Commit | Line | Data |
---|---|---|
c2dcd04e | 1 | /* BFD back-end for Renesas Super-H COFF binaries. |
4b95cf5c | 2 | Copyright (C) 1993-2014 Free Software Foundation, Inc. |
252b5132 RH |
3 | Contributed by Cygnus Support. |
4 | Written by Steve Chamberlain, <sac@cygnus.com>. | |
5 | Relaxing code written by Ian Lance Taylor, <ian@cygnus.com>. | |
6 | ||
c2dcd04e | 7 | This file is part of BFD, the Binary File Descriptor library. |
252b5132 | 8 | |
c2dcd04e NC |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
cd123cb7 | 11 | the Free Software Foundation; either version 3 of the License, or |
c2dcd04e | 12 | (at your option) any later version. |
252b5132 | 13 | |
c2dcd04e NC |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
252b5132 | 18 | |
c2dcd04e NC |
19 | You should have received a copy of the GNU General Public License |
20 | along with this program; if not, write to the Free Software | |
cd123cb7 NC |
21 | Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, |
22 | MA 02110-1301, USA. */ | |
252b5132 | 23 | |
252b5132 | 24 | #include "sysdep.h" |
3db64b00 | 25 | #include "bfd.h" |
993e9275 | 26 | #include "libiberty.h" |
252b5132 RH |
27 | #include "libbfd.h" |
28 | #include "bfdlink.h" | |
29 | #include "coff/sh.h" | |
30 | #include "coff/internal.h" | |
17505c5c | 31 | |
799c00e0 NC |
32 | #undef bfd_pe_print_pdata |
33 | ||
17505c5c NC |
34 | #ifdef COFF_WITH_PE |
35 | #include "coff/pe.h" | |
86033394 NC |
36 | |
37 | #ifndef COFF_IMAGE_WITH_PE | |
b34976b6 | 38 | static bfd_boolean sh_align_load_span |
2c3fc389 NC |
39 | (bfd *, asection *, bfd_byte *, |
40 | bfd_boolean (*) (bfd *, asection *, void *, bfd_byte *, bfd_vma), | |
41 | void *, bfd_vma **, bfd_vma *, bfd_vma, bfd_vma, bfd_boolean *); | |
86033394 NC |
42 | |
43 | #define _bfd_sh_align_load_span sh_align_load_span | |
44 | #endif | |
17505c5c | 45 | |
799c00e0 NC |
46 | #define bfd_pe_print_pdata _bfd_pe_print_ce_compressed_pdata |
47 | ||
48 | #else | |
49 | ||
50 | #define bfd_pe_print_pdata NULL | |
51 | ||
52 | #endif /* COFF_WITH_PE. */ | |
2b5c217d | 53 | |
252b5132 RH |
54 | #include "libcoff.h" |
55 | ||
56 | /* Internal functions. */ | |
252b5132 | 57 | |
17505c5c NC |
58 | #ifdef COFF_WITH_PE |
59 | /* Can't build import tables with 2**4 alignment. */ | |
60 | #define COFF_DEFAULT_SECTION_ALIGNMENT_POWER 2 | |
61 | #else | |
252b5132 | 62 | /* Default section alignment to 2**4. */ |
17505c5c NC |
63 | #define COFF_DEFAULT_SECTION_ALIGNMENT_POWER 4 |
64 | #endif | |
65 | ||
66 | #ifdef COFF_IMAGE_WITH_PE | |
67 | /* Align PE executables. */ | |
68 | #define COFF_PAGE_SIZE 0x1000 | |
69 | #endif | |
252b5132 RH |
70 | |
71 | /* Generate long file names. */ | |
72 | #define COFF_LONG_FILENAMES | |
73 | ||
17505c5c | 74 | #ifdef COFF_WITH_PE |
b34976b6 | 75 | /* Return TRUE if this relocation should |
17505c5c | 76 | appear in the output .reloc section. */ |
2c3fc389 NC |
77 | |
78 | static bfd_boolean | |
79 | in_reloc_p (bfd * abfd ATTRIBUTE_UNUSED, | |
80 | reloc_howto_type * howto) | |
17505c5c NC |
81 | { |
82 | return ! howto->pc_relative && howto->type != R_SH_IMAGEBASE; | |
cbfe05c4 | 83 | } |
17505c5c NC |
84 | #endif |
85 | ||
2c3fc389 NC |
86 | static bfd_reloc_status_type |
87 | sh_reloc (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); | |
88 | static bfd_boolean | |
89 | sh_relocate_section (bfd *, struct bfd_link_info *, bfd *, asection *, | |
90 | bfd_byte *, struct internal_reloc *, | |
91 | struct internal_syment *, asection **); | |
92 | static bfd_boolean | |
93 | sh_align_loads (bfd *, asection *, struct internal_reloc *, | |
94 | bfd_byte *, bfd_boolean *); | |
95 | ||
252b5132 RH |
96 | /* The supported relocations. There are a lot of relocations defined |
97 | in coff/internal.h which we do not expect to ever see. */ | |
98 | static reloc_howto_type sh_coff_howtos[] = | |
99 | { | |
5f771d47 ILT |
100 | EMPTY_HOWTO (0), |
101 | EMPTY_HOWTO (1), | |
17505c5c NC |
102 | #ifdef COFF_WITH_PE |
103 | /* Windows CE */ | |
104 | HOWTO (R_SH_IMM32CE, /* type */ | |
105 | 0, /* rightshift */ | |
106 | 2, /* size (0 = byte, 1 = short, 2 = long) */ | |
107 | 32, /* bitsize */ | |
b34976b6 | 108 | FALSE, /* pc_relative */ |
17505c5c NC |
109 | 0, /* bitpos */ |
110 | complain_overflow_bitfield, /* complain_on_overflow */ | |
111 | sh_reloc, /* special_function */ | |
112 | "r_imm32ce", /* name */ | |
b34976b6 | 113 | TRUE, /* partial_inplace */ |
17505c5c NC |
114 | 0xffffffff, /* src_mask */ |
115 | 0xffffffff, /* dst_mask */ | |
b34976b6 | 116 | FALSE), /* pcrel_offset */ |
17505c5c | 117 | #else |
5f771d47 | 118 | EMPTY_HOWTO (2), |
17505c5c | 119 | #endif |
5f771d47 ILT |
120 | EMPTY_HOWTO (3), /* R_SH_PCREL8 */ |
121 | EMPTY_HOWTO (4), /* R_SH_PCREL16 */ | |
122 | EMPTY_HOWTO (5), /* R_SH_HIGH8 */ | |
123 | EMPTY_HOWTO (6), /* R_SH_IMM24 */ | |
124 | EMPTY_HOWTO (7), /* R_SH_LOW16 */ | |
125 | EMPTY_HOWTO (8), | |
126 | EMPTY_HOWTO (9), /* R_SH_PCDISP8BY4 */ | |
252b5132 RH |
127 | |
128 | HOWTO (R_SH_PCDISP8BY2, /* type */ | |
129 | 1, /* rightshift */ | |
130 | 1, /* size (0 = byte, 1 = short, 2 = long) */ | |
131 | 8, /* bitsize */ | |
b34976b6 | 132 | TRUE, /* pc_relative */ |
252b5132 RH |
133 | 0, /* bitpos */ |
134 | complain_overflow_signed, /* complain_on_overflow */ | |
135 | sh_reloc, /* special_function */ | |
136 | "r_pcdisp8by2", /* name */ | |
b34976b6 | 137 | TRUE, /* partial_inplace */ |
252b5132 RH |
138 | 0xff, /* src_mask */ |
139 | 0xff, /* dst_mask */ | |
b34976b6 | 140 | TRUE), /* pcrel_offset */ |
252b5132 | 141 | |
5f771d47 | 142 | EMPTY_HOWTO (11), /* R_SH_PCDISP8 */ |
252b5132 RH |
143 | |
144 | HOWTO (R_SH_PCDISP, /* type */ | |
145 | 1, /* rightshift */ | |
146 | 1, /* size (0 = byte, 1 = short, 2 = long) */ | |
147 | 12, /* bitsize */ | |
b34976b6 | 148 | TRUE, /* pc_relative */ |
252b5132 RH |
149 | 0, /* bitpos */ |
150 | complain_overflow_signed, /* complain_on_overflow */ | |
151 | sh_reloc, /* special_function */ | |
152 | "r_pcdisp12by2", /* name */ | |
b34976b6 | 153 | TRUE, /* partial_inplace */ |
252b5132 RH |
154 | 0xfff, /* src_mask */ |
155 | 0xfff, /* dst_mask */ | |
b34976b6 | 156 | TRUE), /* pcrel_offset */ |
252b5132 | 157 | |
5f771d47 | 158 | EMPTY_HOWTO (13), |
252b5132 RH |
159 | |
160 | HOWTO (R_SH_IMM32, /* type */ | |
161 | 0, /* rightshift */ | |
162 | 2, /* size (0 = byte, 1 = short, 2 = long) */ | |
163 | 32, /* bitsize */ | |
b34976b6 | 164 | FALSE, /* pc_relative */ |
252b5132 RH |
165 | 0, /* bitpos */ |
166 | complain_overflow_bitfield, /* complain_on_overflow */ | |
167 | sh_reloc, /* special_function */ | |
168 | "r_imm32", /* name */ | |
b34976b6 | 169 | TRUE, /* partial_inplace */ |
252b5132 RH |
170 | 0xffffffff, /* src_mask */ |
171 | 0xffffffff, /* dst_mask */ | |
b34976b6 | 172 | FALSE), /* pcrel_offset */ |
252b5132 | 173 | |
5f771d47 | 174 | EMPTY_HOWTO (15), |
17505c5c | 175 | #ifdef COFF_WITH_PE |
cbfe05c4 KH |
176 | HOWTO (R_SH_IMAGEBASE, /* type */ |
177 | 0, /* rightshift */ | |
178 | 2, /* size (0 = byte, 1 = short, 2 = long) */ | |
179 | 32, /* bitsize */ | |
b34976b6 | 180 | FALSE, /* pc_relative */ |
cbfe05c4 | 181 | 0, /* bitpos */ |
17505c5c | 182 | complain_overflow_bitfield, /* complain_on_overflow */ |
cbfe05c4 KH |
183 | sh_reloc, /* special_function */ |
184 | "rva32", /* name */ | |
b34976b6 | 185 | TRUE, /* partial_inplace */ |
cbfe05c4 KH |
186 | 0xffffffff, /* src_mask */ |
187 | 0xffffffff, /* dst_mask */ | |
b34976b6 | 188 | FALSE), /* pcrel_offset */ |
17505c5c | 189 | #else |
5f771d47 | 190 | EMPTY_HOWTO (16), /* R_SH_IMM8 */ |
17505c5c | 191 | #endif |
5f771d47 ILT |
192 | EMPTY_HOWTO (17), /* R_SH_IMM8BY2 */ |
193 | EMPTY_HOWTO (18), /* R_SH_IMM8BY4 */ | |
194 | EMPTY_HOWTO (19), /* R_SH_IMM4 */ | |
195 | EMPTY_HOWTO (20), /* R_SH_IMM4BY2 */ | |
196 | EMPTY_HOWTO (21), /* R_SH_IMM4BY4 */ | |
252b5132 RH |
197 | |
198 | HOWTO (R_SH_PCRELIMM8BY2, /* type */ | |
199 | 1, /* rightshift */ | |
200 | 1, /* size (0 = byte, 1 = short, 2 = long) */ | |
201 | 8, /* bitsize */ | |
b34976b6 | 202 | TRUE, /* pc_relative */ |
252b5132 RH |
203 | 0, /* bitpos */ |
204 | complain_overflow_unsigned, /* complain_on_overflow */ | |
205 | sh_reloc, /* special_function */ | |
206 | "r_pcrelimm8by2", /* name */ | |
b34976b6 | 207 | TRUE, /* partial_inplace */ |
252b5132 RH |
208 | 0xff, /* src_mask */ |
209 | 0xff, /* dst_mask */ | |
b34976b6 | 210 | TRUE), /* pcrel_offset */ |
252b5132 RH |
211 | |
212 | HOWTO (R_SH_PCRELIMM8BY4, /* type */ | |
213 | 2, /* rightshift */ | |
214 | 1, /* size (0 = byte, 1 = short, 2 = long) */ | |
215 | 8, /* bitsize */ | |
b34976b6 | 216 | TRUE, /* pc_relative */ |
252b5132 RH |
217 | 0, /* bitpos */ |
218 | complain_overflow_unsigned, /* complain_on_overflow */ | |
219 | sh_reloc, /* special_function */ | |
220 | "r_pcrelimm8by4", /* name */ | |
b34976b6 | 221 | TRUE, /* partial_inplace */ |
252b5132 RH |
222 | 0xff, /* src_mask */ |
223 | 0xff, /* dst_mask */ | |
b34976b6 | 224 | TRUE), /* pcrel_offset */ |
252b5132 RH |
225 | |
226 | HOWTO (R_SH_IMM16, /* type */ | |
227 | 0, /* rightshift */ | |
228 | 1, /* size (0 = byte, 1 = short, 2 = long) */ | |
229 | 16, /* bitsize */ | |
b34976b6 | 230 | FALSE, /* pc_relative */ |
252b5132 RH |
231 | 0, /* bitpos */ |
232 | complain_overflow_bitfield, /* complain_on_overflow */ | |
233 | sh_reloc, /* special_function */ | |
234 | "r_imm16", /* name */ | |
b34976b6 | 235 | TRUE, /* partial_inplace */ |
252b5132 RH |
236 | 0xffff, /* src_mask */ |
237 | 0xffff, /* dst_mask */ | |
b34976b6 | 238 | FALSE), /* pcrel_offset */ |
252b5132 RH |
239 | |
240 | HOWTO (R_SH_SWITCH16, /* type */ | |
241 | 0, /* rightshift */ | |
242 | 1, /* size (0 = byte, 1 = short, 2 = long) */ | |
243 | 16, /* bitsize */ | |
b34976b6 | 244 | FALSE, /* pc_relative */ |
252b5132 RH |
245 | 0, /* bitpos */ |
246 | complain_overflow_bitfield, /* complain_on_overflow */ | |
247 | sh_reloc, /* special_function */ | |
248 | "r_switch16", /* name */ | |
b34976b6 | 249 | TRUE, /* partial_inplace */ |
252b5132 RH |
250 | 0xffff, /* src_mask */ |
251 | 0xffff, /* dst_mask */ | |
b34976b6 | 252 | FALSE), /* pcrel_offset */ |
252b5132 RH |
253 | |
254 | HOWTO (R_SH_SWITCH32, /* type */ | |
255 | 0, /* rightshift */ | |
256 | 2, /* size (0 = byte, 1 = short, 2 = long) */ | |
257 | 32, /* bitsize */ | |
b34976b6 | 258 | FALSE, /* pc_relative */ |
252b5132 RH |
259 | 0, /* bitpos */ |
260 | complain_overflow_bitfield, /* complain_on_overflow */ | |
261 | sh_reloc, /* special_function */ | |
262 | "r_switch32", /* name */ | |
b34976b6 | 263 | TRUE, /* partial_inplace */ |
252b5132 RH |
264 | 0xffffffff, /* src_mask */ |
265 | 0xffffffff, /* dst_mask */ | |
b34976b6 | 266 | FALSE), /* pcrel_offset */ |
252b5132 RH |
267 | |
268 | HOWTO (R_SH_USES, /* type */ | |
269 | 0, /* rightshift */ | |
270 | 1, /* size (0 = byte, 1 = short, 2 = long) */ | |
271 | 16, /* bitsize */ | |
b34976b6 | 272 | FALSE, /* pc_relative */ |
252b5132 RH |
273 | 0, /* bitpos */ |
274 | complain_overflow_bitfield, /* complain_on_overflow */ | |
275 | sh_reloc, /* special_function */ | |
276 | "r_uses", /* name */ | |
b34976b6 | 277 | TRUE, /* partial_inplace */ |
252b5132 RH |
278 | 0xffff, /* src_mask */ |
279 | 0xffff, /* dst_mask */ | |
b34976b6 | 280 | FALSE), /* pcrel_offset */ |
252b5132 RH |
281 | |
282 | HOWTO (R_SH_COUNT, /* type */ | |
283 | 0, /* rightshift */ | |
284 | 2, /* size (0 = byte, 1 = short, 2 = long) */ | |
285 | 32, /* bitsize */ | |
b34976b6 | 286 | FALSE, /* pc_relative */ |
252b5132 RH |
287 | 0, /* bitpos */ |
288 | complain_overflow_bitfield, /* complain_on_overflow */ | |
289 | sh_reloc, /* special_function */ | |
290 | "r_count", /* name */ | |
b34976b6 | 291 | TRUE, /* partial_inplace */ |
252b5132 RH |
292 | 0xffffffff, /* src_mask */ |
293 | 0xffffffff, /* dst_mask */ | |
b34976b6 | 294 | FALSE), /* pcrel_offset */ |
252b5132 RH |
295 | |
296 | HOWTO (R_SH_ALIGN, /* type */ | |
297 | 0, /* rightshift */ | |
298 | 2, /* size (0 = byte, 1 = short, 2 = long) */ | |
299 | 32, /* bitsize */ | |
b34976b6 | 300 | FALSE, /* pc_relative */ |
252b5132 RH |
301 | 0, /* bitpos */ |
302 | complain_overflow_bitfield, /* complain_on_overflow */ | |
303 | sh_reloc, /* special_function */ | |
304 | "r_align", /* name */ | |
b34976b6 | 305 | TRUE, /* partial_inplace */ |
252b5132 RH |
306 | 0xffffffff, /* src_mask */ |
307 | 0xffffffff, /* dst_mask */ | |
b34976b6 | 308 | FALSE), /* pcrel_offset */ |
252b5132 RH |
309 | |
310 | HOWTO (R_SH_CODE, /* type */ | |
311 | 0, /* rightshift */ | |
312 | 2, /* size (0 = byte, 1 = short, 2 = long) */ | |
313 | 32, /* bitsize */ | |
b34976b6 | 314 | FALSE, /* pc_relative */ |
252b5132 RH |
315 | 0, /* bitpos */ |
316 | complain_overflow_bitfield, /* complain_on_overflow */ | |
317 | sh_reloc, /* special_function */ | |
318 | "r_code", /* name */ | |
b34976b6 | 319 | TRUE, /* partial_inplace */ |
252b5132 RH |
320 | 0xffffffff, /* src_mask */ |
321 | 0xffffffff, /* dst_mask */ | |
b34976b6 | 322 | FALSE), /* pcrel_offset */ |
252b5132 RH |
323 | |
324 | HOWTO (R_SH_DATA, /* type */ | |
325 | 0, /* rightshift */ | |
326 | 2, /* size (0 = byte, 1 = short, 2 = long) */ | |
327 | 32, /* bitsize */ | |
b34976b6 | 328 | FALSE, /* pc_relative */ |
252b5132 RH |
329 | 0, /* bitpos */ |
330 | complain_overflow_bitfield, /* complain_on_overflow */ | |
331 | sh_reloc, /* special_function */ | |
332 | "r_data", /* name */ | |
b34976b6 | 333 | TRUE, /* partial_inplace */ |
252b5132 RH |
334 | 0xffffffff, /* src_mask */ |
335 | 0xffffffff, /* dst_mask */ | |
b34976b6 | 336 | FALSE), /* pcrel_offset */ |
252b5132 RH |
337 | |
338 | HOWTO (R_SH_LABEL, /* type */ | |
339 | 0, /* rightshift */ | |
340 | 2, /* size (0 = byte, 1 = short, 2 = long) */ | |
341 | 32, /* bitsize */ | |
b34976b6 | 342 | FALSE, /* pc_relative */ |
252b5132 RH |
343 | 0, /* bitpos */ |
344 | complain_overflow_bitfield, /* complain_on_overflow */ | |
345 | sh_reloc, /* special_function */ | |
346 | "r_label", /* name */ | |
b34976b6 | 347 | TRUE, /* partial_inplace */ |
252b5132 RH |
348 | 0xffffffff, /* src_mask */ |
349 | 0xffffffff, /* dst_mask */ | |
b34976b6 | 350 | FALSE), /* pcrel_offset */ |
252b5132 RH |
351 | |
352 | HOWTO (R_SH_SWITCH8, /* type */ | |
353 | 0, /* rightshift */ | |
354 | 0, /* size (0 = byte, 1 = short, 2 = long) */ | |
355 | 8, /* bitsize */ | |
b34976b6 | 356 | FALSE, /* pc_relative */ |
252b5132 RH |
357 | 0, /* bitpos */ |
358 | complain_overflow_bitfield, /* complain_on_overflow */ | |
359 | sh_reloc, /* special_function */ | |
360 | "r_switch8", /* name */ | |
b34976b6 | 361 | TRUE, /* partial_inplace */ |
252b5132 RH |
362 | 0xff, /* src_mask */ |
363 | 0xff, /* dst_mask */ | |
b34976b6 | 364 | FALSE) /* pcrel_offset */ |
252b5132 RH |
365 | }; |
366 | ||
367 | #define SH_COFF_HOWTO_COUNT (sizeof sh_coff_howtos / sizeof sh_coff_howtos[0]) | |
368 | ||
369 | /* Check for a bad magic number. */ | |
370 | #define BADMAG(x) SHBADMAG(x) | |
371 | ||
372 | /* Customize coffcode.h (this is not currently used). */ | |
373 | #define SH 1 | |
374 | ||
375 | /* FIXME: This should not be set here. */ | |
376 | #define __A_MAGIC_SET__ | |
377 | ||
17505c5c | 378 | #ifndef COFF_WITH_PE |
252b5132 | 379 | /* Swap the r_offset field in and out. */ |
dc810e39 AM |
380 | #define SWAP_IN_RELOC_OFFSET H_GET_32 |
381 | #define SWAP_OUT_RELOC_OFFSET H_PUT_32 | |
252b5132 RH |
382 | |
383 | /* Swap out extra information in the reloc structure. */ | |
384 | #define SWAP_OUT_RELOC_EXTRA(abfd, src, dst) \ | |
385 | do \ | |
386 | { \ | |
387 | dst->r_stuff[0] = 'S'; \ | |
388 | dst->r_stuff[1] = 'C'; \ | |
389 | } \ | |
390 | while (0) | |
17505c5c | 391 | #endif |
252b5132 RH |
392 | |
393 | /* Get the value of a symbol, when performing a relocation. */ | |
394 | ||
395 | static long | |
2c3fc389 | 396 | get_symbol_value (asymbol *symbol) |
cbfe05c4 | 397 | { |
252b5132 RH |
398 | bfd_vma relocation; |
399 | ||
400 | if (bfd_is_com_section (symbol->section)) | |
cbfe05c4 KH |
401 | relocation = 0; |
402 | else | |
252b5132 RH |
403 | relocation = (symbol->value + |
404 | symbol->section->output_section->vma + | |
405 | symbol->section->output_offset); | |
406 | ||
407 | return relocation; | |
408 | } | |
409 | ||
17505c5c NC |
410 | #ifdef COFF_WITH_PE |
411 | /* Convert an rtype to howto for the COFF backend linker. | |
412 | Copied from coff-i386. */ | |
413 | #define coff_rtype_to_howto coff_sh_rtype_to_howto | |
2c3fc389 | 414 | |
17505c5c NC |
415 | |
416 | static reloc_howto_type * | |
2c3fc389 NC |
417 | coff_sh_rtype_to_howto (bfd * abfd ATTRIBUTE_UNUSED, |
418 | asection * sec, | |
419 | struct internal_reloc * rel, | |
420 | struct coff_link_hash_entry * h, | |
421 | struct internal_syment * sym, | |
422 | bfd_vma * addendp) | |
17505c5c NC |
423 | { |
424 | reloc_howto_type * howto; | |
425 | ||
426 | howto = sh_coff_howtos + rel->r_type; | |
427 | ||
428 | *addendp = 0; | |
429 | ||
430 | if (howto->pc_relative) | |
431 | *addendp += sec->vma; | |
432 | ||
433 | if (sym != NULL && sym->n_scnum == 0 && sym->n_value != 0) | |
434 | { | |
435 | /* This is a common symbol. The section contents include the | |
436 | size (sym->n_value) as an addend. The relocate_section | |
437 | function will be adding in the final value of the symbol. We | |
438 | need to subtract out the current size in order to get the | |
439 | correct result. */ | |
440 | BFD_ASSERT (h != NULL); | |
441 | } | |
442 | ||
443 | if (howto->pc_relative) | |
444 | { | |
445 | *addendp -= 4; | |
446 | ||
447 | /* If the symbol is defined, then the generic code is going to | |
448 | add back the symbol value in order to cancel out an | |
449 | adjustment it made to the addend. However, we set the addend | |
450 | to 0 at the start of this function. We need to adjust here, | |
451 | to avoid the adjustment the generic code will make. FIXME: | |
452 | This is getting a bit hackish. */ | |
453 | if (sym != NULL && sym->n_scnum != 0) | |
454 | *addendp -= sym->n_value; | |
455 | } | |
456 | ||
457 | if (rel->r_type == R_SH_IMAGEBASE) | |
458 | *addendp -= pe_data (sec->output_section->owner)->pe_opthdr.ImageBase; | |
459 | ||
460 | return howto; | |
461 | } | |
462 | ||
993e9275 NC |
463 | #endif /* COFF_WITH_PE */ |
464 | ||
17505c5c NC |
465 | /* This structure is used to map BFD reloc codes to SH PE relocs. */ |
466 | struct shcoff_reloc_map | |
467 | { | |
aa066ac8 | 468 | bfd_reloc_code_real_type bfd_reloc_val; |
17505c5c NC |
469 | unsigned char shcoff_reloc_val; |
470 | }; | |
471 | ||
a9a32010 | 472 | #ifdef COFF_WITH_PE |
17505c5c NC |
473 | /* An array mapping BFD reloc codes to SH PE relocs. */ |
474 | static const struct shcoff_reloc_map sh_reloc_map[] = | |
475 | { | |
476 | { BFD_RELOC_32, R_SH_IMM32CE }, | |
477 | { BFD_RELOC_RVA, R_SH_IMAGEBASE }, | |
478 | { BFD_RELOC_CTOR, R_SH_IMM32CE }, | |
479 | }; | |
a9a32010 DJ |
480 | #else |
481 | /* An array mapping BFD reloc codes to SH PE relocs. */ | |
482 | static const struct shcoff_reloc_map sh_reloc_map[] = | |
483 | { | |
484 | { BFD_RELOC_32, R_SH_IMM32 }, | |
485 | { BFD_RELOC_CTOR, R_SH_IMM32 }, | |
486 | }; | |
487 | #endif | |
17505c5c NC |
488 | |
489 | /* Given a BFD reloc code, return the howto structure for the | |
490 | corresponding SH PE reloc. */ | |
491 | #define coff_bfd_reloc_type_lookup sh_coff_reloc_type_lookup | |
157090f7 | 492 | #define coff_bfd_reloc_name_lookup sh_coff_reloc_name_lookup |
17505c5c NC |
493 | |
494 | static reloc_howto_type * | |
2c3fc389 NC |
495 | sh_coff_reloc_type_lookup (bfd * abfd ATTRIBUTE_UNUSED, |
496 | bfd_reloc_code_real_type code) | |
17505c5c NC |
497 | { |
498 | unsigned int i; | |
499 | ||
993e9275 NC |
500 | for (i = ARRAY_SIZE (sh_reloc_map); i--;) |
501 | if (sh_reloc_map[i].bfd_reloc_val == code) | |
502 | return &sh_coff_howtos[(int) sh_reloc_map[i].shcoff_reloc_val]; | |
17505c5c | 503 | |
4a97a0e5 | 504 | (*_bfd_error_handler) (_("SH Error: unknown reloc type %d"), code); |
17505c5c NC |
505 | return NULL; |
506 | } | |
17505c5c | 507 | |
157090f7 AM |
508 | static reloc_howto_type * |
509 | sh_coff_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, | |
510 | const char *r_name) | |
511 | { | |
512 | unsigned int i; | |
513 | ||
514 | for (i = 0; i < sizeof (sh_coff_howtos) / sizeof (sh_coff_howtos[0]); i++) | |
515 | if (sh_coff_howtos[i].name != NULL | |
516 | && strcasecmp (sh_coff_howtos[i].name, r_name) == 0) | |
517 | return &sh_coff_howtos[i]; | |
518 | ||
519 | return NULL; | |
520 | } | |
521 | ||
252b5132 RH |
522 | /* This macro is used in coffcode.h to get the howto corresponding to |
523 | an internal reloc. */ | |
524 | ||
525 | #define RTYPE2HOWTO(relent, internal) \ | |
526 | ((relent)->howto = \ | |
527 | ((internal)->r_type < SH_COFF_HOWTO_COUNT \ | |
528 | ? &sh_coff_howtos[(internal)->r_type] \ | |
529 | : (reloc_howto_type *) NULL)) | |
530 | ||
531 | /* This is the same as the macro in coffcode.h, except that it copies | |
532 | r_offset into reloc_entry->addend for some relocs. */ | |
533 | #define CALC_ADDEND(abfd, ptr, reloc, cache_ptr) \ | |
534 | { \ | |
535 | coff_symbol_type *coffsym = (coff_symbol_type *) NULL; \ | |
536 | if (ptr && bfd_asymbol_bfd (ptr) != abfd) \ | |
537 | coffsym = (obj_symbols (abfd) \ | |
538 | + (cache_ptr->sym_ptr_ptr - symbols)); \ | |
539 | else if (ptr) \ | |
540 | coffsym = coff_symbol_from (abfd, ptr); \ | |
541 | if (coffsym != (coff_symbol_type *) NULL \ | |
542 | && coffsym->native->u.syment.n_scnum == 0) \ | |
543 | cache_ptr->addend = 0; \ | |
544 | else if (ptr && bfd_asymbol_bfd (ptr) == abfd \ | |
545 | && ptr->section != (asection *) NULL) \ | |
546 | cache_ptr->addend = - (ptr->section->vma + ptr->value); \ | |
547 | else \ | |
548 | cache_ptr->addend = 0; \ | |
549 | if ((reloc).r_type == R_SH_SWITCH8 \ | |
550 | || (reloc).r_type == R_SH_SWITCH16 \ | |
551 | || (reloc).r_type == R_SH_SWITCH32 \ | |
552 | || (reloc).r_type == R_SH_USES \ | |
553 | || (reloc).r_type == R_SH_COUNT \ | |
554 | || (reloc).r_type == R_SH_ALIGN) \ | |
555 | cache_ptr->addend = (reloc).r_offset; \ | |
556 | } | |
557 | ||
558 | /* This is the howto function for the SH relocations. */ | |
559 | ||
560 | static bfd_reloc_status_type | |
2c3fc389 NC |
561 | sh_reloc (bfd * abfd, |
562 | arelent * reloc_entry, | |
563 | asymbol * symbol_in, | |
564 | void * data, | |
565 | asection * input_section, | |
566 | bfd * output_bfd, | |
567 | char ** error_message ATTRIBUTE_UNUSED) | |
252b5132 RH |
568 | { |
569 | unsigned long insn; | |
570 | bfd_vma sym_value; | |
571 | unsigned short r_type; | |
572 | bfd_vma addr = reloc_entry->address; | |
573 | bfd_byte *hit_data = addr + (bfd_byte *) data; | |
574 | ||
575 | r_type = reloc_entry->howto->type; | |
576 | ||
577 | if (output_bfd != NULL) | |
578 | { | |
579 | /* Partial linking--do nothing. */ | |
580 | reloc_entry->address += input_section->output_offset; | |
581 | return bfd_reloc_ok; | |
582 | } | |
583 | ||
584 | /* Almost all relocs have to do with relaxing. If any work must be | |
585 | done for them, it has been done in sh_relax_section. */ | |
586 | if (r_type != R_SH_IMM32 | |
17505c5c NC |
587 | #ifdef COFF_WITH_PE |
588 | && r_type != R_SH_IMM32CE | |
589 | && r_type != R_SH_IMAGEBASE | |
590 | #endif | |
252b5132 RH |
591 | && (r_type != R_SH_PCDISP |
592 | || (symbol_in->flags & BSF_LOCAL) != 0)) | |
593 | return bfd_reloc_ok; | |
594 | ||
595 | if (symbol_in != NULL | |
596 | && bfd_is_und_section (symbol_in->section)) | |
597 | return bfd_reloc_undefined; | |
598 | ||
599 | sym_value = get_symbol_value (symbol_in); | |
600 | ||
601 | switch (r_type) | |
602 | { | |
603 | case R_SH_IMM32: | |
17505c5c NC |
604 | #ifdef COFF_WITH_PE |
605 | case R_SH_IMM32CE: | |
606 | #endif | |
252b5132 RH |
607 | insn = bfd_get_32 (abfd, hit_data); |
608 | insn += sym_value + reloc_entry->addend; | |
dc810e39 | 609 | bfd_put_32 (abfd, (bfd_vma) insn, hit_data); |
252b5132 | 610 | break; |
17505c5c NC |
611 | #ifdef COFF_WITH_PE |
612 | case R_SH_IMAGEBASE: | |
613 | insn = bfd_get_32 (abfd, hit_data); | |
dc810e39 AM |
614 | insn += sym_value + reloc_entry->addend; |
615 | insn -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase; | |
616 | bfd_put_32 (abfd, (bfd_vma) insn, hit_data); | |
17505c5c NC |
617 | break; |
618 | #endif | |
252b5132 RH |
619 | case R_SH_PCDISP: |
620 | insn = bfd_get_16 (abfd, hit_data); | |
621 | sym_value += reloc_entry->addend; | |
622 | sym_value -= (input_section->output_section->vma | |
623 | + input_section->output_offset | |
624 | + addr | |
625 | + 4); | |
626 | sym_value += (insn & 0xfff) << 1; | |
627 | if (insn & 0x800) | |
628 | sym_value -= 0x1000; | |
629 | insn = (insn & 0xf000) | (sym_value & 0xfff); | |
dc810e39 | 630 | bfd_put_16 (abfd, (bfd_vma) insn, hit_data); |
252b5132 RH |
631 | if (sym_value < (bfd_vma) -0x1000 || sym_value >= 0x1000) |
632 | return bfd_reloc_overflow; | |
633 | break; | |
634 | default: | |
635 | abort (); | |
636 | break; | |
637 | } | |
638 | ||
639 | return bfd_reloc_ok; | |
640 | } | |
641 | ||
875f7f69 | 642 | #define coff_bfd_merge_private_bfd_data _bfd_generic_verify_endian_match |
252b5132 RH |
643 | |
644 | /* We can do relaxing. */ | |
645 | #define coff_bfd_relax_section sh_relax_section | |
646 | ||
647 | /* We use the special COFF backend linker. */ | |
648 | #define coff_relocate_section sh_relocate_section | |
649 | ||
650 | /* When relaxing, we need to use special code to get the relocated | |
651 | section contents. */ | |
652 | #define coff_bfd_get_relocated_section_contents \ | |
653 | sh_coff_get_relocated_section_contents | |
654 | ||
655 | #include "coffcode.h" | |
656 | \f | |
2c3fc389 NC |
657 | static bfd_boolean |
658 | sh_relax_delete_bytes (bfd *, asection *, bfd_vma, int); | |
659 | ||
252b5132 RH |
660 | /* This function handles relaxing on the SH. |
661 | ||
662 | Function calls on the SH look like this: | |
663 | ||
664 | movl L1,r0 | |
665 | ... | |
666 | jsr @r0 | |
667 | ... | |
668 | L1: | |
669 | .long function | |
670 | ||
671 | The compiler and assembler will cooperate to create R_SH_USES | |
672 | relocs on the jsr instructions. The r_offset field of the | |
673 | R_SH_USES reloc is the PC relative offset to the instruction which | |
674 | loads the register (the r_offset field is computed as though it | |
675 | were a jump instruction, so the offset value is actually from four | |
676 | bytes past the instruction). The linker can use this reloc to | |
677 | determine just which function is being called, and thus decide | |
678 | whether it is possible to replace the jsr with a bsr. | |
679 | ||
680 | If multiple function calls are all based on a single register load | |
681 | (i.e., the same function is called multiple times), the compiler | |
682 | guarantees that each function call will have an R_SH_USES reloc. | |
683 | Therefore, if the linker is able to convert each R_SH_USES reloc | |
684 | which refers to that address, it can safely eliminate the register | |
685 | load. | |
686 | ||
687 | When the assembler creates an R_SH_USES reloc, it examines it to | |
688 | determine which address is being loaded (L1 in the above example). | |
689 | It then counts the number of references to that address, and | |
690 | creates an R_SH_COUNT reloc at that address. The r_offset field of | |
691 | the R_SH_COUNT reloc will be the number of references. If the | |
692 | linker is able to eliminate a register load, it can use the | |
693 | R_SH_COUNT reloc to see whether it can also eliminate the function | |
694 | address. | |
695 | ||
696 | SH relaxing also handles another, unrelated, matter. On the SH, if | |
697 | a load or store instruction is not aligned on a four byte boundary, | |
698 | the memory cycle interferes with the 32 bit instruction fetch, | |
699 | causing a one cycle bubble in the pipeline. Therefore, we try to | |
700 | align load and store instructions on four byte boundaries if we | |
701 | can, by swapping them with one of the adjacent instructions. */ | |
702 | ||
b34976b6 | 703 | static bfd_boolean |
2c3fc389 NC |
704 | sh_relax_section (bfd *abfd, |
705 | asection *sec, | |
706 | struct bfd_link_info *link_info, | |
707 | bfd_boolean *again) | |
252b5132 RH |
708 | { |
709 | struct internal_reloc *internal_relocs; | |
b34976b6 | 710 | bfd_boolean have_code; |
252b5132 RH |
711 | struct internal_reloc *irel, *irelend; |
712 | bfd_byte *contents = NULL; | |
252b5132 | 713 | |
b34976b6 | 714 | *again = FALSE; |
252b5132 | 715 | |
1049f94e | 716 | if (link_info->relocatable |
252b5132 RH |
717 | || (sec->flags & SEC_RELOC) == 0 |
718 | || sec->reloc_count == 0) | |
b34976b6 | 719 | return TRUE; |
252b5132 | 720 | |
eea6121a AM |
721 | if (coff_section_data (abfd, sec) == NULL) |
722 | { | |
723 | bfd_size_type amt = sizeof (struct coff_section_tdata); | |
2c3fc389 | 724 | sec->used_by_bfd = bfd_zalloc (abfd, amt); |
eea6121a AM |
725 | if (sec->used_by_bfd == NULL) |
726 | return FALSE; | |
727 | } | |
252b5132 RH |
728 | |
729 | internal_relocs = (_bfd_coff_read_internal_relocs | |
730 | (abfd, sec, link_info->keep_memory, | |
b34976b6 | 731 | (bfd_byte *) NULL, FALSE, |
252b5132 RH |
732 | (struct internal_reloc *) NULL)); |
733 | if (internal_relocs == NULL) | |
734 | goto error_return; | |
252b5132 | 735 | |
b34976b6 | 736 | have_code = FALSE; |
252b5132 RH |
737 | |
738 | irelend = internal_relocs + sec->reloc_count; | |
739 | for (irel = internal_relocs; irel < irelend; irel++) | |
740 | { | |
741 | bfd_vma laddr, paddr, symval; | |
742 | unsigned short insn; | |
743 | struct internal_reloc *irelfn, *irelscan, *irelcount; | |
744 | struct internal_syment sym; | |
745 | bfd_signed_vma foff; | |
746 | ||
747 | if (irel->r_type == R_SH_CODE) | |
b34976b6 | 748 | have_code = TRUE; |
252b5132 RH |
749 | |
750 | if (irel->r_type != R_SH_USES) | |
751 | continue; | |
752 | ||
753 | /* Get the section contents. */ | |
754 | if (contents == NULL) | |
755 | { | |
eea6121a | 756 | if (coff_section_data (abfd, sec)->contents != NULL) |
252b5132 RH |
757 | contents = coff_section_data (abfd, sec)->contents; |
758 | else | |
759 | { | |
eea6121a | 760 | if (!bfd_malloc_and_get_section (abfd, sec, &contents)) |
252b5132 RH |
761 | goto error_return; |
762 | } | |
763 | } | |
764 | ||
765 | /* The r_offset field of the R_SH_USES reloc will point us to | |
766 | the register load. The 4 is because the r_offset field is | |
767 | computed as though it were a jump offset, which are based | |
768 | from 4 bytes after the jump instruction. */ | |
769 | laddr = irel->r_vaddr - sec->vma + 4; | |
770 | /* Careful to sign extend the 32-bit offset. */ | |
771 | laddr += ((irel->r_offset & 0xffffffff) ^ 0x80000000) - 0x80000000; | |
eea6121a | 772 | if (laddr >= sec->size) |
252b5132 | 773 | { |
d003868e AM |
774 | (*_bfd_error_handler) ("%B: 0x%lx: warning: bad R_SH_USES offset", |
775 | abfd, (unsigned long) irel->r_vaddr); | |
252b5132 RH |
776 | continue; |
777 | } | |
778 | insn = bfd_get_16 (abfd, contents + laddr); | |
779 | ||
780 | /* If the instruction is not mov.l NN,rN, we don't know what to do. */ | |
781 | if ((insn & 0xf000) != 0xd000) | |
782 | { | |
783 | ((*_bfd_error_handler) | |
d003868e AM |
784 | ("%B: 0x%lx: warning: R_SH_USES points to unrecognized insn 0x%x", |
785 | abfd, (unsigned long) irel->r_vaddr, insn)); | |
252b5132 RH |
786 | continue; |
787 | } | |
788 | ||
789 | /* Get the address from which the register is being loaded. The | |
790 | displacement in the mov.l instruction is quadrupled. It is a | |
791 | displacement from four bytes after the movl instruction, but, | |
792 | before adding in the PC address, two least significant bits | |
793 | of the PC are cleared. We assume that the section is aligned | |
794 | on a four byte boundary. */ | |
795 | paddr = insn & 0xff; | |
796 | paddr *= 4; | |
dc810e39 | 797 | paddr += (laddr + 4) &~ (bfd_vma) 3; |
eea6121a | 798 | if (paddr >= sec->size) |
252b5132 RH |
799 | { |
800 | ((*_bfd_error_handler) | |
d003868e AM |
801 | ("%B: 0x%lx: warning: bad R_SH_USES load offset", |
802 | abfd, (unsigned long) irel->r_vaddr)); | |
252b5132 RH |
803 | continue; |
804 | } | |
805 | ||
806 | /* Get the reloc for the address from which the register is | |
807 | being loaded. This reloc will tell us which function is | |
808 | actually being called. */ | |
809 | paddr += sec->vma; | |
810 | for (irelfn = internal_relocs; irelfn < irelend; irelfn++) | |
811 | if (irelfn->r_vaddr == paddr | |
17505c5c NC |
812 | #ifdef COFF_WITH_PE |
813 | && (irelfn->r_type == R_SH_IMM32 | |
814 | || irelfn->r_type == R_SH_IMM32CE | |
eea6121a | 815 | || irelfn->r_type == R_SH_IMAGEBASE) |
17505c5c NC |
816 | |
817 | #else | |
eea6121a | 818 | && irelfn->r_type == R_SH_IMM32 |
17505c5c | 819 | #endif |
eea6121a | 820 | ) |
252b5132 RH |
821 | break; |
822 | if (irelfn >= irelend) | |
823 | { | |
824 | ((*_bfd_error_handler) | |
d003868e AM |
825 | ("%B: 0x%lx: warning: could not find expected reloc", |
826 | abfd, (unsigned long) paddr)); | |
252b5132 RH |
827 | continue; |
828 | } | |
829 | ||
830 | /* Get the value of the symbol referred to by the reloc. */ | |
831 | if (! _bfd_coff_get_external_symbols (abfd)) | |
832 | goto error_return; | |
833 | bfd_coff_swap_sym_in (abfd, | |
834 | ((bfd_byte *) obj_coff_external_syms (abfd) | |
835 | + (irelfn->r_symndx | |
836 | * bfd_coff_symesz (abfd))), | |
837 | &sym); | |
838 | if (sym.n_scnum != 0 && sym.n_scnum != sec->target_index) | |
839 | { | |
840 | ((*_bfd_error_handler) | |
d003868e AM |
841 | ("%B: 0x%lx: warning: symbol in unexpected section", |
842 | abfd, (unsigned long) paddr)); | |
252b5132 RH |
843 | continue; |
844 | } | |
845 | ||
846 | if (sym.n_sclass != C_EXT) | |
847 | { | |
848 | symval = (sym.n_value | |
849 | - sec->vma | |
850 | + sec->output_section->vma | |
851 | + sec->output_offset); | |
852 | } | |
853 | else | |
854 | { | |
855 | struct coff_link_hash_entry *h; | |
856 | ||
857 | h = obj_coff_sym_hashes (abfd)[irelfn->r_symndx]; | |
858 | BFD_ASSERT (h != NULL); | |
859 | if (h->root.type != bfd_link_hash_defined | |
860 | && h->root.type != bfd_link_hash_defweak) | |
861 | { | |
862 | /* This appears to be a reference to an undefined | |
863 | symbol. Just ignore it--it will be caught by the | |
864 | regular reloc processing. */ | |
865 | continue; | |
866 | } | |
867 | ||
868 | symval = (h->root.u.def.value | |
869 | + h->root.u.def.section->output_section->vma | |
870 | + h->root.u.def.section->output_offset); | |
871 | } | |
872 | ||
873 | symval += bfd_get_32 (abfd, contents + paddr - sec->vma); | |
874 | ||
875 | /* See if this function call can be shortened. */ | |
876 | foff = (symval | |
877 | - (irel->r_vaddr | |
878 | - sec->vma | |
879 | + sec->output_section->vma | |
880 | + sec->output_offset | |
881 | + 4)); | |
882 | if (foff < -0x1000 || foff >= 0x1000) | |
883 | { | |
884 | /* After all that work, we can't shorten this function call. */ | |
885 | continue; | |
886 | } | |
887 | ||
888 | /* Shorten the function call. */ | |
889 | ||
890 | /* For simplicity of coding, we are going to modify the section | |
891 | contents, the section relocs, and the BFD symbol table. We | |
892 | must tell the rest of the code not to free up this | |
893 | information. It would be possible to instead create a table | |
894 | of changes which have to be made, as is done in coff-mips.c; | |
895 | that would be more work, but would require less memory when | |
896 | the linker is run. */ | |
897 | ||
252b5132 | 898 | coff_section_data (abfd, sec)->relocs = internal_relocs; |
b34976b6 | 899 | coff_section_data (abfd, sec)->keep_relocs = TRUE; |
252b5132 RH |
900 | |
901 | coff_section_data (abfd, sec)->contents = contents; | |
b34976b6 | 902 | coff_section_data (abfd, sec)->keep_contents = TRUE; |
252b5132 | 903 | |
b34976b6 | 904 | obj_coff_keep_syms (abfd) = TRUE; |
252b5132 RH |
905 | |
906 | /* Replace the jsr with a bsr. */ | |
907 | ||
908 | /* Change the R_SH_USES reloc into an R_SH_PCDISP reloc, and | |
909 | replace the jsr with a bsr. */ | |
910 | irel->r_type = R_SH_PCDISP; | |
911 | irel->r_symndx = irelfn->r_symndx; | |
912 | if (sym.n_sclass != C_EXT) | |
913 | { | |
914 | /* If this needs to be changed because of future relaxing, | |
915 | it will be handled here like other internal PCDISP | |
916 | relocs. */ | |
917 | bfd_put_16 (abfd, | |
dc810e39 | 918 | (bfd_vma) 0xb000 | ((foff >> 1) & 0xfff), |
252b5132 RH |
919 | contents + irel->r_vaddr - sec->vma); |
920 | } | |
921 | else | |
922 | { | |
923 | /* We can't fully resolve this yet, because the external | |
924 | symbol value may be changed by future relaxing. We let | |
925 | the final link phase handle it. */ | |
dc810e39 AM |
926 | bfd_put_16 (abfd, (bfd_vma) 0xb000, |
927 | contents + irel->r_vaddr - sec->vma); | |
252b5132 RH |
928 | } |
929 | ||
930 | /* See if there is another R_SH_USES reloc referring to the same | |
931 | register load. */ | |
932 | for (irelscan = internal_relocs; irelscan < irelend; irelscan++) | |
933 | if (irelscan->r_type == R_SH_USES | |
934 | && laddr == irelscan->r_vaddr - sec->vma + 4 + irelscan->r_offset) | |
935 | break; | |
936 | if (irelscan < irelend) | |
937 | { | |
938 | /* Some other function call depends upon this register load, | |
939 | and we have not yet converted that function call. | |
940 | Indeed, we may never be able to convert it. There is | |
941 | nothing else we can do at this point. */ | |
942 | continue; | |
943 | } | |
944 | ||
945 | /* Look for a R_SH_COUNT reloc on the location where the | |
946 | function address is stored. Do this before deleting any | |
947 | bytes, to avoid confusion about the address. */ | |
948 | for (irelcount = internal_relocs; irelcount < irelend; irelcount++) | |
949 | if (irelcount->r_vaddr == paddr | |
950 | && irelcount->r_type == R_SH_COUNT) | |
951 | break; | |
952 | ||
953 | /* Delete the register load. */ | |
954 | if (! sh_relax_delete_bytes (abfd, sec, laddr, 2)) | |
955 | goto error_return; | |
956 | ||
957 | /* That will change things, so, just in case it permits some | |
958 | other function call to come within range, we should relax | |
959 | again. Note that this is not required, and it may be slow. */ | |
b34976b6 | 960 | *again = TRUE; |
252b5132 RH |
961 | |
962 | /* Now check whether we got a COUNT reloc. */ | |
963 | if (irelcount >= irelend) | |
964 | { | |
965 | ((*_bfd_error_handler) | |
d003868e AM |
966 | ("%B: 0x%lx: warning: could not find expected COUNT reloc", |
967 | abfd, (unsigned long) paddr)); | |
252b5132 RH |
968 | continue; |
969 | } | |
970 | ||
971 | /* The number of uses is stored in the r_offset field. We've | |
972 | just deleted one. */ | |
973 | if (irelcount->r_offset == 0) | |
974 | { | |
d003868e AM |
975 | ((*_bfd_error_handler) ("%B: 0x%lx: warning: bad count", |
976 | abfd, (unsigned long) paddr)); | |
252b5132 RH |
977 | continue; |
978 | } | |
979 | ||
980 | --irelcount->r_offset; | |
981 | ||
982 | /* If there are no more uses, we can delete the address. Reload | |
983 | the address from irelfn, in case it was changed by the | |
984 | previous call to sh_relax_delete_bytes. */ | |
985 | if (irelcount->r_offset == 0) | |
986 | { | |
987 | if (! sh_relax_delete_bytes (abfd, sec, | |
988 | irelfn->r_vaddr - sec->vma, 4)) | |
989 | goto error_return; | |
990 | } | |
991 | ||
992 | /* We've done all we can with that function call. */ | |
993 | } | |
994 | ||
995 | /* Look for load and store instructions that we can align on four | |
996 | byte boundaries. */ | |
997 | if (have_code) | |
998 | { | |
b34976b6 | 999 | bfd_boolean swapped; |
252b5132 RH |
1000 | |
1001 | /* Get the section contents. */ | |
1002 | if (contents == NULL) | |
1003 | { | |
eea6121a | 1004 | if (coff_section_data (abfd, sec)->contents != NULL) |
252b5132 RH |
1005 | contents = coff_section_data (abfd, sec)->contents; |
1006 | else | |
1007 | { | |
eea6121a | 1008 | if (!bfd_malloc_and_get_section (abfd, sec, &contents)) |
252b5132 RH |
1009 | goto error_return; |
1010 | } | |
1011 | } | |
1012 | ||
1013 | if (! sh_align_loads (abfd, sec, internal_relocs, contents, &swapped)) | |
1014 | goto error_return; | |
1015 | ||
1016 | if (swapped) | |
1017 | { | |
252b5132 | 1018 | coff_section_data (abfd, sec)->relocs = internal_relocs; |
b34976b6 | 1019 | coff_section_data (abfd, sec)->keep_relocs = TRUE; |
252b5132 RH |
1020 | |
1021 | coff_section_data (abfd, sec)->contents = contents; | |
b34976b6 | 1022 | coff_section_data (abfd, sec)->keep_contents = TRUE; |
252b5132 | 1023 | |
b34976b6 | 1024 | obj_coff_keep_syms (abfd) = TRUE; |
252b5132 RH |
1025 | } |
1026 | } | |
1027 | ||
eea6121a AM |
1028 | if (internal_relocs != NULL |
1029 | && internal_relocs != coff_section_data (abfd, sec)->relocs) | |
252b5132 | 1030 | { |
eea6121a AM |
1031 | if (! link_info->keep_memory) |
1032 | free (internal_relocs); | |
1033 | else | |
1034 | coff_section_data (abfd, sec)->relocs = internal_relocs; | |
252b5132 RH |
1035 | } |
1036 | ||
eea6121a | 1037 | if (contents != NULL && contents != coff_section_data (abfd, sec)->contents) |
252b5132 RH |
1038 | { |
1039 | if (! link_info->keep_memory) | |
eea6121a | 1040 | free (contents); |
252b5132 | 1041 | else |
eea6121a AM |
1042 | /* Cache the section contents for coff_link_input_bfd. */ |
1043 | coff_section_data (abfd, sec)->contents = contents; | |
252b5132 RH |
1044 | } |
1045 | ||
b34976b6 | 1046 | return TRUE; |
252b5132 RH |
1047 | |
1048 | error_return: | |
eea6121a AM |
1049 | if (internal_relocs != NULL |
1050 | && internal_relocs != coff_section_data (abfd, sec)->relocs) | |
1051 | free (internal_relocs); | |
1052 | if (contents != NULL && contents != coff_section_data (abfd, sec)->contents) | |
1053 | free (contents); | |
b34976b6 | 1054 | return FALSE; |
252b5132 RH |
1055 | } |
1056 | ||
1057 | /* Delete some bytes from a section while relaxing. */ | |
1058 | ||
b34976b6 | 1059 | static bfd_boolean |
2c3fc389 NC |
1060 | sh_relax_delete_bytes (bfd *abfd, |
1061 | asection *sec, | |
1062 | bfd_vma addr, | |
1063 | int count) | |
252b5132 RH |
1064 | { |
1065 | bfd_byte *contents; | |
1066 | struct internal_reloc *irel, *irelend; | |
1067 | struct internal_reloc *irelalign; | |
1068 | bfd_vma toaddr; | |
1069 | bfd_byte *esym, *esymend; | |
1070 | bfd_size_type symesz; | |
1071 | struct coff_link_hash_entry **sym_hash; | |
1072 | asection *o; | |
1073 | ||
1074 | contents = coff_section_data (abfd, sec)->contents; | |
1075 | ||
1076 | /* The deletion must stop at the next ALIGN reloc for an aligment | |
1077 | power larger than the number of bytes we are deleting. */ | |
1078 | ||
1079 | irelalign = NULL; | |
eea6121a | 1080 | toaddr = sec->size; |
252b5132 RH |
1081 | |
1082 | irel = coff_section_data (abfd, sec)->relocs; | |
1083 | irelend = irel + sec->reloc_count; | |
1084 | for (; irel < irelend; irel++) | |
1085 | { | |
1086 | if (irel->r_type == R_SH_ALIGN | |
1087 | && irel->r_vaddr - sec->vma > addr | |
1088 | && count < (1 << irel->r_offset)) | |
1089 | { | |
1090 | irelalign = irel; | |
1091 | toaddr = irel->r_vaddr - sec->vma; | |
1092 | break; | |
1093 | } | |
1094 | } | |
1095 | ||
1096 | /* Actually delete the bytes. */ | |
dc810e39 AM |
1097 | memmove (contents + addr, contents + addr + count, |
1098 | (size_t) (toaddr - addr - count)); | |
252b5132 | 1099 | if (irelalign == NULL) |
eea6121a | 1100 | sec->size -= count; |
252b5132 RH |
1101 | else |
1102 | { | |
1103 | int i; | |
1104 | ||
1105 | #define NOP_OPCODE (0x0009) | |
1106 | ||
1107 | BFD_ASSERT ((count & 1) == 0); | |
1108 | for (i = 0; i < count; i += 2) | |
dc810e39 | 1109 | bfd_put_16 (abfd, (bfd_vma) NOP_OPCODE, contents + toaddr - count + i); |
252b5132 RH |
1110 | } |
1111 | ||
1112 | /* Adjust all the relocs. */ | |
1113 | for (irel = coff_section_data (abfd, sec)->relocs; irel < irelend; irel++) | |
1114 | { | |
1115 | bfd_vma nraddr, stop; | |
1116 | bfd_vma start = 0; | |
1117 | int insn = 0; | |
1118 | struct internal_syment sym; | |
1119 | int off, adjust, oinsn; | |
1120 | bfd_signed_vma voff = 0; | |
b34976b6 | 1121 | bfd_boolean overflow; |
252b5132 RH |
1122 | |
1123 | /* Get the new reloc address. */ | |
1124 | nraddr = irel->r_vaddr - sec->vma; | |
1125 | if ((irel->r_vaddr - sec->vma > addr | |
1126 | && irel->r_vaddr - sec->vma < toaddr) | |
1127 | || (irel->r_type == R_SH_ALIGN | |
1128 | && irel->r_vaddr - sec->vma == toaddr)) | |
1129 | nraddr -= count; | |
1130 | ||
1131 | /* See if this reloc was for the bytes we have deleted, in which | |
1132 | case we no longer care about it. Don't delete relocs which | |
1133 | represent addresses, though. */ | |
1134 | if (irel->r_vaddr - sec->vma >= addr | |
1135 | && irel->r_vaddr - sec->vma < addr + count | |
1136 | && irel->r_type != R_SH_ALIGN | |
1137 | && irel->r_type != R_SH_CODE | |
1138 | && irel->r_type != R_SH_DATA | |
1139 | && irel->r_type != R_SH_LABEL) | |
1140 | irel->r_type = R_SH_UNUSED; | |
1141 | ||
1142 | /* If this is a PC relative reloc, see if the range it covers | |
1143 | includes the bytes we have deleted. */ | |
1144 | switch (irel->r_type) | |
1145 | { | |
1146 | default: | |
1147 | break; | |
1148 | ||
1149 | case R_SH_PCDISP8BY2: | |
1150 | case R_SH_PCDISP: | |
1151 | case R_SH_PCRELIMM8BY2: | |
1152 | case R_SH_PCRELIMM8BY4: | |
1153 | start = irel->r_vaddr - sec->vma; | |
1154 | insn = bfd_get_16 (abfd, contents + nraddr); | |
1155 | break; | |
1156 | } | |
1157 | ||
1158 | switch (irel->r_type) | |
1159 | { | |
1160 | default: | |
1161 | start = stop = addr; | |
1162 | break; | |
1163 | ||
1164 | case R_SH_IMM32: | |
17505c5c NC |
1165 | #ifdef COFF_WITH_PE |
1166 | case R_SH_IMM32CE: | |
1167 | case R_SH_IMAGEBASE: | |
1168 | #endif | |
252b5132 RH |
1169 | /* If this reloc is against a symbol defined in this |
1170 | section, and the symbol will not be adjusted below, we | |
1171 | must check the addend to see it will put the value in | |
1172 | range to be adjusted, and hence must be changed. */ | |
1173 | bfd_coff_swap_sym_in (abfd, | |
1174 | ((bfd_byte *) obj_coff_external_syms (abfd) | |
1175 | + (irel->r_symndx | |
1176 | * bfd_coff_symesz (abfd))), | |
1177 | &sym); | |
1178 | if (sym.n_sclass != C_EXT | |
1179 | && sym.n_scnum == sec->target_index | |
1180 | && ((bfd_vma) sym.n_value <= addr | |
1181 | || (bfd_vma) sym.n_value >= toaddr)) | |
1182 | { | |
1183 | bfd_vma val; | |
1184 | ||
1185 | val = bfd_get_32 (abfd, contents + nraddr); | |
1186 | val += sym.n_value; | |
1187 | if (val > addr && val < toaddr) | |
1188 | bfd_put_32 (abfd, val - count, contents + nraddr); | |
1189 | } | |
1190 | start = stop = addr; | |
1191 | break; | |
1192 | ||
1193 | case R_SH_PCDISP8BY2: | |
1194 | off = insn & 0xff; | |
1195 | if (off & 0x80) | |
1196 | off -= 0x100; | |
1197 | stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2); | |
1198 | break; | |
1199 | ||
1200 | case R_SH_PCDISP: | |
1201 | bfd_coff_swap_sym_in (abfd, | |
1202 | ((bfd_byte *) obj_coff_external_syms (abfd) | |
1203 | + (irel->r_symndx | |
1204 | * bfd_coff_symesz (abfd))), | |
1205 | &sym); | |
1206 | if (sym.n_sclass == C_EXT) | |
1207 | start = stop = addr; | |
1208 | else | |
1209 | { | |
1210 | off = insn & 0xfff; | |
1211 | if (off & 0x800) | |
1212 | off -= 0x1000; | |
1213 | stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2); | |
1214 | } | |
1215 | break; | |
1216 | ||
1217 | case R_SH_PCRELIMM8BY2: | |
1218 | off = insn & 0xff; | |
1219 | stop = start + 4 + off * 2; | |
1220 | break; | |
1221 | ||
1222 | case R_SH_PCRELIMM8BY4: | |
1223 | off = insn & 0xff; | |
1224 | stop = (start &~ (bfd_vma) 3) + 4 + off * 4; | |
1225 | break; | |
1226 | ||
1227 | case R_SH_SWITCH8: | |
1228 | case R_SH_SWITCH16: | |
1229 | case R_SH_SWITCH32: | |
1230 | /* These relocs types represent | |
1231 | .word L2-L1 | |
1232 | The r_offset field holds the difference between the reloc | |
1233 | address and L1. That is the start of the reloc, and | |
1234 | adding in the contents gives us the top. We must adjust | |
1235 | both the r_offset field and the section contents. */ | |
1236 | ||
1237 | start = irel->r_vaddr - sec->vma; | |
1238 | stop = (bfd_vma) ((bfd_signed_vma) start - (long) irel->r_offset); | |
1239 | ||
1240 | if (start > addr | |
1241 | && start < toaddr | |
1242 | && (stop <= addr || stop >= toaddr)) | |
1243 | irel->r_offset += count; | |
1244 | else if (stop > addr | |
1245 | && stop < toaddr | |
1246 | && (start <= addr || start >= toaddr)) | |
1247 | irel->r_offset -= count; | |
1248 | ||
1249 | start = stop; | |
1250 | ||
1251 | if (irel->r_type == R_SH_SWITCH16) | |
1252 | voff = bfd_get_signed_16 (abfd, contents + nraddr); | |
1253 | else if (irel->r_type == R_SH_SWITCH8) | |
1254 | voff = bfd_get_8 (abfd, contents + nraddr); | |
1255 | else | |
1256 | voff = bfd_get_signed_32 (abfd, contents + nraddr); | |
1257 | stop = (bfd_vma) ((bfd_signed_vma) start + voff); | |
1258 | ||
1259 | break; | |
1260 | ||
1261 | case R_SH_USES: | |
1262 | start = irel->r_vaddr - sec->vma; | |
1263 | stop = (bfd_vma) ((bfd_signed_vma) start | |
1264 | + (long) irel->r_offset | |
1265 | + 4); | |
1266 | break; | |
1267 | } | |
1268 | ||
1269 | if (start > addr | |
1270 | && start < toaddr | |
1271 | && (stop <= addr || stop >= toaddr)) | |
1272 | adjust = count; | |
1273 | else if (stop > addr | |
1274 | && stop < toaddr | |
1275 | && (start <= addr || start >= toaddr)) | |
1276 | adjust = - count; | |
1277 | else | |
1278 | adjust = 0; | |
1279 | ||
1280 | if (adjust != 0) | |
1281 | { | |
1282 | oinsn = insn; | |
b34976b6 | 1283 | overflow = FALSE; |
252b5132 RH |
1284 | switch (irel->r_type) |
1285 | { | |
1286 | default: | |
1287 | abort (); | |
1288 | break; | |
1289 | ||
1290 | case R_SH_PCDISP8BY2: | |
1291 | case R_SH_PCRELIMM8BY2: | |
1292 | insn += adjust / 2; | |
1293 | if ((oinsn & 0xff00) != (insn & 0xff00)) | |
b34976b6 | 1294 | overflow = TRUE; |
dc810e39 | 1295 | bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr); |
252b5132 RH |
1296 | break; |
1297 | ||
1298 | case R_SH_PCDISP: | |
1299 | insn += adjust / 2; | |
1300 | if ((oinsn & 0xf000) != (insn & 0xf000)) | |
b34976b6 | 1301 | overflow = TRUE; |
dc810e39 | 1302 | bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr); |
252b5132 RH |
1303 | break; |
1304 | ||
1305 | case R_SH_PCRELIMM8BY4: | |
1306 | BFD_ASSERT (adjust == count || count >= 4); | |
1307 | if (count >= 4) | |
1308 | insn += adjust / 4; | |
1309 | else | |
1310 | { | |
1311 | if ((irel->r_vaddr & 3) == 0) | |
1312 | ++insn; | |
1313 | } | |
1314 | if ((oinsn & 0xff00) != (insn & 0xff00)) | |
b34976b6 | 1315 | overflow = TRUE; |
dc810e39 | 1316 | bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr); |
252b5132 RH |
1317 | break; |
1318 | ||
1319 | case R_SH_SWITCH8: | |
1320 | voff += adjust; | |
1321 | if (voff < 0 || voff >= 0xff) | |
b34976b6 | 1322 | overflow = TRUE; |
dc810e39 | 1323 | bfd_put_8 (abfd, (bfd_vma) voff, contents + nraddr); |
252b5132 RH |
1324 | break; |
1325 | ||
1326 | case R_SH_SWITCH16: | |
1327 | voff += adjust; | |
1328 | if (voff < - 0x8000 || voff >= 0x8000) | |
b34976b6 | 1329 | overflow = TRUE; |
dc810e39 | 1330 | bfd_put_signed_16 (abfd, (bfd_vma) voff, contents + nraddr); |
252b5132 RH |
1331 | break; |
1332 | ||
1333 | case R_SH_SWITCH32: | |
1334 | voff += adjust; | |
dc810e39 | 1335 | bfd_put_signed_32 (abfd, (bfd_vma) voff, contents + nraddr); |
252b5132 RH |
1336 | break; |
1337 | ||
1338 | case R_SH_USES: | |
1339 | irel->r_offset += adjust; | |
1340 | break; | |
1341 | } | |
1342 | ||
1343 | if (overflow) | |
1344 | { | |
1345 | ((*_bfd_error_handler) | |
d003868e AM |
1346 | ("%B: 0x%lx: fatal: reloc overflow while relaxing", |
1347 | abfd, (unsigned long) irel->r_vaddr)); | |
252b5132 | 1348 | bfd_set_error (bfd_error_bad_value); |
b34976b6 | 1349 | return FALSE; |
252b5132 RH |
1350 | } |
1351 | } | |
1352 | ||
1353 | irel->r_vaddr = nraddr + sec->vma; | |
1354 | } | |
1355 | ||
1356 | /* Look through all the other sections. If there contain any IMM32 | |
1357 | relocs against internal symbols which we are not going to adjust | |
1358 | below, we may need to adjust the addends. */ | |
1359 | for (o = abfd->sections; o != NULL; o = o->next) | |
1360 | { | |
1361 | struct internal_reloc *internal_relocs; | |
1362 | struct internal_reloc *irelscan, *irelscanend; | |
1363 | bfd_byte *ocontents; | |
1364 | ||
1365 | if (o == sec | |
1366 | || (o->flags & SEC_RELOC) == 0 | |
1367 | || o->reloc_count == 0) | |
1368 | continue; | |
1369 | ||
1370 | /* We always cache the relocs. Perhaps, if info->keep_memory is | |
b34976b6 | 1371 | FALSE, we should free them, if we are permitted to, when we |
252b5132 RH |
1372 | leave sh_coff_relax_section. */ |
1373 | internal_relocs = (_bfd_coff_read_internal_relocs | |
b34976b6 | 1374 | (abfd, o, TRUE, (bfd_byte *) NULL, FALSE, |
252b5132 RH |
1375 | (struct internal_reloc *) NULL)); |
1376 | if (internal_relocs == NULL) | |
b34976b6 | 1377 | return FALSE; |
252b5132 RH |
1378 | |
1379 | ocontents = NULL; | |
1380 | irelscanend = internal_relocs + o->reloc_count; | |
1381 | for (irelscan = internal_relocs; irelscan < irelscanend; irelscan++) | |
1382 | { | |
1383 | struct internal_syment sym; | |
1384 | ||
17505c5c NC |
1385 | #ifdef COFF_WITH_PE |
1386 | if (irelscan->r_type != R_SH_IMM32 | |
1387 | && irelscan->r_type != R_SH_IMAGEBASE | |
1388 | && irelscan->r_type != R_SH_IMM32CE) | |
1389 | #else | |
252b5132 | 1390 | if (irelscan->r_type != R_SH_IMM32) |
17505c5c | 1391 | #endif |
252b5132 RH |
1392 | continue; |
1393 | ||
1394 | bfd_coff_swap_sym_in (abfd, | |
1395 | ((bfd_byte *) obj_coff_external_syms (abfd) | |
1396 | + (irelscan->r_symndx | |
1397 | * bfd_coff_symesz (abfd))), | |
1398 | &sym); | |
1399 | if (sym.n_sclass != C_EXT | |
1400 | && sym.n_scnum == sec->target_index | |
1401 | && ((bfd_vma) sym.n_value <= addr | |
1402 | || (bfd_vma) sym.n_value >= toaddr)) | |
1403 | { | |
1404 | bfd_vma val; | |
1405 | ||
1406 | if (ocontents == NULL) | |
1407 | { | |
1408 | if (coff_section_data (abfd, o)->contents != NULL) | |
1409 | ocontents = coff_section_data (abfd, o)->contents; | |
1410 | else | |
1411 | { | |
eea6121a AM |
1412 | if (!bfd_malloc_and_get_section (abfd, o, &ocontents)) |
1413 | return FALSE; | |
252b5132 | 1414 | /* We always cache the section contents. |
b34976b6 | 1415 | Perhaps, if info->keep_memory is FALSE, we |
252b5132 RH |
1416 | should free them, if we are permitted to, |
1417 | when we leave sh_coff_relax_section. */ | |
252b5132 RH |
1418 | coff_section_data (abfd, o)->contents = ocontents; |
1419 | } | |
1420 | } | |
1421 | ||
1422 | val = bfd_get_32 (abfd, ocontents + irelscan->r_vaddr - o->vma); | |
1423 | val += sym.n_value; | |
1424 | if (val > addr && val < toaddr) | |
1425 | bfd_put_32 (abfd, val - count, | |
1426 | ocontents + irelscan->r_vaddr - o->vma); | |
1427 | ||
b34976b6 | 1428 | coff_section_data (abfd, o)->keep_contents = TRUE; |
252b5132 RH |
1429 | } |
1430 | } | |
1431 | } | |
1432 | ||
1433 | /* Adjusting the internal symbols will not work if something has | |
1434 | already retrieved the generic symbols. It would be possible to | |
1435 | make this work by adjusting the generic symbols at the same time. | |
1436 | However, this case should not arise in normal usage. */ | |
1437 | if (obj_symbols (abfd) != NULL | |
1438 | || obj_raw_syments (abfd) != NULL) | |
1439 | { | |
1440 | ((*_bfd_error_handler) | |
d003868e | 1441 | ("%B: fatal: generic symbols retrieved before relaxing", abfd)); |
252b5132 | 1442 | bfd_set_error (bfd_error_invalid_operation); |
b34976b6 | 1443 | return FALSE; |
252b5132 RH |
1444 | } |
1445 | ||
1446 | /* Adjust all the symbols. */ | |
1447 | sym_hash = obj_coff_sym_hashes (abfd); | |
1448 | symesz = bfd_coff_symesz (abfd); | |
1449 | esym = (bfd_byte *) obj_coff_external_syms (abfd); | |
1450 | esymend = esym + obj_raw_syment_count (abfd) * symesz; | |
1451 | while (esym < esymend) | |
1452 | { | |
1453 | struct internal_syment isym; | |
1454 | ||
2c3fc389 | 1455 | bfd_coff_swap_sym_in (abfd, esym, &isym); |
252b5132 RH |
1456 | |
1457 | if (isym.n_scnum == sec->target_index | |
1458 | && (bfd_vma) isym.n_value > addr | |
1459 | && (bfd_vma) isym.n_value < toaddr) | |
1460 | { | |
1461 | isym.n_value -= count; | |
1462 | ||
2c3fc389 | 1463 | bfd_coff_swap_sym_out (abfd, &isym, esym); |
252b5132 RH |
1464 | |
1465 | if (*sym_hash != NULL) | |
1466 | { | |
1467 | BFD_ASSERT ((*sym_hash)->root.type == bfd_link_hash_defined | |
1468 | || (*sym_hash)->root.type == bfd_link_hash_defweak); | |
1469 | BFD_ASSERT ((*sym_hash)->root.u.def.value >= addr | |
1470 | && (*sym_hash)->root.u.def.value < toaddr); | |
1471 | (*sym_hash)->root.u.def.value -= count; | |
1472 | } | |
1473 | } | |
1474 | ||
1475 | esym += (isym.n_numaux + 1) * symesz; | |
1476 | sym_hash += isym.n_numaux + 1; | |
1477 | } | |
1478 | ||
1479 | /* See if we can move the ALIGN reloc forward. We have adjusted | |
1480 | r_vaddr for it already. */ | |
1481 | if (irelalign != NULL) | |
1482 | { | |
1483 | bfd_vma alignto, alignaddr; | |
1484 | ||
1485 | alignto = BFD_ALIGN (toaddr, 1 << irelalign->r_offset); | |
1486 | alignaddr = BFD_ALIGN (irelalign->r_vaddr - sec->vma, | |
1487 | 1 << irelalign->r_offset); | |
1488 | if (alignto != alignaddr) | |
1489 | { | |
1490 | /* Tail recursion. */ | |
1491 | return sh_relax_delete_bytes (abfd, sec, alignaddr, | |
dc810e39 | 1492 | (int) (alignto - alignaddr)); |
252b5132 RH |
1493 | } |
1494 | } | |
1495 | ||
b34976b6 | 1496 | return TRUE; |
252b5132 RH |
1497 | } |
1498 | \f | |
1499 | /* This is yet another version of the SH opcode table, used to rapidly | |
1500 | get information about a particular instruction. */ | |
1501 | ||
1502 | /* The opcode map is represented by an array of these structures. The | |
1503 | array is indexed by the high order four bits in the instruction. */ | |
1504 | ||
1505 | struct sh_major_opcode | |
1506 | { | |
1507 | /* A pointer to the instruction list. This is an array which | |
1508 | contains all the instructions with this major opcode. */ | |
1509 | const struct sh_minor_opcode *minor_opcodes; | |
1510 | /* The number of elements in minor_opcodes. */ | |
1511 | unsigned short count; | |
1512 | }; | |
1513 | ||
1514 | /* This structure holds information for a set of SH opcodes. The | |
1515 | instruction code is anded with the mask value, and the resulting | |
1516 | value is used to search the order opcode list. */ | |
1517 | ||
1518 | struct sh_minor_opcode | |
1519 | { | |
1520 | /* The sorted opcode list. */ | |
1521 | const struct sh_opcode *opcodes; | |
1522 | /* The number of elements in opcodes. */ | |
1523 | unsigned short count; | |
1524 | /* The mask value to use when searching the opcode list. */ | |
1525 | unsigned short mask; | |
1526 | }; | |
1527 | ||
1528 | /* This structure holds information for an SH instruction. An array | |
1529 | of these structures is sorted in order by opcode. */ | |
1530 | ||
1531 | struct sh_opcode | |
1532 | { | |
1533 | /* The code for this instruction, after it has been anded with the | |
1534 | mask value in the sh_major_opcode structure. */ | |
1535 | unsigned short opcode; | |
1536 | /* Flags for this instruction. */ | |
86033394 | 1537 | unsigned long flags; |
252b5132 RH |
1538 | }; |
1539 | ||
1540 | /* Flag which appear in the sh_opcode structure. */ | |
1541 | ||
1542 | /* This instruction loads a value from memory. */ | |
1543 | #define LOAD (0x1) | |
1544 | ||
1545 | /* This instruction stores a value to memory. */ | |
1546 | #define STORE (0x2) | |
1547 | ||
1548 | /* This instruction is a branch. */ | |
1549 | #define BRANCH (0x4) | |
1550 | ||
1551 | /* This instruction has a delay slot. */ | |
1552 | #define DELAY (0x8) | |
1553 | ||
1554 | /* This instruction uses the value in the register in the field at | |
1555 | mask 0x0f00 of the instruction. */ | |
1556 | #define USES1 (0x10) | |
84dcfba7 | 1557 | #define USES1_REG(x) ((x & 0x0f00) >> 8) |
252b5132 RH |
1558 | |
1559 | /* This instruction uses the value in the register in the field at | |
1560 | mask 0x00f0 of the instruction. */ | |
1561 | #define USES2 (0x20) | |
84dcfba7 | 1562 | #define USES2_REG(x) ((x & 0x00f0) >> 4) |
252b5132 RH |
1563 | |
1564 | /* This instruction uses the value in register 0. */ | |
1565 | #define USESR0 (0x40) | |
1566 | ||
1567 | /* This instruction sets the value in the register in the field at | |
1568 | mask 0x0f00 of the instruction. */ | |
1569 | #define SETS1 (0x80) | |
84dcfba7 | 1570 | #define SETS1_REG(x) ((x & 0x0f00) >> 8) |
252b5132 RH |
1571 | |
1572 | /* This instruction sets the value in the register in the field at | |
1573 | mask 0x00f0 of the instruction. */ | |
1574 | #define SETS2 (0x100) | |
84dcfba7 | 1575 | #define SETS2_REG(x) ((x & 0x00f0) >> 4) |
252b5132 RH |
1576 | |
1577 | /* This instruction sets register 0. */ | |
1578 | #define SETSR0 (0x200) | |
1579 | ||
1580 | /* This instruction sets a special register. */ | |
1581 | #define SETSSP (0x400) | |
1582 | ||
1583 | /* This instruction uses a special register. */ | |
1584 | #define USESSP (0x800) | |
1585 | ||
1586 | /* This instruction uses the floating point register in the field at | |
1587 | mask 0x0f00 of the instruction. */ | |
1588 | #define USESF1 (0x1000) | |
84dcfba7 | 1589 | #define USESF1_REG(x) ((x & 0x0f00) >> 8) |
252b5132 RH |
1590 | |
1591 | /* This instruction uses the floating point register in the field at | |
1592 | mask 0x00f0 of the instruction. */ | |
1593 | #define USESF2 (0x2000) | |
84dcfba7 | 1594 | #define USESF2_REG(x) ((x & 0x00f0) >> 4) |
252b5132 RH |
1595 | |
1596 | /* This instruction uses floating point register 0. */ | |
1597 | #define USESF0 (0x4000) | |
1598 | ||
1599 | /* This instruction sets the floating point register in the field at | |
1600 | mask 0x0f00 of the instruction. */ | |
1601 | #define SETSF1 (0x8000) | |
84dcfba7 | 1602 | #define SETSF1_REG(x) ((x & 0x0f00) >> 8) |
252b5132 | 1603 | |
d4845d57 JR |
1604 | #define USESAS (0x10000) |
1605 | #define USESAS_REG(x) (((((x) >> 8) - 2) & 3) + 2) | |
1606 | #define USESR8 (0x20000) | |
1607 | #define SETSAS (0x40000) | |
1608 | #define SETSAS_REG(x) USESAS_REG (x) | |
1609 | ||
8d6ad26e AM |
1610 | #define MAP(a) a, sizeof a / sizeof a[0] |
1611 | ||
86033394 | 1612 | #ifndef COFF_IMAGE_WITH_PE |
252b5132 | 1613 | |
8d6ad26e | 1614 | /* The opcode maps. */ |
252b5132 RH |
1615 | |
1616 | static const struct sh_opcode sh_opcode00[] = | |
1617 | { | |
1618 | { 0x0008, SETSSP }, /* clrt */ | |
1619 | { 0x0009, 0 }, /* nop */ | |
1620 | { 0x000b, BRANCH | DELAY | USESSP }, /* rts */ | |
1621 | { 0x0018, SETSSP }, /* sett */ | |
1622 | { 0x0019, SETSSP }, /* div0u */ | |
1623 | { 0x001b, 0 }, /* sleep */ | |
1624 | { 0x0028, SETSSP }, /* clrmac */ | |
1625 | { 0x002b, BRANCH | DELAY | SETSSP }, /* rte */ | |
1626 | { 0x0038, USESSP | SETSSP }, /* ldtlb */ | |
1627 | { 0x0048, SETSSP }, /* clrs */ | |
1628 | { 0x0058, SETSSP } /* sets */ | |
1629 | }; | |
1630 | ||
1631 | static const struct sh_opcode sh_opcode01[] = | |
1632 | { | |
252b5132 RH |
1633 | { 0x0003, BRANCH | DELAY | USES1 | SETSSP }, /* bsrf rn */ |
1634 | { 0x000a, SETS1 | USESSP }, /* sts mach,rn */ | |
252b5132 | 1635 | { 0x001a, SETS1 | USESSP }, /* sts macl,rn */ |
252b5132 RH |
1636 | { 0x0023, BRANCH | DELAY | USES1 }, /* braf rn */ |
1637 | { 0x0029, SETS1 | USESSP }, /* movt rn */ | |
1638 | { 0x002a, SETS1 | USESSP }, /* sts pr,rn */ | |
d4845d57 JR |
1639 | { 0x005a, SETS1 | USESSP }, /* sts fpul,rn */ |
1640 | { 0x006a, SETS1 | USESSP }, /* sts fpscr,rn / sts dsr,rn */ | |
1641 | { 0x0083, LOAD | USES1 }, /* pref @rn */ | |
1642 | { 0x007a, SETS1 | USESSP }, /* sts a0,rn */ | |
1643 | { 0x008a, SETS1 | USESSP }, /* sts x0,rn */ | |
1644 | { 0x009a, SETS1 | USESSP }, /* sts x1,rn */ | |
1645 | { 0x00aa, SETS1 | USESSP }, /* sts y0,rn */ | |
1646 | { 0x00ba, SETS1 | USESSP } /* sts y1,rn */ | |
1647 | }; | |
1648 | ||
252b5132 RH |
1649 | static const struct sh_opcode sh_opcode02[] = |
1650 | { | |
d4845d57 | 1651 | { 0x0002, SETS1 | USESSP }, /* stc <special_reg>,rn */ |
252b5132 RH |
1652 | { 0x0004, STORE | USES1 | USES2 | USESR0 }, /* mov.b rm,@(r0,rn) */ |
1653 | { 0x0005, STORE | USES1 | USES2 | USESR0 }, /* mov.w rm,@(r0,rn) */ | |
1654 | { 0x0006, STORE | USES1 | USES2 | USESR0 }, /* mov.l rm,@(r0,rn) */ | |
1655 | { 0x0007, SETSSP | USES1 | USES2 }, /* mul.l rm,rn */ | |
1656 | { 0x000c, LOAD | SETS1 | USES2 | USESR0 }, /* mov.b @(r0,rm),rn */ | |
1657 | { 0x000d, LOAD | SETS1 | USES2 | USESR0 }, /* mov.w @(r0,rm),rn */ | |
1658 | { 0x000e, LOAD | SETS1 | USES2 | USESR0 }, /* mov.l @(r0,rm),rn */ | |
1659 | { 0x000f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.l @rm+,@rn+ */ | |
1660 | }; | |
1661 | ||
1662 | static const struct sh_minor_opcode sh_opcode0[] = | |
1663 | { | |
1664 | { MAP (sh_opcode00), 0xffff }, | |
1665 | { MAP (sh_opcode01), 0xf0ff }, | |
1666 | { MAP (sh_opcode02), 0xf00f } | |
1667 | }; | |
1668 | ||
1669 | static const struct sh_opcode sh_opcode10[] = | |
1670 | { | |
1671 | { 0x1000, STORE | USES1 | USES2 } /* mov.l rm,@(disp,rn) */ | |
1672 | }; | |
1673 | ||
1674 | static const struct sh_minor_opcode sh_opcode1[] = | |
1675 | { | |
1676 | { MAP (sh_opcode10), 0xf000 } | |
1677 | }; | |
1678 | ||
1679 | static const struct sh_opcode sh_opcode20[] = | |
1680 | { | |
1681 | { 0x2000, STORE | USES1 | USES2 }, /* mov.b rm,@rn */ | |
1682 | { 0x2001, STORE | USES1 | USES2 }, /* mov.w rm,@rn */ | |
1683 | { 0x2002, STORE | USES1 | USES2 }, /* mov.l rm,@rn */ | |
1684 | { 0x2004, STORE | SETS1 | USES1 | USES2 }, /* mov.b rm,@-rn */ | |
1685 | { 0x2005, STORE | SETS1 | USES1 | USES2 }, /* mov.w rm,@-rn */ | |
1686 | { 0x2006, STORE | SETS1 | USES1 | USES2 }, /* mov.l rm,@-rn */ | |
1687 | { 0x2007, SETSSP | USES1 | USES2 | USESSP }, /* div0s */ | |
1688 | { 0x2008, SETSSP | USES1 | USES2 }, /* tst rm,rn */ | |
1689 | { 0x2009, SETS1 | USES1 | USES2 }, /* and rm,rn */ | |
1690 | { 0x200a, SETS1 | USES1 | USES2 }, /* xor rm,rn */ | |
1691 | { 0x200b, SETS1 | USES1 | USES2 }, /* or rm,rn */ | |
1692 | { 0x200c, SETSSP | USES1 | USES2 }, /* cmp/str rm,rn */ | |
1693 | { 0x200d, SETS1 | USES1 | USES2 }, /* xtrct rm,rn */ | |
1694 | { 0x200e, SETSSP | USES1 | USES2 }, /* mulu.w rm,rn */ | |
1695 | { 0x200f, SETSSP | USES1 | USES2 } /* muls.w rm,rn */ | |
1696 | }; | |
1697 | ||
1698 | static const struct sh_minor_opcode sh_opcode2[] = | |
1699 | { | |
1700 | { MAP (sh_opcode20), 0xf00f } | |
1701 | }; | |
1702 | ||
1703 | static const struct sh_opcode sh_opcode30[] = | |
1704 | { | |
1705 | { 0x3000, SETSSP | USES1 | USES2 }, /* cmp/eq rm,rn */ | |
1706 | { 0x3002, SETSSP | USES1 | USES2 }, /* cmp/hs rm,rn */ | |
1707 | { 0x3003, SETSSP | USES1 | USES2 }, /* cmp/ge rm,rn */ | |
1708 | { 0x3004, SETSSP | USESSP | USES1 | USES2 }, /* div1 rm,rn */ | |
1709 | { 0x3005, SETSSP | USES1 | USES2 }, /* dmulu.l rm,rn */ | |
1710 | { 0x3006, SETSSP | USES1 | USES2 }, /* cmp/hi rm,rn */ | |
1711 | { 0x3007, SETSSP | USES1 | USES2 }, /* cmp/gt rm,rn */ | |
1712 | { 0x3008, SETS1 | USES1 | USES2 }, /* sub rm,rn */ | |
1713 | { 0x300a, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* subc rm,rn */ | |
1714 | { 0x300b, SETS1 | SETSSP | USES1 | USES2 }, /* subv rm,rn */ | |
1715 | { 0x300c, SETS1 | USES1 | USES2 }, /* add rm,rn */ | |
1716 | { 0x300d, SETSSP | USES1 | USES2 }, /* dmuls.l rm,rn */ | |
1717 | { 0x300e, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* addc rm,rn */ | |
1718 | { 0x300f, SETS1 | SETSSP | USES1 | USES2 } /* addv rm,rn */ | |
1719 | }; | |
1720 | ||
1721 | static const struct sh_minor_opcode sh_opcode3[] = | |
1722 | { | |
1723 | { MAP (sh_opcode30), 0xf00f } | |
1724 | }; | |
1725 | ||
1726 | static const struct sh_opcode sh_opcode40[] = | |
1727 | { | |
1728 | { 0x4000, SETS1 | SETSSP | USES1 }, /* shll rn */ | |
1729 | { 0x4001, SETS1 | SETSSP | USES1 }, /* shlr rn */ | |
1730 | { 0x4002, STORE | SETS1 | USES1 | USESSP }, /* sts.l mach,@-rn */ | |
252b5132 RH |
1731 | { 0x4004, SETS1 | SETSSP | USES1 }, /* rotl rn */ |
1732 | { 0x4005, SETS1 | SETSSP | USES1 }, /* rotr rn */ | |
1733 | { 0x4006, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,mach */ | |
252b5132 RH |
1734 | { 0x4008, SETS1 | USES1 }, /* shll2 rn */ |
1735 | { 0x4009, SETS1 | USES1 }, /* shlr2 rn */ | |
1736 | { 0x400a, SETSSP | USES1 }, /* lds rm,mach */ | |
1737 | { 0x400b, BRANCH | DELAY | USES1 }, /* jsr @rn */ | |
252b5132 RH |
1738 | { 0x4010, SETS1 | SETSSP | USES1 }, /* dt rn */ |
1739 | { 0x4011, SETSSP | USES1 }, /* cmp/pz rn */ | |
1740 | { 0x4012, STORE | SETS1 | USES1 | USESSP }, /* sts.l macl,@-rn */ | |
d4845d57 | 1741 | { 0x4014, SETSSP | USES1 }, /* setrc rm */ |
252b5132 RH |
1742 | { 0x4015, SETSSP | USES1 }, /* cmp/pl rn */ |
1743 | { 0x4016, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,macl */ | |
252b5132 RH |
1744 | { 0x4018, SETS1 | USES1 }, /* shll8 rn */ |
1745 | { 0x4019, SETS1 | USES1 }, /* shlr8 rn */ | |
1746 | { 0x401a, SETSSP | USES1 }, /* lds rm,macl */ | |
1747 | { 0x401b, LOAD | SETSSP | USES1 }, /* tas.b @rn */ | |
252b5132 RH |
1748 | { 0x4020, SETS1 | SETSSP | USES1 }, /* shal rn */ |
1749 | { 0x4021, SETS1 | SETSSP | USES1 }, /* shar rn */ | |
1750 | { 0x4022, STORE | SETS1 | USES1 | USESSP }, /* sts.l pr,@-rn */ | |
252b5132 RH |
1751 | { 0x4024, SETS1 | SETSSP | USES1 | USESSP }, /* rotcl rn */ |
1752 | { 0x4025, SETS1 | SETSSP | USES1 | USESSP }, /* rotcr rn */ | |
1753 | { 0x4026, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,pr */ | |
252b5132 RH |
1754 | { 0x4028, SETS1 | USES1 }, /* shll16 rn */ |
1755 | { 0x4029, SETS1 | USES1 }, /* shlr16 rn */ | |
1756 | { 0x402a, SETSSP | USES1 }, /* lds rm,pr */ | |
1757 | { 0x402b, BRANCH | DELAY | USES1 }, /* jmp @rn */ | |
d4845d57 JR |
1758 | { 0x4052, STORE | SETS1 | USES1 | USESSP }, /* sts.l fpul,@-rn */ |
1759 | { 0x4056, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,fpul */ | |
1760 | { 0x405a, SETSSP | USES1 }, /* lds.l rm,fpul */ | |
1761 | { 0x4062, STORE | SETS1 | USES1 | USESSP }, /* sts.l fpscr / dsr,@-rn */ | |
1762 | { 0x4066, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,fpscr / dsr */ | |
1763 | { 0x406a, SETSSP | USES1 }, /* lds rm,fpscr / lds rm,dsr */ | |
1764 | { 0x4072, STORE | SETS1 | USES1 | USESSP }, /* sts.l a0,@-rn */ | |
1765 | { 0x4076, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,a0 */ | |
1766 | { 0x407a, SETSSP | USES1 }, /* lds.l rm,a0 */ | |
1767 | { 0x4082, STORE | SETS1 | USES1 | USESSP }, /* sts.l x0,@-rn */ | |
1768 | { 0x4086, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,x0 */ | |
1769 | { 0x408a, SETSSP | USES1 }, /* lds.l rm,x0 */ | |
1770 | { 0x4092, STORE | SETS1 | USES1 | USESSP }, /* sts.l x1,@-rn */ | |
1771 | { 0x4096, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,x1 */ | |
1772 | { 0x409a, SETSSP | USES1 }, /* lds.l rm,x1 */ | |
1773 | { 0x40a2, STORE | SETS1 | USES1 | USESSP }, /* sts.l y0,@-rn */ | |
1774 | { 0x40a6, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,y0 */ | |
1775 | { 0x40aa, SETSSP | USES1 }, /* lds.l rm,y0 */ | |
1776 | { 0x40b2, STORE | SETS1 | USES1 | USESSP }, /* sts.l y1,@-rn */ | |
1777 | { 0x40b6, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,y1 */ | |
1778 | { 0x40ba, SETSSP | USES1 } /* lds.l rm,y1 */ | |
252b5132 RH |
1779 | }; |
1780 | ||
1781 | static const struct sh_opcode sh_opcode41[] = | |
1782 | { | |
d4845d57 JR |
1783 | { 0x4003, STORE | SETS1 | USES1 | USESSP }, /* stc.l <special_reg>,@-rn */ |
1784 | { 0x4007, LOAD | SETS1 | SETSSP | USES1 }, /* ldc.l @rm+,<special_reg> */ | |
1785 | { 0x400c, SETS1 | USES1 | USES2 }, /* shad rm,rn */ | |
1786 | { 0x400d, SETS1 | USES1 | USES2 }, /* shld rm,rn */ | |
1787 | { 0x400e, SETSSP | USES1 }, /* ldc rm,<special_reg> */ | |
252b5132 RH |
1788 | { 0x400f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.w @rm+,@rn+ */ |
1789 | }; | |
1790 | ||
1791 | static const struct sh_minor_opcode sh_opcode4[] = | |
1792 | { | |
1793 | { MAP (sh_opcode40), 0xf0ff }, | |
d4845d57 | 1794 | { MAP (sh_opcode41), 0xf00f } |
252b5132 RH |
1795 | }; |
1796 | ||
1797 | static const struct sh_opcode sh_opcode50[] = | |
1798 | { | |
1799 | { 0x5000, LOAD | SETS1 | USES2 } /* mov.l @(disp,rm),rn */ | |
1800 | }; | |
1801 | ||
1802 | static const struct sh_minor_opcode sh_opcode5[] = | |
1803 | { | |
1804 | { MAP (sh_opcode50), 0xf000 } | |
1805 | }; | |
1806 | ||
1807 | static const struct sh_opcode sh_opcode60[] = | |
1808 | { | |
1809 | { 0x6000, LOAD | SETS1 | USES2 }, /* mov.b @rm,rn */ | |
1810 | { 0x6001, LOAD | SETS1 | USES2 }, /* mov.w @rm,rn */ | |
1811 | { 0x6002, LOAD | SETS1 | USES2 }, /* mov.l @rm,rn */ | |
1812 | { 0x6003, SETS1 | USES2 }, /* mov rm,rn */ | |
1813 | { 0x6004, LOAD | SETS1 | SETS2 | USES2 }, /* mov.b @rm+,rn */ | |
1814 | { 0x6005, LOAD | SETS1 | SETS2 | USES2 }, /* mov.w @rm+,rn */ | |
1815 | { 0x6006, LOAD | SETS1 | SETS2 | USES2 }, /* mov.l @rm+,rn */ | |
1816 | { 0x6007, SETS1 | USES2 }, /* not rm,rn */ | |
1817 | { 0x6008, SETS1 | USES2 }, /* swap.b rm,rn */ | |
1818 | { 0x6009, SETS1 | USES2 }, /* swap.w rm,rn */ | |
1819 | { 0x600a, SETS1 | SETSSP | USES2 | USESSP }, /* negc rm,rn */ | |
1820 | { 0x600b, SETS1 | USES2 }, /* neg rm,rn */ | |
1821 | { 0x600c, SETS1 | USES2 }, /* extu.b rm,rn */ | |
1822 | { 0x600d, SETS1 | USES2 }, /* extu.w rm,rn */ | |
1823 | { 0x600e, SETS1 | USES2 }, /* exts.b rm,rn */ | |
1824 | { 0x600f, SETS1 | USES2 } /* exts.w rm,rn */ | |
1825 | }; | |
1826 | ||
1827 | static const struct sh_minor_opcode sh_opcode6[] = | |
1828 | { | |
1829 | { MAP (sh_opcode60), 0xf00f } | |
1830 | }; | |
1831 | ||
1832 | static const struct sh_opcode sh_opcode70[] = | |
1833 | { | |
1834 | { 0x7000, SETS1 | USES1 } /* add #imm,rn */ | |
1835 | }; | |
1836 | ||
1837 | static const struct sh_minor_opcode sh_opcode7[] = | |
1838 | { | |
1839 | { MAP (sh_opcode70), 0xf000 } | |
1840 | }; | |
1841 | ||
1842 | static const struct sh_opcode sh_opcode80[] = | |
1843 | { | |
1844 | { 0x8000, STORE | USES2 | USESR0 }, /* mov.b r0,@(disp,rn) */ | |
1845 | { 0x8100, STORE | USES2 | USESR0 }, /* mov.w r0,@(disp,rn) */ | |
d4845d57 | 1846 | { 0x8200, SETSSP }, /* setrc #imm */ |
252b5132 RH |
1847 | { 0x8400, LOAD | SETSR0 | USES2 }, /* mov.b @(disp,rm),r0 */ |
1848 | { 0x8500, LOAD | SETSR0 | USES2 }, /* mov.w @(disp,rn),r0 */ | |
1849 | { 0x8800, SETSSP | USESR0 }, /* cmp/eq #imm,r0 */ | |
1850 | { 0x8900, BRANCH | USESSP }, /* bt label */ | |
1851 | { 0x8b00, BRANCH | USESSP }, /* bf label */ | |
d4845d57 | 1852 | { 0x8c00, SETSSP }, /* ldrs @(disp,pc) */ |
252b5132 | 1853 | { 0x8d00, BRANCH | DELAY | USESSP }, /* bt/s label */ |
d4845d57 | 1854 | { 0x8e00, SETSSP }, /* ldre @(disp,pc) */ |
252b5132 RH |
1855 | { 0x8f00, BRANCH | DELAY | USESSP } /* bf/s label */ |
1856 | }; | |
1857 | ||
1858 | static const struct sh_minor_opcode sh_opcode8[] = | |
1859 | { | |
1860 | { MAP (sh_opcode80), 0xff00 } | |
1861 | }; | |
1862 | ||
1863 | static const struct sh_opcode sh_opcode90[] = | |
1864 | { | |
1865 | { 0x9000, LOAD | SETS1 } /* mov.w @(disp,pc),rn */ | |
1866 | }; | |
1867 | ||
1868 | static const struct sh_minor_opcode sh_opcode9[] = | |
1869 | { | |
1870 | { MAP (sh_opcode90), 0xf000 } | |
1871 | }; | |
1872 | ||
1873 | static const struct sh_opcode sh_opcodea0[] = | |
1874 | { | |
1875 | { 0xa000, BRANCH | DELAY } /* bra label */ | |
1876 | }; | |
1877 | ||
1878 | static const struct sh_minor_opcode sh_opcodea[] = | |
1879 | { | |
1880 | { MAP (sh_opcodea0), 0xf000 } | |
1881 | }; | |
1882 | ||
1883 | static const struct sh_opcode sh_opcodeb0[] = | |
1884 | { | |
1885 | { 0xb000, BRANCH | DELAY } /* bsr label */ | |
1886 | }; | |
1887 | ||
1888 | static const struct sh_minor_opcode sh_opcodeb[] = | |
1889 | { | |
1890 | { MAP (sh_opcodeb0), 0xf000 } | |
1891 | }; | |
1892 | ||
1893 | static const struct sh_opcode sh_opcodec0[] = | |
1894 | { | |
1895 | { 0xc000, STORE | USESR0 | USESSP }, /* mov.b r0,@(disp,gbr) */ | |
1896 | { 0xc100, STORE | USESR0 | USESSP }, /* mov.w r0,@(disp,gbr) */ | |
1897 | { 0xc200, STORE | USESR0 | USESSP }, /* mov.l r0,@(disp,gbr) */ | |
1898 | { 0xc300, BRANCH | USESSP }, /* trapa #imm */ | |
1899 | { 0xc400, LOAD | SETSR0 | USESSP }, /* mov.b @(disp,gbr),r0 */ | |
1900 | { 0xc500, LOAD | SETSR0 | USESSP }, /* mov.w @(disp,gbr),r0 */ | |
1901 | { 0xc600, LOAD | SETSR0 | USESSP }, /* mov.l @(disp,gbr),r0 */ | |
1902 | { 0xc700, SETSR0 }, /* mova @(disp,pc),r0 */ | |
1903 | { 0xc800, SETSSP | USESR0 }, /* tst #imm,r0 */ | |
1904 | { 0xc900, SETSR0 | USESR0 }, /* and #imm,r0 */ | |
1905 | { 0xca00, SETSR0 | USESR0 }, /* xor #imm,r0 */ | |
1906 | { 0xcb00, SETSR0 | USESR0 }, /* or #imm,r0 */ | |
1907 | { 0xcc00, LOAD | SETSSP | USESR0 | USESSP }, /* tst.b #imm,@(r0,gbr) */ | |
1908 | { 0xcd00, LOAD | STORE | USESR0 | USESSP }, /* and.b #imm,@(r0,gbr) */ | |
1909 | { 0xce00, LOAD | STORE | USESR0 | USESSP }, /* xor.b #imm,@(r0,gbr) */ | |
1910 | { 0xcf00, LOAD | STORE | USESR0 | USESSP } /* or.b #imm,@(r0,gbr) */ | |
1911 | }; | |
1912 | ||
1913 | static const struct sh_minor_opcode sh_opcodec[] = | |
1914 | { | |
1915 | { MAP (sh_opcodec0), 0xff00 } | |
1916 | }; | |
1917 | ||
1918 | static const struct sh_opcode sh_opcoded0[] = | |
1919 | { | |
1920 | { 0xd000, LOAD | SETS1 } /* mov.l @(disp,pc),rn */ | |
1921 | }; | |
1922 | ||
1923 | static const struct sh_minor_opcode sh_opcoded[] = | |
1924 | { | |
1925 | { MAP (sh_opcoded0), 0xf000 } | |
1926 | }; | |
1927 | ||
1928 | static const struct sh_opcode sh_opcodee0[] = | |
1929 | { | |
1930 | { 0xe000, SETS1 } /* mov #imm,rn */ | |
1931 | }; | |
1932 | ||
1933 | static const struct sh_minor_opcode sh_opcodee[] = | |
1934 | { | |
1935 | { MAP (sh_opcodee0), 0xf000 } | |
1936 | }; | |
1937 | ||
1938 | static const struct sh_opcode sh_opcodef0[] = | |
1939 | { | |
1940 | { 0xf000, SETSF1 | USESF1 | USESF2 }, /* fadd fm,fn */ | |
1941 | { 0xf001, SETSF1 | USESF1 | USESF2 }, /* fsub fm,fn */ | |
1942 | { 0xf002, SETSF1 | USESF1 | USESF2 }, /* fmul fm,fn */ | |
1943 | { 0xf003, SETSF1 | USESF1 | USESF2 }, /* fdiv fm,fn */ | |
1944 | { 0xf004, SETSSP | USESF1 | USESF2 }, /* fcmp/eq fm,fn */ | |
1945 | { 0xf005, SETSSP | USESF1 | USESF2 }, /* fcmp/gt fm,fn */ | |
1946 | { 0xf006, LOAD | SETSF1 | USES2 | USESR0 }, /* fmov.s @(r0,rm),fn */ | |
1947 | { 0xf007, STORE | USES1 | USESF2 | USESR0 }, /* fmov.s fm,@(r0,rn) */ | |
1948 | { 0xf008, LOAD | SETSF1 | USES2 }, /* fmov.s @rm,fn */ | |
1949 | { 0xf009, LOAD | SETS2 | SETSF1 | USES2 }, /* fmov.s @rm+,fn */ | |
1950 | { 0xf00a, STORE | USES1 | USESF2 }, /* fmov.s fm,@rn */ | |
1951 | { 0xf00b, STORE | SETS1 | USES1 | USESF2 }, /* fmov.s fm,@-rn */ | |
1952 | { 0xf00c, SETSF1 | USESF2 }, /* fmov fm,fn */ | |
1953 | { 0xf00e, SETSF1 | USESF1 | USESF2 | USESF0 } /* fmac f0,fm,fn */ | |
1954 | }; | |
1955 | ||
1956 | static const struct sh_opcode sh_opcodef1[] = | |
1957 | { | |
1958 | { 0xf00d, SETSF1 | USESSP }, /* fsts fpul,fn */ | |
1959 | { 0xf01d, SETSSP | USESF1 }, /* flds fn,fpul */ | |
1960 | { 0xf02d, SETSF1 | USESSP }, /* float fpul,fn */ | |
1961 | { 0xf03d, SETSSP | USESF1 }, /* ftrc fn,fpul */ | |
1962 | { 0xf04d, SETSF1 | USESF1 }, /* fneg fn */ | |
1963 | { 0xf05d, SETSF1 | USESF1 }, /* fabs fn */ | |
1964 | { 0xf06d, SETSF1 | USESF1 }, /* fsqrt fn */ | |
1965 | { 0xf07d, SETSSP | USESF1 }, /* ftst/nan fn */ | |
1966 | { 0xf08d, SETSF1 }, /* fldi0 fn */ | |
1967 | { 0xf09d, SETSF1 } /* fldi1 fn */ | |
1968 | }; | |
1969 | ||
1970 | static const struct sh_minor_opcode sh_opcodef[] = | |
1971 | { | |
1972 | { MAP (sh_opcodef0), 0xf00f }, | |
1973 | { MAP (sh_opcodef1), 0xf0ff } | |
1974 | }; | |
1975 | ||
d4845d57 | 1976 | static struct sh_major_opcode sh_opcodes[] = |
252b5132 RH |
1977 | { |
1978 | { MAP (sh_opcode0) }, | |
1979 | { MAP (sh_opcode1) }, | |
1980 | { MAP (sh_opcode2) }, | |
1981 | { MAP (sh_opcode3) }, | |
1982 | { MAP (sh_opcode4) }, | |
1983 | { MAP (sh_opcode5) }, | |
1984 | { MAP (sh_opcode6) }, | |
1985 | { MAP (sh_opcode7) }, | |
1986 | { MAP (sh_opcode8) }, | |
1987 | { MAP (sh_opcode9) }, | |
1988 | { MAP (sh_opcodea) }, | |
1989 | { MAP (sh_opcodeb) }, | |
1990 | { MAP (sh_opcodec) }, | |
1991 | { MAP (sh_opcoded) }, | |
1992 | { MAP (sh_opcodee) }, | |
1993 | { MAP (sh_opcodef) } | |
1994 | }; | |
1995 | ||
d4845d57 JR |
1996 | /* The double data transfer / parallel processing insns are not |
1997 | described here. This will cause sh_align_load_span to leave them alone. */ | |
1998 | ||
1999 | static const struct sh_opcode sh_dsp_opcodef0[] = | |
2000 | { | |
2001 | { 0xf400, USESAS | SETSAS | LOAD | SETSSP }, /* movs.x @-as,ds */ | |
2002 | { 0xf401, USESAS | SETSAS | STORE | USESSP }, /* movs.x ds,@-as */ | |
2003 | { 0xf404, USESAS | LOAD | SETSSP }, /* movs.x @as,ds */ | |
2004 | { 0xf405, USESAS | STORE | USESSP }, /* movs.x ds,@as */ | |
2005 | { 0xf408, USESAS | SETSAS | LOAD | SETSSP }, /* movs.x @as+,ds */ | |
2006 | { 0xf409, USESAS | SETSAS | STORE | USESSP }, /* movs.x ds,@as+ */ | |
2007 | { 0xf40c, USESAS | SETSAS | LOAD | SETSSP | USESR8 }, /* movs.x @as+r8,ds */ | |
2008 | { 0xf40d, USESAS | SETSAS | STORE | USESSP | USESR8 } /* movs.x ds,@as+r8 */ | |
2009 | }; | |
2010 | ||
2011 | static const struct sh_minor_opcode sh_dsp_opcodef[] = | |
2012 | { | |
2013 | { MAP (sh_dsp_opcodef0), 0xfc0d } | |
2014 | }; | |
2015 | ||
252b5132 RH |
2016 | /* Given an instruction, return a pointer to the corresponding |
2017 | sh_opcode structure. Return NULL if the instruction is not | |
2018 | recognized. */ | |
2019 | ||
2020 | static const struct sh_opcode * | |
2c3fc389 | 2021 | sh_insn_info (unsigned int insn) |
252b5132 RH |
2022 | { |
2023 | const struct sh_major_opcode *maj; | |
2024 | const struct sh_minor_opcode *min, *minend; | |
2025 | ||
2026 | maj = &sh_opcodes[(insn & 0xf000) >> 12]; | |
2027 | min = maj->minor_opcodes; | |
2028 | minend = min + maj->count; | |
2029 | for (; min < minend; min++) | |
2030 | { | |
2031 | unsigned int l; | |
2032 | const struct sh_opcode *op, *opend; | |
2033 | ||
2034 | l = insn & min->mask; | |
2035 | op = min->opcodes; | |
2036 | opend = op + min->count; | |
2037 | ||
2038 | /* Since the opcodes tables are sorted, we could use a binary | |
2039 | search here if the count were above some cutoff value. */ | |
2040 | for (; op < opend; op++) | |
2041 | if (op->opcode == l) | |
2042 | return op; | |
2043 | } | |
2044 | ||
cbfe05c4 | 2045 | return NULL; |
252b5132 RH |
2046 | } |
2047 | ||
2048 | /* See whether an instruction uses a general purpose register. */ | |
2049 | ||
b34976b6 | 2050 | static bfd_boolean |
2c3fc389 NC |
2051 | sh_insn_uses_reg (unsigned int insn, |
2052 | const struct sh_opcode *op, | |
2053 | unsigned int reg) | |
252b5132 RH |
2054 | { |
2055 | unsigned int f; | |
2056 | ||
2057 | f = op->flags; | |
2058 | ||
2059 | if ((f & USES1) != 0 | |
84dcfba7 | 2060 | && USES1_REG (insn) == reg) |
b34976b6 | 2061 | return TRUE; |
252b5132 | 2062 | if ((f & USES2) != 0 |
84dcfba7 | 2063 | && USES2_REG (insn) == reg) |
b34976b6 | 2064 | return TRUE; |
252b5132 RH |
2065 | if ((f & USESR0) != 0 |
2066 | && reg == 0) | |
b34976b6 | 2067 | return TRUE; |
d4845d57 | 2068 | if ((f & USESAS) && reg == USESAS_REG (insn)) |
b34976b6 | 2069 | return TRUE; |
d4845d57 | 2070 | if ((f & USESR8) && reg == 8) |
b34976b6 | 2071 | return TRUE; |
252b5132 | 2072 | |
b34976b6 | 2073 | return FALSE; |
252b5132 | 2074 | } |
17505c5c | 2075 | |
84dcfba7 JR |
2076 | /* See whether an instruction sets a general purpose register. */ |
2077 | ||
b34976b6 | 2078 | static bfd_boolean |
2c3fc389 NC |
2079 | sh_insn_sets_reg (unsigned int insn, |
2080 | const struct sh_opcode *op, | |
2081 | unsigned int reg) | |
84dcfba7 JR |
2082 | { |
2083 | unsigned int f; | |
2084 | ||
2085 | f = op->flags; | |
2086 | ||
2087 | if ((f & SETS1) != 0 | |
2088 | && SETS1_REG (insn) == reg) | |
b34976b6 | 2089 | return TRUE; |
84dcfba7 JR |
2090 | if ((f & SETS2) != 0 |
2091 | && SETS2_REG (insn) == reg) | |
b34976b6 | 2092 | return TRUE; |
84dcfba7 JR |
2093 | if ((f & SETSR0) != 0 |
2094 | && reg == 0) | |
b34976b6 | 2095 | return TRUE; |
d4845d57 | 2096 | if ((f & SETSAS) && reg == SETSAS_REG (insn)) |
b34976b6 | 2097 | return TRUE; |
84dcfba7 | 2098 | |
b34976b6 | 2099 | return FALSE; |
84dcfba7 JR |
2100 | } |
2101 | ||
2c3fc389 | 2102 | /* See whether an instruction uses or sets a general purpose register */ |
84dcfba7 | 2103 | |
b34976b6 | 2104 | static bfd_boolean |
2c3fc389 NC |
2105 | sh_insn_uses_or_sets_reg (unsigned int insn, |
2106 | const struct sh_opcode *op, | |
2107 | unsigned int reg) | |
84dcfba7 | 2108 | { |
2c3fc389 | 2109 | if (sh_insn_uses_reg (insn, op, reg)) |
b34976b6 | 2110 | return TRUE; |
84dcfba7 | 2111 | |
2c3fc389 | 2112 | return sh_insn_sets_reg (insn, op, reg); |
84dcfba7 | 2113 | } |
252b5132 RH |
2114 | |
2115 | /* See whether an instruction uses a floating point register. */ | |
2116 | ||
b34976b6 | 2117 | static bfd_boolean |
2c3fc389 NC |
2118 | sh_insn_uses_freg (unsigned int insn, |
2119 | const struct sh_opcode *op, | |
2120 | unsigned int freg) | |
252b5132 RH |
2121 | { |
2122 | unsigned int f; | |
2123 | ||
2124 | f = op->flags; | |
2125 | ||
2126 | /* We can't tell if this is a double-precision insn, so just play safe | |
2127 | and assume that it might be. So not only have we test FREG against | |
2128 | itself, but also even FREG against FREG+1 - if the using insn uses | |
2129 | just the low part of a double precision value - but also an odd | |
2130 | FREG against FREG-1 - if the setting insn sets just the low part | |
2131 | of a double precision value. | |
2132 | So what this all boils down to is that we have to ignore the lowest | |
2133 | bit of the register number. */ | |
cbfe05c4 | 2134 | |
252b5132 | 2135 | if ((f & USESF1) != 0 |
84dcfba7 | 2136 | && (USESF1_REG (insn) & 0xe) == (freg & 0xe)) |
b34976b6 | 2137 | return TRUE; |
252b5132 | 2138 | if ((f & USESF2) != 0 |
84dcfba7 | 2139 | && (USESF2_REG (insn) & 0xe) == (freg & 0xe)) |
b34976b6 | 2140 | return TRUE; |
252b5132 RH |
2141 | if ((f & USESF0) != 0 |
2142 | && freg == 0) | |
b34976b6 | 2143 | return TRUE; |
252b5132 | 2144 | |
b34976b6 | 2145 | return FALSE; |
252b5132 RH |
2146 | } |
2147 | ||
84dcfba7 JR |
2148 | /* See whether an instruction sets a floating point register. */ |
2149 | ||
b34976b6 | 2150 | static bfd_boolean |
2c3fc389 NC |
2151 | sh_insn_sets_freg (unsigned int insn, |
2152 | const struct sh_opcode *op, | |
2153 | unsigned int freg) | |
84dcfba7 JR |
2154 | { |
2155 | unsigned int f; | |
2156 | ||
2157 | f = op->flags; | |
2158 | ||
2159 | /* We can't tell if this is a double-precision insn, so just play safe | |
2160 | and assume that it might be. So not only have we test FREG against | |
2161 | itself, but also even FREG against FREG+1 - if the using insn uses | |
2162 | just the low part of a double precision value - but also an odd | |
2163 | FREG against FREG-1 - if the setting insn sets just the low part | |
2164 | of a double precision value. | |
2165 | So what this all boils down to is that we have to ignore the lowest | |
2166 | bit of the register number. */ | |
cbfe05c4 | 2167 | |
84dcfba7 JR |
2168 | if ((f & SETSF1) != 0 |
2169 | && (SETSF1_REG (insn) & 0xe) == (freg & 0xe)) | |
b34976b6 | 2170 | return TRUE; |
84dcfba7 | 2171 | |
b34976b6 | 2172 | return FALSE; |
84dcfba7 JR |
2173 | } |
2174 | ||
2c3fc389 NC |
2175 | /* See whether an instruction uses or sets a floating point register */ |
2176 | ||
2177 | static bfd_boolean | |
2178 | sh_insn_uses_or_sets_freg (unsigned int insn, | |
2179 | const struct sh_opcode *op, | |
2180 | unsigned int reg) | |
2181 | { | |
2182 | if (sh_insn_uses_freg (insn, op, reg)) | |
2183 | return TRUE; | |
2184 | ||
2185 | return sh_insn_sets_freg (insn, op, reg); | |
2186 | } | |
2187 | ||
252b5132 RH |
2188 | /* See whether instructions I1 and I2 conflict, assuming I1 comes |
2189 | before I2. OP1 and OP2 are the corresponding sh_opcode structures. | |
b34976b6 | 2190 | This should return TRUE if there is a conflict, or FALSE if the |
252b5132 RH |
2191 | instructions can be swapped safely. */ |
2192 | ||
b34976b6 | 2193 | static bfd_boolean |
2c3fc389 NC |
2194 | sh_insns_conflict (unsigned int i1, |
2195 | const struct sh_opcode *op1, | |
2196 | unsigned int i2, | |
2197 | const struct sh_opcode *op2) | |
252b5132 RH |
2198 | { |
2199 | unsigned int f1, f2; | |
2200 | ||
2201 | f1 = op1->flags; | |
2202 | f2 = op2->flags; | |
2203 | ||
2204 | /* Load of fpscr conflicts with floating point operations. | |
2205 | FIXME: shouldn't test raw opcodes here. */ | |
2206 | if (((i1 & 0xf0ff) == 0x4066 && (i2 & 0xf000) == 0xf000) | |
2207 | || ((i2 & 0xf0ff) == 0x4066 && (i1 & 0xf000) == 0xf000)) | |
b34976b6 | 2208 | return TRUE; |
252b5132 RH |
2209 | |
2210 | if ((f1 & (BRANCH | DELAY)) != 0 | |
2211 | || (f2 & (BRANCH | DELAY)) != 0) | |
b34976b6 | 2212 | return TRUE; |
252b5132 | 2213 | |
84dcfba7 JR |
2214 | if (((f1 | f2) & SETSSP) |
2215 | && (f1 & (SETSSP | USESSP)) | |
2216 | && (f2 & (SETSSP | USESSP))) | |
b34976b6 | 2217 | return TRUE; |
252b5132 RH |
2218 | |
2219 | if ((f1 & SETS1) != 0 | |
84dcfba7 | 2220 | && sh_insn_uses_or_sets_reg (i2, op2, SETS1_REG (i1))) |
b34976b6 | 2221 | return TRUE; |
252b5132 | 2222 | if ((f1 & SETS2) != 0 |
84dcfba7 | 2223 | && sh_insn_uses_or_sets_reg (i2, op2, SETS2_REG (i1))) |
b34976b6 | 2224 | return TRUE; |
252b5132 | 2225 | if ((f1 & SETSR0) != 0 |
84dcfba7 | 2226 | && sh_insn_uses_or_sets_reg (i2, op2, 0)) |
b34976b6 | 2227 | return TRUE; |
d4845d57 JR |
2228 | if ((f1 & SETSAS) |
2229 | && sh_insn_uses_or_sets_reg (i2, op2, SETSAS_REG (i1))) | |
b34976b6 | 2230 | return TRUE; |
252b5132 | 2231 | if ((f1 & SETSF1) != 0 |
84dcfba7 | 2232 | && sh_insn_uses_or_sets_freg (i2, op2, SETSF1_REG (i1))) |
b34976b6 | 2233 | return TRUE; |
252b5132 RH |
2234 | |
2235 | if ((f2 & SETS1) != 0 | |
84dcfba7 | 2236 | && sh_insn_uses_or_sets_reg (i1, op1, SETS1_REG (i2))) |
b34976b6 | 2237 | return TRUE; |
252b5132 | 2238 | if ((f2 & SETS2) != 0 |
84dcfba7 | 2239 | && sh_insn_uses_or_sets_reg (i1, op1, SETS2_REG (i2))) |
b34976b6 | 2240 | return TRUE; |
252b5132 | 2241 | if ((f2 & SETSR0) != 0 |
84dcfba7 | 2242 | && sh_insn_uses_or_sets_reg (i1, op1, 0)) |
b34976b6 | 2243 | return TRUE; |
d4845d57 JR |
2244 | if ((f2 & SETSAS) |
2245 | && sh_insn_uses_or_sets_reg (i1, op1, SETSAS_REG (i2))) | |
b34976b6 | 2246 | return TRUE; |
252b5132 | 2247 | if ((f2 & SETSF1) != 0 |
84dcfba7 | 2248 | && sh_insn_uses_or_sets_freg (i1, op1, SETSF1_REG (i2))) |
b34976b6 | 2249 | return TRUE; |
252b5132 RH |
2250 | |
2251 | /* The instructions do not conflict. */ | |
b34976b6 | 2252 | return FALSE; |
252b5132 RH |
2253 | } |
2254 | ||
2255 | /* I1 is a load instruction, and I2 is some other instruction. Return | |
b34976b6 | 2256 | TRUE if I1 loads a register which I2 uses. */ |
252b5132 | 2257 | |
b34976b6 | 2258 | static bfd_boolean |
2c3fc389 NC |
2259 | sh_load_use (unsigned int i1, |
2260 | const struct sh_opcode *op1, | |
2261 | unsigned int i2, | |
2262 | const struct sh_opcode *op2) | |
252b5132 RH |
2263 | { |
2264 | unsigned int f1; | |
2265 | ||
2266 | f1 = op1->flags; | |
2267 | ||
2268 | if ((f1 & LOAD) == 0) | |
b34976b6 | 2269 | return FALSE; |
252b5132 RH |
2270 | |
2271 | /* If both SETS1 and SETSSP are set, that means a load to a special | |
2272 | register using postincrement addressing mode, which we don't care | |
2273 | about here. */ | |
2274 | if ((f1 & SETS1) != 0 | |
2275 | && (f1 & SETSSP) == 0 | |
2276 | && sh_insn_uses_reg (i2, op2, (i1 & 0x0f00) >> 8)) | |
b34976b6 | 2277 | return TRUE; |
252b5132 RH |
2278 | |
2279 | if ((f1 & SETSR0) != 0 | |
2280 | && sh_insn_uses_reg (i2, op2, 0)) | |
b34976b6 | 2281 | return TRUE; |
252b5132 RH |
2282 | |
2283 | if ((f1 & SETSF1) != 0 | |
2284 | && sh_insn_uses_freg (i2, op2, (i1 & 0x0f00) >> 8)) | |
b34976b6 | 2285 | return TRUE; |
252b5132 | 2286 | |
b34976b6 | 2287 | return FALSE; |
252b5132 RH |
2288 | } |
2289 | ||
2290 | /* Try to align loads and stores within a span of memory. This is | |
2291 | called by both the ELF and the COFF sh targets. ABFD and SEC are | |
2292 | the BFD and section we are examining. CONTENTS is the contents of | |
2293 | the section. SWAP is the routine to call to swap two instructions. | |
2294 | RELOCS is a pointer to the internal relocation information, to be | |
2295 | passed to SWAP. PLABEL is a pointer to the current label in a | |
2296 | sorted list of labels; LABEL_END is the end of the list. START and | |
2297 | STOP are the range of memory to examine. If a swap is made, | |
b34976b6 | 2298 | *PSWAPPED is set to TRUE. */ |
252b5132 | 2299 | |
86033394 NC |
2300 | #ifdef COFF_WITH_PE |
2301 | static | |
2302 | #endif | |
b34976b6 | 2303 | bfd_boolean |
2c3fc389 NC |
2304 | _bfd_sh_align_load_span (bfd *abfd, |
2305 | asection *sec, | |
2306 | bfd_byte *contents, | |
2307 | bfd_boolean (*swap) (bfd *, asection *, void *, bfd_byte *, bfd_vma), | |
2308 | void * relocs, | |
2309 | bfd_vma **plabel, | |
2310 | bfd_vma *label_end, | |
2311 | bfd_vma start, | |
2312 | bfd_vma stop, | |
2313 | bfd_boolean *pswapped) | |
252b5132 | 2314 | { |
d4845d57 JR |
2315 | int dsp = (abfd->arch_info->mach == bfd_mach_sh_dsp |
2316 | || abfd->arch_info->mach == bfd_mach_sh3_dsp); | |
252b5132 RH |
2317 | bfd_vma i; |
2318 | ||
d4845d57 JR |
2319 | /* The SH4 has a Harvard architecture, hence aligning loads is not |
2320 | desirable. In fact, it is counter-productive, since it interferes | |
2321 | with the schedules generated by the compiler. */ | |
2322 | if (abfd->arch_info->mach == bfd_mach_sh4) | |
b34976b6 | 2323 | return TRUE; |
d4845d57 JR |
2324 | |
2325 | /* If we are linking sh[3]-dsp code, swap the FPU instructions for DSP | |
2326 | instructions. */ | |
2327 | if (dsp) | |
2328 | { | |
2329 | sh_opcodes[0xf].minor_opcodes = sh_dsp_opcodef; | |
2330 | sh_opcodes[0xf].count = sizeof sh_dsp_opcodef / sizeof sh_dsp_opcodef; | |
2331 | } | |
2332 | ||
252b5132 RH |
2333 | /* Instructions should be aligned on 2 byte boundaries. */ |
2334 | if ((start & 1) == 1) | |
2335 | ++start; | |
2336 | ||
2337 | /* Now look through the unaligned addresses. */ | |
2338 | i = start; | |
2339 | if ((i & 2) == 0) | |
2340 | i += 2; | |
2341 | for (; i < stop; i += 4) | |
2342 | { | |
2343 | unsigned int insn; | |
2344 | const struct sh_opcode *op; | |
2345 | unsigned int prev_insn = 0; | |
2346 | const struct sh_opcode *prev_op = NULL; | |
2347 | ||
2348 | insn = bfd_get_16 (abfd, contents + i); | |
2349 | op = sh_insn_info (insn); | |
2350 | if (op == NULL | |
2351 | || (op->flags & (LOAD | STORE)) == 0) | |
2352 | continue; | |
2353 | ||
2354 | /* This is a load or store which is not on a four byte boundary. */ | |
2355 | ||
2356 | while (*plabel < label_end && **plabel < i) | |
2357 | ++*plabel; | |
2358 | ||
2359 | if (i > start) | |
2360 | { | |
2361 | prev_insn = bfd_get_16 (abfd, contents + i - 2); | |
d4845d57 JR |
2362 | /* If INSN is the field b of a parallel processing insn, it is not |
2363 | a load / store after all. Note that the test here might mistake | |
2364 | the field_b of a pcopy insn for the starting code of a parallel | |
2365 | processing insn; this might miss a swapping opportunity, but at | |
2366 | least we're on the safe side. */ | |
2367 | if (dsp && (prev_insn & 0xfc00) == 0xf800) | |
2368 | continue; | |
2369 | ||
2370 | /* Check if prev_insn is actually the field b of a parallel | |
2371 | processing insn. Again, this can give a spurious match | |
2372 | after a pcopy. */ | |
2373 | if (dsp && i - 2 > start) | |
2374 | { | |
2375 | unsigned pprev_insn = bfd_get_16 (abfd, contents + i - 4); | |
cbfe05c4 | 2376 | |
d4845d57 JR |
2377 | if ((pprev_insn & 0xfc00) == 0xf800) |
2378 | prev_op = NULL; | |
2379 | else | |
2380 | prev_op = sh_insn_info (prev_insn); | |
2381 | } | |
2382 | else | |
2383 | prev_op = sh_insn_info (prev_insn); | |
252b5132 RH |
2384 | |
2385 | /* If the load/store instruction is in a delay slot, we | |
2386 | can't swap. */ | |
2387 | if (prev_op == NULL | |
2388 | || (prev_op->flags & DELAY) != 0) | |
2389 | continue; | |
2390 | } | |
2391 | if (i > start | |
2392 | && (*plabel >= label_end || **plabel != i) | |
2393 | && prev_op != NULL | |
2394 | && (prev_op->flags & (LOAD | STORE)) == 0 | |
2395 | && ! sh_insns_conflict (prev_insn, prev_op, insn, op)) | |
2396 | { | |
b34976b6 | 2397 | bfd_boolean ok; |
252b5132 RH |
2398 | |
2399 | /* The load/store instruction does not have a label, and | |
2400 | there is a previous instruction; PREV_INSN is not | |
2401 | itself a load/store instruction, and PREV_INSN and | |
2402 | INSN do not conflict. */ | |
2403 | ||
b34976b6 | 2404 | ok = TRUE; |
252b5132 RH |
2405 | |
2406 | if (i >= start + 4) | |
2407 | { | |
2408 | unsigned int prev2_insn; | |
2409 | const struct sh_opcode *prev2_op; | |
2410 | ||
2411 | prev2_insn = bfd_get_16 (abfd, contents + i - 4); | |
2412 | prev2_op = sh_insn_info (prev2_insn); | |
2413 | ||
2414 | /* If the instruction before PREV_INSN has a delay | |
2415 | slot--that is, PREV_INSN is in a delay slot--we | |
2416 | can not swap. */ | |
2417 | if (prev2_op == NULL | |
2418 | || (prev2_op->flags & DELAY) != 0) | |
b34976b6 | 2419 | ok = FALSE; |
252b5132 RH |
2420 | |
2421 | /* If the instruction before PREV_INSN is a load, | |
2422 | and it sets a register which INSN uses, then | |
2423 | putting INSN immediately after PREV_INSN will | |
2424 | cause a pipeline bubble, so there is no point to | |
2425 | making the swap. */ | |
2426 | if (ok | |
2427 | && (prev2_op->flags & LOAD) != 0 | |
2428 | && sh_load_use (prev2_insn, prev2_op, insn, op)) | |
b34976b6 | 2429 | ok = FALSE; |
252b5132 RH |
2430 | } |
2431 | ||
2432 | if (ok) | |
2433 | { | |
2434 | if (! (*swap) (abfd, sec, relocs, contents, i - 2)) | |
b34976b6 AM |
2435 | return FALSE; |
2436 | *pswapped = TRUE; | |
252b5132 RH |
2437 | continue; |
2438 | } | |
2439 | } | |
2440 | ||
2441 | while (*plabel < label_end && **plabel < i + 2) | |
2442 | ++*plabel; | |
2443 | ||
2444 | if (i + 2 < stop | |
2445 | && (*plabel >= label_end || **plabel != i + 2)) | |
2446 | { | |
2447 | unsigned int next_insn; | |
2448 | const struct sh_opcode *next_op; | |
2449 | ||
2450 | /* There is an instruction after the load/store | |
2451 | instruction, and it does not have a label. */ | |
2452 | next_insn = bfd_get_16 (abfd, contents + i + 2); | |
2453 | next_op = sh_insn_info (next_insn); | |
2454 | if (next_op != NULL | |
2455 | && (next_op->flags & (LOAD | STORE)) == 0 | |
2456 | && ! sh_insns_conflict (insn, op, next_insn, next_op)) | |
2457 | { | |
b34976b6 | 2458 | bfd_boolean ok; |
252b5132 RH |
2459 | |
2460 | /* NEXT_INSN is not itself a load/store instruction, | |
2461 | and it does not conflict with INSN. */ | |
2462 | ||
b34976b6 | 2463 | ok = TRUE; |
252b5132 RH |
2464 | |
2465 | /* If PREV_INSN is a load, and it sets a register | |
2466 | which NEXT_INSN uses, then putting NEXT_INSN | |
2467 | immediately after PREV_INSN will cause a pipeline | |
2468 | bubble, so there is no reason to make this swap. */ | |
2469 | if (prev_op != NULL | |
2470 | && (prev_op->flags & LOAD) != 0 | |
2471 | && sh_load_use (prev_insn, prev_op, next_insn, next_op)) | |
b34976b6 | 2472 | ok = FALSE; |
252b5132 RH |
2473 | |
2474 | /* If INSN is a load, and it sets a register which | |
2475 | the insn after NEXT_INSN uses, then doing the | |
2476 | swap will cause a pipeline bubble, so there is no | |
2477 | reason to make the swap. However, if the insn | |
2478 | after NEXT_INSN is itself a load or store | |
2479 | instruction, then it is misaligned, so | |
2480 | optimistically hope that it will be swapped | |
2481 | itself, and just live with the pipeline bubble if | |
2482 | it isn't. */ | |
2483 | if (ok | |
2484 | && i + 4 < stop | |
2485 | && (op->flags & LOAD) != 0) | |
2486 | { | |
2487 | unsigned int next2_insn; | |
2488 | const struct sh_opcode *next2_op; | |
2489 | ||
2490 | next2_insn = bfd_get_16 (abfd, contents + i + 4); | |
2491 | next2_op = sh_insn_info (next2_insn); | |
230d6d81 NC |
2492 | if (next2_op == NULL |
2493 | || ((next2_op->flags & (LOAD | STORE)) == 0 | |
2494 | && sh_load_use (insn, op, next2_insn, next2_op))) | |
b34976b6 | 2495 | ok = FALSE; |
252b5132 RH |
2496 | } |
2497 | ||
2498 | if (ok) | |
2499 | { | |
2500 | if (! (*swap) (abfd, sec, relocs, contents, i)) | |
b34976b6 AM |
2501 | return FALSE; |
2502 | *pswapped = TRUE; | |
252b5132 RH |
2503 | continue; |
2504 | } | |
2505 | } | |
2506 | } | |
2507 | } | |
2508 | ||
b34976b6 | 2509 | return TRUE; |
252b5132 | 2510 | } |
86033394 | 2511 | #endif /* not COFF_IMAGE_WITH_PE */ |
252b5132 | 2512 | |
252b5132 RH |
2513 | /* Swap two SH instructions. */ |
2514 | ||
b34976b6 | 2515 | static bfd_boolean |
2c3fc389 NC |
2516 | sh_swap_insns (bfd * abfd, |
2517 | asection * sec, | |
2518 | void * relocs, | |
2519 | bfd_byte * contents, | |
2520 | bfd_vma addr) | |
252b5132 RH |
2521 | { |
2522 | struct internal_reloc *internal_relocs = (struct internal_reloc *) relocs; | |
2523 | unsigned short i1, i2; | |
2524 | struct internal_reloc *irel, *irelend; | |
2525 | ||
2526 | /* Swap the instructions themselves. */ | |
2527 | i1 = bfd_get_16 (abfd, contents + addr); | |
2528 | i2 = bfd_get_16 (abfd, contents + addr + 2); | |
dc810e39 AM |
2529 | bfd_put_16 (abfd, (bfd_vma) i2, contents + addr); |
2530 | bfd_put_16 (abfd, (bfd_vma) i1, contents + addr + 2); | |
252b5132 RH |
2531 | |
2532 | /* Adjust all reloc addresses. */ | |
2533 | irelend = internal_relocs + sec->reloc_count; | |
2534 | for (irel = internal_relocs; irel < irelend; irel++) | |
2535 | { | |
2536 | int type, add; | |
2537 | ||
2538 | /* There are a few special types of relocs that we don't want to | |
2539 | adjust. These relocs do not apply to the instruction itself, | |
2540 | but are only associated with the address. */ | |
2541 | type = irel->r_type; | |
2542 | if (type == R_SH_ALIGN | |
2543 | || type == R_SH_CODE | |
2544 | || type == R_SH_DATA | |
2545 | || type == R_SH_LABEL) | |
2546 | continue; | |
2547 | ||
2548 | /* If an R_SH_USES reloc points to one of the addresses being | |
2549 | swapped, we must adjust it. It would be incorrect to do this | |
2550 | for a jump, though, since we want to execute both | |
2551 | instructions after the jump. (We have avoided swapping | |
2552 | around a label, so the jump will not wind up executing an | |
2553 | instruction it shouldn't). */ | |
2554 | if (type == R_SH_USES) | |
2555 | { | |
2556 | bfd_vma off; | |
2557 | ||
2558 | off = irel->r_vaddr - sec->vma + 4 + irel->r_offset; | |
2559 | if (off == addr) | |
2560 | irel->r_offset += 2; | |
2561 | else if (off == addr + 2) | |
2562 | irel->r_offset -= 2; | |
2563 | } | |
2564 | ||
2565 | if (irel->r_vaddr - sec->vma == addr) | |
2566 | { | |
2567 | irel->r_vaddr += 2; | |
2568 | add = -2; | |
2569 | } | |
2570 | else if (irel->r_vaddr - sec->vma == addr + 2) | |
2571 | { | |
2572 | irel->r_vaddr -= 2; | |
2573 | add = 2; | |
2574 | } | |
2575 | else | |
2576 | add = 0; | |
2577 | ||
2578 | if (add != 0) | |
2579 | { | |
2580 | bfd_byte *loc; | |
2581 | unsigned short insn, oinsn; | |
b34976b6 | 2582 | bfd_boolean overflow; |
252b5132 RH |
2583 | |
2584 | loc = contents + irel->r_vaddr - sec->vma; | |
b34976b6 | 2585 | overflow = FALSE; |
252b5132 RH |
2586 | switch (type) |
2587 | { | |
2588 | default: | |
2589 | break; | |
2590 | ||
2591 | case R_SH_PCDISP8BY2: | |
2592 | case R_SH_PCRELIMM8BY2: | |
2593 | insn = bfd_get_16 (abfd, loc); | |
2594 | oinsn = insn; | |
2595 | insn += add / 2; | |
2596 | if ((oinsn & 0xff00) != (insn & 0xff00)) | |
b34976b6 | 2597 | overflow = TRUE; |
dc810e39 | 2598 | bfd_put_16 (abfd, (bfd_vma) insn, loc); |
252b5132 RH |
2599 | break; |
2600 | ||
2601 | case R_SH_PCDISP: | |
2602 | insn = bfd_get_16 (abfd, loc); | |
2603 | oinsn = insn; | |
2604 | insn += add / 2; | |
2605 | if ((oinsn & 0xf000) != (insn & 0xf000)) | |
b34976b6 | 2606 | overflow = TRUE; |
dc810e39 | 2607 | bfd_put_16 (abfd, (bfd_vma) insn, loc); |
252b5132 RH |
2608 | break; |
2609 | ||
2610 | case R_SH_PCRELIMM8BY4: | |
2611 | /* This reloc ignores the least significant 3 bits of | |
2612 | the program counter before adding in the offset. | |
2613 | This means that if ADDR is at an even address, the | |
2614 | swap will not affect the offset. If ADDR is an at an | |
2615 | odd address, then the instruction will be crossing a | |
2616 | four byte boundary, and must be adjusted. */ | |
2617 | if ((addr & 3) != 0) | |
2618 | { | |
2619 | insn = bfd_get_16 (abfd, loc); | |
2620 | oinsn = insn; | |
2621 | insn += add / 2; | |
2622 | if ((oinsn & 0xff00) != (insn & 0xff00)) | |
b34976b6 | 2623 | overflow = TRUE; |
dc810e39 | 2624 | bfd_put_16 (abfd, (bfd_vma) insn, loc); |
252b5132 RH |
2625 | } |
2626 | ||
2627 | break; | |
2628 | } | |
2629 | ||
2630 | if (overflow) | |
2631 | { | |
2632 | ((*_bfd_error_handler) | |
d003868e AM |
2633 | ("%B: 0x%lx: fatal: reloc overflow while relaxing", |
2634 | abfd, (unsigned long) irel->r_vaddr)); | |
252b5132 | 2635 | bfd_set_error (bfd_error_bad_value); |
b34976b6 | 2636 | return FALSE; |
252b5132 RH |
2637 | } |
2638 | } | |
2639 | } | |
2640 | ||
b34976b6 | 2641 | return TRUE; |
252b5132 | 2642 | } |
2c3fc389 NC |
2643 | |
2644 | /* Look for loads and stores which we can align to four byte | |
2645 | boundaries. See the longer comment above sh_relax_section for why | |
2646 | this is desirable. This sets *PSWAPPED if some instruction was | |
2647 | swapped. */ | |
2648 | ||
2649 | static bfd_boolean | |
2650 | sh_align_loads (bfd *abfd, | |
2651 | asection *sec, | |
2652 | struct internal_reloc *internal_relocs, | |
2653 | bfd_byte *contents, | |
2654 | bfd_boolean *pswapped) | |
2655 | { | |
2656 | struct internal_reloc *irel, *irelend; | |
2657 | bfd_vma *labels = NULL; | |
2658 | bfd_vma *label, *label_end; | |
2659 | bfd_size_type amt; | |
2660 | ||
2661 | *pswapped = FALSE; | |
2662 | ||
2663 | irelend = internal_relocs + sec->reloc_count; | |
2664 | ||
2665 | /* Get all the addresses with labels on them. */ | |
2666 | amt = (bfd_size_type) sec->reloc_count * sizeof (bfd_vma); | |
2667 | labels = (bfd_vma *) bfd_malloc (amt); | |
2668 | if (labels == NULL) | |
2669 | goto error_return; | |
2670 | label_end = labels; | |
2671 | for (irel = internal_relocs; irel < irelend; irel++) | |
2672 | { | |
2673 | if (irel->r_type == R_SH_LABEL) | |
2674 | { | |
2675 | *label_end = irel->r_vaddr - sec->vma; | |
2676 | ++label_end; | |
2677 | } | |
2678 | } | |
2679 | ||
2680 | /* Note that the assembler currently always outputs relocs in | |
2681 | address order. If that ever changes, this code will need to sort | |
2682 | the label values and the relocs. */ | |
2683 | ||
2684 | label = labels; | |
2685 | ||
2686 | for (irel = internal_relocs; irel < irelend; irel++) | |
2687 | { | |
2688 | bfd_vma start, stop; | |
2689 | ||
2690 | if (irel->r_type != R_SH_CODE) | |
2691 | continue; | |
2692 | ||
2693 | start = irel->r_vaddr - sec->vma; | |
2694 | ||
2695 | for (irel++; irel < irelend; irel++) | |
2696 | if (irel->r_type == R_SH_DATA) | |
2697 | break; | |
2698 | if (irel < irelend) | |
2699 | stop = irel->r_vaddr - sec->vma; | |
2700 | else | |
2701 | stop = sec->size; | |
2702 | ||
2703 | if (! _bfd_sh_align_load_span (abfd, sec, contents, sh_swap_insns, | |
2704 | internal_relocs, &label, | |
2705 | label_end, start, stop, pswapped)) | |
2706 | goto error_return; | |
2707 | } | |
2708 | ||
2709 | free (labels); | |
2710 | ||
2711 | return TRUE; | |
2712 | ||
2713 | error_return: | |
2714 | if (labels != NULL) | |
2715 | free (labels); | |
2716 | return FALSE; | |
2717 | } | |
252b5132 RH |
2718 | \f |
2719 | /* This is a modification of _bfd_coff_generic_relocate_section, which | |
2720 | will handle SH relaxing. */ | |
2721 | ||
b34976b6 | 2722 | static bfd_boolean |
2c3fc389 NC |
2723 | sh_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED, |
2724 | struct bfd_link_info *info, | |
2725 | bfd *input_bfd, | |
2726 | asection *input_section, | |
2727 | bfd_byte *contents, | |
2728 | struct internal_reloc *relocs, | |
2729 | struct internal_syment *syms, | |
2730 | asection **sections) | |
252b5132 RH |
2731 | { |
2732 | struct internal_reloc *rel; | |
2733 | struct internal_reloc *relend; | |
2734 | ||
2735 | rel = relocs; | |
2736 | relend = rel + input_section->reloc_count; | |
2737 | for (; rel < relend; rel++) | |
2738 | { | |
2739 | long symndx; | |
2740 | struct coff_link_hash_entry *h; | |
2741 | struct internal_syment *sym; | |
2742 | bfd_vma addend; | |
2743 | bfd_vma val; | |
2744 | reloc_howto_type *howto; | |
2745 | bfd_reloc_status_type rstat; | |
2746 | ||
2747 | /* Almost all relocs have to do with relaxing. If any work must | |
2748 | be done for them, it has been done in sh_relax_section. */ | |
2749 | if (rel->r_type != R_SH_IMM32 | |
17505c5c NC |
2750 | #ifdef COFF_WITH_PE |
2751 | && rel->r_type != R_SH_IMM32CE | |
2752 | && rel->r_type != R_SH_IMAGEBASE | |
2753 | #endif | |
252b5132 RH |
2754 | && rel->r_type != R_SH_PCDISP) |
2755 | continue; | |
2756 | ||
2757 | symndx = rel->r_symndx; | |
2758 | ||
2759 | if (symndx == -1) | |
2760 | { | |
2761 | h = NULL; | |
2762 | sym = NULL; | |
2763 | } | |
2764 | else | |
cbfe05c4 | 2765 | { |
252b5132 RH |
2766 | if (symndx < 0 |
2767 | || (unsigned long) symndx >= obj_raw_syment_count (input_bfd)) | |
2768 | { | |
2769 | (*_bfd_error_handler) | |
d003868e AM |
2770 | ("%B: illegal symbol index %ld in relocs", |
2771 | input_bfd, symndx); | |
252b5132 | 2772 | bfd_set_error (bfd_error_bad_value); |
b34976b6 | 2773 | return FALSE; |
252b5132 RH |
2774 | } |
2775 | h = obj_coff_sym_hashes (input_bfd)[symndx]; | |
2776 | sym = syms + symndx; | |
2777 | } | |
2778 | ||
2779 | if (sym != NULL && sym->n_scnum != 0) | |
2780 | addend = - sym->n_value; | |
2781 | else | |
2782 | addend = 0; | |
2783 | ||
2784 | if (rel->r_type == R_SH_PCDISP) | |
2785 | addend -= 4; | |
2786 | ||
2787 | if (rel->r_type >= SH_COFF_HOWTO_COUNT) | |
2788 | howto = NULL; | |
2789 | else | |
2790 | howto = &sh_coff_howtos[rel->r_type]; | |
2791 | ||
2792 | if (howto == NULL) | |
2793 | { | |
2794 | bfd_set_error (bfd_error_bad_value); | |
b34976b6 | 2795 | return FALSE; |
252b5132 RH |
2796 | } |
2797 | ||
17505c5c NC |
2798 | #ifdef COFF_WITH_PE |
2799 | if (rel->r_type == R_SH_IMAGEBASE) | |
2800 | addend -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase; | |
2801 | #endif | |
cbfe05c4 | 2802 | |
252b5132 RH |
2803 | val = 0; |
2804 | ||
2805 | if (h == NULL) | |
2806 | { | |
2807 | asection *sec; | |
2808 | ||
2809 | /* There is nothing to do for an internal PCDISP reloc. */ | |
2810 | if (rel->r_type == R_SH_PCDISP) | |
2811 | continue; | |
2812 | ||
2813 | if (symndx == -1) | |
2814 | { | |
2815 | sec = bfd_abs_section_ptr; | |
2816 | val = 0; | |
2817 | } | |
2818 | else | |
2819 | { | |
2820 | sec = sections[symndx]; | |
2821 | val = (sec->output_section->vma | |
2822 | + sec->output_offset | |
2823 | + sym->n_value | |
2824 | - sec->vma); | |
2825 | } | |
2826 | } | |
2827 | else | |
2828 | { | |
2829 | if (h->root.type == bfd_link_hash_defined | |
2830 | || h->root.type == bfd_link_hash_defweak) | |
2831 | { | |
2832 | asection *sec; | |
2833 | ||
2834 | sec = h->root.u.def.section; | |
2835 | val = (h->root.u.def.value | |
2836 | + sec->output_section->vma | |
2837 | + sec->output_offset); | |
2838 | } | |
1049f94e | 2839 | else if (! info->relocatable) |
252b5132 RH |
2840 | { |
2841 | if (! ((*info->callbacks->undefined_symbol) | |
2842 | (info, h->root.root.string, input_bfd, input_section, | |
b34976b6 AM |
2843 | rel->r_vaddr - input_section->vma, TRUE))) |
2844 | return FALSE; | |
252b5132 RH |
2845 | } |
2846 | } | |
2847 | ||
2848 | rstat = _bfd_final_link_relocate (howto, input_bfd, input_section, | |
2849 | contents, | |
2850 | rel->r_vaddr - input_section->vma, | |
2851 | val, addend); | |
2852 | ||
2853 | switch (rstat) | |
2854 | { | |
2855 | default: | |
2856 | abort (); | |
2857 | case bfd_reloc_ok: | |
2858 | break; | |
2859 | case bfd_reloc_overflow: | |
2860 | { | |
2861 | const char *name; | |
2862 | char buf[SYMNMLEN + 1]; | |
2863 | ||
2864 | if (symndx == -1) | |
2865 | name = "*ABS*"; | |
2866 | else if (h != NULL) | |
dfeffb9f | 2867 | name = NULL; |
252b5132 RH |
2868 | else if (sym->_n._n_n._n_zeroes == 0 |
2869 | && sym->_n._n_n._n_offset != 0) | |
2870 | name = obj_coff_strings (input_bfd) + sym->_n._n_n._n_offset; | |
2871 | else | |
2872 | { | |
2873 | strncpy (buf, sym->_n._n_name, SYMNMLEN); | |
2874 | buf[SYMNMLEN] = '\0'; | |
2875 | name = buf; | |
2876 | } | |
2877 | ||
2878 | if (! ((*info->callbacks->reloc_overflow) | |
dfeffb9f L |
2879 | (info, (h ? &h->root : NULL), name, howto->name, |
2880 | (bfd_vma) 0, input_bfd, input_section, | |
2881 | rel->r_vaddr - input_section->vma))) | |
b34976b6 | 2882 | return FALSE; |
252b5132 RH |
2883 | } |
2884 | } | |
2885 | } | |
2886 | ||
b34976b6 | 2887 | return TRUE; |
252b5132 RH |
2888 | } |
2889 | ||
2890 | /* This is a version of bfd_generic_get_relocated_section_contents | |
2891 | which uses sh_relocate_section. */ | |
2892 | ||
2893 | static bfd_byte * | |
2c3fc389 NC |
2894 | sh_coff_get_relocated_section_contents (bfd *output_bfd, |
2895 | struct bfd_link_info *link_info, | |
2896 | struct bfd_link_order *link_order, | |
2897 | bfd_byte *data, | |
2898 | bfd_boolean relocatable, | |
2899 | asymbol **symbols) | |
252b5132 RH |
2900 | { |
2901 | asection *input_section = link_order->u.indirect.section; | |
2902 | bfd *input_bfd = input_section->owner; | |
2903 | asection **sections = NULL; | |
2904 | struct internal_reloc *internal_relocs = NULL; | |
2905 | struct internal_syment *internal_syms = NULL; | |
2906 | ||
2907 | /* We only need to handle the case of relaxing, or of having a | |
2908 | particular set of section contents, specially. */ | |
1049f94e | 2909 | if (relocatable |
252b5132 RH |
2910 | || coff_section_data (input_bfd, input_section) == NULL |
2911 | || coff_section_data (input_bfd, input_section)->contents == NULL) | |
2912 | return bfd_generic_get_relocated_section_contents (output_bfd, link_info, | |
2913 | link_order, data, | |
1049f94e | 2914 | relocatable, |
252b5132 RH |
2915 | symbols); |
2916 | ||
2917 | memcpy (data, coff_section_data (input_bfd, input_section)->contents, | |
eea6121a | 2918 | (size_t) input_section->size); |
252b5132 RH |
2919 | |
2920 | if ((input_section->flags & SEC_RELOC) != 0 | |
2921 | && input_section->reloc_count > 0) | |
2922 | { | |
2923 | bfd_size_type symesz = bfd_coff_symesz (input_bfd); | |
2924 | bfd_byte *esym, *esymend; | |
2925 | struct internal_syment *isymp; | |
2926 | asection **secpp; | |
dc810e39 | 2927 | bfd_size_type amt; |
252b5132 RH |
2928 | |
2929 | if (! _bfd_coff_get_external_symbols (input_bfd)) | |
2930 | goto error_return; | |
2931 | ||
2932 | internal_relocs = (_bfd_coff_read_internal_relocs | |
b34976b6 AM |
2933 | (input_bfd, input_section, FALSE, (bfd_byte *) NULL, |
2934 | FALSE, (struct internal_reloc *) NULL)); | |
252b5132 RH |
2935 | if (internal_relocs == NULL) |
2936 | goto error_return; | |
2937 | ||
dc810e39 AM |
2938 | amt = obj_raw_syment_count (input_bfd); |
2939 | amt *= sizeof (struct internal_syment); | |
2940 | internal_syms = (struct internal_syment *) bfd_malloc (amt); | |
252b5132 RH |
2941 | if (internal_syms == NULL) |
2942 | goto error_return; | |
2943 | ||
dc810e39 AM |
2944 | amt = obj_raw_syment_count (input_bfd); |
2945 | amt *= sizeof (asection *); | |
2946 | sections = (asection **) bfd_malloc (amt); | |
252b5132 RH |
2947 | if (sections == NULL) |
2948 | goto error_return; | |
2949 | ||
2950 | isymp = internal_syms; | |
2951 | secpp = sections; | |
2952 | esym = (bfd_byte *) obj_coff_external_syms (input_bfd); | |
2953 | esymend = esym + obj_raw_syment_count (input_bfd) * symesz; | |
2954 | while (esym < esymend) | |
2955 | { | |
2c3fc389 | 2956 | bfd_coff_swap_sym_in (input_bfd, esym, isymp); |
252b5132 RH |
2957 | |
2958 | if (isymp->n_scnum != 0) | |
2959 | *secpp = coff_section_from_bfd_index (input_bfd, isymp->n_scnum); | |
2960 | else | |
2961 | { | |
2962 | if (isymp->n_value == 0) | |
2963 | *secpp = bfd_und_section_ptr; | |
2964 | else | |
2965 | *secpp = bfd_com_section_ptr; | |
2966 | } | |
2967 | ||
2968 | esym += (isymp->n_numaux + 1) * symesz; | |
2969 | secpp += isymp->n_numaux + 1; | |
2970 | isymp += isymp->n_numaux + 1; | |
2971 | } | |
2972 | ||
2973 | if (! sh_relocate_section (output_bfd, link_info, input_bfd, | |
2974 | input_section, data, internal_relocs, | |
2975 | internal_syms, sections)) | |
2976 | goto error_return; | |
2977 | ||
2978 | free (sections); | |
2979 | sections = NULL; | |
2980 | free (internal_syms); | |
2981 | internal_syms = NULL; | |
2982 | free (internal_relocs); | |
2983 | internal_relocs = NULL; | |
2984 | } | |
2985 | ||
2986 | return data; | |
2987 | ||
2988 | error_return: | |
2989 | if (internal_relocs != NULL) | |
2990 | free (internal_relocs); | |
2991 | if (internal_syms != NULL) | |
2992 | free (internal_syms); | |
2993 | if (sections != NULL) | |
2994 | free (sections); | |
2995 | return NULL; | |
2996 | } | |
2997 | ||
2998 | /* The target vectors. */ | |
2999 | ||
17505c5c | 3000 | #ifndef TARGET_SHL_SYM |
6d00b590 | 3001 | CREATE_BIG_COFF_TARGET_VEC (sh_coff_vec, "coff-sh", BFD_IS_RELAXABLE, 0, '_', NULL, COFF_SWAP_TABLE) |
17505c5c | 3002 | #endif |
252b5132 | 3003 | |
c3c89269 NC |
3004 | #ifdef TARGET_SHL_SYM |
3005 | #define TARGET_SYM TARGET_SHL_SYM | |
3006 | #else | |
6d00b590 | 3007 | #define TARGET_SYM sh_coff_le_vec |
c3c89269 | 3008 | #endif |
cbfe05c4 | 3009 | |
c3c89269 NC |
3010 | #ifndef TARGET_SHL_NAME |
3011 | #define TARGET_SHL_NAME "coff-shl" | |
3012 | #endif | |
252b5132 | 3013 | |
17505c5c NC |
3014 | #ifdef COFF_WITH_PE |
3015 | CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE, | |
3fa78519 | 3016 | SEC_CODE | SEC_DATA, '_', NULL, COFF_SWAP_TABLE); |
17505c5c | 3017 | #else |
86033394 | 3018 | CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE, |
3fa78519 | 3019 | 0, '_', NULL, COFF_SWAP_TABLE) |
17505c5c | 3020 | #endif |
86033394 | 3021 | |
17505c5c | 3022 | #ifndef TARGET_SHL_SYM |
2c3fc389 | 3023 | |
252b5132 RH |
3024 | /* Some people want versions of the SH COFF target which do not align |
3025 | to 16 byte boundaries. We implement that by adding a couple of new | |
3026 | target vectors. These are just like the ones above, but they | |
3027 | change the default section alignment. To generate them in the | |
3028 | assembler, use -small. To use them in the linker, use -b | |
3029 | coff-sh{l}-small and -oformat coff-sh{l}-small. | |
3030 | ||
3031 | Yes, this is a horrible hack. A general solution for setting | |
3032 | section alignment in COFF is rather complex. ELF handles this | |
3033 | correctly. */ | |
3034 | ||
3035 | /* Only recognize the small versions if the target was not defaulted. | |
3036 | Otherwise we won't recognize the non default endianness. */ | |
3037 | ||
3038 | static const bfd_target * | |
2c3fc389 | 3039 | coff_small_object_p (bfd *abfd) |
252b5132 RH |
3040 | { |
3041 | if (abfd->target_defaulted) | |
3042 | { | |
3043 | bfd_set_error (bfd_error_wrong_format); | |
3044 | return NULL; | |
3045 | } | |
3046 | return coff_object_p (abfd); | |
3047 | } | |
3048 | ||
3049 | /* Set the section alignment for the small versions. */ | |
3050 | ||
b34976b6 | 3051 | static bfd_boolean |
2c3fc389 | 3052 | coff_small_new_section_hook (bfd *abfd, asection *section) |
252b5132 RH |
3053 | { |
3054 | if (! coff_new_section_hook (abfd, section)) | |
b34976b6 | 3055 | return FALSE; |
252b5132 RH |
3056 | |
3057 | /* We must align to at least a four byte boundary, because longword | |
3058 | accesses must be on a four byte boundary. */ | |
3059 | if (section->alignment_power == COFF_DEFAULT_SECTION_ALIGNMENT_POWER) | |
3060 | section->alignment_power = 2; | |
3061 | ||
b34976b6 | 3062 | return TRUE; |
252b5132 RH |
3063 | } |
3064 | ||
3065 | /* This is copied from bfd_coff_std_swap_table so that we can change | |
3066 | the default section alignment power. */ | |
3067 | ||
88183869 | 3068 | static bfd_coff_backend_data bfd_coff_small_swap_table = |
252b5132 RH |
3069 | { |
3070 | coff_swap_aux_in, coff_swap_sym_in, coff_swap_lineno_in, | |
3071 | coff_swap_aux_out, coff_swap_sym_out, | |
3072 | coff_swap_lineno_out, coff_swap_reloc_out, | |
3073 | coff_swap_filehdr_out, coff_swap_aouthdr_out, | |
3074 | coff_swap_scnhdr_out, | |
692b7d62 | 3075 | FILHSZ, AOUTSZ, SCNHSZ, SYMESZ, AUXESZ, RELSZ, LINESZ, FILNMLEN, |
252b5132 | 3076 | #ifdef COFF_LONG_FILENAMES |
b34976b6 | 3077 | TRUE, |
252b5132 | 3078 | #else |
b34976b6 | 3079 | FALSE, |
252b5132 | 3080 | #endif |
88183869 | 3081 | COFF_DEFAULT_LONG_SECTION_NAMES, |
252b5132 | 3082 | 2, |
ecefdb58 | 3083 | #ifdef COFF_FORCE_SYMBOLS_IN_STRINGS |
b34976b6 | 3084 | TRUE, |
ecefdb58 | 3085 | #else |
b34976b6 | 3086 | FALSE, |
ecefdb58 CP |
3087 | #endif |
3088 | #ifdef COFF_DEBUG_STRING_WIDE_PREFIX | |
3089 | 4, | |
3090 | #else | |
3091 | 2, | |
3092 | #endif | |
167ad85b | 3093 | 32768, |
252b5132 RH |
3094 | coff_swap_filehdr_in, coff_swap_aouthdr_in, coff_swap_scnhdr_in, |
3095 | coff_swap_reloc_in, coff_bad_format_hook, coff_set_arch_mach_hook, | |
3096 | coff_mkobject_hook, styp_to_sec_flags, coff_set_alignment_hook, | |
3097 | coff_slurp_symbol_table, symname_in_debug_hook, coff_pointerize_aux_hook, | |
3098 | coff_print_aux, coff_reloc16_extra_cases, coff_reloc16_estimate, | |
5d54c628 | 3099 | coff_classify_symbol, coff_compute_section_file_positions, |
252b5132 RH |
3100 | coff_start_final_link, coff_relocate_section, coff_rtype_to_howto, |
3101 | coff_adjust_symndx, coff_link_add_one_symbol, | |
2b5c217d NC |
3102 | coff_link_output_has_begun, coff_final_link_postscript, |
3103 | bfd_pe_print_pdata | |
252b5132 RH |
3104 | }; |
3105 | ||
3106 | #define coff_small_close_and_cleanup \ | |
3107 | coff_close_and_cleanup | |
3108 | #define coff_small_bfd_free_cached_info \ | |
3109 | coff_bfd_free_cached_info | |
3110 | #define coff_small_get_section_contents \ | |
3111 | coff_get_section_contents | |
3112 | #define coff_small_get_section_contents_in_window \ | |
3113 | coff_get_section_contents_in_window | |
3114 | ||
6d00b590 | 3115 | extern const bfd_target sh_coff_small_le_vec; |
c3c89269 | 3116 | |
6d00b590 | 3117 | const bfd_target sh_coff_small_vec = |
252b5132 RH |
3118 | { |
3119 | "coff-sh-small", /* name */ | |
3120 | bfd_target_coff_flavour, | |
3121 | BFD_ENDIAN_BIG, /* data byte order is big */ | |
3122 | BFD_ENDIAN_BIG, /* header byte order is big */ | |
3123 | ||
3124 | (HAS_RELOC | EXEC_P | /* object flags */ | |
3125 | HAS_LINENO | HAS_DEBUG | | |
3126 | HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE), | |
3127 | ||
3128 | (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC), | |
3129 | '_', /* leading symbol underscore */ | |
3130 | '/', /* ar_pad_char */ | |
3131 | 15, /* ar_max_namelen */ | |
0aabe54e | 3132 | 0, /* match priority. */ |
252b5132 RH |
3133 | bfd_getb64, bfd_getb_signed_64, bfd_putb64, |
3134 | bfd_getb32, bfd_getb_signed_32, bfd_putb32, | |
3135 | bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */ | |
3136 | bfd_getb64, bfd_getb_signed_64, bfd_putb64, | |
3137 | bfd_getb32, bfd_getb_signed_32, bfd_putb32, | |
3138 | bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */ | |
3139 | ||
3140 | {_bfd_dummy_target, coff_small_object_p, /* bfd_check_format */ | |
3141 | bfd_generic_archive_p, _bfd_dummy_target}, | |
3142 | {bfd_false, coff_mkobject, _bfd_generic_mkarchive, /* bfd_set_format */ | |
3143 | bfd_false}, | |
3144 | {bfd_false, coff_write_object_contents, /* bfd_write_contents */ | |
3145 | _bfd_write_archive_contents, bfd_false}, | |
3146 | ||
3147 | BFD_JUMP_TABLE_GENERIC (coff_small), | |
3148 | BFD_JUMP_TABLE_COPY (coff), | |
3149 | BFD_JUMP_TABLE_CORE (_bfd_nocore), | |
3150 | BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff), | |
3151 | BFD_JUMP_TABLE_SYMBOLS (coff), | |
3152 | BFD_JUMP_TABLE_RELOCS (coff), | |
3153 | BFD_JUMP_TABLE_WRITE (coff), | |
3154 | BFD_JUMP_TABLE_LINK (coff), | |
3155 | BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic), | |
3156 | ||
6d00b590 | 3157 | & sh_coff_small_le_vec, |
cbfe05c4 | 3158 | |
2c3fc389 | 3159 | & bfd_coff_small_swap_table |
252b5132 RH |
3160 | }; |
3161 | ||
6d00b590 | 3162 | const bfd_target sh_coff_small_le_vec = |
252b5132 RH |
3163 | { |
3164 | "coff-shl-small", /* name */ | |
3165 | bfd_target_coff_flavour, | |
3166 | BFD_ENDIAN_LITTLE, /* data byte order is little */ | |
3167 | BFD_ENDIAN_LITTLE, /* header byte order is little endian too*/ | |
3168 | ||
3169 | (HAS_RELOC | EXEC_P | /* object flags */ | |
3170 | HAS_LINENO | HAS_DEBUG | | |
3171 | HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE), | |
3172 | ||
3173 | (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC), | |
3174 | '_', /* leading symbol underscore */ | |
3175 | '/', /* ar_pad_char */ | |
3176 | 15, /* ar_max_namelen */ | |
0aabe54e | 3177 | 0, /* match priority. */ |
252b5132 RH |
3178 | bfd_getl64, bfd_getl_signed_64, bfd_putl64, |
3179 | bfd_getl32, bfd_getl_signed_32, bfd_putl32, | |
3180 | bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */ | |
3181 | bfd_getl64, bfd_getl_signed_64, bfd_putl64, | |
3182 | bfd_getl32, bfd_getl_signed_32, bfd_putl32, | |
3183 | bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */ | |
3184 | ||
3185 | {_bfd_dummy_target, coff_small_object_p, /* bfd_check_format */ | |
cbfe05c4 | 3186 | bfd_generic_archive_p, _bfd_dummy_target}, |
252b5132 RH |
3187 | {bfd_false, coff_mkobject, _bfd_generic_mkarchive, /* bfd_set_format */ |
3188 | bfd_false}, | |
3189 | {bfd_false, coff_write_object_contents, /* bfd_write_contents */ | |
3190 | _bfd_write_archive_contents, bfd_false}, | |
3191 | ||
3192 | BFD_JUMP_TABLE_GENERIC (coff_small), | |
3193 | BFD_JUMP_TABLE_COPY (coff), | |
3194 | BFD_JUMP_TABLE_CORE (_bfd_nocore), | |
3195 | BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff), | |
3196 | BFD_JUMP_TABLE_SYMBOLS (coff), | |
3197 | BFD_JUMP_TABLE_RELOCS (coff), | |
3198 | BFD_JUMP_TABLE_WRITE (coff), | |
3199 | BFD_JUMP_TABLE_LINK (coff), | |
3200 | BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic), | |
3201 | ||
6d00b590 | 3202 | & sh_coff_small_vec, |
cbfe05c4 | 3203 | |
2c3fc389 | 3204 | & bfd_coff_small_swap_table |
252b5132 | 3205 | }; |
17505c5c | 3206 | #endif |