bfd/
[deliverable/binutils-gdb.git] / bfd / coff-h8300.c
CommitLineData
c2dcd04e 1/* BFD back-end for Renesas H8/300 COFF binaries.
7898deda 2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
66eb6687 3 2000, 2001, 2002, 2003, 2004, 2005, 2006
5f771d47 4 Free Software Foundation, Inc.
252b5132
RH
5 Written by Steve Chamberlain, <sac@cygnus.com>.
6
e514ac71 7 This file is part of BFD, the Binary File Descriptor library.
252b5132 8
e514ac71
NC
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
252b5132 13
e514ac71
NC
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
252b5132 18
e514ac71
NC
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
3e110533 21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
252b5132
RH
22
23#include "bfd.h"
24#include "sysdep.h"
25#include "libbfd.h"
26#include "bfdlink.h"
27#include "genlink.h"
28#include "coff/h8300.h"
29#include "coff/internal.h"
30#include "libcoff.h"
0171ee92 31#include "libiberty.h"
252b5132
RH
32
33#define COFF_DEFAULT_SECTION_ALIGNMENT_POWER (1)
34
35/* We derive a hash table from the basic BFD hash table to
5fcfd273 36 hold entries in the function vector. Aside from the
252b5132
RH
37 info stored by the basic hash table, we need the offset
38 of a particular entry within the hash table as well as
39 the offset where we'll add the next entry. */
40
41struct funcvec_hash_entry
f4ffd778
NC
42 {
43 /* The basic hash table entry. */
44 struct bfd_hash_entry root;
252b5132 45
f4ffd778
NC
46 /* The offset within the vectors section where
47 this entry lives. */
48 bfd_vma offset;
49 };
252b5132
RH
50
51struct funcvec_hash_table
f4ffd778
NC
52 {
53 /* The basic hash table. */
54 struct bfd_hash_table root;
252b5132 55
f4ffd778 56 bfd *abfd;
252b5132 57
f4ffd778
NC
58 /* Offset at which we'll add the next entry. */
59 unsigned int offset;
60 };
252b5132
RH
61
62static struct bfd_hash_entry *
63funcvec_hash_newfunc
c6baf75e 64 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
252b5132 65
b34976b6 66static bfd_reloc_status_type special
c6baf75e 67 (bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **);
b34976b6 68static int select_reloc
c6baf75e 69 (reloc_howto_type *);
b34976b6 70static void rtype2howto
c6baf75e 71 (arelent *, struct internal_reloc *);
b34976b6 72static void reloc_processing
c6baf75e 73 (arelent *, struct internal_reloc *, asymbol **, bfd *, asection *);
b34976b6 74static bfd_boolean h8300_symbol_address_p
c6baf75e 75 (bfd *, asection *, bfd_vma);
b34976b6 76static int h8300_reloc16_estimate
c6baf75e
RS
77 (bfd *, asection *, arelent *, unsigned int,
78 struct bfd_link_info *);
b34976b6 79static void h8300_reloc16_extra_cases
c6baf75e
RS
80 (bfd *, struct bfd_link_info *, struct bfd_link_order *, arelent *,
81 bfd_byte *, unsigned int *, unsigned int *);
b34976b6 82static bfd_boolean h8300_bfd_link_add_symbols
c6baf75e 83 (bfd *, struct bfd_link_info *);
f4ffd778 84
252b5132
RH
85/* To lookup a value in the function vector hash table. */
86#define funcvec_hash_lookup(table, string, create, copy) \
87 ((struct funcvec_hash_entry *) \
88 bfd_hash_lookup (&(table)->root, (string), (create), (copy)))
89
90/* The derived h8300 COFF linker table. Note it's derived from
91 the generic linker hash table, not the COFF backend linker hash
92 table! We use this to attach additional data structures we
93 need while linking on the h8300. */
bc7eab72 94struct h8300_coff_link_hash_table {
252b5132
RH
95 /* The main hash table. */
96 struct generic_link_hash_table root;
97
98 /* Section for the vectors table. This gets attached to a
99 random input bfd, we keep it here for easy access. */
100 asection *vectors_sec;
101
102 /* Hash table of the functions we need to enter into the function
103 vector. */
104 struct funcvec_hash_table *funcvec_hash_table;
105};
106
c6baf75e 107static struct bfd_link_hash_table *h8300_coff_link_hash_table_create (bfd *);
252b5132
RH
108
109/* Get the H8/300 COFF linker hash table from a link_info structure. */
110
111#define h8300_coff_hash_table(p) \
112 ((struct h8300_coff_link_hash_table *) ((coff_hash_table (p))))
113
114/* Initialize fields within a funcvec hash table entry. Called whenever
115 a new entry is added to the funcvec hash table. */
116
117static struct bfd_hash_entry *
c6baf75e
RS
118funcvec_hash_newfunc (struct bfd_hash_entry *entry,
119 struct bfd_hash_table *gen_table,
120 const char *string)
252b5132
RH
121{
122 struct funcvec_hash_entry *ret;
123 struct funcvec_hash_table *table;
124
125 ret = (struct funcvec_hash_entry *) entry;
126 table = (struct funcvec_hash_table *) gen_table;
127
128 /* Allocate the structure if it has not already been allocated by a
129 subclass. */
130 if (ret == NULL)
131 ret = ((struct funcvec_hash_entry *)
0171ee92
AM
132 bfd_hash_allocate (gen_table,
133 sizeof (struct funcvec_hash_entry)));
252b5132
RH
134 if (ret == NULL)
135 return NULL;
136
137 /* Call the allocation method of the superclass. */
138 ret = ((struct funcvec_hash_entry *)
bc7eab72 139 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, gen_table, string));
252b5132
RH
140
141 if (ret == NULL)
142 return NULL;
143
144 /* Note where this entry will reside in the function vector table. */
145 ret->offset = table->offset;
146
147 /* Bump the offset at which we store entries in the function
148 vector. We'd like to bump up the size of the vectors section,
149 but it's not easily available here. */
d4e2de6b
NC
150 switch (bfd_get_mach (table->abfd))
151 {
152 case bfd_mach_h8300:
153 case bfd_mach_h8300hn:
154 case bfd_mach_h8300sn:
155 table->offset += 2;
156 break;
157 case bfd_mach_h8300h:
158 case bfd_mach_h8300s:
159 table->offset += 4;
160 break;
161 default:
162 return NULL;
163 }
252b5132
RH
164
165 /* Everything went OK. */
166 return (struct bfd_hash_entry *) ret;
167}
168
169/* Initialize the function vector hash table. */
170
b34976b6 171static bfd_boolean
c6baf75e
RS
172funcvec_hash_table_init (struct funcvec_hash_table *table,
173 bfd *abfd,
174 struct bfd_hash_entry *(*newfunc)
175 (struct bfd_hash_entry *,
176 struct bfd_hash_table *,
66eb6687
AM
177 const char *),
178 unsigned int entsize)
252b5132
RH
179{
180 /* Initialize our local fields, then call the generic initialization
181 routine. */
182 table->offset = 0;
183 table->abfd = abfd;
66eb6687 184 return (bfd_hash_table_init (&table->root, newfunc, entsize));
252b5132
RH
185}
186
187/* Create the derived linker hash table. We use a derived hash table
19852a2a 188 basically to hold "static" information during an H8/300 coff link
252b5132
RH
189 without using static variables. */
190
191static struct bfd_link_hash_table *
c6baf75e 192h8300_coff_link_hash_table_create (bfd *abfd)
252b5132
RH
193{
194 struct h8300_coff_link_hash_table *ret;
dc810e39
AM
195 bfd_size_type amt = sizeof (struct h8300_coff_link_hash_table);
196
e2d34d7d 197 ret = (struct h8300_coff_link_hash_table *) bfd_malloc (amt);
252b5132
RH
198 if (ret == NULL)
199 return NULL;
dc810e39 200 if (!_bfd_link_hash_table_init (&ret->root.root, abfd,
66eb6687
AM
201 _bfd_generic_link_hash_newfunc,
202 sizeof (struct generic_link_hash_entry)))
252b5132 203 {
e2d34d7d 204 free (ret);
252b5132
RH
205 return NULL;
206 }
207
208 /* Initialize our data. */
209 ret->vectors_sec = NULL;
210 ret->funcvec_hash_table = NULL;
211
2ab1486e 212 /* OK. Everything's initialized, return the base pointer. */
252b5132
RH
213 return &ret->root.root;
214}
215
cc040812 216/* Special handling for H8/300 relocs.
252b5132
RH
217 We only come here for pcrel stuff and return normally if not an -r link.
218 When doing -r, we can't do any arithmetic for the pcrel stuff, because
219 the code in reloc.c assumes that we can manipulate the targets of
5fcfd273 220 the pcrel branches. This isn't so, since the H8/300 can do relaxing,
252b5132 221 which means that the gap after the instruction may not be enough to
d562d2fb 222 contain the offset required for the branch, so we have to use only
cc040812 223 the addend until the final link. */
252b5132
RH
224
225static bfd_reloc_status_type
c6baf75e
RS
226special (bfd *abfd ATTRIBUTE_UNUSED,
227 arelent *reloc_entry ATTRIBUTE_UNUSED,
228 asymbol *symbol ATTRIBUTE_UNUSED,
229 PTR data ATTRIBUTE_UNUSED,
230 asection *input_section ATTRIBUTE_UNUSED,
231 bfd *output_bfd,
232 char **error_message ATTRIBUTE_UNUSED)
252b5132
RH
233{
234 if (output_bfd == (bfd *) NULL)
235 return bfd_reloc_continue;
236
d562d2fb
AM
237 /* Adjust the reloc address to that in the output section. */
238 reloc_entry->address += input_section->output_offset;
252b5132
RH
239 return bfd_reloc_ok;
240}
241
bc7eab72 242static reloc_howto_type howto_table[] = {
b34976b6
AM
243 HOWTO (R_RELBYTE, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "8", FALSE, 0x000000ff, 0x000000ff, FALSE),
244 HOWTO (R_RELWORD, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "16", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
245 HOWTO (R_RELLONG, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, special, "32", FALSE, 0xffffffff, 0xffffffff, FALSE),
246 HOWTO (R_PCRBYTE, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "DISP8", FALSE, 0x000000ff, 0x000000ff, TRUE),
247 HOWTO (R_PCRWORD, 0, 1, 16, TRUE, 0, complain_overflow_signed, special, "DISP16", FALSE, 0x0000ffff, 0x0000ffff, TRUE),
248 HOWTO (R_PCRLONG, 0, 2, 32, TRUE, 0, complain_overflow_signed, special, "DISP32", FALSE, 0xffffffff, 0xffffffff, TRUE),
249 HOWTO (R_MOV16B1, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "relaxable mov.b:16", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
250 HOWTO (R_MOV16B2, 0, 1, 8, FALSE, 0, complain_overflow_bitfield, special, "relaxed mov.b:16", FALSE, 0x000000ff, 0x000000ff, FALSE),
251 HOWTO (R_JMP1, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "16/pcrel", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
252 HOWTO (R_JMP2, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "pcrecl/16", FALSE, 0x000000ff, 0x000000ff, FALSE),
253 HOWTO (R_JMPL1, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, special, "24/pcrell", FALSE, 0x00ffffff, 0x00ffffff, FALSE),
254 HOWTO (R_JMPL2, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "pc8/24", FALSE, 0x000000ff, 0x000000ff, FALSE),
255 HOWTO (R_MOV24B1, 0, 1, 32, FALSE, 0, complain_overflow_bitfield, special, "relaxable mov.b:24", FALSE, 0xffffffff, 0xffffffff, FALSE),
256 HOWTO (R_MOV24B2, 0, 1, 8, FALSE, 0, complain_overflow_bitfield, special, "relaxed mov.b:24", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
252b5132
RH
257
258 /* An indirect reference to a function. This causes the function's address
259 to be added to the function vector in lo-mem and puts the address of
260 the function vector's entry in the jsr instruction. */
b34976b6 261 HOWTO (R_MEM_INDIRECT, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "8/indirect", FALSE, 0x000000ff, 0x000000ff, FALSE),
252b5132 262
e804e836
KH
263 /* Internal reloc for relaxing. This is created when a 16-bit pc-relative
264 branch is turned into an 8-bit pc-relative branch. */
b34976b6 265 HOWTO (R_PCRWORD_B, 0, 0, 8, TRUE, 0, complain_overflow_bitfield, special, "relaxed bCC:16", FALSE, 0x000000ff, 0x000000ff, FALSE),
252b5132 266
b34976b6 267 HOWTO (R_MOVL1, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,special, "32/24 relaxable move", FALSE, 0xffffffff, 0xffffffff, FALSE),
252b5132 268
b34976b6 269 HOWTO (R_MOVL2, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "32/24 relaxed move", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
252b5132 270
b34976b6 271 HOWTO (R_BCC_INV, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "DISP8 inverted", FALSE, 0x000000ff, 0x000000ff, TRUE),
252b5132 272
b34976b6 273 HOWTO (R_JMP_DEL, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "Deleted jump", FALSE, 0x000000ff, 0x000000ff, TRUE),
252b5132
RH
274};
275
cc040812 276/* Turn a howto into a reloc number. */
252b5132
RH
277
278#define SELECT_RELOC(x,howto) \
bc7eab72 279 { x.r_type = select_reloc (howto); }
252b5132 280
8d9cd6b1
NC
281#define BADMAG(x) (H8300BADMAG (x) && H8300HBADMAG (x) && H8300SBADMAG (x) \
282 && H8300HNBADMAG(x) && H8300SNBADMAG(x))
283#define H8300 1 /* Customize coffcode.h */
252b5132
RH
284#define __A_MAGIC_SET__
285
cc040812 286/* Code to swap in the reloc. */
dc810e39
AM
287#define SWAP_IN_RELOC_OFFSET H_GET_32
288#define SWAP_OUT_RELOC_OFFSET H_PUT_32
252b5132
RH
289#define SWAP_OUT_RELOC_EXTRA(abfd, src, dst) \
290 dst->r_stuff[0] = 'S'; \
291 dst->r_stuff[1] = 'C';
292
252b5132 293static int
c6baf75e 294select_reloc (reloc_howto_type *howto)
252b5132
RH
295{
296 return howto->type;
297}
298
cc040812 299/* Code to turn a r_type into a howto ptr, uses the above howto table. */
252b5132
RH
300
301static void
c6baf75e 302rtype2howto (arelent *internal, struct internal_reloc *dst)
252b5132
RH
303{
304 switch (dst->r_type)
305 {
306 case R_RELBYTE:
307 internal->howto = howto_table + 0;
308 break;
309 case R_RELWORD:
310 internal->howto = howto_table + 1;
311 break;
312 case R_RELLONG:
313 internal->howto = howto_table + 2;
314 break;
315 case R_PCRBYTE:
316 internal->howto = howto_table + 3;
317 break;
318 case R_PCRWORD:
319 internal->howto = howto_table + 4;
320 break;
321 case R_PCRLONG:
322 internal->howto = howto_table + 5;
323 break;
324 case R_MOV16B1:
325 internal->howto = howto_table + 6;
326 break;
327 case R_MOV16B2:
328 internal->howto = howto_table + 7;
329 break;
330 case R_JMP1:
331 internal->howto = howto_table + 8;
332 break;
333 case R_JMP2:
334 internal->howto = howto_table + 9;
335 break;
336 case R_JMPL1:
337 internal->howto = howto_table + 10;
338 break;
339 case R_JMPL2:
340 internal->howto = howto_table + 11;
341 break;
342 case R_MOV24B1:
343 internal->howto = howto_table + 12;
344 break;
345 case R_MOV24B2:
346 internal->howto = howto_table + 13;
347 break;
348 case R_MEM_INDIRECT:
349 internal->howto = howto_table + 14;
350 break;
351 case R_PCRWORD_B:
352 internal->howto = howto_table + 15;
353 break;
354 case R_MOVL1:
355 internal->howto = howto_table + 16;
356 break;
357 case R_MOVL2:
358 internal->howto = howto_table + 17;
359 break;
360 case R_BCC_INV:
361 internal->howto = howto_table + 18;
362 break;
363 case R_JMP_DEL:
364 internal->howto = howto_table + 19;
365 break;
366 default:
367 abort ();
368 break;
369 }
370}
371
bc7eab72 372#define RTYPE2HOWTO(internal, relocentry) rtype2howto (internal, relocentry)
252b5132 373
cc040812 374/* Perform any necessary magic to the addend in a reloc entry. */
252b5132
RH
375
376#define CALC_ADDEND(abfd, symbol, ext_reloc, cache_ptr) \
bc7eab72 377 cache_ptr->addend = ext_reloc.r_offset;
252b5132 378
252b5132 379#define RELOC_PROCESSING(relent,reloc,symbols,abfd,section) \
bc7eab72 380 reloc_processing (relent, reloc, symbols, abfd, section)
252b5132
RH
381
382static void
c6baf75e
RS
383reloc_processing (arelent *relent, struct internal_reloc *reloc,
384 asymbol **symbols, bfd *abfd, asection *section)
252b5132
RH
385{
386 relent->address = reloc->r_vaddr;
387 rtype2howto (relent, reloc);
388
389 if (((int) reloc->r_symndx) > 0)
2ab1486e 390 relent->sym_ptr_ptr = symbols + obj_convert (abfd)[reloc->r_symndx];
252b5132 391 else
2ab1486e 392 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
252b5132 393
252b5132 394 relent->addend = reloc->r_offset;
252b5132 395 relent->address -= section->vma;
252b5132
RH
396}
397
b34976b6 398static bfd_boolean
c6baf75e 399h8300_symbol_address_p (bfd *abfd, asection *input_section, bfd_vma address)
252b5132
RH
400{
401 asymbol **s;
402
403 s = _bfd_generic_link_get_symbols (abfd);
404 BFD_ASSERT (s != (asymbol **) NULL);
405
406 /* Search all the symbols for one in INPUT_SECTION with
407 address ADDRESS. */
cc040812 408 while (*s)
252b5132
RH
409 {
410 asymbol *p = *s;
2ab1486e 411
252b5132
RH
412 if (p->section == input_section
413 && (input_section->output_section->vma
414 + input_section->output_offset
415 + p->value) == address)
b34976b6 416 return TRUE;
252b5132 417 s++;
cc040812 418 }
b34976b6 419 return FALSE;
252b5132
RH
420}
421
252b5132
RH
422/* If RELOC represents a relaxable instruction/reloc, change it into
423 the relaxed reloc, notify the linker that symbol addresses
424 have changed (bfd_perform_slip) and return how much the current
425 section has shrunk by.
426
427 FIXME: Much of this code has knowledge of the ordering of entries
428 in the howto table. This needs to be fixed. */
429
430static int
c6baf75e
RS
431h8300_reloc16_estimate (bfd *abfd, asection *input_section, arelent *reloc,
432 unsigned int shrink, struct bfd_link_info *link_info)
252b5132 433{
cc040812 434 bfd_vma value;
252b5132
RH
435 bfd_vma dot;
436 bfd_vma gap;
437 static asection *last_input_section = NULL;
438 static arelent *last_reloc = NULL;
439
5fcfd273 440 /* The address of the thing to be relocated will have moved back by
252b5132
RH
441 the size of the shrink - but we don't change reloc->address here,
442 since we need it to know where the relocation lives in the source
443 uncooked section. */
444 bfd_vma address = reloc->address - shrink;
445
446 if (input_section != last_input_section)
447 last_reloc = NULL;
448
449 /* Only examine the relocs which might be relaxable. */
450 switch (reloc->howto->type)
5fcfd273 451 {
e804e836
KH
452 /* This is the 16-/24-bit absolute branch which could become an
453 8-bit pc-relative branch. */
252b5132
RH
454 case R_JMP1:
455 case R_JMPL1:
456 /* Get the address of the target of this branch. */
cc040812 457 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
252b5132
RH
458
459 /* Get the address of the next instruction (not the reloc). */
460 dot = (input_section->output_section->vma
461 + input_section->output_offset + address);
462
463 /* Adjust for R_JMP1 vs R_JMPL1. */
464 dot += (reloc->howto->type == R_JMP1 ? 1 : 2);
465
466 /* Compute the distance from this insn to the branch target. */
467 gap = value - dot;
cc040812 468
252b5132
RH
469 /* If the distance is within -128..+128 inclusive, then we can relax
470 this jump. +128 is valid since the target will move two bytes
471 closer if we do relax this branch. */
bc7eab72 472 if ((int) gap >= -128 && (int) gap <= 128)
5fcfd273 473 {
e514ac71
NC
474 bfd_byte code;
475
476 if (!bfd_get_section_contents (abfd, input_section, & code,
477 reloc->address, 1))
478 break;
479 code = bfd_get_8 (abfd, & code);
480
252b5132
RH
481 /* It's possible we may be able to eliminate this branch entirely;
482 if the previous instruction is a branch around this instruction,
483 and there's no label at this instruction, then we can reverse
484 the condition on the previous branch and eliminate this jump.
485
486 original: new:
487 bCC lab1 bCC' lab2
488 jmp lab2
489 lab1: lab1:
5fcfd273 490
252b5132 491 This saves 4 bytes instead of two, and should be relatively
e514ac71
NC
492 common.
493
494 Only perform this optimisation for jumps (code 0x5a) not
495 subroutine calls, as otherwise it could transform:
b34976b6 496
0171ee92
AM
497 mov.w r0,r0
498 beq .L1
499 jsr @_bar
500 .L1: rts
501 _bar: rts
e514ac71 502 into:
0171ee92
AM
503 mov.w r0,r0
504 bne _bar
505 rts
506 _bar: rts
b34976b6 507
e514ac71
NC
508 which changes the call (jsr) into a branch (bne). */
509 if (code == 0x5a
510 && gap <= 126
252b5132
RH
511 && last_reloc
512 && last_reloc->howto->type == R_PCRBYTE)
513 {
514 bfd_vma last_value;
515 last_value = bfd_coff_reloc16_get_value (last_reloc, link_info,
516 input_section) + 1;
517
518 if (last_value == dot + 2
519 && last_reloc->address + 1 == reloc->address
cc040812 520 && !h8300_symbol_address_p (abfd, input_section, dot - 2))
252b5132
RH
521 {
522 reloc->howto = howto_table + 19;
523 last_reloc->howto = howto_table + 18;
524 last_reloc->sym_ptr_ptr = reloc->sym_ptr_ptr;
525 last_reloc->addend = reloc->addend;
526 shrink += 4;
527 bfd_perform_slip (abfd, 4, input_section, address);
528 break;
529 }
530 }
531
532 /* Change the reloc type. */
cc040812 533 reloc->howto = reloc->howto + 1;
252b5132
RH
534
535 /* This shrinks this section by two bytes. */
536 shrink += 2;
cc040812 537 bfd_perform_slip (abfd, 2, input_section, address);
252b5132
RH
538 }
539 break;
540
e804e836 541 /* This is the 16-bit pc-relative branch which could become an 8-bit
252b5132
RH
542 pc-relative branch. */
543 case R_PCRWORD:
544 /* Get the address of the target of this branch, add one to the value
0171ee92 545 because the addend field in PCrel jumps is off by -1. */
cc040812
NC
546 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section) + 1;
547
252b5132
RH
548 /* Get the address of the next instruction if we were to relax. */
549 dot = input_section->output_section->vma +
550 input_section->output_offset + address;
cc040812 551
252b5132
RH
552 /* Compute the distance from this insn to the branch target. */
553 gap = value - dot;
554
555 /* If the distance is within -128..+128 inclusive, then we can relax
556 this jump. +128 is valid since the target will move two bytes
557 closer if we do relax this branch. */
bc7eab72 558 if ((int) gap >= -128 && (int) gap <= 128)
5fcfd273 559 {
252b5132
RH
560 /* Change the reloc type. */
561 reloc->howto = howto_table + 15;
562
563 /* This shrinks this section by two bytes. */
564 shrink += 2;
cc040812 565 bfd_perform_slip (abfd, 2, input_section, address);
252b5132
RH
566 }
567 break;
568
e804e836
KH
569 /* This is a 16-bit absolute address in a mov.b insn, which can
570 become an 8-bit absolute address if it's in the right range. */
252b5132
RH
571 case R_MOV16B1:
572 /* Get the address of the data referenced by this mov.b insn. */
cc040812 573 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
7a9823f1 574 value = bfd_h8300_pad_address (abfd, value);
252b5132 575
7a9823f1
RS
576 /* If the address is in the top 256 bytes of the address space
577 then we can relax this instruction. */
578 if (value >= 0xffffff00u)
252b5132
RH
579 {
580 /* Change the reloc type. */
581 reloc->howto = reloc->howto + 1;
582
583 /* This shrinks this section by two bytes. */
584 shrink += 2;
cc040812 585 bfd_perform_slip (abfd, 2, input_section, address);
252b5132
RH
586 }
587 break;
588
e804e836
KH
589 /* Similarly for a 24-bit absolute address in a mov.b. Note that
590 if we can't relax this into an 8-bit absolute, we'll fall through
591 and try to relax it into a 16-bit absolute. */
252b5132
RH
592 case R_MOV24B1:
593 /* Get the address of the data referenced by this mov.b insn. */
cc040812 594 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
7a9823f1 595 value = bfd_h8300_pad_address (abfd, value);
252b5132 596
7a9823f1 597 if (value >= 0xffffff00u)
252b5132
RH
598 {
599 /* Change the reloc type. */
600 reloc->howto = reloc->howto + 1;
601
602 /* This shrinks this section by four bytes. */
603 shrink += 4;
cc040812 604 bfd_perform_slip (abfd, 4, input_section, address);
252b5132
RH
605
606 /* Done with this reloc. */
607 break;
608 }
609
e804e836 610 /* FALLTHROUGH and try to turn the 24-/32-bit reloc into a 16-bit
252b5132
RH
611 reloc. */
612
e804e836
KH
613 /* This is a 24-/32-bit absolute address in a mov insn, which can
614 become an 16-bit absolute address if it's in the right range. */
252b5132
RH
615 case R_MOVL1:
616 /* Get the address of the data referenced by this mov insn. */
cc040812 617 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
7a9823f1 618 value = bfd_h8300_pad_address (abfd, value);
252b5132 619
7a9823f1
RS
620 /* If the address is a sign-extended 16-bit value then we can
621 relax this instruction. */
622 if (value <= 0x7fff || value >= 0xffff8000u)
252b5132
RH
623 {
624 /* Change the reloc type. */
625 reloc->howto = howto_table + 17;
626
627 /* This shrinks this section by two bytes. */
628 shrink += 2;
cc040812 629 bfd_perform_slip (abfd, 2, input_section, address);
252b5132
RH
630 }
631 break;
632
633 /* No other reloc types represent relaxing opportunities. */
cc040812
NC
634 default:
635 break;
252b5132
RH
636 }
637
638 last_reloc = reloc;
639 last_input_section = input_section;
640 return shrink;
641}
642
252b5132
RH
643/* Handle relocations for the H8/300, including relocs for relaxed
644 instructions.
645
646 FIXME: Not all relocations check for overflow! */
647
648static void
c6baf75e
RS
649h8300_reloc16_extra_cases (bfd *abfd, struct bfd_link_info *link_info,
650 struct bfd_link_order *link_order, arelent *reloc,
651 bfd_byte *data, unsigned int *src_ptr,
652 unsigned int *dst_ptr)
252b5132
RH
653{
654 unsigned int src_address = *src_ptr;
655 unsigned int dst_address = *dst_ptr;
656 asection *input_section = link_order->u.indirect.section;
657 bfd_vma value;
658 bfd_vma dot;
cc040812 659 int gap, tmp;
ca9a79a1 660 unsigned char temp_code;
252b5132
RH
661
662 switch (reloc->howto->type)
663 {
e804e836 664 /* Generic 8-bit pc-relative relocation. */
252b5132
RH
665 case R_PCRBYTE:
666 /* Get the address of the target of this branch. */
cc040812 667 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
252b5132 668
44da2da1 669 dot = (input_section->output_offset
cc040812 670 + dst_address
252b5132
RH
671 + link_order->u.indirect.section->output_section->vma);
672
673 gap = value - dot;
674
675 /* Sanity check. */
676 if (gap < -128 || gap > 126)
677 {
678 if (! ((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
679 (link_info, NULL,
680 bfd_asymbol_name (*reloc->sym_ptr_ptr),
252b5132
RH
681 reloc->howto->name, reloc->addend, input_section->owner,
682 input_section, reloc->address)))
683 abort ();
684 }
685
686 /* Everything looks OK. Apply the relocation and update the
687 src/dst address appropriately. */
252b5132
RH
688 bfd_put_8 (abfd, gap, data + dst_address);
689 dst_address++;
690 src_address++;
691
692 /* All done. */
693 break;
694
e804e836 695 /* Generic 16-bit pc-relative relocation. */
252b5132
RH
696 case R_PCRWORD:
697 /* Get the address of the target of this branch. */
cc040812 698 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
252b5132
RH
699
700 /* Get the address of the instruction (not the reloc). */
44da2da1 701 dot = (input_section->output_offset
5fcfd273 702 + dst_address
252b5132
RH
703 + link_order->u.indirect.section->output_section->vma + 1);
704
705 gap = value - dot;
706
707 /* Sanity check. */
708 if (gap > 32766 || gap < -32768)
709 {
710 if (! ((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
711 (link_info, NULL,
712 bfd_asymbol_name (*reloc->sym_ptr_ptr),
252b5132
RH
713 reloc->howto->name, reloc->addend, input_section->owner,
714 input_section, reloc->address)))
715 abort ();
716 }
717
718 /* Everything looks OK. Apply the relocation and update the
719 src/dst address appropriately. */
dc810e39 720 bfd_put_16 (abfd, (bfd_vma) gap, data + dst_address);
252b5132
RH
721 dst_address += 2;
722 src_address += 2;
723
724 /* All done. */
725 break;
726
e804e836 727 /* Generic 8-bit absolute relocation. */
252b5132
RH
728 case R_RELBYTE:
729 /* Get the address of the object referenced by this insn. */
730 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
731
7a9823f1
RS
732 bfd_put_8 (abfd, value & 0xff, data + dst_address);
733 dst_address += 1;
734 src_address += 1;
252b5132
RH
735
736 /* All done. */
737 break;
738
e804e836 739 /* Various simple 16-bit absolute relocations. */
252b5132
RH
740 case R_MOV16B1:
741 case R_JMP1:
742 case R_RELWORD:
cc040812 743 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
252b5132
RH
744 bfd_put_16 (abfd, value, data + dst_address);
745 dst_address += 2;
746 src_address += 2;
747 break;
748
e804e836 749 /* Various simple 24-/32-bit absolute relocations. */
252b5132
RH
750 case R_MOV24B1:
751 case R_MOVL1:
752 case R_RELLONG:
753 /* Get the address of the target of this branch. */
cc040812 754 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
252b5132
RH
755 bfd_put_32 (abfd, value, data + dst_address);
756 dst_address += 4;
757 src_address += 4;
758 break;
759
e804e836 760 /* Another 24-/32-bit absolute relocation. */
252b5132
RH
761 case R_JMPL1:
762 /* Get the address of the target of this branch. */
763 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
764
765 value = ((value & 0x00ffffff)
766 | (bfd_get_32 (abfd, data + src_address) & 0xff000000));
767 bfd_put_32 (abfd, value, data + dst_address);
768 dst_address += 4;
769 src_address += 4;
770 break;
771
7e89635a
KH
772 /* This is a 24-/32-bit absolute address in one of the following
773 instructions:
774
775 "band", "bclr", "biand", "bild", "bior", "bist", "bixor",
3255318a
NC
776 "bld", "bnot", "bor", "bset", "bst", "btst", "bxor", "ldc.w",
777 "stc.w" and "mov.[bwl]"
7e89635a
KH
778
779 We may relax this into an 16-bit absolute address if it's in
780 the right range. */
252b5132
RH
781 case R_MOVL2:
782 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
7a9823f1 783 value = bfd_h8300_pad_address (abfd, value);
252b5132
RH
784
785 /* Sanity check. */
7a9823f1 786 if (value <= 0x7fff || value >= 0xffff8000u)
252b5132 787 {
e804e836 788 /* Insert the 16-bit value into the proper location. */
252b5132
RH
789 bfd_put_16 (abfd, value, data + dst_address);
790
7e89635a
KH
791 /* Fix the opcode. For all the instructions that belong to
792 this relaxation, we simply need to turn off bit 0x20 in
793 the previous byte. */
bc7eab72 794 data[dst_address - 1] &= ~0x20;
252b5132
RH
795 dst_address += 2;
796 src_address += 4;
797 }
798 else
799 {
800 if (! ((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
801 (link_info, NULL,
802 bfd_asymbol_name (*reloc->sym_ptr_ptr),
252b5132
RH
803 reloc->howto->name, reloc->addend, input_section->owner,
804 input_section, reloc->address)))
805 abort ();
bc7eab72 806 }
252b5132
RH
807 break;
808
e804e836 809 /* A 16-bit absolute branch that is now an 8-bit pc-relative branch. */
252b5132
RH
810 case R_JMP2:
811 /* Get the address of the target of this branch. */
812 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
813
814 /* Get the address of the next instruction. */
44da2da1 815 dot = (input_section->output_offset
252b5132
RH
816 + dst_address
817 + link_order->u.indirect.section->output_section->vma + 1);
818
819 gap = value - dot;
820
821 /* Sanity check. */
822 if (gap < -128 || gap > 126)
823 {
824 if (! ((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
825 (link_info, NULL,
826 bfd_asymbol_name (*reloc->sym_ptr_ptr),
252b5132
RH
827 reloc->howto->name, reloc->addend, input_section->owner,
828 input_section, reloc->address)))
829 abort ();
830 }
831
832 /* Now fix the instruction itself. */
833 switch (data[dst_address - 1])
834 {
835 case 0x5e:
836 /* jsr -> bsr */
837 bfd_put_8 (abfd, 0x55, data + dst_address - 1);
838 break;
839 case 0x5a:
7e89635a 840 /* jmp -> bra */
252b5132
RH
841 bfd_put_8 (abfd, 0x40, data + dst_address - 1);
842 break;
843
844 default:
845 abort ();
846 }
847
e804e836 848 /* Write out the 8-bit value. */
252b5132
RH
849 bfd_put_8 (abfd, gap, data + dst_address);
850
851 dst_address += 1;
852 src_address += 3;
853
854 break;
855
e804e836 856 /* A 16-bit pc-relative branch that is now an 8-bit pc-relative branch. */
252b5132
RH
857 case R_PCRWORD_B:
858 /* Get the address of the target of this branch. */
859 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
860
861 /* Get the address of the instruction (not the reloc). */
44da2da1 862 dot = (input_section->output_offset
252b5132
RH
863 + dst_address
864 + link_order->u.indirect.section->output_section->vma - 1);
865
866 gap = value - dot;
867
868 /* Sanity check. */
869 if (gap < -128 || gap > 126)
870 {
871 if (! ((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
872 (link_info, NULL,
873 bfd_asymbol_name (*reloc->sym_ptr_ptr),
252b5132
RH
874 reloc->howto->name, reloc->addend, input_section->owner,
875 input_section, reloc->address)))
876 abort ();
877 }
878
879 /* Now fix the instruction. */
880 switch (data[dst_address - 2])
881 {
882 case 0x58:
883 /* bCC:16 -> bCC:8 */
7e89635a
KH
884 /* Get the second byte of the original insn, which contains
885 the condition code. */
252b5132 886 tmp = data[dst_address - 1];
7e89635a
KH
887
888 /* Compute the fisrt byte of the relaxed instruction. The
889 original sequence 0x58 0xX0 is relaxed to 0x4X, where X
890 represents the condition code. */
252b5132
RH
891 tmp &= 0xf0;
892 tmp >>= 4;
252b5132
RH
893 tmp |= 0x40;
894
895 /* Write it. */
896 bfd_put_8 (abfd, tmp, data + dst_address - 2);
897 break;
d562d2fb 898
4259e8b6
JL
899 case 0x5c:
900 /* bsr:16 -> bsr:8 */
901 bfd_put_8 (abfd, 0x55, data + dst_address - 2);
902 break;
252b5132
RH
903
904 default:
905 abort ();
906 }
907
bc7eab72
KH
908 /* Output the target. */
909 bfd_put_8 (abfd, gap, data + dst_address - 1);
252b5132 910
e804e836 911 /* We don't advance dst_address -- the 8-bit reloc is applied at
bc7eab72
KH
912 dst_address - 1, so the next insn should begin at dst_address. */
913 src_address += 2;
252b5132 914
bc7eab72 915 break;
5fcfd273 916
e804e836 917 /* Similarly for a 24-bit absolute that is now 8 bits. */
252b5132
RH
918 case R_JMPL2:
919 /* Get the address of the target of this branch. */
920 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
921
922 /* Get the address of the instruction (not the reloc). */
44da2da1 923 dot = (input_section->output_offset
252b5132
RH
924 + dst_address
925 + link_order->u.indirect.section->output_section->vma + 2);
926
927 gap = value - dot;
928
929 /* Fix the instruction. */
930 switch (data[src_address])
931 {
932 case 0x5e:
933 /* jsr -> bsr */
934 bfd_put_8 (abfd, 0x55, data + dst_address);
935 break;
936 case 0x5a:
937 /* jmp ->bra */
938 bfd_put_8 (abfd, 0x40, data + dst_address);
939 break;
940 default:
941 abort ();
942 }
943
944 bfd_put_8 (abfd, gap, data + dst_address + 1);
945 dst_address += 2;
946 src_address += 4;
947
948 break;
949
630a7b0a
KH
950 /* This is a 16-bit absolute address in one of the following
951 instructions:
952
953 "band", "bclr", "biand", "bild", "bior", "bist", "bixor",
954 "bld", "bnot", "bor", "bset", "bst", "btst", "bxor", and
955 "mov.b"
956
957 We may relax this into an 8-bit absolute address if it's in
958 the right range. */
252b5132
RH
959 case R_MOV16B2:
960 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
961
630a7b0a 962 /* All instructions with R_H8_DIR16B2 start with 0x6a. */
252b5132
RH
963 if (data[dst_address - 2] != 0x6a)
964 abort ();
965
ca9a79a1 966 temp_code = data[src_address - 1];
630a7b0a
KH
967
968 /* If this is a mov.b instruction, clear the lower nibble, which
969 contains the source/destination register number. */
ca9a79a1
NC
970 if ((temp_code & 0x10) != 0x10)
971 temp_code &= 0xf0;
972
252b5132 973 /* Fix up the opcode. */
ca9a79a1 974 switch (temp_code)
252b5132
RH
975 {
976 case 0x00:
630a7b0a 977 /* This is mov.b @aa:16,Rd. */
cc040812 978 data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x20;
252b5132
RH
979 break;
980 case 0x80:
630a7b0a 981 /* This is mov.b Rs,@aa:16. */
cc040812 982 data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x30;
252b5132 983 break;
ca9a79a1 984 case 0x18:
630a7b0a
KH
985 /* This is a bit-maniputation instruction that stores one
986 bit into memory, one of "bclr", "bist", "bnot", "bset",
987 and "bst". */
ca9a79a1
NC
988 data[dst_address - 2] = 0x7f;
989 break;
990 case 0x10:
630a7b0a
KH
991 /* This is a bit-maniputation instruction that loads one bit
992 from memory, one of "band", "biand", "bild", "bior",
993 "bixor", "bld", "bor", "btst", and "bxor". */
ca9a79a1
NC
994 data[dst_address - 2] = 0x7e;
995 break;
252b5132
RH
996 default:
997 abort ();
998 }
999
1000 bfd_put_8 (abfd, value & 0xff, data + dst_address - 1);
1001 src_address += 2;
1002 break;
1003
630a7b0a
KH
1004 /* This is a 24-bit absolute address in one of the following
1005 instructions:
1006
1007 "band", "bclr", "biand", "bild", "bior", "bist", "bixor",
1008 "bld", "bnot", "bor", "bset", "bst", "btst", "bxor", and
1009 "mov.b"
1010
1011 We may relax this into an 8-bit absolute address if it's in
1012 the right range. */
252b5132
RH
1013 case R_MOV24B2:
1014 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
1015
630a7b0a 1016 /* All instructions with R_MOV24B2 start with 0x6a. */
252b5132
RH
1017 if (data[dst_address - 2] != 0x6a)
1018 abort ();
1019
ca9a79a1 1020 temp_code = data[src_address - 1];
630a7b0a
KH
1021
1022 /* If this is a mov.b instruction, clear the lower nibble, which
1023 contains the source/destination register number. */
ca9a79a1
NC
1024 if ((temp_code & 0x30) != 0x30)
1025 temp_code &= 0xf0;
1026
252b5132 1027 /* Fix up the opcode. */
ca9a79a1 1028 switch (temp_code)
252b5132
RH
1029 {
1030 case 0x20:
630a7b0a 1031 /* This is mov.b @aa:24/32,Rd. */
cc040812 1032 data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x20;
252b5132
RH
1033 break;
1034 case 0xa0:
630a7b0a 1035 /* This is mov.b Rs,@aa:24/32. */
cc040812 1036 data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x30;
252b5132 1037 break;
ca9a79a1 1038 case 0x38:
630a7b0a
KH
1039 /* This is a bit-maniputation instruction that stores one
1040 bit into memory, one of "bclr", "bist", "bnot", "bset",
1041 and "bst". */
ca9a79a1
NC
1042 data[dst_address - 2] = 0x7f;
1043 break;
1044 case 0x30:
630a7b0a
KH
1045 /* This is a bit-maniputation instruction that loads one bit
1046 from memory, one of "band", "biand", "bild", "bior",
1047 "bixor", "bld", "bor", "btst", and "bxor". */
ca9a79a1
NC
1048 data[dst_address - 2] = 0x7e;
1049 break;
252b5132
RH
1050 default:
1051 abort ();
1052 }
1053
1054 bfd_put_8 (abfd, value & 0xff, data + dst_address - 1);
1055 src_address += 4;
1056 break;
1057
1058 case R_BCC_INV:
1059 /* Get the address of the target of this branch. */
cc040812 1060 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
252b5132 1061
44da2da1 1062 dot = (input_section->output_offset
cc040812 1063 + dst_address
252b5132
RH
1064 + link_order->u.indirect.section->output_section->vma) + 1;
1065
1066 gap = value - dot;
1067
1068 /* Sanity check. */
1069 if (gap < -128 || gap > 126)
1070 {
1071 if (! ((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
1072 (link_info, NULL,
1073 bfd_asymbol_name (*reloc->sym_ptr_ptr),
252b5132
RH
1074 reloc->howto->name, reloc->addend, input_section->owner,
1075 input_section, reloc->address)))
1076 abort ();
1077 }
1078
1079 /* Everything looks OK. Fix the condition in the instruction, apply
1080 the relocation, and update the src/dst address appropriately. */
1081
1082 bfd_put_8 (abfd, bfd_get_8 (abfd, data + dst_address - 1) ^ 1,
1083 data + dst_address - 1);
1084 bfd_put_8 (abfd, gap, data + dst_address);
1085 dst_address++;
1086 src_address++;
1087
1088 /* All done. */
1089 break;
1090
1091 case R_JMP_DEL:
1092 src_address += 4;
1093 break;
1094
e804e836 1095 /* An 8-bit memory indirect instruction (jmp/jsr).
252b5132
RH
1096
1097 There's several things that need to be done to handle
1098 this relocation.
1099
1100 If this is a reloc against the absolute symbol, then
1101 we should handle it just R_RELBYTE. Likewise if it's
1102 for a symbol with a value ge 0 and le 0xff.
1103
1104 Otherwise it's a jump/call through the function vector,
1105 and the linker is expected to set up the function vector
1106 and put the right value into the jump/call instruction. */
1107 case R_MEM_INDIRECT:
1108 {
1109 /* We need to find the symbol so we can determine it's
1110 address in the function vector table. */
1111 asymbol *symbol;
252b5132 1112 const char *name;
dc810e39 1113 struct funcvec_hash_table *ftab;
252b5132 1114 struct funcvec_hash_entry *h;
0171ee92
AM
1115 struct h8300_coff_link_hash_table *htab;
1116 asection *vectors_sec;
1117
1118 if (link_info->hash->creator != abfd->xvec)
1119 {
1120 (*_bfd_error_handler)
1121 (_("cannot handle R_MEM_INDIRECT reloc when using %s output"),
1122 link_info->hash->creator->name);
1123
1124 /* What else can we do? This function doesn't allow return
1125 of an error, and we don't want to call abort as that
1126 indicates an internal error. */
1127#ifndef EXIT_FAILURE
1128#define EXIT_FAILURE 1
1129#endif
1130 xexit (EXIT_FAILURE);
1131 }
1132 htab = h8300_coff_hash_table (link_info);
1133 vectors_sec = htab->vectors_sec;
252b5132
RH
1134
1135 /* First see if this is a reloc against the absolute symbol
1136 or against a symbol with a nonnegative value <= 0xff. */
1137 symbol = *(reloc->sym_ptr_ptr);
1138 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
1139 if (symbol == bfd_abs_section_ptr->symbol
5f771d47 1140 || value <= 0xff)
252b5132
RH
1141 {
1142 /* This should be handled in a manner very similar to
1143 R_RELBYTES. If the value is in range, then just slam
1144 the value into the right location. Else trigger a
1145 reloc overflow callback. */
5f771d47 1146 if (value <= 0xff)
252b5132
RH
1147 {
1148 bfd_put_8 (abfd, value, data + dst_address);
1149 dst_address += 1;
1150 src_address += 1;
1151 }
1152 else
1153 {
1154 if (! ((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
1155 (link_info, NULL,
1156 bfd_asymbol_name (*reloc->sym_ptr_ptr),
252b5132
RH
1157 reloc->howto->name, reloc->addend, input_section->owner,
1158 input_section, reloc->address)))
1159 abort ();
1160 }
1161 break;
1162 }
1163
1164 /* This is a jump/call through a function vector, and we're
5fcfd273 1165 expected to create the function vector ourselves.
252b5132
RH
1166
1167 First look up this symbol in the linker hash table -- we need
1168 the derived linker symbol which holds this symbol's index
1169 in the function vector. */
1170 name = symbol->name;
1171 if (symbol->flags & BSF_LOCAL)
1172 {
f60ca5e3 1173 char *new_name = bfd_malloc ((bfd_size_type) strlen (name) + 10);
d4e2de6b 1174
252b5132
RH
1175 if (new_name == NULL)
1176 abort ();
1177
f60ca5e3 1178 sprintf (new_name, "%s_%08x", name, symbol->section->id);
252b5132
RH
1179 name = new_name;
1180 }
1181
0171ee92 1182 ftab = htab->funcvec_hash_table;
b34976b6 1183 h = funcvec_hash_lookup (ftab, name, FALSE, FALSE);
252b5132
RH
1184
1185 /* This shouldn't ever happen. If it does that means we've got
1186 data corruption of some kind. Aborting seems like a reasonable
0171ee92 1187 thing to do here. */
252b5132
RH
1188 if (h == NULL || vectors_sec == NULL)
1189 abort ();
1190
1191 /* Place the address of the function vector entry into the
1192 reloc's address. */
1193 bfd_put_8 (abfd,
1194 vectors_sec->output_offset + h->offset,
1195 data + dst_address);
1196
1197 dst_address++;
1198 src_address++;
1199
1200 /* Now create an entry in the function vector itself. */
d4e2de6b
NC
1201 switch (bfd_get_mach (input_section->owner))
1202 {
1203 case bfd_mach_h8300:
1204 case bfd_mach_h8300hn:
1205 case bfd_mach_h8300sn:
1206 bfd_put_16 (abfd,
1207 bfd_coff_reloc16_get_value (reloc,
1208 link_info,
1209 input_section),
1210 vectors_sec->contents + h->offset);
1211 break;
1212 case bfd_mach_h8300h:
1213 case bfd_mach_h8300s:
1214 bfd_put_32 (abfd,
1215 bfd_coff_reloc16_get_value (reloc,
1216 link_info,
1217 input_section),
1218 vectors_sec->contents + h->offset);
1219 break;
1220 default:
1221 abort ();
1222 }
252b5132
RH
1223
1224 /* Gross. We've already written the contents of the vector section
1225 before we get here... So we write it again with the new data. */
1226 bfd_set_section_contents (vectors_sec->output_section->owner,
1227 vectors_sec->output_section,
1228 vectors_sec->contents,
dc810e39 1229 (file_ptr) vectors_sec->output_offset,
eea6121a 1230 vectors_sec->size);
252b5132
RH
1231 break;
1232 }
1233
1234 default:
1235 abort ();
1236 break;
1237
1238 }
1239
1240 *src_ptr = src_address;
1241 *dst_ptr = dst_address;
1242}
1243
252b5132
RH
1244/* Routine for the h8300 linker.
1245
1246 This routine is necessary to handle the special R_MEM_INDIRECT
1247 relocs on the h8300. It's responsible for generating a vectors
1248 section and attaching it to an input bfd as well as sizing
1249 the vectors section. It also creates our vectors hash table.
1250
1251 It uses the generic linker routines to actually add the symbols.
1252 from this BFD to the bfd linker hash table. It may add a few
1253 selected static symbols to the bfd linker hash table. */
1254
b34976b6 1255static bfd_boolean
c6baf75e 1256h8300_bfd_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
252b5132
RH
1257{
1258 asection *sec;
1259 struct funcvec_hash_table *funcvec_hash_table;
dc810e39 1260 bfd_size_type amt;
0171ee92
AM
1261 struct h8300_coff_link_hash_table *htab;
1262
1263 /* Add the symbols using the generic code. */
1264 _bfd_generic_link_add_symbols (abfd, info);
1265
1266 if (info->hash->creator != abfd->xvec)
1267 return TRUE;
1268
1269 htab = h8300_coff_hash_table (info);
252b5132
RH
1270
1271 /* If we haven't created a vectors section, do so now. */
0171ee92 1272 if (!htab->vectors_sec)
252b5132
RH
1273 {
1274 flagword flags;
1275
1276 /* Make sure the appropriate flags are set, including SEC_IN_MEMORY. */
1277 flags = (SEC_ALLOC | SEC_LOAD
1278 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_READONLY);
117ed4f8
AM
1279 htab->vectors_sec = bfd_make_section_with_flags (abfd, ".vectors",
1280 flags);
252b5132
RH
1281
1282 /* If the section wasn't created, or we couldn't set the flags,
0171ee92 1283 quit quickly now, rather than dying a painful death later. */
117ed4f8 1284 if (!htab->vectors_sec)
b34976b6 1285 return FALSE;
252b5132
RH
1286
1287 /* Also create the vector hash table. */
dc810e39
AM
1288 amt = sizeof (struct funcvec_hash_table);
1289 funcvec_hash_table = (struct funcvec_hash_table *) bfd_alloc (abfd, amt);
252b5132
RH
1290
1291 if (!funcvec_hash_table)
b34976b6 1292 return FALSE;
252b5132
RH
1293
1294 /* And initialize the funcvec hash table. */
1295 if (!funcvec_hash_table_init (funcvec_hash_table, abfd,
66eb6687
AM
1296 funcvec_hash_newfunc,
1297 sizeof (struct funcvec_hash_entry)))
252b5132
RH
1298 {
1299 bfd_release (abfd, funcvec_hash_table);
b34976b6 1300 return FALSE;
252b5132
RH
1301 }
1302
1303 /* Store away a pointer to the funcvec hash table. */
0171ee92 1304 htab->funcvec_hash_table = funcvec_hash_table;
252b5132
RH
1305 }
1306
1307 /* Load up the function vector hash table. */
0171ee92 1308 funcvec_hash_table = htab->funcvec_hash_table;
252b5132
RH
1309
1310 /* Now scan the relocs for all the sections in this bfd; create
1311 additional space in the .vectors section as needed. */
1312 for (sec = abfd->sections; sec; sec = sec->next)
1313 {
1314 long reloc_size, reloc_count, i;
1315 asymbol **symbols;
1316 arelent **relocs;
1317
1318 /* Suck in the relocs, symbols & canonicalize them. */
1319 reloc_size = bfd_get_reloc_upper_bound (abfd, sec);
1320 if (reloc_size <= 0)
1321 continue;
1322
dc810e39 1323 relocs = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
252b5132 1324 if (!relocs)
b34976b6 1325 return FALSE;
252b5132
RH
1326
1327 /* The symbols should have been read in by _bfd_generic link_add_symbols
1328 call abovec, so we can cheat and use the pointer to them that was
1329 saved in the above call. */
1330 symbols = _bfd_generic_link_get_symbols(abfd);
1331 reloc_count = bfd_canonicalize_reloc (abfd, sec, relocs, symbols);
1332 if (reloc_count <= 0)
1333 {
1334 free (relocs);
1335 continue;
1336 }
1337
1338 /* Now walk through all the relocations in this section. */
1339 for (i = 0; i < reloc_count; i++)
1340 {
1341 arelent *reloc = relocs[i];
1342 asymbol *symbol = *(reloc->sym_ptr_ptr);
1343 const char *name;
1344
1345 /* We've got an indirect reloc. See if we need to add it
1346 to the function vector table. At this point, we have
1347 to add a new entry for each unique symbol referenced
1348 by an R_MEM_INDIRECT relocation except for a reloc
1349 against the absolute section symbol. */
1350 if (reloc->howto->type == R_MEM_INDIRECT
1351 && symbol != bfd_abs_section_ptr->symbol)
1352
1353 {
dc810e39 1354 struct funcvec_hash_table *ftab;
252b5132
RH
1355 struct funcvec_hash_entry *h;
1356
1357 name = symbol->name;
1358 if (symbol->flags & BSF_LOCAL)
1359 {
dc810e39 1360 char *new_name;
252b5132 1361
f60ca5e3 1362 new_name = bfd_malloc ((bfd_size_type) strlen (name) + 10);
252b5132
RH
1363 if (new_name == NULL)
1364 abort ();
1365
f60ca5e3 1366 sprintf (new_name, "%s_%08x", name, symbol->section->id);
252b5132
RH
1367 name = new_name;
1368 }
1369
1370 /* Look this symbol up in the function vector hash table. */
0171ee92 1371 ftab = htab->funcvec_hash_table;
b34976b6 1372 h = funcvec_hash_lookup (ftab, name, FALSE, FALSE);
252b5132 1373
252b5132
RH
1374 /* If this symbol isn't already in the hash table, add
1375 it and bump up the size of the hash table. */
1376 if (h == NULL)
1377 {
b34976b6 1378 h = funcvec_hash_lookup (ftab, name, TRUE, TRUE);
252b5132
RH
1379 if (h == NULL)
1380 {
1381 free (relocs);
b34976b6 1382 return FALSE;
252b5132
RH
1383 }
1384
1385 /* Bump the size of the vectors section. Each vector
1386 takes 2 bytes on the h8300 and 4 bytes on the h8300h. */
d4e2de6b
NC
1387 switch (bfd_get_mach (abfd))
1388 {
1389 case bfd_mach_h8300:
1390 case bfd_mach_h8300hn:
1391 case bfd_mach_h8300sn:
eea6121a 1392 htab->vectors_sec->size += 2;
d4e2de6b
NC
1393 break;
1394 case bfd_mach_h8300h:
1395 case bfd_mach_h8300s:
eea6121a 1396 htab->vectors_sec->size += 4;
d4e2de6b
NC
1397 break;
1398 default:
1399 abort ();
1400 }
252b5132
RH
1401 }
1402 }
1403 }
1404
1405 /* We're done with the relocations, release them. */
1406 free (relocs);
1407 }
1408
1409 /* Now actually allocate some space for the function vector. It's
1410 wasteful to do this more than once, but this is easier. */
0171ee92 1411 sec = htab->vectors_sec;
eea6121a 1412 if (sec->size != 0)
252b5132
RH
1413 {
1414 /* Free the old contents. */
dc810e39
AM
1415 if (sec->contents)
1416 free (sec->contents);
252b5132
RH
1417
1418 /* Allocate new contents. */
eea6121a 1419 sec->contents = bfd_malloc (sec->size);
252b5132
RH
1420 }
1421
b34976b6 1422 return TRUE;
252b5132
RH
1423}
1424
1425#define coff_reloc16_extra_cases h8300_reloc16_extra_cases
1426#define coff_reloc16_estimate h8300_reloc16_estimate
1427#define coff_bfd_link_add_symbols h8300_bfd_link_add_symbols
1428#define coff_bfd_link_hash_table_create h8300_coff_link_hash_table_create
1429
1430#define COFF_LONG_FILENAMES
1431#include "coffcode.h"
1432
252b5132
RH
1433#undef coff_bfd_get_relocated_section_contents
1434#undef coff_bfd_relax_section
1435#define coff_bfd_get_relocated_section_contents \
1436 bfd_coff_reloc16_get_relocated_section_contents
1437#define coff_bfd_relax_section bfd_coff_reloc16_relax_section
1438
3fa78519 1439CREATE_BIG_COFF_TARGET_VEC (h8300coff_vec, "coff-h8300", BFD_IS_RELAXABLE, 0, '_', NULL, COFF_SWAP_TABLE)
This page took 0.405335 seconds and 4 git commands to generate.