continue the remaining processing
569 * of do_debug, as if this is not a probe hit.
570 */
571 if (regs->eflags & TF_MASK)
572 return 0;
573
574 return 1;
575}
576
0f2fbdcb 577int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
1da177e4 578{
e7a510f9
AM
579 struct kprobe *cur = kprobe_running();
580 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
c28f8966 581 const struct exception_table_entry *fixup;
e7a510f9 582
c28f8966
PP
583 switch(kcb->kprobe_status) {
584 case KPROBE_HIT_SS:
585 case KPROBE_REENTER:
586 /*
587 * We are here because the instruction being single
588 * stepped caused a page fault. We reset the current
589 * kprobe and the rip points back to the probe address
590 * and allow the page fault handler to continue as a
591 * normal page fault.
592 */
593 regs->rip = (unsigned long)cur->addr;
e7a510f9 594 regs->eflags |= kcb->kprobe_old_rflags;
c28f8966
PP
595 if (kcb->kprobe_status == KPROBE_REENTER)
596 restore_previous_kprobe(kcb);
597 else
598 reset_current_kprobe();
1da177e4 599 preempt_enable_no_resched();
c28f8966
PP
600 break;
601 case KPROBE_HIT_ACTIVE:
602 case KPROBE_HIT_SSDONE:
603 /*
604 * We increment the nmissed count for accounting,
605 * we can also use npre/npostfault count for accouting
606 * these specific fault cases.
607 */
608 kprobes_inc_nmissed_count(cur);
609
610 /*
611 * We come here because instructions in the pre/post
612 * handler caused the page_fault, this could happen
613 * if handler tries to access user space by
614 * copy_from_user(), get_user() etc. Let the
615 * user-specified handler try to fix it first.
616 */
617 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
618 return 1;
619
620 /*
621 * In case the user-specified fault handler returned
622 * zero, try to fix up.
623 */
624 fixup = search_exception_tables(regs->rip);
625 if (fixup) {
626 regs->rip = fixup->fixup;
627 return 1;
628 }
629
630 /*
631 * fixup() could not handle it,
632 * Let do_page_fault() fix it.
633 */
634 break;
635 default:
636 break;
1da177e4
LT
637 }
638 return 0;
639}
640
641/*
642 * Wrapper routine for handling exceptions.
643 */
0f2fbdcb
PP
644int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
645 unsigned long val, void *data)
1da177e4
LT
646{
647 struct die_args *args = (struct die_args *)data;
66ff2d06
AM
648 int ret = NOTIFY_DONE;
649
2326c770 650 if (args->regs && user_mode(args->regs))
651 return ret;
652
1da177e4
LT
653 switch (val) {
654 case DIE_INT3:
655 if (kprobe_handler(args->regs))
66ff2d06 656 ret = NOTIFY_STOP;
1da177e4
LT
657 break;
658 case DIE_DEBUG:
659 if (post_kprobe_handler(args->regs))
66ff2d06 660 ret = NOTIFY_STOP;
1da177e4
LT
661 break;
662 case DIE_GPF:
1da177e4 663 case DIE_PAGE_FAULT:
d217d545
AM
664 /* kprobe_running() needs smp_processor_id() */
665 preempt_disable();
1da177e4
LT
666 if (kprobe_running() &&
667 kprobe_fault_handler(args->regs, args->trapnr))
66ff2d06 668 ret = NOTIFY_STOP;
d217d545 669 preempt_enable();
1da177e4
LT
670 break;
671 default:
672 break;
673 }
66ff2d06 674 return ret;
1da177e4
LT
675}
676
0f2fbdcb 677int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
1da177e4
LT
678{
679 struct jprobe *jp = container_of(p, struct jprobe, kp);
680 unsigned long addr;
e7a510f9 681 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1da177e4 682
e7a510f9
AM
683 kcb->jprobe_saved_regs = *regs;
684 kcb->jprobe_saved_rsp = (long *) regs->rsp;
685 addr = (unsigned long)(kcb->jprobe_saved_rsp);
1da177e4
LT
686 /*
687 * As Linus pointed out, gcc assumes that the callee
688 * owns the argument space and could overwrite it, e.g.
689 * tailcall optimization. So, to be absolutely safe
690 * we also save and restore enough stack bytes to cover
691 * the argument area.
692 */
e7a510f9
AM
693 memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
694 MIN_STACK_SIZE(addr));
1da177e4
LT
695 regs->eflags &= ~IF_MASK;
696 regs->rip = (unsigned long)(jp->entry);
697 return 1;
698}
699
0f2fbdcb 700void __kprobes jprobe_return(void)
1da177e4 701{
e7a510f9
AM
702 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
703
1da177e4
LT
704 asm volatile (" xchg %%rbx,%%rsp \n"
705 " int3 \n"
706 " .globl jprobe_return_end \n"
707 " jprobe_return_end: \n"
708 " nop \n"::"b"
e7a510f9 709 (kcb->jprobe_saved_rsp):"memory");
1da177e4
LT
710}
711
0f2fbdcb 712int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1da177e4 713{
e7a510f9 714 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1da177e4 715 u8 *addr = (u8 *) (regs->rip - 1);
e7a510f9 716 unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_rsp);
1da177e4
LT
717 struct jprobe *jp = container_of(p, struct jprobe, kp);
718
719 if ((addr > (u8 *) jprobe_return) && (addr < (u8 *) jprobe_return_end)) {
e7a510f9 720 if ((long *)regs->rsp != kcb->jprobe_saved_rsp) {
1da177e4 721 struct pt_regs *saved_regs =
e7a510f9
AM
722 container_of(kcb->jprobe_saved_rsp,
723 struct pt_regs, rsp);
1da177e4 724 printk("current rsp %p does not match saved rsp %p\n",
e7a510f9 725 (long *)regs->rsp, kcb->jprobe_saved_rsp);
1da177e4
LT
726 printk("Saved registers for jprobe %p\n", jp);
727 show_registers(saved_regs);
728 printk("Current registers\n");
729 show_registers(regs);
730 BUG();
731 }
e7a510f9
AM
732 *regs = kcb->jprobe_saved_regs;
733 memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
1da177e4 734 MIN_STACK_SIZE(stack_addr));
d217d545 735 preempt_enable_no_resched();
1da177e4
LT
736 return 1;
737 }
738 return 0;
739}
ba8af12f
RL
740
741static struct kprobe trampoline_p = {
742 .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
743 .pre_handler = trampoline_probe_handler
744};
745
6772926b 746int __init arch_init_kprobes(void)
ba8af12f
RL
747{
748 return register_kprobe(&trampoline_p);
749}
This page took 0.195863 seconds and 5 git commands to generate.