* Many files: Changes to avoid gcc warnings: Add ATTRIBUTE_UNUSED
[deliverable/binutils-gdb.git] / bfd / coff-h8300.c
CommitLineData
252b5132 1/* BFD back-end for Hitachi H8/300 COFF binaries.
5f771d47
ILT
2 Copyright 1990, 91, 92, 93, 94, 95, 96, 97, 98, 1999
3 Free Software Foundation, Inc.
252b5132
RH
4 Written by Steve Chamberlain, <sac@cygnus.com>.
5
6This file is part of BFD, the Binary File Descriptor library.
7
8This program is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2 of the License, or
11(at your option) any later version.
12
13This program is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with this program; if not, write to the Free Software
20Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22#include "bfd.h"
23#include "sysdep.h"
24#include "libbfd.h"
25#include "bfdlink.h"
26#include "genlink.h"
27#include "coff/h8300.h"
28#include "coff/internal.h"
29#include "libcoff.h"
30
31#define COFF_DEFAULT_SECTION_ALIGNMENT_POWER (1)
32
33/* We derive a hash table from the basic BFD hash table to
34 hold entries in the function vector. Aside from the
35 info stored by the basic hash table, we need the offset
36 of a particular entry within the hash table as well as
37 the offset where we'll add the next entry. */
38
39struct funcvec_hash_entry
40{
41 /* The basic hash table entry. */
42 struct bfd_hash_entry root;
43
44 /* The offset within the vectors section where
45 this entry lives. */
46 bfd_vma offset;
47};
48
49struct funcvec_hash_table
50{
51 /* The basic hash table. */
52 struct bfd_hash_table root;
53
54 bfd *abfd;
55
56 /* Offset at which we'll add the next entry. */
57 unsigned int offset;
58};
59
60static struct bfd_hash_entry *
61funcvec_hash_newfunc
62 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
63
64static boolean
65funcvec_hash_table_init
66 PARAMS ((struct funcvec_hash_table *, bfd *,
67 struct bfd_hash_entry *(*) PARAMS ((struct bfd_hash_entry *,
68 struct bfd_hash_table *,
69 const char *))));
70
71/* To lookup a value in the function vector hash table. */
72#define funcvec_hash_lookup(table, string, create, copy) \
73 ((struct funcvec_hash_entry *) \
74 bfd_hash_lookup (&(table)->root, (string), (create), (copy)))
75
76/* The derived h8300 COFF linker table. Note it's derived from
77 the generic linker hash table, not the COFF backend linker hash
78 table! We use this to attach additional data structures we
79 need while linking on the h8300. */
80struct h8300_coff_link_hash_table
81{
82 /* The main hash table. */
83 struct generic_link_hash_table root;
84
85 /* Section for the vectors table. This gets attached to a
86 random input bfd, we keep it here for easy access. */
87 asection *vectors_sec;
88
89 /* Hash table of the functions we need to enter into the function
90 vector. */
91 struct funcvec_hash_table *funcvec_hash_table;
92};
93
94static struct bfd_link_hash_table *h8300_coff_link_hash_table_create
95 PARAMS ((bfd *));
96
97/* Get the H8/300 COFF linker hash table from a link_info structure. */
98
99#define h8300_coff_hash_table(p) \
100 ((struct h8300_coff_link_hash_table *) ((coff_hash_table (p))))
101
102/* Initialize fields within a funcvec hash table entry. Called whenever
103 a new entry is added to the funcvec hash table. */
104
105static struct bfd_hash_entry *
106funcvec_hash_newfunc (entry, gen_table, string)
107 struct bfd_hash_entry *entry;
108 struct bfd_hash_table *gen_table;
109 const char *string;
110{
111 struct funcvec_hash_entry *ret;
112 struct funcvec_hash_table *table;
113
114 ret = (struct funcvec_hash_entry *) entry;
115 table = (struct funcvec_hash_table *) gen_table;
116
117 /* Allocate the structure if it has not already been allocated by a
118 subclass. */
119 if (ret == NULL)
120 ret = ((struct funcvec_hash_entry *)
121 bfd_hash_allocate (gen_table,
122 sizeof (struct funcvec_hash_entry)));
123 if (ret == NULL)
124 return NULL;
125
126 /* Call the allocation method of the superclass. */
127 ret = ((struct funcvec_hash_entry *)
128 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, gen_table, string));
129
130 if (ret == NULL)
131 return NULL;
132
133 /* Note where this entry will reside in the function vector table. */
134 ret->offset = table->offset;
135
136 /* Bump the offset at which we store entries in the function
137 vector. We'd like to bump up the size of the vectors section,
138 but it's not easily available here. */
139 if (bfd_get_mach (table->abfd) == bfd_mach_h8300)
140 table->offset += 2;
141 else if (bfd_get_mach (table->abfd) == bfd_mach_h8300h
142 || bfd_get_mach (table->abfd) == bfd_mach_h8300s)
143 table->offset += 4;
144 else
145 return NULL;
146
147 /* Everything went OK. */
148 return (struct bfd_hash_entry *) ret;
149}
150
151/* Initialize the function vector hash table. */
152
153static boolean
154funcvec_hash_table_init (table, abfd, newfunc)
155 struct funcvec_hash_table *table;
156 bfd *abfd;
157 struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
158 struct bfd_hash_table *,
159 const char *));
160{
161 /* Initialize our local fields, then call the generic initialization
162 routine. */
163 table->offset = 0;
164 table->abfd = abfd;
165 return (bfd_hash_table_init (&table->root, newfunc));
166}
167
168/* Create the derived linker hash table. We use a derived hash table
169 basically to hold "static" information during an h8/300 coff link
170 without using static variables. */
171
172static struct bfd_link_hash_table *
173h8300_coff_link_hash_table_create (abfd)
174 bfd *abfd;
175{
176 struct h8300_coff_link_hash_table *ret;
177 ret = ((struct h8300_coff_link_hash_table *)
178 bfd_alloc (abfd, sizeof (struct h8300_coff_link_hash_table)));
179 if (ret == NULL)
180 return NULL;
181 if (!_bfd_link_hash_table_init (&ret->root.root, abfd, _bfd_generic_link_hash_newfunc))
182 {
183 bfd_release (abfd, ret);
184 return NULL;
185 }
186
187 /* Initialize our data. */
188 ret->vectors_sec = NULL;
189 ret->funcvec_hash_table = NULL;
190
191 /* OK. Everything's intialized, return the base pointer. */
192 return &ret->root.root;
193}
194
195/* special handling for H8/300 relocs.
196 We only come here for pcrel stuff and return normally if not an -r link.
197 When doing -r, we can't do any arithmetic for the pcrel stuff, because
198 the code in reloc.c assumes that we can manipulate the targets of
199 the pcrel branches. This isn't so, since the H8/300 can do relaxing,
200 which means that the gap after the instruction may not be enough to
201 contain the offset required for the branch, so we have to use the only
202 the addend until the final link */
203
204static bfd_reloc_status_type
205special (abfd, reloc_entry, symbol, data, input_section, output_bfd,
206 error_message)
5f771d47
ILT
207 bfd *abfd ATTRIBUTE_UNUSED;
208 arelent *reloc_entry ATTRIBUTE_UNUSED;
209 asymbol *symbol ATTRIBUTE_UNUSED;
210 PTR data ATTRIBUTE_UNUSED;
211 asection *input_section ATTRIBUTE_UNUSED;
252b5132 212 bfd *output_bfd;
5f771d47 213 char **error_message ATTRIBUTE_UNUSED;
252b5132
RH
214{
215 if (output_bfd == (bfd *) NULL)
216 return bfd_reloc_continue;
217
218 return bfd_reloc_ok;
219}
220
221static reloc_howto_type howto_table[] =
222{
223 HOWTO (R_RELBYTE, 0, 0, 8, false, 0, complain_overflow_bitfield, special, "8", false, 0x000000ff, 0x000000ff, false),
224 HOWTO (R_RELWORD, 0, 1, 16, false, 0, complain_overflow_bitfield, special, "16", false, 0x0000ffff, 0x0000ffff, false),
225 HOWTO (R_RELLONG, 0, 2, 32, false, 0, complain_overflow_bitfield, special, "32", false, 0xffffffff, 0xffffffff, false),
226 HOWTO (R_PCRBYTE, 0, 0, 8, true, 0, complain_overflow_signed, special, "DISP8", false, 0x000000ff, 0x000000ff, true),
227 HOWTO (R_PCRWORD, 0, 1, 16, true, 0, complain_overflow_signed, special, "DISP16", false, 0x0000ffff, 0x0000ffff, true),
228 HOWTO (R_PCRLONG, 0, 2, 32, true, 0, complain_overflow_signed, special, "DISP32", false, 0xffffffff, 0xffffffff, true),
229 HOWTO (R_MOV16B1, 0, 1, 16, false, 0, complain_overflow_bitfield, special, "relaxable mov.b:16", false, 0x0000ffff, 0x0000ffff, false),
230 HOWTO (R_MOV16B2, 0, 1, 8, false, 0, complain_overflow_bitfield, special, "relaxed mov.b:16", false, 0x000000ff, 0x000000ff, false),
231 HOWTO (R_JMP1, 0, 1, 16, false, 0, complain_overflow_bitfield, special, "16/pcrel", false, 0x0000ffff, 0x0000ffff, false),
232 HOWTO (R_JMP2, 0, 0, 8, false, 0, complain_overflow_bitfield, special, "pcrecl/16", false, 0x000000ff, 0x000000ff, false),
233 HOWTO (R_JMPL1, 0, 2, 32, false, 0, complain_overflow_bitfield, special, "24/pcrell", false, 0x00ffffff, 0x00ffffff, false),
234 HOWTO (R_JMPL2, 0, 0, 8, false, 0, complain_overflow_bitfield, special, "pc8/24", false, 0x000000ff, 0x000000ff, false),
235 HOWTO (R_MOV24B1, 0, 1, 32, false, 0, complain_overflow_bitfield, special, "relaxable mov.b:24", false, 0xffffffff, 0xffffffff, false),
236 HOWTO (R_MOV24B2, 0, 1, 8, false, 0, complain_overflow_bitfield, special, "relaxed mov.b:24", false, 0x0000ffff, 0x0000ffff, false),
237
238 /* An indirect reference to a function. This causes the function's address
239 to be added to the function vector in lo-mem and puts the address of
240 the function vector's entry in the jsr instruction. */
241 HOWTO (R_MEM_INDIRECT, 0, 0, 8, false, 0, complain_overflow_bitfield, special, "8/indirect", false, 0x000000ff, 0x000000ff, false),
242
243 /* Internal reloc for relaxing. This is created when a 16bit pc-relative
244 branch is turned into an 8bit pc-relative branch. */
245 HOWTO (R_PCRWORD_B, 0, 0, 8, true, 0, complain_overflow_bitfield, special, "relaxed bCC:16", false, 0x000000ff, 0x000000ff, false),
246
247 HOWTO (R_MOVL1, 0, 2, 32, false, 0, complain_overflow_bitfield,special, "32/24 relaxable move", false, 0xffffffff, 0xffffffff, false),
248
249 HOWTO (R_MOVL2, 0, 1, 16, false, 0, complain_overflow_bitfield, special, "32/24 relaxed move", false, 0x0000ffff, 0x0000ffff, false),
250
251 HOWTO (R_BCC_INV, 0, 0, 8, true, 0, complain_overflow_signed, special, "DISP8 inverted", false, 0x000000ff, 0x000000ff, true),
252
253 HOWTO (R_JMP_DEL, 0, 0, 8, true, 0, complain_overflow_signed, special, "Deleted jump", false, 0x000000ff, 0x000000ff, true),
254};
255
256
257/* Turn a howto into a reloc number */
258
259#define SELECT_RELOC(x,howto) \
260 { x.r_type = select_reloc(howto); }
261
262#define BADMAG(x) (H8300BADMAG(x) && H8300HBADMAG(x) && H8300SBADMAG(x))
263#define H8300 1 /* Customize coffcode.h */
264#define __A_MAGIC_SET__
265
266
267
268/* Code to swap in the reloc */
269#define SWAP_IN_RELOC_OFFSET bfd_h_get_32
270#define SWAP_OUT_RELOC_OFFSET bfd_h_put_32
271#define SWAP_OUT_RELOC_EXTRA(abfd, src, dst) \
272 dst->r_stuff[0] = 'S'; \
273 dst->r_stuff[1] = 'C';
274
275
276static int
277select_reloc (howto)
278 reloc_howto_type *howto;
279{
280 return howto->type;
281}
282
283/* Code to turn a r_type into a howto ptr, uses the above howto table
284 */
285
286static void
287rtype2howto (internal, dst)
288 arelent *internal;
289 struct internal_reloc *dst;
290{
291 switch (dst->r_type)
292 {
293 case R_RELBYTE:
294 internal->howto = howto_table + 0;
295 break;
296 case R_RELWORD:
297 internal->howto = howto_table + 1;
298 break;
299 case R_RELLONG:
300 internal->howto = howto_table + 2;
301 break;
302 case R_PCRBYTE:
303 internal->howto = howto_table + 3;
304 break;
305 case R_PCRWORD:
306 internal->howto = howto_table + 4;
307 break;
308 case R_PCRLONG:
309 internal->howto = howto_table + 5;
310 break;
311 case R_MOV16B1:
312 internal->howto = howto_table + 6;
313 break;
314 case R_MOV16B2:
315 internal->howto = howto_table + 7;
316 break;
317 case R_JMP1:
318 internal->howto = howto_table + 8;
319 break;
320 case R_JMP2:
321 internal->howto = howto_table + 9;
322 break;
323 case R_JMPL1:
324 internal->howto = howto_table + 10;
325 break;
326 case R_JMPL2:
327 internal->howto = howto_table + 11;
328 break;
329 case R_MOV24B1:
330 internal->howto = howto_table + 12;
331 break;
332 case R_MOV24B2:
333 internal->howto = howto_table + 13;
334 break;
335 case R_MEM_INDIRECT:
336 internal->howto = howto_table + 14;
337 break;
338 case R_PCRWORD_B:
339 internal->howto = howto_table + 15;
340 break;
341 case R_MOVL1:
342 internal->howto = howto_table + 16;
343 break;
344 case R_MOVL2:
345 internal->howto = howto_table + 17;
346 break;
347 case R_BCC_INV:
348 internal->howto = howto_table + 18;
349 break;
350 case R_JMP_DEL:
351 internal->howto = howto_table + 19;
352 break;
353 default:
354 abort ();
355 break;
356 }
357}
358
359#define RTYPE2HOWTO(internal, relocentry) rtype2howto(internal,relocentry)
360
361
362/* Perform any necessary magic to the addend in a reloc entry */
363
364
365#define CALC_ADDEND(abfd, symbol, ext_reloc, cache_ptr) \
366 cache_ptr->addend = ext_reloc.r_offset;
367
368
369#define RELOC_PROCESSING(relent,reloc,symbols,abfd,section) \
370 reloc_processing(relent, reloc, symbols, abfd, section)
371
372static void
373reloc_processing (relent, reloc, symbols, abfd, section)
374 arelent * relent;
375 struct internal_reloc *reloc;
376 asymbol ** symbols;
377 bfd * abfd;
378 asection * section;
379{
380 relent->address = reloc->r_vaddr;
381 rtype2howto (relent, reloc);
382
383 if (((int) reloc->r_symndx) > 0)
384 {
385 relent->sym_ptr_ptr = symbols + obj_convert (abfd)[reloc->r_symndx];
386 }
387 else
388 {
389 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
390 }
391
392
393
394 relent->addend = reloc->r_offset;
395
396 relent->address -= section->vma;
397 /* relent->section = 0;*/
398}
399
400static boolean
401h8300_symbol_address_p (abfd, input_section, address)
402 bfd *abfd;
403 asection *input_section;
404 bfd_vma address;
405{
406 asymbol **s;
407
408 s = _bfd_generic_link_get_symbols (abfd);
409 BFD_ASSERT (s != (asymbol **) NULL);
410
411 /* Search all the symbols for one in INPUT_SECTION with
412 address ADDRESS. */
413 while (*s)
414 {
415 asymbol *p = *s;
416 if (p->section == input_section
417 && (input_section->output_section->vma
418 + input_section->output_offset
419 + p->value) == address)
420 return true;
421 s++;
422 }
423 return false;
424}
425
426
427/* If RELOC represents a relaxable instruction/reloc, change it into
428 the relaxed reloc, notify the linker that symbol addresses
429 have changed (bfd_perform_slip) and return how much the current
430 section has shrunk by.
431
432 FIXME: Much of this code has knowledge of the ordering of entries
433 in the howto table. This needs to be fixed. */
434
435static int
436h8300_reloc16_estimate(abfd, input_section, reloc, shrink, link_info)
437 bfd *abfd;
438 asection *input_section;
439 arelent *reloc;
440 unsigned int shrink;
441 struct bfd_link_info *link_info;
442{
443 bfd_vma value;
444 bfd_vma dot;
445 bfd_vma gap;
446 static asection *last_input_section = NULL;
447 static arelent *last_reloc = NULL;
448
449 /* The address of the thing to be relocated will have moved back by
450 the size of the shrink - but we don't change reloc->address here,
451 since we need it to know where the relocation lives in the source
452 uncooked section. */
453 bfd_vma address = reloc->address - shrink;
454
455 if (input_section != last_input_section)
456 last_reloc = NULL;
457
458 /* Only examine the relocs which might be relaxable. */
459 switch (reloc->howto->type)
460 {
461
462 /* This is the 16/24 bit absolute branch which could become an 8 bit
463 pc-relative branch. */
464 case R_JMP1:
465 case R_JMPL1:
466 /* Get the address of the target of this branch. */
467 value = bfd_coff_reloc16_get_value(reloc, link_info, input_section);
468
469 /* Get the address of the next instruction (not the reloc). */
470 dot = (input_section->output_section->vma
471 + input_section->output_offset + address);
472
473 /* Adjust for R_JMP1 vs R_JMPL1. */
474 dot += (reloc->howto->type == R_JMP1 ? 1 : 2);
475
476 /* Compute the distance from this insn to the branch target. */
477 gap = value - dot;
478
479 /* If the distance is within -128..+128 inclusive, then we can relax
480 this jump. +128 is valid since the target will move two bytes
481 closer if we do relax this branch. */
482 if ((int)gap >= -128 && (int)gap <= 128 )
483 {
484
485 /* It's possible we may be able to eliminate this branch entirely;
486 if the previous instruction is a branch around this instruction,
487 and there's no label at this instruction, then we can reverse
488 the condition on the previous branch and eliminate this jump.
489
490 original: new:
491 bCC lab1 bCC' lab2
492 jmp lab2
493 lab1: lab1:
494
495 This saves 4 bytes instead of two, and should be relatively
496 common. */
497
498 if (gap <= 126
499 && last_reloc
500 && last_reloc->howto->type == R_PCRBYTE)
501 {
502 bfd_vma last_value;
503 last_value = bfd_coff_reloc16_get_value (last_reloc, link_info,
504 input_section) + 1;
505
506 if (last_value == dot + 2
507 && last_reloc->address + 1 == reloc->address
508 && ! h8300_symbol_address_p (abfd, input_section, dot - 2))
509 {
510 reloc->howto = howto_table + 19;
511 last_reloc->howto = howto_table + 18;
512 last_reloc->sym_ptr_ptr = reloc->sym_ptr_ptr;
513 last_reloc->addend = reloc->addend;
514 shrink += 4;
515 bfd_perform_slip (abfd, 4, input_section, address);
516 break;
517 }
518 }
519
520 /* Change the reloc type. */
521 reloc->howto = reloc->howto + 1;
522
523 /* This shrinks this section by two bytes. */
524 shrink += 2;
525 bfd_perform_slip(abfd, 2, input_section, address);
526 }
527 break;
528
529 /* This is the 16 bit pc-relative branch which could become an 8 bit
530 pc-relative branch. */
531 case R_PCRWORD:
532 /* Get the address of the target of this branch, add one to the value
533 because the addend field in PCrel jumps is off by -1. */
534 value = bfd_coff_reloc16_get_value(reloc, link_info, input_section) + 1;
535
536 /* Get the address of the next instruction if we were to relax. */
537 dot = input_section->output_section->vma +
538 input_section->output_offset + address;
539
540 /* Compute the distance from this insn to the branch target. */
541 gap = value - dot;
542
543 /* If the distance is within -128..+128 inclusive, then we can relax
544 this jump. +128 is valid since the target will move two bytes
545 closer if we do relax this branch. */
546 if ((int)gap >= -128 && (int)gap <= 128 )
547 {
548 /* Change the reloc type. */
549 reloc->howto = howto_table + 15;
550
551 /* This shrinks this section by two bytes. */
552 shrink += 2;
553 bfd_perform_slip(abfd, 2, input_section, address);
554 }
555 break;
556
557 /* This is a 16 bit absolute address in a mov.b insn, which can
558 become an 8 bit absolute address if it's in the right range. */
559 case R_MOV16B1:
560 /* Get the address of the data referenced by this mov.b insn. */
561 value = bfd_coff_reloc16_get_value(reloc, link_info, input_section);
562
563 /* The address is in 0xff00..0xffff inclusive on the h8300 or
564 0xffff00..0xffffff inclusive on the h8300h, then we can
565 relax this mov.b */
566 if ((bfd_get_mach (abfd) == bfd_mach_h8300
567 && value >= 0xff00
568 && value <= 0xffff)
569 || ((bfd_get_mach (abfd) == bfd_mach_h8300h
570 || bfd_get_mach (abfd) == bfd_mach_h8300s)
571 && value >= 0xffff00
572 && value <= 0xffffff))
573 {
574 /* Change the reloc type. */
575 reloc->howto = reloc->howto + 1;
576
577 /* This shrinks this section by two bytes. */
578 shrink += 2;
579 bfd_perform_slip(abfd, 2, input_section, address);
580 }
581 break;
582
583 /* Similarly for a 24 bit absolute address in a mov.b. Note that
584 if we can't relax this into an 8 bit absolute, we'll fall through
585 and try to relax it into a 16bit absolute. */
586 case R_MOV24B1:
587 /* Get the address of the data referenced by this mov.b insn. */
588 value = bfd_coff_reloc16_get_value(reloc, link_info, input_section);
589
590 /* The address is in 0xffff00..0xffffff inclusive on the h8300h,
591 then we can relax this mov.b */
592 if ((bfd_get_mach (abfd) == bfd_mach_h8300h
593 || bfd_get_mach (abfd) == bfd_mach_h8300s)
594 && value >= 0xffff00
595 && value <= 0xffffff)
596 {
597 /* Change the reloc type. */
598 reloc->howto = reloc->howto + 1;
599
600 /* This shrinks this section by four bytes. */
601 shrink += 4;
602 bfd_perform_slip(abfd, 4, input_section, address);
603
604 /* Done with this reloc. */
605 break;
606 }
607
608 /* FALLTHROUGH and try to turn the 32/24 bit reloc into a 16 bit
609 reloc. */
610
611 /* This is a 24/32 bit absolute address in a mov insn, which can
612 become an 16 bit absolute address if it's in the right range. */
613 case R_MOVL1:
614 /* Get the address of the data referenced by this mov insn. */
615 value = bfd_coff_reloc16_get_value(reloc, link_info, input_section);
616
617 /* If this address is in 0x0000..0x7fff inclusive or
618 0xff8000..0xffffff inclusive, then it can be relaxed. */
619 if (value <= 0x7fff || value >= 0xff8000)
620 {
621 /* Change the reloc type. */
622 reloc->howto = howto_table + 17;
623
624 /* This shrinks this section by two bytes. */
625 shrink += 2;
626 bfd_perform_slip(abfd, 2, input_section, address);
627 }
628 break;
629
630 /* No other reloc types represent relaxing opportunities. */
631 default:
632 break;
633 }
634
635 last_reloc = reloc;
636 last_input_section = input_section;
637 return shrink;
638}
639
640
641/* Handle relocations for the H8/300, including relocs for relaxed
642 instructions.
643
644 FIXME: Not all relocations check for overflow! */
645
646static void
647h8300_reloc16_extra_cases (abfd, link_info, link_order, reloc, data, src_ptr,
648 dst_ptr)
649 bfd *abfd;
650 struct bfd_link_info *link_info;
651 struct bfd_link_order *link_order;
652 arelent *reloc;
653 bfd_byte *data;
654 unsigned int *src_ptr;
655 unsigned int *dst_ptr;
656{
657 unsigned int src_address = *src_ptr;
658 unsigned int dst_address = *dst_ptr;
659 asection *input_section = link_order->u.indirect.section;
660 bfd_vma value;
661 bfd_vma dot;
662 int gap,tmp;
663
664 switch (reloc->howto->type)
665 {
666
667 /* Generic 8bit pc-relative relocation. */
668 case R_PCRBYTE:
669 /* Get the address of the target of this branch. */
670 value = bfd_coff_reloc16_get_value(reloc, link_info, input_section);
671
672 dot = (link_order->offset
673 + dst_address
674 + link_order->u.indirect.section->output_section->vma);
675
676 gap = value - dot;
677
678 /* Sanity check. */
679 if (gap < -128 || gap > 126)
680 {
681 if (! ((*link_info->callbacks->reloc_overflow)
682 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
683 reloc->howto->name, reloc->addend, input_section->owner,
684 input_section, reloc->address)))
685 abort ();
686 }
687
688 /* Everything looks OK. Apply the relocation and update the
689 src/dst address appropriately. */
690
691 bfd_put_8 (abfd, gap, data + dst_address);
692 dst_address++;
693 src_address++;
694
695 /* All done. */
696 break;
697
698 /* Generic 16bit pc-relative relocation. */
699 case R_PCRWORD:
700 /* Get the address of the target of this branch. */
701 value = bfd_coff_reloc16_get_value(reloc, link_info, input_section);
702
703 /* Get the address of the instruction (not the reloc). */
704 dot = (link_order->offset
705 + dst_address
706 + link_order->u.indirect.section->output_section->vma + 1);
707
708 gap = value - dot;
709
710 /* Sanity check. */
711 if (gap > 32766 || gap < -32768)
712 {
713 if (! ((*link_info->callbacks->reloc_overflow)
714 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
715 reloc->howto->name, reloc->addend, input_section->owner,
716 input_section, reloc->address)))
717 abort ();
718 }
719
720 /* Everything looks OK. Apply the relocation and update the
721 src/dst address appropriately. */
722
723 bfd_put_16 (abfd, gap, data + dst_address);
724 dst_address += 2;
725 src_address += 2;
726
727 /* All done. */
728 break;
729
730 /* Generic 8bit absolute relocation. */
731 case R_RELBYTE:
732 /* Get the address of the object referenced by this insn. */
733 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
734
735 /* Sanity check. */
736 if (value <= 0xff
737 || (value >= 0x0000ff00 && value <= 0x0000ffff)
738 || (value >= 0x00ffff00 && value <= 0x00ffffff)
739 || (value >= 0xffffff00 && value <= 0xffffffff))
740 {
741 /* Everything looks OK. Apply the relocation and update the
742 src/dst address appropriately. */
743
744 bfd_put_8 (abfd, value & 0xff, data + dst_address);
745 dst_address += 1;
746 src_address += 1;
747 }
748 else
749 {
750 if (! ((*link_info->callbacks->reloc_overflow)
751 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
752 reloc->howto->name, reloc->addend, input_section->owner,
753 input_section, reloc->address)))
754 abort ();
755 }
756
757 /* All done. */
758 break;
759
760 /* Various simple 16bit absolute relocations. */
761 case R_MOV16B1:
762 case R_JMP1:
763 case R_RELWORD:
764 value = bfd_coff_reloc16_get_value(reloc, link_info, input_section);
765 bfd_put_16 (abfd, value, data + dst_address);
766 dst_address += 2;
767 src_address += 2;
768 break;
769
770 /* Various simple 24/32bit absolute relocations. */
771 case R_MOV24B1:
772 case R_MOVL1:
773 case R_RELLONG:
774 /* Get the address of the target of this branch. */
775 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section),
776 bfd_put_32 (abfd, value, data + dst_address);
777 dst_address += 4;
778 src_address += 4;
779 break;
780
781 /* Another 24/32bit absolute relocation. */
782 case R_JMPL1:
783 /* Get the address of the target of this branch. */
784 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
785
786 value = ((value & 0x00ffffff)
787 | (bfd_get_32 (abfd, data + src_address) & 0xff000000));
788 bfd_put_32 (abfd, value, data + dst_address);
789 dst_address += 4;
790 src_address += 4;
791 break;
792
793 /* A 16bit abolute relocation that was formerlly a 24/32bit
794 absolute relocation. */
795 case R_MOVL2:
796 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
797
798 /* Sanity check. */
799 if (value < 0x8000 || value > 0xff8000)
800 {
801 /* Insert the 16bit value into the proper location. */
802 bfd_put_16 (abfd, value, data + dst_address);
803
804 /* Fix the opcode. For all the move insns, we simply
805 need to turn off bit 0x20 in the previous byte. */
806 data[dst_address - 1] &= ~0x20;
807 dst_address += 2;
808 src_address += 4;
809 }
810 else
811 {
812 if (! ((*link_info->callbacks->reloc_overflow)
813 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
814 reloc->howto->name, reloc->addend, input_section->owner,
815 input_section, reloc->address)))
816 abort ();
817 }
818 break;
819
820 /* A 16bit absolute branch that is now an 8-bit pc-relative branch. */
821 case R_JMP2:
822 /* Get the address of the target of this branch. */
823 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
824
825 /* Get the address of the next instruction. */
826 dot = (link_order->offset
827 + dst_address
828 + link_order->u.indirect.section->output_section->vma + 1);
829
830 gap = value - dot;
831
832 /* Sanity check. */
833 if (gap < -128 || gap > 126)
834 {
835 if (! ((*link_info->callbacks->reloc_overflow)
836 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
837 reloc->howto->name, reloc->addend, input_section->owner,
838 input_section, reloc->address)))
839 abort ();
840 }
841
842 /* Now fix the instruction itself. */
843 switch (data[dst_address - 1])
844 {
845 case 0x5e:
846 /* jsr -> bsr */
847 bfd_put_8 (abfd, 0x55, data + dst_address - 1);
848 break;
849 case 0x5a:
850 /* jmp ->bra */
851 bfd_put_8 (abfd, 0x40, data + dst_address - 1);
852 break;
853
854 default:
855 abort ();
856 }
857
858 /* Write out the 8bit value. */
859 bfd_put_8 (abfd, gap, data + dst_address);
860
861 dst_address += 1;
862 src_address += 3;
863
864 break;
865
866 /* A 16bit pc-relative branch that is now an 8-bit pc-relative branch. */
867 case R_PCRWORD_B:
868 /* Get the address of the target of this branch. */
869 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
870
871 /* Get the address of the instruction (not the reloc). */
872 dot = (link_order->offset
873 + dst_address
874 + link_order->u.indirect.section->output_section->vma - 1);
875
876 gap = value - dot;
877
878 /* Sanity check. */
879 if (gap < -128 || gap > 126)
880 {
881 if (! ((*link_info->callbacks->reloc_overflow)
882 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
883 reloc->howto->name, reloc->addend, input_section->owner,
884 input_section, reloc->address)))
885 abort ();
886 }
887
888 /* Now fix the instruction. */
889 switch (data[dst_address - 2])
890 {
891 case 0x58:
892 /* bCC:16 -> bCC:8 */
893 /* Get the condition code from the original insn. */
894 tmp = data[dst_address - 1];
895 tmp &= 0xf0;
896 tmp >>= 4;
897
898 /* Now or in the high nibble of the opcode. */
899 tmp |= 0x40;
900
901 /* Write it. */
902 bfd_put_8 (abfd, tmp, data + dst_address - 2);
903 break;
904
905 default:
906 abort ();
907 }
908
909 /* Output the target. */
910 bfd_put_8 (abfd, gap, data + dst_address - 1);
911
912 /* We don't advance dst_address -- the 8bit reloc is applied at
913 dst_address - 1, so the next insn should begin at dst_address. */
914 src_address += 2;
915
916 break;
917
918 /* Similarly for a 24bit absolute that is now 8 bits. */
919 case R_JMPL2:
920 /* Get the address of the target of this branch. */
921 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
922
923 /* Get the address of the instruction (not the reloc). */
924 dot = (link_order->offset
925 + dst_address
926 + link_order->u.indirect.section->output_section->vma + 2);
927
928 gap = value - dot;
929
930 /* Fix the instruction. */
931 switch (data[src_address])
932 {
933 case 0x5e:
934 /* jsr -> bsr */
935 bfd_put_8 (abfd, 0x55, data + dst_address);
936 break;
937 case 0x5a:
938 /* jmp ->bra */
939 bfd_put_8 (abfd, 0x40, data + dst_address);
940 break;
941 default:
942 abort ();
943 }
944
945 bfd_put_8 (abfd, gap, data + dst_address + 1);
946 dst_address += 2;
947 src_address += 4;
948
949 break;
950
951 /* A 16bit absolute mov.b that is now an 8bit absolute mov.b. */
952 case R_MOV16B2:
953 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
954
955 /* Sanity check. */
956 if (data[dst_address - 2] != 0x6a)
957 abort ();
958
959 /* Fix up the opcode. */
960 switch (data[src_address-1] & 0xf0)
961 {
962 case 0x00:
963 data[dst_address - 2] = (data[src_address-1] & 0xf) | 0x20;
964 break;
965 case 0x80:
966 data[dst_address - 2] = (data[src_address-1] & 0xf) | 0x30;
967 break;
968 default:
969 abort ();
970 }
971
972 bfd_put_8 (abfd, value & 0xff, data + dst_address - 1);
973 src_address += 2;
974 break;
975
976 /* Similarly for a 24bit mov.b */
977 case R_MOV24B2:
978 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
979
980 /* Sanity check. */
981 if (data[dst_address - 2] != 0x6a)
982 abort ();
983
984 /* Fix up the opcode. */
985 switch (data[src_address-1] & 0xf0)
986 {
987 case 0x20:
988 data[dst_address - 2] = (data[src_address-1] & 0xf) | 0x20;
989 break;
990 case 0xa0:
991 data[dst_address - 2] = (data[src_address-1] & 0xf) | 0x30;
992 break;
993 default:
994 abort ();
995 }
996
997 bfd_put_8 (abfd, value & 0xff, data + dst_address - 1);
998 src_address += 4;
999 break;
1000
1001 case R_BCC_INV:
1002 /* Get the address of the target of this branch. */
1003 value = bfd_coff_reloc16_get_value(reloc, link_info, input_section);
1004
1005 dot = (link_order->offset
1006 + dst_address
1007 + link_order->u.indirect.section->output_section->vma) + 1;
1008
1009 gap = value - dot;
1010
1011 /* Sanity check. */
1012 if (gap < -128 || gap > 126)
1013 {
1014 if (! ((*link_info->callbacks->reloc_overflow)
1015 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
1016 reloc->howto->name, reloc->addend, input_section->owner,
1017 input_section, reloc->address)))
1018 abort ();
1019 }
1020
1021 /* Everything looks OK. Fix the condition in the instruction, apply
1022 the relocation, and update the src/dst address appropriately. */
1023
1024 bfd_put_8 (abfd, bfd_get_8 (abfd, data + dst_address - 1) ^ 1,
1025 data + dst_address - 1);
1026 bfd_put_8 (abfd, gap, data + dst_address);
1027 dst_address++;
1028 src_address++;
1029
1030 /* All done. */
1031 break;
1032
1033 case R_JMP_DEL:
1034 src_address += 4;
1035 break;
1036
1037 /* An 8bit memory indirect instruction (jmp/jsr).
1038
1039 There's several things that need to be done to handle
1040 this relocation.
1041
1042 If this is a reloc against the absolute symbol, then
1043 we should handle it just R_RELBYTE. Likewise if it's
1044 for a symbol with a value ge 0 and le 0xff.
1045
1046 Otherwise it's a jump/call through the function vector,
1047 and the linker is expected to set up the function vector
1048 and put the right value into the jump/call instruction. */
1049 case R_MEM_INDIRECT:
1050 {
1051 /* We need to find the symbol so we can determine it's
1052 address in the function vector table. */
1053 asymbol *symbol;
1054 bfd_vma value;
1055 const char *name;
1056 struct funcvec_hash_entry *h;
1057 asection *vectors_sec = h8300_coff_hash_table (link_info)->vectors_sec;
1058
1059 /* First see if this is a reloc against the absolute symbol
1060 or against a symbol with a nonnegative value <= 0xff. */
1061 symbol = *(reloc->sym_ptr_ptr);
1062 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
1063 if (symbol == bfd_abs_section_ptr->symbol
5f771d47 1064 || value <= 0xff)
252b5132
RH
1065 {
1066 /* This should be handled in a manner very similar to
1067 R_RELBYTES. If the value is in range, then just slam
1068 the value into the right location. Else trigger a
1069 reloc overflow callback. */
5f771d47 1070 if (value <= 0xff)
252b5132
RH
1071 {
1072 bfd_put_8 (abfd, value, data + dst_address);
1073 dst_address += 1;
1074 src_address += 1;
1075 }
1076 else
1077 {
1078 if (! ((*link_info->callbacks->reloc_overflow)
1079 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
1080 reloc->howto->name, reloc->addend, input_section->owner,
1081 input_section, reloc->address)))
1082 abort ();
1083 }
1084 break;
1085 }
1086
1087 /* This is a jump/call through a function vector, and we're
1088 expected to create the function vector ourselves.
1089
1090 First look up this symbol in the linker hash table -- we need
1091 the derived linker symbol which holds this symbol's index
1092 in the function vector. */
1093 name = symbol->name;
1094 if (symbol->flags & BSF_LOCAL)
1095 {
1096 char *new_name = bfd_malloc (strlen (name) + 9);
1097 if (new_name == NULL)
1098 abort ();
1099
1100 strcpy (new_name, name);
1101 sprintf (new_name + strlen (name), "_%08x",
1102 (int)symbol->section);
1103 name = new_name;
1104 }
1105
1106 h = funcvec_hash_lookup (h8300_coff_hash_table (link_info)->funcvec_hash_table,
1107 name, false, false);
1108
1109 /* This shouldn't ever happen. If it does that means we've got
1110 data corruption of some kind. Aborting seems like a reasonable
1111 think to do here. */
1112 if (h == NULL || vectors_sec == NULL)
1113 abort ();
1114
1115 /* Place the address of the function vector entry into the
1116 reloc's address. */
1117 bfd_put_8 (abfd,
1118 vectors_sec->output_offset + h->offset,
1119 data + dst_address);
1120
1121 dst_address++;
1122 src_address++;
1123
1124 /* Now create an entry in the function vector itself. */
1125 if (bfd_get_mach (input_section->owner) == bfd_mach_h8300)
1126 bfd_put_16 (abfd,
1127 bfd_coff_reloc16_get_value (reloc,
1128 link_info,
1129 input_section),
1130 vectors_sec->contents + h->offset);
1131 else if (bfd_get_mach (input_section->owner) == bfd_mach_h8300h
1132 || bfd_get_mach (input_section->owner) == bfd_mach_h8300s)
1133 bfd_put_32 (abfd,
1134 bfd_coff_reloc16_get_value (reloc,
1135 link_info,
1136 input_section),
1137 vectors_sec->contents + h->offset);
1138 else
1139 abort ();
1140
1141 /* Gross. We've already written the contents of the vector section
1142 before we get here... So we write it again with the new data. */
1143 bfd_set_section_contents (vectors_sec->output_section->owner,
1144 vectors_sec->output_section,
1145 vectors_sec->contents,
1146 vectors_sec->output_offset,
1147 vectors_sec->_raw_size);
1148 break;
1149 }
1150
1151 default:
1152 abort ();
1153 break;
1154
1155 }
1156
1157 *src_ptr = src_address;
1158 *dst_ptr = dst_address;
1159}
1160
1161
1162/* Routine for the h8300 linker.
1163
1164 This routine is necessary to handle the special R_MEM_INDIRECT
1165 relocs on the h8300. It's responsible for generating a vectors
1166 section and attaching it to an input bfd as well as sizing
1167 the vectors section. It also creates our vectors hash table.
1168
1169 It uses the generic linker routines to actually add the symbols.
1170 from this BFD to the bfd linker hash table. It may add a few
1171 selected static symbols to the bfd linker hash table. */
1172
1173static boolean
1174h8300_bfd_link_add_symbols(abfd, info)
1175 bfd *abfd;
1176 struct bfd_link_info *info;
1177{
1178 asection *sec;
1179 struct funcvec_hash_table *funcvec_hash_table;
1180
1181 /* If we haven't created a vectors section, do so now. */
1182 if (!h8300_coff_hash_table (info)->vectors_sec)
1183 {
1184 flagword flags;
1185
1186 /* Make sure the appropriate flags are set, including SEC_IN_MEMORY. */
1187 flags = (SEC_ALLOC | SEC_LOAD
1188 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_READONLY);
1189 h8300_coff_hash_table (info)->vectors_sec = bfd_make_section (abfd,
1190 ".vectors");
1191
1192 /* If the section wasn't created, or we couldn't set the flags,
1193 quit quickly now, rather than dieing a painful death later. */
1194 if (! h8300_coff_hash_table (info)->vectors_sec
1195 || ! bfd_set_section_flags (abfd,
1196 h8300_coff_hash_table(info)->vectors_sec,
1197 flags))
1198 return false;
1199
1200 /* Also create the vector hash table. */
1201 funcvec_hash_table = ((struct funcvec_hash_table *)
1202 bfd_alloc (abfd, sizeof (struct funcvec_hash_table)));
1203
1204 if (!funcvec_hash_table)
1205 return false;
1206
1207 /* And initialize the funcvec hash table. */
1208 if (!funcvec_hash_table_init (funcvec_hash_table, abfd,
1209 funcvec_hash_newfunc))
1210 {
1211 bfd_release (abfd, funcvec_hash_table);
1212 return false;
1213 }
1214
1215 /* Store away a pointer to the funcvec hash table. */
1216 h8300_coff_hash_table (info)->funcvec_hash_table = funcvec_hash_table;
1217 }
1218
1219 /* Load up the function vector hash table. */
1220 funcvec_hash_table = h8300_coff_hash_table (info)->funcvec_hash_table;
1221
1222 /* Add the symbols using the generic code. */
1223 _bfd_generic_link_add_symbols (abfd, info);
1224
1225 /* Now scan the relocs for all the sections in this bfd; create
1226 additional space in the .vectors section as needed. */
1227 for (sec = abfd->sections; sec; sec = sec->next)
1228 {
1229 long reloc_size, reloc_count, i;
1230 asymbol **symbols;
1231 arelent **relocs;
1232
1233 /* Suck in the relocs, symbols & canonicalize them. */
1234 reloc_size = bfd_get_reloc_upper_bound (abfd, sec);
1235 if (reloc_size <= 0)
1236 continue;
1237
1238 relocs = (arelent **)bfd_malloc ((size_t)reloc_size);
1239 if (!relocs)
1240 return false;
1241
1242 /* The symbols should have been read in by _bfd_generic link_add_symbols
1243 call abovec, so we can cheat and use the pointer to them that was
1244 saved in the above call. */
1245 symbols = _bfd_generic_link_get_symbols(abfd);
1246 reloc_count = bfd_canonicalize_reloc (abfd, sec, relocs, symbols);
1247 if (reloc_count <= 0)
1248 {
1249 free (relocs);
1250 continue;
1251 }
1252
1253 /* Now walk through all the relocations in this section. */
1254 for (i = 0; i < reloc_count; i++)
1255 {
1256 arelent *reloc = relocs[i];
1257 asymbol *symbol = *(reloc->sym_ptr_ptr);
1258 const char *name;
1259
1260 /* We've got an indirect reloc. See if we need to add it
1261 to the function vector table. At this point, we have
1262 to add a new entry for each unique symbol referenced
1263 by an R_MEM_INDIRECT relocation except for a reloc
1264 against the absolute section symbol. */
1265 if (reloc->howto->type == R_MEM_INDIRECT
1266 && symbol != bfd_abs_section_ptr->symbol)
1267
1268 {
1269 struct funcvec_hash_entry *h;
1270
1271 name = symbol->name;
1272 if (symbol->flags & BSF_LOCAL)
1273 {
1274 char *new_name = bfd_malloc (strlen (name) + 9);
1275
1276 if (new_name == NULL)
1277 abort ();
1278
1279 strcpy (new_name, name);
1280 sprintf (new_name + strlen (name), "_%08x",
1281 (int)symbol->section);
1282 name = new_name;
1283 }
1284
1285 /* Look this symbol up in the function vector hash table. */
1286 h = funcvec_hash_lookup (h8300_coff_hash_table (info)->funcvec_hash_table,
1287 name, false, false);
1288
1289
1290 /* If this symbol isn't already in the hash table, add
1291 it and bump up the size of the hash table. */
1292 if (h == NULL)
1293 {
1294 h = funcvec_hash_lookup (h8300_coff_hash_table (info)->funcvec_hash_table,
1295 name, true, true);
1296 if (h == NULL)
1297 {
1298 free (relocs);
1299 return false;
1300 }
1301
1302 /* Bump the size of the vectors section. Each vector
1303 takes 2 bytes on the h8300 and 4 bytes on the h8300h. */
1304 if (bfd_get_mach (abfd) == bfd_mach_h8300)
1305 h8300_coff_hash_table (info)->vectors_sec->_raw_size += 2;
1306 else if (bfd_get_mach (abfd) == bfd_mach_h8300h
1307 || bfd_get_mach (abfd) == bfd_mach_h8300s)
1308 h8300_coff_hash_table (info)->vectors_sec->_raw_size += 4;
1309 }
1310 }
1311 }
1312
1313 /* We're done with the relocations, release them. */
1314 free (relocs);
1315 }
1316
1317 /* Now actually allocate some space for the function vector. It's
1318 wasteful to do this more than once, but this is easier. */
1319 if (h8300_coff_hash_table (info)->vectors_sec->_raw_size != 0)
1320 {
1321 /* Free the old contents. */
1322 if (h8300_coff_hash_table (info)->vectors_sec->contents)
1323 free (h8300_coff_hash_table (info)->vectors_sec->contents);
1324
1325 /* Allocate new contents. */
1326 h8300_coff_hash_table (info)->vectors_sec->contents
1327 = bfd_malloc (h8300_coff_hash_table (info)->vectors_sec->_raw_size);
1328 }
1329
1330 return true;
1331}
1332
1333#define coff_reloc16_extra_cases h8300_reloc16_extra_cases
1334#define coff_reloc16_estimate h8300_reloc16_estimate
1335#define coff_bfd_link_add_symbols h8300_bfd_link_add_symbols
1336#define coff_bfd_link_hash_table_create h8300_coff_link_hash_table_create
1337
1338#define COFF_LONG_FILENAMES
1339#include "coffcode.h"
1340
1341
1342#undef coff_bfd_get_relocated_section_contents
1343#undef coff_bfd_relax_section
1344#define coff_bfd_get_relocated_section_contents \
1345 bfd_coff_reloc16_get_relocated_section_contents
1346#define coff_bfd_relax_section bfd_coff_reloc16_relax_section
1347
1348
1349
1350const bfd_target h8300coff_vec =
1351{
1352 "coff-h8300", /* name */
1353 bfd_target_coff_flavour,
1354 BFD_ENDIAN_BIG, /* data byte order is big */
1355 BFD_ENDIAN_BIG, /* header byte order is big */
1356
1357 (HAS_RELOC | EXEC_P | /* object flags */
1358 HAS_LINENO | HAS_DEBUG |
1359 HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE ),
1360 (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
1361 '_', /* leading char */
1362 '/', /* ar_pad_char */
1363 15, /* ar_max_namelen */
1364 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
1365 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
1366 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
1367 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
1368 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
1369 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
1370
1371 {_bfd_dummy_target, coff_object_p, /* bfd_check_format */
1372 bfd_generic_archive_p, _bfd_dummy_target},
1373 {bfd_false, coff_mkobject, _bfd_generic_mkarchive, /* bfd_set_format */
1374 bfd_false},
1375 {bfd_false, coff_write_object_contents, /* bfd_write_contents */
1376 _bfd_write_archive_contents, bfd_false},
1377
1378 BFD_JUMP_TABLE_GENERIC (coff),
1379 BFD_JUMP_TABLE_COPY (coff),
1380 BFD_JUMP_TABLE_CORE (_bfd_nocore),
1381 BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff),
1382 BFD_JUMP_TABLE_SYMBOLS (coff),
1383 BFD_JUMP_TABLE_RELOCS (coff),
1384 BFD_JUMP_TABLE_WRITE (coff),
1385 BFD_JUMP_TABLE_LINK (coff),
1386 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
1387
1388 COFF_SWAP_TABLE,
1389};
This page took 0.080944 seconds and 4 git commands to generate.