[PATCH] i386/x86-64 disable LAPIC completely for offline CPU
[deliverable/linux.git] / arch / x86_64 / kernel / smpboot.c
CommitLineData
1da177e4
LT
1/*
2 * x86 SMP booting functions
3 *
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com>
6 * Copyright 2001 Andi Kleen, SuSE Labs.
7 *
8 * Much of the core SMP work is based on previous work by Thomas Radke, to
9 * whom a great many thanks are extended.
10 *
11 * Thanks to Intel for making available several different Pentium,
12 * Pentium Pro and Pentium-II/Xeon MP machines.
13 * Original development of Linux SMP code supported by Caldera.
14 *
a8ab26fe 15 * This code is released under the GNU General Public License version 2
1da177e4
LT
16 *
17 * Fixes
18 * Felix Koop : NR_CPUS used properly
19 * Jose Renau : Handle single CPU case.
20 * Alan Cox : By repeated request 8) - Total BogoMIP report.
21 * Greg Wright : Fix for kernel stacks panic.
22 * Erich Boleyn : MP v1.4 and additional changes.
23 * Matthias Sattler : Changes for 2.1 kernel map.
24 * Michel Lespinasse : Changes for 2.1 kernel map.
25 * Michael Chastain : Change trampoline.S to gnu as.
26 * Alan Cox : Dumb bug: 'B' step PPro's are fine
27 * Ingo Molnar : Added APIC timers, based on code
28 * from Jose Renau
29 * Ingo Molnar : various cleanups and rewrites
30 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
31 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
32 * Andi Kleen : Changed for SMP boot into long mode.
a8ab26fe
AK
33 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
34 * Andi Kleen : Converted to new state machine.
35 * Various cleanups.
36 * Probably mostly hotplug CPU ready now.
76e4f660 37 * Ashok Raj : CPU hotplug support
1da177e4
LT
38 */
39
a8ab26fe 40
1da177e4
LT
41#include <linux/config.h>
42#include <linux/init.h>
43
44#include <linux/mm.h>
45#include <linux/kernel_stat.h>
46#include <linux/smp_lock.h>
1da177e4
LT
47#include <linux/bootmem.h>
48#include <linux/thread_info.h>
49#include <linux/module.h>
50
51#include <linux/delay.h>
52#include <linux/mc146818rtc.h>
53#include <asm/mtrr.h>
54#include <asm/pgalloc.h>
55#include <asm/desc.h>
56#include <asm/kdebug.h>
57#include <asm/tlbflush.h>
58#include <asm/proto.h>
75152114 59#include <asm/nmi.h>
9cdd304b
AV
60#include <asm/irq.h>
61#include <asm/hw_irq.h>
1da177e4
LT
62
63/* Number of siblings per CPU package */
64int smp_num_siblings = 1;
65/* Package ID of each logical CPU */
6c231b7b 66u8 phys_proc_id[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = BAD_APICID };
94605eff 67/* core ID of each logical CPU */
6c231b7b 68u8 cpu_core_id[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = BAD_APICID };
1da177e4
LT
69
70/* Bitmask of currently online CPUs */
6c231b7b 71cpumask_t cpu_online_map __read_mostly;
1da177e4 72
a8ab26fe
AK
73EXPORT_SYMBOL(cpu_online_map);
74
75/*
76 * Private maps to synchronize booting between AP and BP.
77 * Probably not needed anymore, but it makes for easier debugging. -AK
78 */
1da177e4
LT
79cpumask_t cpu_callin_map;
80cpumask_t cpu_callout_map;
a8ab26fe
AK
81
82cpumask_t cpu_possible_map;
83EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
84
85/* Per CPU bogomips and other parameters */
86struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
87
a8ab26fe
AK
88/* Set when the idlers are all forked */
89int smp_threads_ready;
90
94605eff 91/* representing HT siblings of each logical CPU */
6c231b7b 92cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
94605eff
SS
93
94/* representing HT and core siblings of each logical CPU */
6c231b7b 95cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
2df9fa36 96EXPORT_SYMBOL(cpu_core_map);
1da177e4
LT
97
98/*
99 * Trampoline 80x86 program as an array.
100 */
101
a8ab26fe
AK
102extern unsigned char trampoline_data[];
103extern unsigned char trampoline_end[];
1da177e4 104
76e4f660
AR
105/* State of each CPU */
106DEFINE_PER_CPU(int, cpu_state) = { 0 };
107
108/*
109 * Store all idle threads, this can be reused instead of creating
110 * a new thread. Also avoids complicated thread destroy functionality
111 * for idle threads.
112 */
113struct task_struct *idle_thread_array[NR_CPUS] __cpuinitdata ;
114
115#define get_idle_for_cpu(x) (idle_thread_array[(x)])
116#define set_idle_for_cpu(x,p) (idle_thread_array[(x)] = (p))
117
1da177e4
LT
118/*
119 * Currently trivial. Write the real->protected mode
120 * bootstrap into the page concerned. The caller
121 * has made sure it's suitably aligned.
122 */
123
a8ab26fe 124static unsigned long __cpuinit setup_trampoline(void)
1da177e4
LT
125{
126 void *tramp = __va(SMP_TRAMPOLINE_BASE);
127 memcpy(tramp, trampoline_data, trampoline_end - trampoline_data);
128 return virt_to_phys(tramp);
129}
130
131/*
132 * The bootstrap kernel entry code has set these up. Save them for
133 * a given CPU
134 */
135
a8ab26fe 136static void __cpuinit smp_store_cpu_info(int id)
1da177e4
LT
137{
138 struct cpuinfo_x86 *c = cpu_data + id;
139
140 *c = boot_cpu_data;
141 identify_cpu(c);
dda50e71 142 print_cpu_info(c);
1da177e4
LT
143}
144
145/*
dda50e71
AK
146 * New Funky TSC sync algorithm borrowed from IA64.
147 * Main advantage is that it doesn't reset the TSCs fully and
148 * in general looks more robust and it works better than my earlier
149 * attempts. I believe it was written by David Mosberger. Some minor
150 * adjustments for x86-64 by me -AK
1da177e4 151 *
dda50e71
AK
152 * Original comment reproduced below.
153 *
154 * Synchronize TSC of the current (slave) CPU with the TSC of the
155 * MASTER CPU (normally the time-keeper CPU). We use a closed loop to
156 * eliminate the possibility of unaccounted-for errors (such as
157 * getting a machine check in the middle of a calibration step). The
158 * basic idea is for the slave to ask the master what itc value it has
159 * and to read its own itc before and after the master responds. Each
160 * iteration gives us three timestamps:
161 *
162 * slave master
163 *
164 * t0 ---\
165 * ---\
166 * --->
167 * tm
168 * /---
169 * /---
170 * t1 <---
171 *
172 *
173 * The goal is to adjust the slave's TSC such that tm falls exactly
174 * half-way between t0 and t1. If we achieve this, the clocks are
175 * synchronized provided the interconnect between the slave and the
176 * master is symmetric. Even if the interconnect were asymmetric, we
177 * would still know that the synchronization error is smaller than the
178 * roundtrip latency (t0 - t1).
179 *
180 * When the interconnect is quiet and symmetric, this lets us
181 * synchronize the TSC to within one or two cycles. However, we can
182 * only *guarantee* that the synchronization is accurate to within a
183 * round-trip time, which is typically in the range of several hundred
184 * cycles (e.g., ~500 cycles). In practice, this means that the TSCs
185 * are usually almost perfectly synchronized, but we shouldn't assume
186 * that the accuracy is much better than half a micro second or so.
187 *
188 * [there are other errors like the latency of RDTSC and of the
189 * WRMSR. These can also account to hundreds of cycles. So it's
190 * probably worse. It claims 153 cycles error on a dual Opteron,
191 * but I suspect the numbers are actually somewhat worse -AK]
1da177e4
LT
192 */
193
dda50e71
AK
194#define MASTER 0
195#define SLAVE (SMP_CACHE_BYTES/8)
196
197/* Intentionally don't use cpu_relax() while TSC synchronization
198 because we don't want to go into funky power save modi or cause
199 hypervisors to schedule us away. Going to sleep would likely affect
200 latency and low latency is the primary objective here. -AK */
201#define no_cpu_relax() barrier()
202
a8ab26fe 203static __cpuinitdata DEFINE_SPINLOCK(tsc_sync_lock);
dda50e71
AK
204static volatile __cpuinitdata unsigned long go[SLAVE + 1];
205static int notscsync __cpuinitdata;
206
207#undef DEBUG_TSC_SYNC
1da177e4 208
dda50e71
AK
209#define NUM_ROUNDS 64 /* magic value */
210#define NUM_ITERS 5 /* likewise */
1da177e4 211
dda50e71
AK
212/* Callback on boot CPU */
213static __cpuinit void sync_master(void *arg)
1da177e4 214{
dda50e71
AK
215 unsigned long flags, i;
216
dda50e71
AK
217 go[MASTER] = 0;
218
219 local_irq_save(flags);
220 {
221 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
222 while (!go[MASTER])
223 no_cpu_relax();
224 go[MASTER] = 0;
225 rdtscll(go[SLAVE]);
226 }
227 }
228 local_irq_restore(flags);
a8ab26fe 229}
1da177e4 230
a8ab26fe 231/*
dda50e71
AK
232 * Return the number of cycles by which our tsc differs from the tsc
233 * on the master (time-keeper) CPU. A positive number indicates our
234 * tsc is ahead of the master, negative that it is behind.
a8ab26fe 235 */
dda50e71
AK
236static inline long
237get_delta(long *rt, long *master)
a8ab26fe 238{
dda50e71
AK
239 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
240 unsigned long tcenter, t0, t1, tm;
241 int i;
a8ab26fe 242
dda50e71
AK
243 for (i = 0; i < NUM_ITERS; ++i) {
244 rdtscll(t0);
245 go[MASTER] = 1;
246 while (!(tm = go[SLAVE]))
247 no_cpu_relax();
248 go[SLAVE] = 0;
249 rdtscll(t1);
250
251 if (t1 - t0 < best_t1 - best_t0)
252 best_t0 = t0, best_t1 = t1, best_tm = tm;
253 }
254
255 *rt = best_t1 - best_t0;
256 *master = best_tm - best_t0;
257
258 /* average best_t0 and best_t1 without overflow: */
259 tcenter = (best_t0/2 + best_t1/2);
260 if (best_t0 % 2 + best_t1 % 2 == 2)
261 ++tcenter;
262 return tcenter - best_tm;
1da177e4
LT
263}
264
3d483f47 265static __cpuinit void sync_tsc(unsigned int master)
1da177e4 266{
dda50e71
AK
267 int i, done = 0;
268 long delta, adj, adjust_latency = 0;
269 unsigned long flags, rt, master_time_stamp, bound;
44456d37 270#ifdef DEBUG_TSC_SYNC
dda50e71
AK
271 static struct syncdebug {
272 long rt; /* roundtrip time */
273 long master; /* master's timestamp */
274 long diff; /* difference between midpoint and master's timestamp */
275 long lat; /* estimate of tsc adjustment latency */
276 } t[NUM_ROUNDS] __cpuinitdata;
277#endif
278
3d483f47
EB
279 printk(KERN_INFO "CPU %d: Syncing TSC to CPU %u.\n",
280 smp_processor_id(), master);
281
dda50e71
AK
282 go[MASTER] = 1;
283
3d483f47
EB
284 /* It is dangerous to broadcast IPI as cpus are coming up,
285 * as they may not be ready to accept them. So since
286 * we only need to send the ipi to the boot cpu direct
287 * the message, and avoid the race.
288 */
289 smp_call_function_single(master, sync_master, NULL, 1, 0);
dda50e71
AK
290
291 while (go[MASTER]) /* wait for master to be ready */
292 no_cpu_relax();
293
294 spin_lock_irqsave(&tsc_sync_lock, flags);
295 {
296 for (i = 0; i < NUM_ROUNDS; ++i) {
297 delta = get_delta(&rt, &master_time_stamp);
298 if (delta == 0) {
299 done = 1; /* let's lock on to this... */
300 bound = rt;
301 }
302
303 if (!done) {
304 unsigned long t;
305 if (i > 0) {
306 adjust_latency += -delta;
307 adj = -delta + adjust_latency/4;
308 } else
309 adj = -delta;
310
311 rdtscll(t);
312 wrmsrl(MSR_IA32_TSC, t + adj);
313 }
44456d37 314#ifdef DEBUG_TSC_SYNC
dda50e71
AK
315 t[i].rt = rt;
316 t[i].master = master_time_stamp;
317 t[i].diff = delta;
318 t[i].lat = adjust_latency/4;
319#endif
320 }
321 }
322 spin_unlock_irqrestore(&tsc_sync_lock, flags);
323
44456d37 324#ifdef DEBUG_TSC_SYNC
dda50e71
AK
325 for (i = 0; i < NUM_ROUNDS; ++i)
326 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
327 t[i].rt, t[i].master, t[i].diff, t[i].lat);
328#endif
329
330 printk(KERN_INFO
331 "CPU %d: synchronized TSC with CPU %u (last diff %ld cycles, "
332 "maxerr %lu cycles)\n",
3d483f47 333 smp_processor_id(), master, delta, rt);
a8ab26fe 334}
1da177e4 335
dda50e71 336static void __cpuinit tsc_sync_wait(void)
a8ab26fe 337{
dda50e71 338 if (notscsync || !cpu_has_tsc)
a8ab26fe 339 return;
349188f6 340 sync_tsc(0);
a8ab26fe 341}
1da177e4 342
dda50e71 343static __init int notscsync_setup(char *s)
a8ab26fe 344{
dda50e71
AK
345 notscsync = 1;
346 return 0;
1da177e4 347}
dda50e71 348__setup("notscsync", notscsync_setup);
1da177e4 349
a8ab26fe 350static atomic_t init_deasserted __cpuinitdata;
1da177e4 351
a8ab26fe
AK
352/*
353 * Report back to the Boot Processor.
354 * Running on AP.
355 */
356void __cpuinit smp_callin(void)
1da177e4
LT
357{
358 int cpuid, phys_id;
359 unsigned long timeout;
360
361 /*
362 * If waken up by an INIT in an 82489DX configuration
363 * we may get here before an INIT-deassert IPI reaches
364 * our local APIC. We have to wait for the IPI or we'll
365 * lock up on an APIC access.
366 */
a8ab26fe
AK
367 while (!atomic_read(&init_deasserted))
368 cpu_relax();
1da177e4
LT
369
370 /*
371 * (This works even if the APIC is not enabled.)
372 */
373 phys_id = GET_APIC_ID(apic_read(APIC_ID));
374 cpuid = smp_processor_id();
375 if (cpu_isset(cpuid, cpu_callin_map)) {
376 panic("smp_callin: phys CPU#%d, CPU#%d already present??\n",
377 phys_id, cpuid);
378 }
379 Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
380
381 /*
382 * STARTUP IPIs are fragile beasts as they might sometimes
383 * trigger some glue motherboard logic. Complete APIC bus
384 * silence for 1 second, this overestimates the time the
385 * boot CPU is spending to send the up to 2 STARTUP IPIs
386 * by a factor of two. This should be enough.
387 */
388
389 /*
390 * Waiting 2s total for startup (udelay is not yet working)
391 */
392 timeout = jiffies + 2*HZ;
393 while (time_before(jiffies, timeout)) {
394 /*
395 * Has the boot CPU finished it's STARTUP sequence?
396 */
397 if (cpu_isset(cpuid, cpu_callout_map))
398 break;
a8ab26fe 399 cpu_relax();
1da177e4
LT
400 }
401
402 if (!time_before(jiffies, timeout)) {
403 panic("smp_callin: CPU%d started up but did not get a callout!\n",
404 cpuid);
405 }
406
407 /*
408 * the boot CPU has finished the init stage and is spinning
409 * on callin_map until we finish. We are free to set up this
410 * CPU, first the APIC. (this is probably redundant on most
411 * boards)
412 */
413
414 Dprintk("CALLIN, before setup_local_APIC().\n");
415 setup_local_APIC();
416
1da177e4
LT
417 /*
418 * Get our bogomips.
b4452218
AK
419 *
420 * Need to enable IRQs because it can take longer and then
421 * the NMI watchdog might kill us.
1da177e4 422 */
b4452218 423 local_irq_enable();
1da177e4 424 calibrate_delay();
b4452218 425 local_irq_disable();
1da177e4
LT
426 Dprintk("Stack at about %p\n",&cpuid);
427
428 disable_APIC_timer();
429
430 /*
431 * Save our processor parameters
432 */
433 smp_store_cpu_info(cpuid);
434
1da177e4
LT
435 /*
436 * Allow the master to continue.
437 */
438 cpu_set(cpuid, cpu_callin_map);
1da177e4
LT
439}
440
94605eff
SS
441/* representing cpus for which sibling maps can be computed */
442static cpumask_t cpu_sibling_setup_map;
443
cb0cd8d4
AR
444static inline void set_cpu_sibling_map(int cpu)
445{
446 int i;
94605eff
SS
447 struct cpuinfo_x86 *c = cpu_data;
448
449 cpu_set(cpu, cpu_sibling_setup_map);
cb0cd8d4
AR
450
451 if (smp_num_siblings > 1) {
94605eff
SS
452 for_each_cpu_mask(i, cpu_sibling_setup_map) {
453 if (phys_proc_id[cpu] == phys_proc_id[i] &&
454 cpu_core_id[cpu] == cpu_core_id[i]) {
cb0cd8d4
AR
455 cpu_set(i, cpu_sibling_map[cpu]);
456 cpu_set(cpu, cpu_sibling_map[i]);
94605eff
SS
457 cpu_set(i, cpu_core_map[cpu]);
458 cpu_set(cpu, cpu_core_map[i]);
cb0cd8d4
AR
459 }
460 }
461 } else {
462 cpu_set(cpu, cpu_sibling_map[cpu]);
463 }
464
94605eff 465 if (current_cpu_data.x86_max_cores == 1) {
cb0cd8d4 466 cpu_core_map[cpu] = cpu_sibling_map[cpu];
94605eff
SS
467 c[cpu].booted_cores = 1;
468 return;
469 }
470
471 for_each_cpu_mask(i, cpu_sibling_setup_map) {
472 if (phys_proc_id[cpu] == phys_proc_id[i]) {
473 cpu_set(i, cpu_core_map[cpu]);
474 cpu_set(cpu, cpu_core_map[i]);
475 /*
476 * Does this new cpu bringup a new core?
477 */
478 if (cpus_weight(cpu_sibling_map[cpu]) == 1) {
479 /*
480 * for each core in package, increment
481 * the booted_cores for this new cpu
482 */
483 if (first_cpu(cpu_sibling_map[i]) == i)
484 c[cpu].booted_cores++;
485 /*
486 * increment the core count for all
487 * the other cpus in this package
488 */
489 if (i != cpu)
490 c[i].booted_cores++;
491 } else if (i != cpu && !c[cpu].booted_cores)
492 c[cpu].booted_cores = c[i].booted_cores;
493 }
cb0cd8d4
AR
494 }
495}
496
1da177e4 497/*
a8ab26fe 498 * Setup code on secondary processor (after comming out of the trampoline)
1da177e4 499 */
a8ab26fe 500void __cpuinit start_secondary(void)
1da177e4
LT
501{
502 /*
503 * Dont put anything before smp_callin(), SMP
504 * booting is too fragile that we want to limit the
505 * things done here to the most necessary things.
506 */
507 cpu_init();
5bfb5d69 508 preempt_disable();
1da177e4
LT
509 smp_callin();
510
511 /* otherwise gcc will move up the smp_processor_id before the cpu_init */
512 barrier();
513
1da177e4
LT
514 Dprintk("cpu %d: setting up apic clock\n", smp_processor_id());
515 setup_secondary_APIC_clock();
516
a8ab26fe 517 Dprintk("cpu %d: enabling apic timer\n", smp_processor_id());
1da177e4
LT
518
519 if (nmi_watchdog == NMI_IO_APIC) {
520 disable_8259A_irq(0);
521 enable_NMI_through_LVT0(NULL);
522 enable_8259A_irq(0);
523 }
524
a8ab26fe 525 enable_APIC_timer();
1da177e4 526
cb0cd8d4
AR
527 /*
528 * The sibling maps must be set before turing the online map on for
529 * this cpu
530 */
531 set_cpu_sibling_map(smp_processor_id());
532
1eecd73c
AK
533 /*
534 * Wait for TSC sync to not schedule things before.
535 * We still process interrupts, which could see an inconsistent
536 * time in that window unfortunately.
537 * Do this here because TSC sync has global unprotected state.
538 */
539 tsc_sync_wait();
540
884d9e40
AR
541 /*
542 * We need to hold call_lock, so there is no inconsistency
543 * between the time smp_call_function() determines number of
544 * IPI receipients, and the time when the determination is made
545 * for which cpus receive the IPI in genapic_flat.c. Holding this
546 * lock helps us to not include this cpu in a currently in progress
547 * smp_call_function().
548 */
549 lock_ipi_call_lock();
550
1da177e4 551 /*
a8ab26fe 552 * Allow the master to continue.
1da177e4 553 */
1da177e4 554 cpu_set(smp_processor_id(), cpu_online_map);
884d9e40
AR
555 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
556 unlock_ipi_call_lock();
557
1da177e4
LT
558 cpu_idle();
559}
560
a8ab26fe 561extern volatile unsigned long init_rsp;
1da177e4
LT
562extern void (*initial_code)(void);
563
44456d37 564#ifdef APIC_DEBUG
a8ab26fe 565static void inquire_remote_apic(int apicid)
1da177e4
LT
566{
567 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
568 char *names[] = { "ID", "VERSION", "SPIV" };
569 int timeout, status;
570
571 printk(KERN_INFO "Inquiring remote APIC #%d...\n", apicid);
572
573 for (i = 0; i < sizeof(regs) / sizeof(*regs); i++) {
574 printk("... APIC #%d %s: ", apicid, names[i]);
575
576 /*
577 * Wait for idle.
578 */
579 apic_wait_icr_idle();
580
c1507eb2
AK
581 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
582 apic_write(APIC_ICR, APIC_DM_REMRD | regs[i]);
1da177e4
LT
583
584 timeout = 0;
585 do {
586 udelay(100);
587 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
588 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
589
590 switch (status) {
591 case APIC_ICR_RR_VALID:
592 status = apic_read(APIC_RRR);
593 printk("%08x\n", status);
594 break;
595 default:
596 printk("failed\n");
597 }
598 }
599}
600#endif
601
a8ab26fe
AK
602/*
603 * Kick the secondary to wake up.
604 */
605static int __cpuinit wakeup_secondary_via_INIT(int phys_apicid, unsigned int start_rip)
1da177e4
LT
606{
607 unsigned long send_status = 0, accept_status = 0;
608 int maxlvt, timeout, num_starts, j;
609
610 Dprintk("Asserting INIT.\n");
611
612 /*
613 * Turn INIT on target chip
614 */
c1507eb2 615 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
1da177e4
LT
616
617 /*
618 * Send IPI
619 */
c1507eb2 620 apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT
1da177e4
LT
621 | APIC_DM_INIT);
622
623 Dprintk("Waiting for send to finish...\n");
624 timeout = 0;
625 do {
626 Dprintk("+");
627 udelay(100);
628 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
629 } while (send_status && (timeout++ < 1000));
630
631 mdelay(10);
632
633 Dprintk("Deasserting INIT.\n");
634
635 /* Target chip */
c1507eb2 636 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
1da177e4
LT
637
638 /* Send IPI */
c1507eb2 639 apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT);
1da177e4
LT
640
641 Dprintk("Waiting for send to finish...\n");
642 timeout = 0;
643 do {
644 Dprintk("+");
645 udelay(100);
646 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
647 } while (send_status && (timeout++ < 1000));
648
649 atomic_set(&init_deasserted, 1);
650
5a40b7c2 651 num_starts = 2;
1da177e4
LT
652
653 /*
654 * Run STARTUP IPI loop.
655 */
656 Dprintk("#startup loops: %d.\n", num_starts);
657
658 maxlvt = get_maxlvt();
659
660 for (j = 1; j <= num_starts; j++) {
661 Dprintk("Sending STARTUP #%d.\n",j);
662 apic_read_around(APIC_SPIV);
663 apic_write(APIC_ESR, 0);
664 apic_read(APIC_ESR);
665 Dprintk("After apic_write.\n");
666
667 /*
668 * STARTUP IPI
669 */
670
671 /* Target chip */
c1507eb2 672 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
1da177e4
LT
673
674 /* Boot on the stack */
675 /* Kick the second */
c1507eb2 676 apic_write(APIC_ICR, APIC_DM_STARTUP | (start_rip >> 12));
1da177e4
LT
677
678 /*
679 * Give the other CPU some time to accept the IPI.
680 */
681 udelay(300);
682
683 Dprintk("Startup point 1.\n");
684
685 Dprintk("Waiting for send to finish...\n");
686 timeout = 0;
687 do {
688 Dprintk("+");
689 udelay(100);
690 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
691 } while (send_status && (timeout++ < 1000));
692
693 /*
694 * Give the other CPU some time to accept the IPI.
695 */
696 udelay(200);
697 /*
698 * Due to the Pentium erratum 3AP.
699 */
700 if (maxlvt > 3) {
701 apic_read_around(APIC_SPIV);
702 apic_write(APIC_ESR, 0);
703 }
704 accept_status = (apic_read(APIC_ESR) & 0xEF);
705 if (send_status || accept_status)
706 break;
707 }
708 Dprintk("After Startup.\n");
709
710 if (send_status)
711 printk(KERN_ERR "APIC never delivered???\n");
712 if (accept_status)
713 printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status);
714
715 return (send_status | accept_status);
716}
717
76e4f660
AR
718struct create_idle {
719 struct task_struct *idle;
720 struct completion done;
721 int cpu;
722};
723
724void do_fork_idle(void *_c_idle)
725{
726 struct create_idle *c_idle = _c_idle;
727
728 c_idle->idle = fork_idle(c_idle->cpu);
729 complete(&c_idle->done);
730}
731
a8ab26fe
AK
732/*
733 * Boot one CPU.
734 */
735static int __cpuinit do_boot_cpu(int cpu, int apicid)
1da177e4 736{
1da177e4 737 unsigned long boot_error;
a8ab26fe 738 int timeout;
1da177e4 739 unsigned long start_rip;
76e4f660
AR
740 struct create_idle c_idle = {
741 .cpu = cpu,
742 .done = COMPLETION_INITIALIZER(c_idle.done),
743 };
744 DECLARE_WORK(work, do_fork_idle, &c_idle);
745
746 c_idle.idle = get_idle_for_cpu(cpu);
747
748 if (c_idle.idle) {
749 c_idle.idle->thread.rsp = (unsigned long) (((struct pt_regs *)
750 (THREAD_SIZE + (unsigned long) c_idle.idle->thread_info)) - 1);
751 init_idle(c_idle.idle, cpu);
752 goto do_rest;
753 }
754
1da177e4 755 /*
76e4f660
AR
756 * During cold boot process, keventd thread is not spun up yet.
757 * When we do cpu hot-add, we create idle threads on the fly, we should
758 * not acquire any attributes from the calling context. Hence the clean
759 * way to create kernel_threads() is to do that from keventd().
760 * We do the current_is_keventd() due to the fact that ACPI notifier
761 * was also queuing to keventd() and when the caller is already running
762 * in context of keventd(), we would end up with locking up the keventd
763 * thread.
1da177e4 764 */
76e4f660
AR
765 if (!keventd_up() || current_is_keventd())
766 work.func(work.data);
767 else {
768 schedule_work(&work);
769 wait_for_completion(&c_idle.done);
770 }
771
772 if (IS_ERR(c_idle.idle)) {
a8ab26fe 773 printk("failed fork for CPU %d\n", cpu);
76e4f660 774 return PTR_ERR(c_idle.idle);
a8ab26fe 775 }
1da177e4 776
76e4f660
AR
777 set_idle_for_cpu(cpu, c_idle.idle);
778
779do_rest:
780
781 cpu_pda[cpu].pcurrent = c_idle.idle;
1da177e4
LT
782
783 start_rip = setup_trampoline();
784
76e4f660 785 init_rsp = c_idle.idle->thread.rsp;
1da177e4
LT
786 per_cpu(init_tss,cpu).rsp0 = init_rsp;
787 initial_code = start_secondary;
76e4f660 788 clear_ti_thread_flag(c_idle.idle->thread_info, TIF_FORK);
1da177e4 789
de04f322
AK
790 printk(KERN_INFO "Booting processor %d/%d APIC 0x%x\n", cpu,
791 cpus_weight(cpu_present_map),
792 apicid);
1da177e4
LT
793
794 /*
795 * This grunge runs the startup process for
796 * the targeted processor.
797 */
798
799 atomic_set(&init_deasserted, 0);
800
801 Dprintk("Setting warm reset code and vector.\n");
802
803 CMOS_WRITE(0xa, 0xf);
804 local_flush_tlb();
805 Dprintk("1.\n");
806 *((volatile unsigned short *) phys_to_virt(0x469)) = start_rip >> 4;
807 Dprintk("2.\n");
808 *((volatile unsigned short *) phys_to_virt(0x467)) = start_rip & 0xf;
809 Dprintk("3.\n");
810
811 /*
812 * Be paranoid about clearing APIC errors.
813 */
814 if (APIC_INTEGRATED(apic_version[apicid])) {
815 apic_read_around(APIC_SPIV);
816 apic_write(APIC_ESR, 0);
817 apic_read(APIC_ESR);
818 }
819
820 /*
821 * Status is now clean
822 */
823 boot_error = 0;
824
825 /*
826 * Starting actual IPI sequence...
827 */
a8ab26fe 828 boot_error = wakeup_secondary_via_INIT(apicid, start_rip);
1da177e4
LT
829
830 if (!boot_error) {
831 /*
832 * allow APs to start initializing.
833 */
834 Dprintk("Before Callout %d.\n", cpu);
835 cpu_set(cpu, cpu_callout_map);
836 Dprintk("After Callout %d.\n", cpu);
837
838 /*
839 * Wait 5s total for a response
840 */
841 for (timeout = 0; timeout < 50000; timeout++) {
842 if (cpu_isset(cpu, cpu_callin_map))
843 break; /* It has booted */
844 udelay(100);
845 }
846
847 if (cpu_isset(cpu, cpu_callin_map)) {
848 /* number CPUs logically, starting from 1 (BSP is 0) */
1da177e4
LT
849 Dprintk("CPU has booted.\n");
850 } else {
851 boot_error = 1;
852 if (*((volatile unsigned char *)phys_to_virt(SMP_TRAMPOLINE_BASE))
853 == 0xA5)
854 /* trampoline started but...? */
855 printk("Stuck ??\n");
856 else
857 /* trampoline code not run */
858 printk("Not responding.\n");
44456d37 859#ifdef APIC_DEBUG
1da177e4
LT
860 inquire_remote_apic(apicid);
861#endif
862 }
863 }
864 if (boot_error) {
865 cpu_clear(cpu, cpu_callout_map); /* was set here (do_boot_cpu()) */
866 clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
a8ab26fe
AK
867 cpu_clear(cpu, cpu_present_map);
868 cpu_clear(cpu, cpu_possible_map);
1da177e4
LT
869 x86_cpu_to_apicid[cpu] = BAD_APICID;
870 x86_cpu_to_log_apicid[cpu] = BAD_APICID;
a8ab26fe 871 return -EIO;
1da177e4 872 }
a8ab26fe
AK
873
874 return 0;
1da177e4
LT
875}
876
a8ab26fe
AK
877cycles_t cacheflush_time;
878unsigned long cache_decay_ticks;
879
1da177e4 880/*
a8ab26fe 881 * Cleanup possible dangling ends...
1da177e4 882 */
a8ab26fe 883static __cpuinit void smp_cleanup_boot(void)
1da177e4 884{
a8ab26fe
AK
885 /*
886 * Paranoid: Set warm reset code and vector here back
887 * to default values.
888 */
889 CMOS_WRITE(0, 0xf);
1da177e4 890
a8ab26fe
AK
891 /*
892 * Reset trampoline flag
893 */
894 *((volatile int *) phys_to_virt(0x467)) = 0;
a8ab26fe
AK
895}
896
897/*
898 * Fall back to non SMP mode after errors.
899 *
900 * RED-PEN audit/test this more. I bet there is more state messed up here.
901 */
e6982c67 902static __init void disable_smp(void)
a8ab26fe
AK
903{
904 cpu_present_map = cpumask_of_cpu(0);
905 cpu_possible_map = cpumask_of_cpu(0);
906 if (smp_found_config)
907 phys_cpu_present_map = physid_mask_of_physid(boot_cpu_id);
908 else
909 phys_cpu_present_map = physid_mask_of_physid(0);
910 cpu_set(0, cpu_sibling_map[0]);
911 cpu_set(0, cpu_core_map[0]);
912}
913
61b1b2d0 914#ifdef CONFIG_HOTPLUG_CPU
420f8f68
AK
915
916int additional_cpus __initdata = -1;
917
61b1b2d0
AK
918/*
919 * cpu_possible_map should be static, it cannot change as cpu's
920 * are onlined, or offlined. The reason is per-cpu data-structures
921 * are allocated by some modules at init time, and dont expect to
922 * do this dynamically on cpu arrival/departure.
923 * cpu_present_map on the other hand can change dynamically.
924 * In case when cpu_hotplug is not compiled, then we resort to current
925 * behaviour, which is cpu_possible == cpu_present.
61b1b2d0 926 * - Ashok Raj
420f8f68
AK
927 *
928 * Three ways to find out the number of additional hotplug CPUs:
929 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
930 * - otherwise use half of the available CPUs or 2, whatever is more.
931 * - The user can overwrite it with additional_cpus=NUM
932 * We do this because additional CPUs waste a lot of memory.
933 * -AK
61b1b2d0 934 */
421c7ce6 935__init void prefill_possible_map(void)
61b1b2d0
AK
936{
937 int i;
420f8f68
AK
938 int possible;
939
940 if (additional_cpus == -1) {
941 if (disabled_cpus > 0) {
942 additional_cpus = disabled_cpus;
943 } else {
944 additional_cpus = num_processors / 2;
945 if (additional_cpus == 0)
946 additional_cpus = 2;
947 }
948 }
949 possible = num_processors + additional_cpus;
950 if (possible > NR_CPUS)
951 possible = NR_CPUS;
952
953 printk(KERN_INFO "SMP: Allowing %d CPUs, %d hotplug CPUs\n",
954 possible,
955 max_t(int, possible - num_processors, 0));
956
957 for (i = 0; i < possible; i++)
61b1b2d0
AK
958 cpu_set(i, cpu_possible_map);
959}
960#endif
961
a8ab26fe
AK
962/*
963 * Various sanity checks.
964 */
e6982c67 965static int __init smp_sanity_check(unsigned max_cpus)
a8ab26fe 966{
1da177e4
LT
967 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
968 printk("weird, boot CPU (#%d) not listed by the BIOS.\n",
969 hard_smp_processor_id());
970 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
971 }
972
973 /*
974 * If we couldn't find an SMP configuration at boot time,
975 * get out of here now!
976 */
977 if (!smp_found_config) {
978 printk(KERN_NOTICE "SMP motherboard not detected.\n");
a8ab26fe 979 disable_smp();
1da177e4
LT
980 if (APIC_init_uniprocessor())
981 printk(KERN_NOTICE "Local APIC not detected."
982 " Using dummy APIC emulation.\n");
a8ab26fe 983 return -1;
1da177e4
LT
984 }
985
986 /*
987 * Should not be necessary because the MP table should list the boot
988 * CPU too, but we do it for the sake of robustness anyway.
989 */
990 if (!physid_isset(boot_cpu_id, phys_cpu_present_map)) {
991 printk(KERN_NOTICE "weird, boot CPU (#%d) not listed by the BIOS.\n",
992 boot_cpu_id);
993 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
994 }
995
996 /*
997 * If we couldn't find a local APIC, then get out of here now!
998 */
999 if (APIC_INTEGRATED(apic_version[boot_cpu_id]) && !cpu_has_apic) {
1000 printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n",
1001 boot_cpu_id);
1002 printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n");
a8ab26fe
AK
1003 nr_ioapics = 0;
1004 return -1;
1da177e4
LT
1005 }
1006
1da177e4
LT
1007 /*
1008 * If SMP should be disabled, then really disable it!
1009 */
1010 if (!max_cpus) {
1da177e4 1011 printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n");
a8ab26fe
AK
1012 nr_ioapics = 0;
1013 return -1;
1da177e4
LT
1014 }
1015
a8ab26fe
AK
1016 return 0;
1017}
1da177e4 1018
a8ab26fe
AK
1019/*
1020 * Prepare for SMP bootup. The MP table or ACPI has been read
1021 * earlier. Just do some sanity checking here and enable APIC mode.
1022 */
e6982c67 1023void __init smp_prepare_cpus(unsigned int max_cpus)
a8ab26fe 1024{
a8ab26fe
AK
1025 nmi_watchdog_default();
1026 current_cpu_data = boot_cpu_data;
1027 current_thread_info()->cpu = 0; /* needed? */
94605eff 1028 set_cpu_sibling_map(0);
1da177e4 1029
a8ab26fe
AK
1030 if (smp_sanity_check(max_cpus) < 0) {
1031 printk(KERN_INFO "SMP disabled\n");
1032 disable_smp();
1033 return;
1da177e4
LT
1034 }
1035
a8ab26fe 1036
1da177e4 1037 /*
a8ab26fe 1038 * Switch from PIC to APIC mode.
1da177e4 1039 */
a8ab26fe
AK
1040 connect_bsp_APIC();
1041 setup_local_APIC();
1da177e4 1042
a8ab26fe
AK
1043 if (GET_APIC_ID(apic_read(APIC_ID)) != boot_cpu_id) {
1044 panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
1045 GET_APIC_ID(apic_read(APIC_ID)), boot_cpu_id);
1046 /* Or can we switch back to PIC here? */
1da177e4 1047 }
1da177e4
LT
1048
1049 /*
a8ab26fe 1050 * Now start the IO-APICs
1da177e4
LT
1051 */
1052 if (!skip_ioapic_setup && nr_ioapics)
1053 setup_IO_APIC();
1054 else
1055 nr_ioapics = 0;
1056
1da177e4 1057 /*
a8ab26fe 1058 * Set up local APIC timer on boot CPU.
1da177e4 1059 */
1da177e4 1060
a8ab26fe 1061 setup_boot_APIC_clock();
1da177e4
LT
1062}
1063
a8ab26fe
AK
1064/*
1065 * Early setup to make printk work.
1066 */
1067void __init smp_prepare_boot_cpu(void)
1da177e4 1068{
a8ab26fe
AK
1069 int me = smp_processor_id();
1070 cpu_set(me, cpu_online_map);
1071 cpu_set(me, cpu_callout_map);
884d9e40 1072 per_cpu(cpu_state, me) = CPU_ONLINE;
1da177e4
LT
1073}
1074
a8ab26fe
AK
1075/*
1076 * Entry point to boot a CPU.
a8ab26fe
AK
1077 */
1078int __cpuinit __cpu_up(unsigned int cpu)
1da177e4 1079{
a8ab26fe
AK
1080 int err;
1081 int apicid = cpu_present_to_apicid(cpu);
1da177e4 1082
a8ab26fe 1083 WARN_ON(irqs_disabled());
1da177e4 1084
a8ab26fe
AK
1085 Dprintk("++++++++++++++++++++=_---CPU UP %u\n", cpu);
1086
1087 if (apicid == BAD_APICID || apicid == boot_cpu_id ||
1088 !physid_isset(apicid, phys_cpu_present_map)) {
1089 printk("__cpu_up: bad cpu %d\n", cpu);
1090 return -EINVAL;
1091 }
a8ab26fe 1092
76e4f660
AR
1093 /*
1094 * Already booted CPU?
1095 */
1096 if (cpu_isset(cpu, cpu_callin_map)) {
1097 Dprintk("do_boot_cpu %d Already started\n", cpu);
1098 return -ENOSYS;
1099 }
1100
884d9e40 1101 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
a8ab26fe
AK
1102 /* Boot it! */
1103 err = do_boot_cpu(cpu, apicid);
1104 if (err < 0) {
a8ab26fe
AK
1105 Dprintk("do_boot_cpu failed %d\n", err);
1106 return err;
1da177e4 1107 }
a8ab26fe 1108
1da177e4
LT
1109 /* Unleash the CPU! */
1110 Dprintk("waiting for cpu %d\n", cpu);
1111
1da177e4 1112 while (!cpu_isset(cpu, cpu_online_map))
a8ab26fe 1113 cpu_relax();
76e4f660
AR
1114 err = 0;
1115
1116 return err;
1da177e4
LT
1117}
1118
a8ab26fe
AK
1119/*
1120 * Finish the SMP boot.
1121 */
e6982c67 1122void __init smp_cpus_done(unsigned int max_cpus)
1da177e4 1123{
a8ab26fe
AK
1124 smp_cleanup_boot();
1125
1da177e4
LT
1126#ifdef CONFIG_X86_IO_APIC
1127 setup_ioapic_dest();
1128#endif
1da177e4 1129
a8ab26fe 1130 time_init_gtod();
75152114
AK
1131
1132 check_nmi_watchdog();
a8ab26fe 1133}
76e4f660
AR
1134
1135#ifdef CONFIG_HOTPLUG_CPU
1136
cb0cd8d4 1137static void remove_siblinginfo(int cpu)
76e4f660
AR
1138{
1139 int sibling;
94605eff 1140 struct cpuinfo_x86 *c = cpu_data;
76e4f660 1141
94605eff
SS
1142 for_each_cpu_mask(sibling, cpu_core_map[cpu]) {
1143 cpu_clear(cpu, cpu_core_map[sibling]);
1144 /*
1145 * last thread sibling in this cpu core going down
1146 */
1147 if (cpus_weight(cpu_sibling_map[cpu]) == 1)
1148 c[sibling].booted_cores--;
1149 }
1150
76e4f660
AR
1151 for_each_cpu_mask(sibling, cpu_sibling_map[cpu])
1152 cpu_clear(cpu, cpu_sibling_map[sibling]);
76e4f660
AR
1153 cpus_clear(cpu_sibling_map[cpu]);
1154 cpus_clear(cpu_core_map[cpu]);
1155 phys_proc_id[cpu] = BAD_APICID;
1156 cpu_core_id[cpu] = BAD_APICID;
94605eff 1157 cpu_clear(cpu, cpu_sibling_setup_map);
76e4f660
AR
1158}
1159
1160void remove_cpu_from_maps(void)
1161{
1162 int cpu = smp_processor_id();
1163
1164 cpu_clear(cpu, cpu_callout_map);
1165 cpu_clear(cpu, cpu_callin_map);
1166 clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
1167}
1168
1169int __cpu_disable(void)
1170{
1171 int cpu = smp_processor_id();
1172
1173 /*
1174 * Perhaps use cpufreq to drop frequency, but that could go
1175 * into generic code.
1176 *
1177 * We won't take down the boot processor on i386 due to some
1178 * interrupts only being able to be serviced by the BSP.
1179 * Especially so if we're not using an IOAPIC -zwane
1180 */
1181 if (cpu == 0)
1182 return -EBUSY;
1183
5e9ef02e 1184 clear_local_APIC();
76e4f660
AR
1185
1186 /*
1187 * HACK:
1188 * Allow any queued timer interrupts to get serviced
1189 * This is only a temporary solution until we cleanup
1190 * fixup_irqs as we do for IA64.
1191 */
1192 local_irq_enable();
1193 mdelay(1);
1194
1195 local_irq_disable();
1196 remove_siblinginfo(cpu);
1197
1198 /* It's now safe to remove this processor from the online map */
1199 cpu_clear(cpu, cpu_online_map);
1200 remove_cpu_from_maps();
1201 fixup_irqs(cpu_online_map);
1202 return 0;
1203}
1204
1205void __cpu_die(unsigned int cpu)
1206{
1207 /* We don't do anything here: idle task is faking death itself. */
1208 unsigned int i;
1209
1210 for (i = 0; i < 10; i++) {
1211 /* They ack this in play_dead by setting CPU_DEAD */
884d9e40
AR
1212 if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1213 printk ("CPU %d is now offline\n", cpu);
76e4f660 1214 return;
884d9e40 1215 }
ef6e5253 1216 msleep(100);
76e4f660
AR
1217 }
1218 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1219}
1220
420f8f68
AK
1221static __init int setup_additional_cpus(char *s)
1222{
1223 return get_option(&s, &additional_cpus);
1224}
1225__setup("additional_cpus=", setup_additional_cpus);
1226
76e4f660
AR
1227#else /* ... !CONFIG_HOTPLUG_CPU */
1228
1229int __cpu_disable(void)
1230{
1231 return -ENOSYS;
1232}
1233
1234void __cpu_die(unsigned int cpu)
1235{
1236 /* We said "no" in __cpu_disable */
1237 BUG();
1238}
1239#endif /* CONFIG_HOTPLUG_CPU */
This page took 0.142527 seconds and 5 git commands to generate.